
Transport Logistics Planning with Service-Level Constraints

Hoong Chuin LAU and Kien Ming NG and Xiaotao WU
The Logistics Institute - Asia Pacific

National University of Singapore, 119260

Abstract

In this paper, we study a logistics problem arising in
military transport planning. A military organization
operates a large fleet of vehicles in a depot to serve the
requests of various operational units. Each request has
a fixed start and end time, and is served by a prescribed
number of vehicles. We address the following two prob-
lems: (1) how many vehicles are at least needed to meet
a given service level of requests; and (2) suppose we al-
low each request to shift its start time by a constant
duration, can all the requests be met? A Niche genetic
algorithm, together with a hybridized variant, are ap-
plied to the problem.

Introduction
The world is increasingly service-oriented and hence
service constraints play an important role in business.
In the military world, service constraints play an ever-
increasing role in today’s heightened security threats.
In this paper, we consider a real-world transport lo-
gistics planning problem arising in a military organiza-
tion. This problem is also prevalent in a logistics agency
which services multiple clients, where service level con-
straints play an important role. The organization owns
a large fleet of vehicles centralized in a depot to service
requests from multiple operational units. A request has
a start and end time, a weight and requires a number
of vehicles. For simplicity, we assume that all vehicles
are identical. The problem is to minimize the number
of vehicles needed to meet a given service level con-
straint, or to maximize the number of served requests
using a given number of vehicles. In the case where not
all requests can be satisfied, a related interesting ques-
tion is whether, by allowing some requests to be shifted
time-wise, all requests can be satisfied with a certain
fixed number of vehicles. The latter question is par-
ticularly important in the military context in achieving
100% operational readiness. Military commanders are
interested to know whether, within a reasonable delay
to their operations, they are able to guarantee full sup-
ply of resources. Without loss of generality, we assume
that requests are to be shifted to a later time point.

Copyright c© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

In this paper, we study the complexity and algo-
rithms for solving 2 major problems in this arena. We
formulate the problems as integer programming mod-
els which render an exact solution approach, such as
branch-and-bound (B&B), to solve them to optimal-
ity. However, such an exact solution approach may not
be practical when tackling large problem instances as
the solution process may take an exponential amount
of time. It is also possible to apply genetic algorithms
(GA) on the problems and solutions could then be ob-
tained for large problem instances. But GAs may en-
counter the situation of being trapped in local optimal-
ity. To overcome the shortcoming of both approaches,
we propose in this paper a hybrid algorithm that hy-
bridize GA and B&B.

In the interest of space, the proofs of theorems and
lemmas have been omitted in this version.

Literature Review
Our problem is a generalization of what is commonly
known as the problem of scheduling jobs with fixed
start and end times. In graph theory, this problem is
a generalization of the Dilworth’s problem of finding a
minimum chain decomposition of a given graph, which
can be solved via a min-cost flow formulation. Exam-
ples of work in this area include the work of (Arkin
& Silverberg 1987) and more recently, the online al-
gorithms presented in (Woeginger 1994). Most of the
literature emphasizes on jobs with single-resource re-
quirement, because the problem exhibits very nice com-
binatorial structure (such as the property that the un-
derlying matrix is totally unimodular). In this paper,
we consider the multi-resource problem, and treat the
single-resource problem as a special case.

In standard machine scheduling terminology, jobs are
started and completed within job-specific release times
and deadlines. To our knowledge however, little work
has been done in the special case of allowing constant
shifts of job start time, which, to some extent, seems to
be an easier problem comparatively. In this paper, we
show that this problem is NP-complete, even for shift
of a single unit of time on jobs with equal release time
and duration. This result is tight in the sense that the
problem can be solved in polynomial time when jobs

PLANNING & SCHEDULING 519

have single-resource requirement, even when they have
arbitrary release times and due-dates (Simons 1983).
Another example of work done in allowing shifts is due
to (Gertsbakh & Stern 1978), who proposed an integer
programming approach for the single-resource problem.
There is a large collection of unreported related ma-
chine scheduling problems with release times and dead-
lines (see for example collection at (Brucker & Knust)),
but suffices to say that most of these papers deal with
different objective functions such as makespan and job-
specific release times, which are not the concerns of this
paper.

Military Transportation Planning

For convenience, we say requests are unweighted when
all the weights of the requests are equal, and weighted
otherwise. A unit (or single-vehicle) request refers to
one whose quantity of vehicles required is exactly 1. In
this paper, unless otherwise specified, we consider the
general problem of weighted, multi-vehicle requests.

We formally define the Military Transportation Plan-
ning (MTP) problem as the following optimization
problem: Given a set of requests R = {1, . . . , n} in-
dexed by i over a planning period T and an integer k,
find the minimum number of vehicles needed to satisfy
at least k requests. This problem can be easily extended
to the weighted case where the goal is to satisfy requests
whose total weight is at least k. The dual optimization
problem dMTP is also interesting: given an integer m,
find the maximum weight (or number) of requests that
can be satisfied using not more than m vehicles.

We use a 2-D bar-chart to represent the requests,
where the x-axis represents time, and the y-axis vehi-
cles. Each request is represented as a horizontal bar
from its start time to end time with height equals to
the number of vehicles required.

Mathematical Programming Formulation
Suppose there is a total of n requests over a planning
horizon of T time periods, and we would like to fulfill
k requests, where 0 ≤ k ≤ n. We let qi, si, ti, and
wi be the quantity of vehicles required, the start time,
the end time and the weight of request i respectively,
where 0 ≤ i ≤ n. We define our decision variables to
be xi� that represents the number of vehicles fulfilling
request i and then request �, where 0 ≤ i, � ≤ n, i �= �;
and yi that takes a value of 1 if request i is fulfilled,
and 0 otherwise, where 0 ≤ i ≤ n. We also denote the
duration of request i as li = ti − si, and the number of
the vehicles required by all the requests as h =

∑n
i=1 qi.

Here, we introduce two additional “dummy” re-
quests, i.e., request 0 and request n + 1, to reflect
the respective start and end of any feasible vehicle
assignment to the physical requests. Thus, for any
vehicle j, a feasible assignment to the requests would
be of the form 0 → j1 → j2 → · · · → jp → n + 1,
where p, j1, j2, . . . , jp ∈ {1, 2, . . . , n}, or 0 → n + 1
indicating that the vehicle is not used at all. The

mathematical programming formulation is then:

min

n∑

i=1

x0i (1)

such that
n+1∑

�=1
��=i

xi� ≥ qiyi (i = 1, 2, . . . , n) (2)

n∑

�=0
��=i

x�i −
n+1∑

r=1
r �=i

xir = 0 (i = 1, 2, . . . , n) (3)

n∑

i=1

wiyi ≥ k (4)

(s� − ti)xi� ≥ 0 (i = 1, 2, . . . , n; � = 1, 2, . . . , n, i �= �)
(5)

xi� ∈ Z≥0 (i = 0, 1, . . . , n; � = 1, 2, . . . , n + 1, i �= �)
(6)

yi ∈ {0, 1} (i = 1, 2, . . . , n). (7)
Equation (1) reflects the aim of minimizing the total

number of vehicles used. Equation (2) ensures that a
request is fulfilled only if the required number of vehi-
cles are assigned to fulfil that request. Equation (3) is a
conservation constraint ensuring that the total number
of vehicles assigned for a particular request remains the
same both before and after fulfilling a request. Equa-
tion (4) ensures that the weighted total number of re-
quests satisfied meets the required level. Equation (5) is
a constraint forcing variables xi� corresponding to an in-
valid sequence of fulfilling requests to assume a value of
zero. Equations (6) and (7) are integrality constraints.

The number of integer decision variables required is
easily verified to be O(n2) for this formulation.

NP-Completeness of MTP
The MTP decision problem is NP-complete via a re-
duction from the Knapsack problem which is known to
be NP-complete.

Relationship between MTP and dMTP
Given a set of requests R, we can define parameterized
MTP and dMTP problem instances as follows:

MTP(k) = min{f(x)|g(x) ≥ k}. (8)

dMTP(m) = max{g(x)|f(x) ≤ m}. (9)
where f(x) and g(x) are functions on a schedule x
counting the number of vehicles used and the number
(weight) of requests satisfied respectively. Let x∗ and
y∗ respectively denote an optimal solution for problems
(8) and (9).

The following theorem relates problems (8) and (9).
Theorem 1 f(x∗) = m if and only if: (1) g(y∗) ≥ k;
and (2) for all feasible schedules y of dMTP(m − 1),
g(y) < k.

520 PLANNING & SCHEDULING

This theorem suggests that if we can solve the prob-
lem dMTP(m), then simply by iterating from 1 to m
and checking if the number of satisfied requests has
reached k, we can get the optimal value of problem
MTP(k). However, note that in the multi-vehicle case,
since the value qi of each request i is unbounded, this
method suffers from high complexity issues if some re-
quests require a large number of vehicles. For the single-
vehicle case where m = O(n), this method allows us to
solve MTP by solving at most n instances of dMTP.

Conversely, if we can solve the problem MTP(k), then
simply by iterating from n down to 1, we can use the
algorithm to solve dMTP(m). This allows us to solve
dMTP by solving at most n instances of MTP, even for
the multi-vehicle case.

Special Case 1: 100% service level This prob-
lem is to decide the minimum number of vehicles so
that ALL requests can be fulfilled. The unit-request
MTP problem can be solved by coloring of an interval
graph, whose nodes represent the requests and edges
represent overlapping time constraint. Interval graph
coloring can be solved optimally in polynomial time,
by known algorithms (such as (Gavril 1972)). Further-
more, since all requests need to be satisfied eventually,
the multi-request MTP problem can easily be solved
by treating each multi-vehicle request as multiple unit
requests. The problem can be solved by applying a
plane-sweep algorithm and the resulting time complex-
ity is O(n log n + h) using O(h) space.

Special Case 2: m = 1 When there is only 1 vehicle
(and therefore all requests are unit requests), dMTP is
reduced to the Activity Selection Problem, which can
be solved in O(n) time via a greedy algorithm if end-
points are presorted: At each step, select a feasible ac-
tivity (request) with earliest finish time with endpoints
presorted such that it is compatible with already se-
lected activities (requests). Even for the weighted case,
dMTP can be solved by formulating it as a Shortest
Path problem and applying Dijkstra’s algorithm (Dijk-
stra 1959). With the corresponding graph constructed,
which has |E| edges and |V | nodes, the complexity of
Dijkstra’s algorithm is O(|E|+ |V | log |V |) (Fredman &
Tarjan 1984). In our problem, with the interval graph
constructed, |V | is O(n) and |E| is O(n2), and hence
the time complexity is O(n2).

Special Case 3: Unit-requests For the unit-
request problem, we note that the minimum number of
vehicles required is bounded from above by the number
of requests n. Here, two results can be established.
1. (Arkin & Silverberg 1987) proposed a O(n2 log n)

time algorithm to solve the problem of scheduling n
jobs with fixed start and end times that maximizes
the value of scheduled jobs on m identical machines
for any given m. Their approach is to model it as
a min-cost flow problem. The above problem is ac-
tually the unit-request dMTP problem. Hence, by
applying the same approach, the dMTP problem on

a given value of m can be solved by min-cost flows
in O(n2 log n) time (Papadimitriou & Steiglitz 1982).
Note that the algorithm also implicitly solves all re-
lated dMTP instances greater than m, implying that
when we choose m = 1, by Theorem 1, MTP can be
solved with one iteration in O(n2 log n) time.

2. When m = 2, the above situation can be im-
proved. An O(n2) algorithm was proposed in (Hsiao
et al. 1992) based on dynamic programming to solve
the maximum weight 2-independent set problem on
weighted interval graphs. Their approach can be gen-
eralized to O(nm) for finding an m-independent set.
As dMTP on m is equivalent to finding a maximum
(weight) m-independent set, an O(n2) algorithm is
found for m = 2, and in general, an O(nm) algo-
rithm for arbitrary m. This means, by Theorem 1,
that MTP can be solved in

∑m∗

m=1 O(nm) = O(nm∗
)

time. Thus, MTP instances with a minimum value
of m∗ ≤ 2 can be solved in O(n2) time.

MTP with Shifting (MTP-S)
We define the MTP with Shifting (MTP-S) problem
as: given n requests over a planning period T , and an
integer C, find a schedule that satisfies ALL requests
by allowing each request’s start time to be shifted later
by a duration not exceeding C time units.

The unweighted MTP-S decision problem is NP-
complete, even when C = 1 and all release times and du-
rations are equal. The proof is a reduction from the 2-
Partition problem which is known to be NP-Complete.

Mathematical Programming Formulation
By introducing more variables, we can model MTP-S in
a similar way. Since we can shift the start (and therefore
the end) time by C, this is equivalent to each request
having a release time ri, deadline di and an actual start
time si, where di = ri + li + C and li is the duration of
request for 1 ≤ i ≤ n.

It is then necessary to add the following constraints
on the start time of each request:

ri ≤ si ≤ ri + C (i = 1, 2, . . . , n) (10)
si ∈ Z≥0 (i = 1, 2, . . . , n). (11)

Since we would like to have all requests being satisfied,
equation (4) can be omitted and (2) changed to

n+1∑

�=1
��=i

xi� = qi (i = 1, 2, . . . , n) (12)

Also, equation (5) would be modified to:

(s�−si−li)xi� ≥ 0 (i = 1, 2, . . . , n; � = 1, 2, . . . , n, i �= �).
(13)

If we define zi�, for 1 ≤ i, � ≤ n and i �= � to be
binary intermediate variables satisfying the following
constraints:

xi� ≤ Mzi� (i = 1, 2, . . . , n; � = 1, 2, . . . , n, i �= �) (14)

PLANNING & SCHEDULING 521

s� − si − li ≥ M(zi� − 1)
(i = 1, 2, . . . , n; � = 1, 2, . . . , n, i �= �), (15)

zi� ∈ {0, 1} (i = 1, 2, . . . , n; � = 1, 2, . . . , n, i �= �), (16)

where M = max{maxi{qi}, T} + 1 then it is easy to
verify that equations (14), (15) and (16) could be used
in place of equation (13), thereby removing the nonlin-
earities in the formulation of MTP-S.

In summary, the mathematical programming formu-
lation of MTP-S is described by the minimization of
equation (1) subject to the constraints (3), (6), (7),
(10), (11), (12), (14), (15), and (16). The number of
integer decision variables required is again O(n2) for
this formulation. This formulation is similar in spirit
to that of the vehicle routing problem with time win-
dows (VRPTW) commonly seen in literature, such as
(Fisher et al. 1997). Thus, it may be possible to adapt
existing methods for handling the VRPTW to solve
MTP-S, such as the Lagrangian relaxation approach in
(Desrosiers et al. 1988).

Genetic Algorithm for MTP-S Problem

In this section, we propose a genetic algorithm (GA) to
solve the NP-hard MTP-S problem.

Cumulative Request Histogram Before present-
ing our proposed GA, we introduce the notion of a re-
quest histogram. By aggregating the 2-D graph repre-
sentation of all requests, we derive a Cumulative Re-
quest Histogram, whose x-axis is the time period and
y-axis is the total number of vehicles required by re-
quests spanning each time period. Let h� denote the
number of vehicles required at time period l. Let CRH
= (h1,. . . ,h�, . . . , hT) and CRHmax = maxT

�=1 h�.

Lemma 1 For each CRH with fixed actual start times
(i.e. no shift allowed), we can construct a feasible
schedule such that the number of vehicles used m∗ is
equal to CRHmax in polynomial time.

This lemma is evident by inspecting the plane sweep
algorithm presented in Special Case 1 that we need at
most CRHmax vehicles. The proof of optimality results
from the observation that we need at least CRHmax

vehicles through the pigeon-hole argument. The com-
putational complexity is O(n log n + h), as presented
above.

The optimal schedule CRH∗ for MTP-S has the
property that CRH∗

max = min{CRHk
max|k ∈ S}, where

S is the set of all possible CRH resulting from fixing the
actual start times of requests, and CRHk

max is the value
of CRHmax for the k-th CRH . Hence, by Lemma 1, we
may generate a optimal schedule by simply enumerat-
ing all possible combinations of actual start times. Un-
fortunately, there is an exponential number (precisely
Cn) of such combinations. In this paper, we adopt a
Niche genetic algorithm which reduces the search space
efficiently.

Niche GA for MTP-S

Both experiments and analysis show that while the sim-
ple genetic algorithm is suitable for searching the opti-
mum of unimodal functions in a bounded search space,
it cannot find the multiple global maxima of a multi-
modal function (Goldberg 1989). This limitation can be
overcome by a mechanism that creates and maintains
several subpopulations within the search space in such
a way that each maximum of the multimodal function
can attract one of them. These mechanisms are referred
to as “niching methods” in (Mahfoud 1999).

Our MTP-S problem is modeled as a multimodal
function which has many optimal solutions. In fact,
those CRHs with the same CRHmax can be viewed
as the same solutions, for the number of vehicles re-
quired is the same. Although we do not have to list all
the optimal CRHs, since the search space is large, we
still need a method to control the search efficiency. We
adopt the niching idea here because it is useful to main-
tain population diversity and permit genetic algorithms
to explore more search space so as to identify multiple
peaks, whether optimal or otherwise.

There are several niching techniques in the literature.
The fitness sharing method was proposed by Goldberg
and Richardson (Goldberg & Richardson 1987) and the
crowding method by DeJong (Jong 1975). The clear-
ing idea used in this paper derives from the clearing
procedure stated by Petrowski (Petrowski 1996). The
basic idea is: instead of evenly sharing the available re-
sources among the individuals of a subpopulation, the
clearing procedure supplies these resources only to the
best individuals of each subpopulation. In fact, we pro-
pose a variation of the clearing method which not only
concerns the current population but the previous pop-
ulation as well. Thus, we need not worry about the
crossover operation destroying the individuals located
on the peaks found with a high probability.
Coding For the chromosome λ = {j1, . . . , ji, . . . , jn},
where ji ∈ [0, 1, . . . , C], n is the number of requests and
C refers to the allowable time shift in the requests. This
implies that the total solution space size is Cn.
Fitness The objective value f(λ) for a particular
chromosome λ is the number of vehicles needed to fulfill
all the requests when that chromosome is applied.
Selection & Crossover We use the Roulette Wheel
Selection as our basic model (Goldberg 1989). Also and
elitist model is then used for comparison where the best
performing chromosome is exempt from mutation. We
use one-point crossover in Niche GA.
Mutation Here, the uniform mutation operation
with probability pm is used.

Suppose the chromosome is λ = {j1, j2, . . . , jn} and
p is the selected mutation point, 1 ≤ p ≤ n. After
the uniform mutation operation, the new chromosome
is λ = {j1, j2, . . . , j′p, . . . , jn} where j′p = r ×C and r is
a random number from [0,1].

522 PLANNING & SCHEDULING

Hybrid Approach
A pure Niche GA approach may still be inadequate in
obtaining optimal or close-to-optimal solutions for cer-
tain problem instances. Here, we propose a hybrid al-
gorithm that adapts the Niche GA method to make use
of the strengths of an exact method. With the math-
ematical programming formulation, there are certainly
many exact solution approaches that can produce the
optimal solution though at the expense of computation
time. For simplicity, we assume that our exact solution
approach is a B&B method that is always generating
feasible solutions with improving objective values if we
apply it to the MTP-S problem. We start by running
both Niche GA and B&B algorithms on an instance of
the MTP-S problem. Each time the B&B algorithm
returns a new feasible solution that is better than the
current best solution of the Niche GA, we convert it
into a corresponding chromosome, say λ∗.

For each gene ji of λ∗, we calculate the sum of ham-
ming distance with that of all the chromosomes of the
current population, and call it dis(i), for 1 ≤ i ≤ n.
We then change the Niche GA parameters so that the
resulting Niche GA algorithm will attempt to generate
genes that are similar to that obtained by the B&B
method. Thus, we can set the mutation probability
pm[i] of each gene position to be dis(i)

PopSize , for 1 ≤ i ≤ n,
where Popsize is the size of the genetic population pool.
But sometimes we do not want the offspring of the cur-
rent generation to be similar as λ∗, especially at certain
time periods where vehicles are densely scheduled. We
can simply avoid this by setting a high mutation prob-
ability to the corresponding requests, i.e. pm[i] = 1,
for 1 ≤ i ≤ n. We then proceed with running both
the Niche GA and the B&B algorithms, and repeat the
process with each new feasible solution returned by the
B&B algorithm. The algorithm is terminated if either
the B&B algorithm produces an optimal solution, or a
prespecified iteration time limit is reached.

The reason for such a hybrid approach is that we
are using the exact solution approach as a diversifica-
tion strategy for the Niche GA algorithm. There has
been literature on diversification strategies for GA al-
gorithms (see e.g. (Ting et al. 2001)), but most of them
are using heuristic or randomized techniques. A strong
justification for our proposed approach is that we are in
effect using an exact solution approach, which is guar-
anteed to obtain an optimal solution to the problem, to
guide the diversification strategy. This will help prevent
the Niche GA algorithm from getting iterates that are
trapped in a local optimal solution. We can also inter-
pret the process as the Niche GA algorithm “learning”
from the intelligent search procedures used by an exact
solution approach.

Experimental Results
We experimented on two classes of data: practical data
obtained from a military organization and randomly
generated data.

Figure 1: Population spread of Niche GA and Standard
GA, with population size of 50

Practical Data Generation and Results
We obtained a base case from a military organization
and generated practical data sets around that case by
carefully considering the distributions of data values on
the number of time slots, number of vehicles, start and
end times of a request, request quantity, and the total
number of jobs spanning over the vehicle resources.

We compare the Niche GA and the exact integer pro-
gramming (IP) model proposed above on a small data
set D1 (n=240, T=365 units), with delay C ranging
from 1 to 5. Although both Niche GA and IP model
obtain the optimal solution, the time taken for the IP
model increases exponentially as the delay value in-
creases, compared with linear scaleup for Niche GA.

We also did a comparison of the Niche GA and the
Standard GA, using the same genetic operators. Fig-
ure 1 shows the number of individuals with optimal
solutions as it varies from generation to generation. It
can be seen that both Niche GA and Standard GA get
the optimal solution in an early generation (both when
generation = 30) due to the use of the CRH technique
which reduces the solution space. Also, we can see that
the Niche GA has a much higher likelihood of obtaining
other optimal solutions than the Standard GA.

Random Data Generation and Results
Here, we generate data sets with known optimal solu-
tions to verify the effectiveness of our Niche GA. The
procedures of generating one data set cluster are:
1. Generate a rectangular histogram (that is the optimal

CRH for a data set cluster).
2. Partition the rectangle into small rectangles as re-

quests (with random durations and quantities).
3. Shift each generated request with k units forward,

where k ∈ [0, C] to generate the start and end time.
4. Change C and go to step 3 in order to generate the

next data set for this data set cluster.
We set each data set cluster to include 5 data sets,

whose mean value of C ranges from 1 to 5. It is trivial to
see that these 5 data sets within the same data cluster
share at least one identical optimal solution, which is
the optimal CRH generated.

PLANNING & SCHEDULING 523

Figure 2: Performance of Niche GA on large data sets

Figure 3: Performance of different GAs on L4

We experimented on 3 types of data sets (small,
medium and large), with each type consisting of 4 data
set clusters. Figure 2 shows the performance (num-
ber of vehicles required) of Niche GA on large data
clusters L1 (n = 122), L2 (n = 245), L3 (n = 348),
L4 (n = 451). It can be seen that Niche GA does
not perform satisfactorily especially when C is large.
We also compared Niche GA with other GAs on data
cluster L4. The average performance over 5 runs are
reported in Figure 3. Compared with standard GA and
Elitist GA, the Niche GA performs slightly better. In
such cases, the search space is too large compared to
the number of near optimal solutions. It is very hard
to get the optimal solution because of very few optimal
solutions (the worst case may only have one optimal
CRH , i.e. with no symmetric cases included).

Given the poor performance of the Niche GA ap-
proach, we apply our proposed hybrid algorithm on the
test data. In particular, we experimented with a test
data set with size 62 requests and a shift of 5 time units,
and it has an optimal solution of 20 vehicles. The pure
Niche GA method is unable to get a solution that is
better than 22 vehicles, while the B&B method takes
a large number of iterations to obtain a solution that
is less than 23 vehicles. With the hybrid algorithm, a
solution of 21 vehicles can be obtained.

Conclusion

In this paper, we studied a class of logistic problems.
We have also developed mathematical programming
models that allow exact solution approaches to produce
intermediate solutions for intelligently influencing the
GA’s parameters. Future work is to extend this hy-
bridization scheme to other classes of problems.

References
E. M. Arkin and E. B. Silverberg, “Scheduling jobs
with fixed start and end times”, Disc. Appl. Math,
18(1), 1-8, 1987
P. Brucker and S. Knust, http://www.mathematik.
uni-osnabrueck.de/research/OR/class/
J. Desrosiers, M. Sauvé and F. Soumis, “Lagrangian
Relaxation Methods for Solving the Minimum Fleet
Size Multiple Traveling Salesman Problem with Time
Windows”, Mgmt. Sc., 34(8), 1005-1022, 1988
E. W. Dijkstra, “A note on two problems in connexion
with graphs”, Numer. Math., 1, 269-271, 1959
M. L. Fredman and R. E. Tarjan, “Fibonacci heaps
and their uses in improved network optimization algo-
rithms”, Proc. 25th IEEE Symp. on FOCS, 1984
M. L. Fisher, K. O. Jörnsten, O. B. G. Masden, “Ve-
hicle Routing with Time Windows: Two Optimization
Algorithms”, Oper. Res., 45(3), 488-492, 1997
I. Gertsbakh and H. I. Stern, “Minimal Resources for
Fixed and Variable Job Schedules”, Oper. Res., 26(1),
68-85, 1978
F. Gavril, “Algorithms for Minimum Coloring, Maxi-
mum Clique, Minimum Covering by Cliques, and Max-
imum Independent Set of a Chordal Graph”, SIAM J.
Comput. 1(2), 180-187, 1972
D. E. Goldberg, J. Richardson, “ Genetic Algorithms
with Sharing of Multimodal Function Optimization”,
Proc. 2nd Int’l Conf. Genetic Algo., pp42-49, 1987
D. E. Goldberg, “Genetic algorithms in search, op-
timization and machine learning”, Reading, Addison
Wesley, 1989
J. Y. Hsiao, C. Y. Tang, R. S. Chang, “An Effi-
cient Algorithm for Finding a Maximum Weight 2-
Independent Set on Interval Graphs”, Info. Proc.
Lett., 43, 229-235, 1992
K. A. De Jong, “An analysis of the behavior of a class
of genetic adaptive systems”, PhD dissertation, Uni-
versity of Michigan, 1975
S. W. Mahfoud,“Niching Methods for Genetic Al-
gorithms”, PhD dissertation, University of Illinois
Urbana-Champaign, 1995
C. H. Papadimitriou and K. Steiglitz, “Combinatorial
Optimization: Algorithms and Complexity”, Reading,
Prentice-Hall, 1982
A. Petrowski, ”A Clearing Procedure as a Niching
Method for Genetic Algorithms”, Proc. IEEE 3rd Int’l
Conf. Evol. Comput. (ICEC), Nagoya, 1996
B. Simons, “Multiprocessor scheduling of unit-time
jobs with arbitrary release times and deadlines”, SIAM
J., Computing, 12(2), 294-299, 1983
C.-K. Ting, S.-T. Li, C. Lee, “TGA: A new integrated
approach to evolutionary algorithms”, Proc. Congress
on Evolutionary Computation, 917-924, 2001
G. Woeginger, “On-line scheduling of jobs with fixed
start end times”, Theo. Comp. Sci., 130, 5-16, 1994

524 PLANNING & SCHEDULING

