
Integrating Local Search and Network Flow
to Solve the Inventory Routing Problem

Hoong Chuin LAU
School of Computing

National University of Singapore,
3 Science Drive 2, Singapore 117543.

lauhc@comp.nus.edu.sg

Qizhang LIU
ASPrecise Pte Ltd,

11 Tampines Street 92,
Singapore 528872.

qizhang@asprecise.com

Hirotaka ONO
Graduate School of Information Science

and Electrical Engineering,
Kyushu University, Japan 812-8581.
ono@csce.kyushu-u.ac.jp

Abstract

The inventory routing problem is one of important and prac-
tical problems in logistics. It involves the integration of in-
ventory management and vehicle routing, both of which are
known to be NP-hard. In this paper, we combine local search
and network flows to solve the inventory management prob-
lem, by utilizing the minimum cost flow sub-solutions as a
guiding measure for local search. We then integrate with a
standard VRPTW solver to present experimental results for
the overall inventory routing problem, based on instances ex-
tended from the Solomon benchmark problems.

Keywords: Scheduling, Planning, Search, Applications,
AI/OR integration, Hybrid methods

Introduction
Supply chain optimization involves decision-making pro-
cesses to manage the production and flow of products and
services from the source to the customers. Traditionally, the
various activities along the supply chain are performed sep-
arately by different logistics operators. For example, goods
are transported from the suppliers to the warehouses via one
or more transport operators; the inventory control at each
warehouse is handled by a warehouse operator; and the de-
livery of goods from the warehouses to the retailers are han-
dled by some other transport operators.

An emerging industry trend is the formation of logistics
operators that provide a one-stop point-to-point service for
the entire distribution operation described above. Under this
system, retailers need not manage their own inventory to en-
sure timely re-supply while the logistics operator achieves
economies of scale by being able to co-ordinate deliveries to
multiple retailers. Hence, a system-wide optimization can
be achieved through an algorithmic integration of inventory
and transportation.

In this paper, we consider Inventory Routing Problem with
Time Windows (IRPTW). An IRPTW instance is given as
a distribution system with multiple suppliers, capacitated
warehouses, capacitated retailers, identical capacitated ve-
hicles and unit-sized items. The items are to be transported
from the suppliers to the warehouses, and subsequently de-
livered to the retailers by vehicles. Vehicles can combine de-

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

liveries to multiple retailers, provided that the items are de-
livered within stipulated time windows. Given the retailers’
time-varying demand forecast over a finite planning horizon,
the goal is to find a distribution plan so as to minimize the
total operating cost, which comprises the (inventory) hold-
ing cost for amounts exceeding demand, backlog cost for
amounts falling short of demand and transportation cost.
Clearly, IRPTW is a complex problem, since it involves the
integration of two classical optimization problems: dynamic
capacitated lot-sizing problem (Florian at al. 80) and vehi-
cle routing problem with time-windows (VRPTW) (Savels-
bergh 86), both of which are NP-hard.

Many inventory models have been proposed by the OR
community in the past (Campbell et al. 98; Carter et al. 96;
Chan at al. 98; Caseau and Kokeny 98; Fredegruen and Zip-
kin 84; Graves et al.). In (Campbell et al. 98), a simplified
version of IRP is considered. Even for that problem, the
authors, who proposed an integer programming approach,
reported that ”This model is not very practical for two rea-
sons: the huge number of possible delivery routes, and al-
though to a lesser extent, the length of the planning horizon.
To make this integer program computationally tractable, we
only consider a small (but good) set of routes and aggregate
time periods towards the end of the planning horizon.”

Hence, to our knowledge, a logistics problem as compli-
cated as IRPTW has not been extensively studied and exper-
imented in the literature. The collaboration framework intro-
duced in (Lau et al. 00) offered an attempt. There, IRPTW
is divided into two sub-problems (distribution and routing)
plus an interface mechanism to allow the two algorithms to
collaborate in a master-slave fashion, with the distribution
algorithm driving the routing algorithm. The overview of
the framework is as follows: The Master will determine the
flow amounts between the suppliers, warehouse and the re-
tailers so as to minimize holding and backlog costs subject
to warehouse and retailers’ capacities. The Slave, based on
the given flow amounts (or customer demands, in vehicle
routing terminology), sequences the deliveries into routes so
as to minimize transportation cost, subject to vehicle capac-
ities and time windows. These routes in turn induce a re-
partitioning of the retailers for the Master, and the process is
repeated.

Since VRPTW is a well-studied NP-hard problem, con-
ceivably one can use any existing standard algorithms as the

AAAI-02 9

Slave. On the other hand, to our knowledge, there exists no
efficient algorithm which can be used as the Master on this
framework. (Lau et al. 00) proposed a simple algorithm
based on tabu search, which does not seem to be effective,
since it does not make use of the underlying network struc-
ture.

In this paper, we devise an elegant and rigorous local
search approach to solve the Master problem. We demon-
state how to perform efficient and effective neighborhood
search in a complex local search space through the use of
network sensitivity analysis. In essence, the choice of the
next move is determined by solving an instance of minimum
cost flow. Even though it is known that the minimum cost
flow problem is polynomial-time solvable, since our algo-
rithms make extensive use of minimum cost flow, we need
to solve the minimum cost flow problem as efficiently as
possible. Instead of solving each instance from scratch, by
the nature of local search, it turns out that we can apply the
theory of sensitivity analysis to obtain a solution by restart-
ing from the previous solution (basis). For this purpose, we
adopt the network simplex method whose strength lies in the
ability to perform sensitivity analysis quickly.

As an example applying network flows to solve NP-hard
problems, Xu and Kelly proposed a heuristic algorithm for
VRP (Xu and Kelly 96). Their approach, an extension of
ejection chains model (Glover 96), performs neighborhood
searches approximately and efficiently by solving network
flow problems. While there are significant differences be-
tween their approach and our model, both make use of a
minimum cost flow problem, which can be solved quickly,
as the background engine.

Preliminaries
Problem Definition
In this paper, we consider a basic version of IRPTW of a sin-
gle item supplied by a single supplier. Our approach can be
easily extended to the more general case involving multiple
items and multiple suppliers. An IRPTW instance consists
of the following inputs:
C: set of retailers (customers);

T : consecutive days in the planning period {1, 2, · · · , n};

dit: demand of retailer i on day t;

qV : vehicle capacity;

qW : warehouse storage capacity;

qi: storage capacity of retailer i;

Wit: time window of retailer i on day t;

ch
i : holding cost per unit item per day at retailer i;

cb
i : backlog cost per unit item per day at retailer i;

The outputs are as follows:

(1) the distribution plan, which is denoted by xit: integral
flow amount from the warehouse to retailer i on day t;

(2) the set of daily transportation routes Φ, which carry
the flow amounts in (1) from the warehouse to the re-
tailers such that the sum of the following linear costs is
minimized:

a) holding costs and backlog costs
b) transportation cost from the warehouse to the retailers

(Tik).

We use indices i and t for retailers and days respectively.
The distribution plan must obey the demands and storage

capacity constraints, and the transportation routes must obey
the standard routing, vehicle capacities and time windows
constraints. For notational convenience, we let Φt denote
the set of routes for day t. Each route is an ordered list
of retailers representing the delivery sequence performed by
one particular vehicle per day.

IRPTW can be regarded either as a generalization of
VRPTW or the dynamic lot-sizing problem. In the former
case, IRPTW can be seen as a multi-day version of VRPTW,
where the daily plans are related via holding and backlog
quantities. In the latter case, IRPTW is a constrained ver-
sion of the dynamic lot-sizing problem, whose set-up cost
coefficients are defined by delivery (i.e. route) costs. Let
this problem be denoted DLP.

Minimum Cost Flow Model for DLP
In this section, we explain our minimum cost flow model
solving DLP.

Recall that VRPTWsolver outputs a set of routes Φ to
DLP. The following variables can be derived directly from
Φ: hir: 1 if retailer i is served by route r ∈ Φt on some
day t, and 0 otherwise; cr

r: cost of route r ∈ Φt on some
day t, defined as the sum of transportation costs Tik over all
adjacent retailers i and k on route r.
The following intermediate variables are used:

zit: integral amount held in retailer i on day t; bit: inte-
gral amount of backlog for retailer i on day t; yr: boolean
variable, whether route r ∈ Φt on some day t is used;

The underlying model is a 4-layer network for warehouse
V1, days V2, routes V3 and retailers (customers) V4 respec-
tively. Each customer vertex is replicated n times for the
n-day planning period. The day, route and customer ver-
tices in the network are denoted by vd, vr and vc respectively.
Edges between vertices of different layers represent the flow
amounts (warehouse to retailers), while edges between ad-
jacent replicated vertices represent either inventory carrying
over to the next day (E4), or backlog from the previous day
(E5). Formally, the network model is defined as follows (see
Fig. 1):

V =
4⋃

i=1

Vi and E =
5⋃

i=1

Ei,

where

V1 = {s},
V2 = {vd

t | t ∈ {1, 2, · · · , n}},
V3 = {vr

r | r ∈ Φt and t ∈ {1, 2, · · · , n}},
V4 = {vc

it | i ∈ C and t ∈ {1, 2, · · · , n}},
E1 = {(s, vd

t) | t ∈ {1, 2, · · · , n}},
E2 = {(vd

t , v
r
r) | r ∈ Φt and t ∈ {1, 2, · · · , n}},

E3 = {(vr
r, v

c
it) | hir = 1, r ∈ Φt and t ∈ {1, 2, · · · , n}},

10 AAAI-02

Figure 1: network flow model

E4 = {(vc
it, v

c
i,t+1) | i ∈ C and t ∈ {1, 2, · · · , n − 1}},

E5 = {(vc
it, v

c
i,t−1) | i ∈ C and t ∈ {2, 3, · · · , n}}.

A demand of each vertex is defined as

d(v) =

{−∑
i

∑
t dit v ∈ V1,

dit vc
it ∈ V4,

0 otherwise.
A lower bound of each edge is 0 and an upper bound (ca-

pacity) ue is defined as

ue =

qW e ∈ E1

Mbigyr e ∈ E2

Mbig e ∈ E3

qi e = (vc
it, v

c
i∗) ∈ E4 ∪ E5

(1)

where Mbig represents a very large value. The cost of each
edge is defined as follows:

cost(e) =

cr
ryr e = (vd

t , v
r
r) ∈ E2,

ch
izit e = (vc

it, v
c
i,t+1) ∈ E4,

cb
ibit e = (vc

it, v
c
i,t−1) ∈ E5,

0 otherwise.

(2)

Hence, total costs of this network is∑
t

∑
i

(ch
izit + cb

itbit) +
∑

r

yrc
r
r,

and this flow satisfies quantity constraints obviously; i.e.,
this DLP is formulated as one kind of minimum cost flow
problems.

Although this problem looks like a simple minimum cost
flow problem, it is actually NP-hard since yr’s are 0-1 vari-
ables. On the other hand, for fixed yr’s, this problem be-
comes easy, i.e., polynomial solvable. Therefore, we can
rewrite this problem as follows:

min
y

∑
r∈Φt

cr
ryr + MCF(y) (3)

subject to yr ∈ {0, 1},
r ∈ Φt, t = 1, 2, · · · , n,

where MCF(y) is the optimal value of the above minimum
cost flow network problem for a fixed yr.

Network Simplex Method
To obtain MCF(y) in (3), we use network simplex method
originally proposed in (Dantzig 51) (see also (Ahuja et al.
93) for implementation). Since network simplex method is
analogous to simplex method for linear programming prob-
lem, it is practically fast though it is not a polynomial time
algorithm 1.

Another reason why we use network simplex method is
that it is easy to implement sensitivity analysis. Since our
heuristics algorithm to solve DLP is based on local search
that uses the value of MCF(y) as a guiding measure, we need
to solve many minimum cost flow problem instances. Since
these minimum cost flow problems usually have similar net-
works, we can solve new minimum cost flow problem by
making use of solution of the previous minimum cost flow
problem as the basis - hence, sensitivity analysis.

Now, we explain a basic idea of the network simplex
method (for short NSM). (For details, see Chap. 11 of
(Ahuja et al. 93), on which these explanations are based.)

NSM maintains a spanning tree solution, which partitions
the edge set of network into three disjoint subsets: (1) T , the
edges in the spanning tree; (2) L, the non-tree edges whose
flow is restricted to value 0; and (3) U , the non-tree edges
whose flow is restricted in value to the edges’ flow capaci-
ties. We refer to (T, L, U) as a spanning tree structure.

Now we define the reduced cost cπ
uv = cuv − π(u) +

π(v), where cuv represents a cost of edge (u, v), and π(u)
represents a potential on vertex u. For for a spanning tree
structure (T, L, U), we have optimal conditions

cπ
uv = 0 for all (u, v) ∈ T, (4)

cπ
uv ≥ 0 for all (u, v) ∈ L, (5)

cπ
uv ≤ 0 for all (u, v) ∈ U. (6)

For these conditions, the spanning tree solution in which all
edges satisfy them is optimal. The reduced cost cπ

uv means
the cost per unit flow intuitively. For example, if we were to
add flow of x units on edge (u, v), then the total cost of this
network increases by (cuv − π(u) + π(v))x units.

NSM proceeds as follows: It maintains a feasible span-
ning tree structure such that all tree edges satisfy condition
(4) at each iteration and successively transforms it into an
improved spanning tree structure until all non-tree also sat-
isfy condition (5) and (6).

Algorithm NETWORK SIMPLEX METHOD:

Step 1: Find an initial feasible tree structure (T, L, U).
Step 2: If some non-tree edge violates the optimality con-
dition (5) or (6), find an improved spanning tree structure
and go to Step 2. Otherwise halt.

Next, we explain sensitivity analysis on edge costs. Con-
sider that the cost of an edge (u, v) increases by λ. (Reduc-
ing λ also can be done similarly.) Let (T ∗, L∗, U∗) denote

1Although there exist polynomial time algorithms to solve min-
imum cost flow problems (Ahuja et al. 93), network simplex
method is still practical as simplex method for linear programming.

V1

V2

V3 V4

E1

E2

E3

E4 E5

warehouse

days

routes retailers
(customers)

day 2

route 1

route 2

day 1

1

2

1

2

AAAI-02 11

the spanning tree structure of the optimal solution and π∗ de-
note the corresponding vertex potential. The analysis would
be different when edge (u, v) is a tree or a non-tree edge.

Case 1. edge (u, v) is a non-tree edge.
Adding the cost of edge (u, v) does not affect the ver-
tex potentials of the current spanning tree structure, since
edges in T ∗ still satisfy optimal condition (4). The mod-
ified reduced cost of of edge (u, v) is cπ∗

uv + λ. If it cost
satisfies condition (5) or (6), (T ∗, L∗, U∗) remains opti-
mal. Otherwise, we reoptimize the solution using NSM
with (T ∗, L∗, U∗) as the initial spanning tree structure.

Case 2. edge (u, v) is a tree edge.
We have to change some vertices’ potentials in order to
maintain the current spanning tree structure (T ∗, L∗, U∗),
satisfying optimal condition (4). If edge (u, v) is an
upward-pointing edge on the current spanning tree, poten-
tials of all the vertices in subtree whose root is u increase
by λ, and if (u, v) is a downward-pointing edge, potentials
of all the vertices in subtree whose root is v decrease by
λ. If all non-tree edges still satisfy the optimality condi-
tion, the current spanning tree structure remains optimal;
otherwise, we reoptimize the solution using NSM.

Local Search Algorithms for DLP
In this section, we present our local search algorithms for
solving DLP. In general, local search starts from an initial
feasible solution and repeats replacing it with a better solu-
tion in its neighborhood until no better solution is found in
its neighborhood. Roughly speaking, a neighborhood is a set
of solutions obtainable from the current solution by a slight
perturbation.

In our problem, the solution is defined as an assignment
of y = (y1, y2, · · · , yk), and the cost, cost(y), of solution y
is defined as the value of equation (3). In our algorithm, we
use the following neighborhoods:

Delete Neighborhood ND(y) is defined as ND(y) =
{y′ | y′ = y − e(j), j ∈ ON(y)}, where ON(y) = {j |
yj = 1} and e(j) is j-th unit vector. This neighborhood
represents transition that route j is deleted from the set of
routes used in current solution.

Add Neighborhood NA(y) is defined as NA(y) = {y′ |
y′ = y + e(l), l ∈ OFF (y)}, where OFF (y) = {l |
yl = 0} and e(j) is j-th unit vector. This neighborhood
represents transition that route l is added into the set of
routes used in current solution.

Swap Neighborhood N S(y) is defined as N S(y) = {y′ |
y′ = y−e(j)+e(l), j ∈ ON(y) and l ∈ OFF (y)} where
ON , OFF and e∗ are as defined in Delete and Add neigh-
borhood.

We apply moves to solutions in ND(y), NA(y) and N S(y),
delete operation, add operation and swap operation, respec-
tively. Using these neighborhoods and operations, we pro-
pose the following LS (local search) algorithm:

Algorithm LS:
Step 1: (initialize) Find an initial solution σinit (see below),
and set best:=cost(σinit).

Step 2: (improve by LS) Improve σ by neighborhood
search. set improve:= false.

(2-a): If there exist y′ ∈ NA(y) such that cost(y′) <
cost(y), set y := y′, improve := true, and return to
(2-a). Otherwise go to (2-b).
(2-b): Do likewise for neighborhood ND.
(2-c): Do likewise for neighborhood N S

Step 3: (halt or repeat) If improve= false, output y and
stop; otherwise return to Step 2.

In Step 1, we use a simple heuristics algorithm initial dele-
tion in order to find an initial solution y.

Algorithm INITIAL DELETION:
Step 1: Set j := 0, y = (1, 1, 1, · · · , 1), and an order
Ro = {r1 � r2 � · · · � rk} of route r ∈ Φt for all
t, according to the value cr

r/wr.

Step 2: Set j := j + 1. If j = k + 1, output y and halt.
Otherwise go to Step 3.

Step 3: If cost(y′) <cost(y) where y′ = y − e(rj), set
y := y′. Return to Step 2.
Since the value cr

r/wr in Step 1 can be considered the
redundancy of route r, this algorithm is essentially a greedy
algorithm.

Local search method has a disadvantage that it is impossi-
ble to escape from local optima; i.e., y does not have better
solution in its neighborhood N(y), but is not a global op-
timal. Therefore, we implement two meta-heuristics algo-
rithms ILS and TS.

Iterated local search
Iterated local search (ILS) (Gu 92; Johnson 90) generates
initial solutions of local search, by slightly perturbing a solu-
tion yseed, which is a good (not necessarily the best) solution
found during the search. This diversity of initial solutions
lead us to escape from local optima. Our ILS works as fol-
lows:

Algorithm ILS
Step 0: (initialize) Generate an initial solution yseed by Ini-
tial Deletion, and set best:= cost(yseed).

Step 1: (generate an initial solution) Generate a solution y
by slightly perturbing yseed.

Step 2: (improve by LS) Improve y by LS, i.e., set y :=
LS(N, y).

Step 3: (update the best and seed solutions) If cost(y) <
best, set best := cost(y) and y∗ := y. If some accepting
criterion is satisfied, set yseed := y.

Step 4: (halt or random restart) If some stopping criterion
(computational time or the number of iterations exceeded)
is satisfied, output y∗ and stop; otherwise return to Step 1.
In Step 1, the new solution y is generated by l-Jump Op-

eration.
l-Jump Operation First, choose a set L of components
from {1, 2, · · · , k} randomly, where |L| = l. For input y,
flip values of components in L, i.e., for i ∈ L,

yi :=
{ 1 yi = 0,

0 yi = 1.

12 AAAI-02

Tabu search

Tabu search (Glover and Laguna 97) tries to enhance LS by
using the memory of the previous search. The best solution
in N(y) \ ({y} ∪ T) is chosen as the next solution, where
the set T , called tabu list, is a set of solutions which includes
those solutions most recently visited. Usually the size of
tabu list |T | is less than ttenure, called tabu tenure. In tabu
search, a move to a new solution is always executed even if
the current solution is locally optimal. This causes cycling
of solutions in general. Introducing T enables the algorithm
to avoid cycling in a short period.

In our tabu search (TS), we keep tabu list as 1-array of
size k, associated with routes, and put τj . τj is defined as
the iteration number when an operation is done about route
j most recently. For the current iteration number tit, if tit −
τj < ttenure, all operations about j are forbidden, i.e., tabu.
TS works as follows:

Algorithm TS

Step 1: (initialize) Generate a solution y by Initial Dele-
tion, set y∗ := y and T := ∅.

Step 2: (decide a move) improve := false. Find the best
solution y′ in N(y) \ ({y} ∪ T) for (2-a),(2-b) and (2-c),
and set y := y′.

(2-a): Find the best solution y′ ∈ NA(y) and set y :=
y′. If cost (y′) < cost (y), improve := true.
(2-b): Do likewise for neighborhood ND

(2-c): Do likewise for neighborhood N S

Step 3: (update the best cost) If cost (y) < cost (y∗), set
y∗ := y and ttenure := 0.9 × ttenure.

Step 4: (update ttenure) If improve = false, ttenure := 1.1 ×
ttenure.

Step 5: (halt or further search) If some stopping criterion
is satisfied, output y∗ and stop; otherwise return to Step 2.

In general, more features such as long term memory and
aspiration level are introduced in the framework of tabu
search. For this paper, we adopt the above simple tabu
search.

Sensitivity Analysis Induced by Local Search

In local search, we have to solve minimum cost flow prob-
lems many times, and it is quite time-consuming in general.
However, since the computation is neighborhood search,
these minimum cost flow problems have almost same struc-
tures (networks) except few edges coefficients. For example,
a delete operation y := y−e(r) is considered changing 0 into
Mbig on the cost of the corresponding edge in the network.
(We adopt sensitivity analysis about not the capacities coef-
ficient but the cost one, since the cost one is a little simpler
to implement and we can obtain the same effect.)

Changes about cost coefficient are (1) adding Mbig (delete
operation), (2) reducing Mbig (add operation). A swap oper-
ation is performed as a combination of (1) and (2). Both of
them can be performed by putting λ = Mbig (or −Mbig) in
the Network Simplex Method described above.

Numerical Experiments
In this section, we report experimental results. To our
knowledge, no benchmark test data available in the litera-
ture matches our problem exactly. Hence, our experimental
results are based on the test data generated from Solomon’s
VRPTW benchmark problems (Solomon 87), as follows.

We set the planning period n = 10. For each day in the
planning period, we set the vehicle capacity, locations and
time-windows of the retailers and warehouse (depot) to be
equal to those specified in the Solomon instance. We cre-
ate demand dit of retailer i for day t from the demand di of
Solomon instance, by partitioning n × di into n parts, i.e.,
di1, di2, · · · , din randomly such that dit is within the range
[0.5 ∗ di,1.5 ∗ dj] for t = 1, 2, · · · , n. The capacities of re-
tailers and warehouse are set as vehicle capacity and Mbig

respectively. As for cost coefficients, holding cost of retailer
(ch

i) and backlog cost(cb
i) are set to be 1 and 2 for all i re-

spectively. The transportation cost of each route is set to be
10 times its total distance.

The DLPsolver is implemented by our algorithms de-
scribed above. The VRPTWsolver is based on a standard
two-phase heuristics. Both TS and ILS adopt the halting
condition that CPU run time reaches 180 seconds.

We run our program on a Pentium 666MHz PC and the re-
sults are given as follows. In this table, we plot the different
test instances against: (1)“VRPTW”: initial objective value
by using only VRPTW solver, (2)“ILS+VRP”: final objec-
tive value where DLP is based on ILS and (3)“TS+VRP”:
final objective value where DLP is based on TS.

Data VRPTW ILS+VRP TS+VRP
c201 178650 113263 112821
c202 192818 117483 124312
c203 200615 131920 122055
c204 216447 136384 142300
c205 175378 116147 109248
c206 177331 123978 127876
c207 177447 122204 117735
c208 175268 124110 125667
r201 304779 111330 116893
r202 291492 116982 114717
r203 247122 110215 115070
r204 227381 114118 114118
r205 284759 122333 123009
r206 260760 120928 123251
r207 223527 115438 115438
r208 228033 120011 117255
r209 249036 116840 120725

Table 1: Computational results of our algorithms

From Table 1, we observe that the improvement in the
objective value of the final solution (2) over the VRPTW so-
lution (1) is at least 29.1% in c208 and at best 39.0% in c202
(among C-instances). As for (3), the worst improvement is
27.9% in c206 and the best is 39.2% in c203. In case of
R-instances, improvement ration is from 48.4% to 61.7% on
TS, and from 47.4% to 63.5%.

Our approach seems useful for these instance. However,
these improvement ratio seems to depend on the difficulty

AAAI-02 13

of the instances, as we can see the difference of the results
between C- and R-instances. We also believe the difficulty
of our IRPTW instances are influenced by cost coefficients.

Next, we show the effectiveness of sensitivity analysis.
Recall that our algorithms need to invoke minimum cost
flow many times. We implemented our algorithms in two
ways: (a) solving each minimum cost flow problem from
scratch; and (b) solving each minimum cost flow problem
from the previous problem’s solution (i.e., apply sensitivity
analysis).

Table 2 shows the comparison between ways (a) and (b)
for R2 Solomon instances. Each column shows the total
number of pivots on NSM and total execution time. The
third column shows the ratios of (a) to (b) rounded down to
the nearest integer.

(a) Scratch (b) Sensitivity Ratio
Pivots Time Pivots Time Pivots Time

r201 19741024 113.83 423760 2.77 46 41
r202 11484659 65.9 300424 2.13 38 30
r203 4731487 25.86 280710 1.8 16 14
r204 3349778 18.51 264430 1.5 12 12
r205 10130292 57.57 346624 2.37 29 24
r206 3860581 21.83 281394 1.91 13 11
r207 5995470 34.94 230282 1.39 26 25
r208 5351521 31.49 281394 1.7 19 18
r209 8905561 51.43 326324 1.96 27 26

Table 2: Effectiveness of sensitivity analysis

From Table 2, the following observations can be made:

1. In terms of number of pivots, the ratio is at least 12.67,
at most 46.59, and 25.514 on average. As for run time,
the ratio is at least 12.34 times, at most 41.09 times, and
22.71 on average.

2. The pivot ratios are always slightly larger than time ratios.

Observation 1 shows sensitivity analysis on NSM is effec-
tive indeed. One reason for Observation 2 is as follows: In
Step 1. of NSM, we add some artificial edges to the origi-
nal network (see (Ahuja et al. 93)). These artificial edges
make a new improved spanning tree structure simple, and
make it easy to find a new improved spanning tree structure
in the early iterations (pivots) on NSM. By contrast, sensi-
tivity analysis use a network of the previous solution, which
usually has more complicated form. Therefore, we suppose
that one pivot in sensitivity analysis takes longer time than
one pivot in original NSM.

Conclusion
In this paper, we propoed algorithms for solving IRPTW,
based on the framework introduced in (Lau et al. 00). These
algorithms are rigorous in the sense that they make use of
the underlying network structure as a guidance measure for
search. As a technical contribution, we demonstate how to
perform efficient and effective neighborhood searches on
local search through the use of network sensitivity analysis.
We believe that our approach can be adapted quickly
to solve other complex network optimization problems

such as those arising in logistics and telecommunications
applications.

References
R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network
Flows : Theory, Algorithms and Applications, (Prentice-
Hall, 1993).
A. Campbell, L. Clarke, A. J. Kleywegt, and M. W. P.
Savelsbergh, The Inventory Routing Problem, in: T. G.
Grainic and G. Laporte, eds., Fleet Management and Lo-
gistics, (Kluwer Academic Pub., 1998), 95–113.
M. W. Carter, J. M. Farvolden, G. Laporte, J. Xu, Solving
an Integrated Logistics Problem Arising in Grocery Distri-
bution, INFOR, 34:4 (1996), 290–306.
Y. Caseau and T. Kokeny, An Inventory Management Prob-
lem, The Constraints Journal, 3, (1998), 363–373.
L. M. Chan, A. Fedegruen and D. Simchi-Levi, Proba-
bilistic Analysis and Practical Algorithms for Inventory-
Routing Models, Oper. Res., 46:1 (1998) 96–106.
G. B. Dantzig, Application of the simplex method to a
transportation problem, Activity Analysis and Production
and Allocation, edited by T. C. Koopmans, (Wiley, 1951).
M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan, De-
terministic Production Planning: Algorithm and Complex-
ity, Management Sc., 26:7 (1980), 669–679.
A. Fedegruen and P. Zipkin, An Efficient Algorithm for
Computing Optimal (s,S) Policies, Operations Research,
22 (1984), 1268–1285.
F. Glover, Ejection Chains, Reference Structures and Al-
ternating Path Methods for Traveling Salesman Problems
Discrete Applied Mathematics, 65, (1996) 223–253.
F. Glover and M. Laguna, Tabu Search, (Kluwer Academic
Publishers, 1997).
S. C. Graves, A. H. G. Rinnooy Kan and P. H. Zipkin eds.,
Handbook in Operations Research and Management Sci-
ence Vol 4: Logistics of Production and Inventory, (North-
Holland, 1993).
J. Gu, Efficient Local Search for Very Large-Scale Satisfi-
ability Problem, SIGART Bulletin, 3, (1992), 8–12.
D. S. Johnson, Local Optimization and the Traveling Sales-
man Problem, Proceedings of the 17th Colloquium on Au-
tomata, Languages and Programming (1990) 446–461.
H. C. Lau, A. Lim and Q. Z. Liu, Solving a Supply Chain
Optimization Problem Collaboratively, Proc. 17th National
Conf. on Artificial Intelligence (AAAI), (2000) 780–785.
M. W. P. Savelsbergh, Local Search for Routing Problems
with Time Windows, Annals of Operations Research, 4,
(1986), 285–305.
M. M. Solomon, Algorithms for the Vehicle Routing and
Scheduling Problem with Time Window Constraints, Op-
erations Research, 35, 1987, 254–265.
J. Xu and J. P. Kelly, A Network Flow-Based Tabu Search
Heuristic for the Vehicle Routing Problem, Transporation
Science, 30:4, (1996) 379–393.

14 AAAI-02

	Return to Main Menu
	================
	Next Page
	Previous Page
	================
	Search CD-ROM
	Search Results
	Print

