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Abstract

With the advent of e-commerce, logistics providers are faced
with the challenge of handling fluctuating and sparsely dis-
tributed demand, which raises their operational costs signif-
icantly. As a result, horizontal cooperation are gaining mo-
mentum around the world. One of the major impediments,
however, is the lack of stable and fair profit sharing mecha-
nism. In this paper, we address this problem using the frame-
work of computational cooperative games. We first present
cooperative vehicle routing game as a model for collabora-
tive logistics operations. Using the axioms of Shapley value
as the conditions for fairness, we show that a stable, fair and
budget balanced allocation does not exist in many instances
of the game. By relaxing budget balance, we then propose an
allocation scheme based on the normalized Shapley value. We
show that this scheme maintains stability and fairness while
requiring minimum subsidy. Finally, using numerical exper-
iments we demonstrate the feasibility of the scheme under
various settings.

Introduction
With the prevalence of e-commerce in almost all cate-
gories of retail industry, great pressure for changes has been
mounted for logistics service providers (LSPs). An obvi-
ous challenge is the increasingly unpredictable and fluctu-
ating demands. To adapt to this new trend, we are begin-
ning to see various form of horizontal cooperations among
LSPs around the world. Such horizontal cooperations help
to reduce empty mileage, increase quality of service, enable
strategic inventory repositioning, and increase environmen-
tal sustainability. Despite these obvious benefits, many LSPs
still choose not to join the collaboration, mainly due to the
lack of fair allocation mechanisms (Cruijssen, Cools, and
Dullaert 2007). In this work, we seek to address this prob-
lem using the framework of cooperative game theory.

To help readers understand the context of the problem
and our motivation, we first explain how horizontal coop-
eration works in urban (sometimes known as last-mile) lo-
gistics. In our setting, there are multiple independent LSPs
owning vehicle fleets and customer demands, and agree to
form coalitions by sharing their demands as well as fleet
capacities to deliver such demands. A designated coalition
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manager then generates plans for assigning demands to ve-
hicles according to some mutually agreed operational rules.
Finally, the coalition manager also decides how revenue
should be split among coalition members (e.g., if one of A’s
customers is served by B’s vehicle, how should A and B
split the revenue). From the regulator’s point of view, this is
highly desirable as coalitions can lead to higher vehicle uti-
lization, thus reducing road congestion and pollution. How-
ever, coalition is not always desirable for individual LSPs,
as they might be concerned about privacy, competitiveness,
and most importantly, the fairness of how benefits are dis-
tributed among coalition members. In other words, for an
individual LSP, even when it could benefit from a coalition,
if it perceives that other members receive more benefits than
they deserve out of this coalition, it might decide to leave the
coalition.

Summarizing the above problem context, we can see that
there are two important decision criteria that we need to sat-
isfy: 1) coalitions must bring sufficient benefits to prevent
agents from leaving; and 2) the distribution of benefits has
to be perceived as fair by agents. An ideal theoretical frame-
work that considers both decision making criteria is coop-
erative game theory, which studies interactions of players in
an environment where they can form coalitions to generate
surplus that can then be allocated back to their members.
Formally speaking, the solution of the game is a vector of
payment amounts for all agents, and the properties we are
seeking are stability and fairness. When a solution is said
to be stable, no subset of agents should have incentives to
break away and operate independently. Solutions satisfying
stability criterion are said to be in the core, which is a well-
studied solution concept. The fairness criterion, on the other
hand, is characterized by the notion of Shapley value (Shap-
ley 1953), which is a unique vector of payments that reflects
the relative importance of individual agents. It essentially
ensures that the payment received by an agent reflects the
normalized value he brings to all potential coalitions.

The above idea of combining the core and the Shapley
value seems straightforward, however, its implementation
could potentially be very difficult and challenging. In ad-
dressing these challenges, we make the following contri-
butions. First, we show that under our model, stability can
always be achieved, i.e., the core is nonempty. The Shap-
ley value, however, might not be in the core. To address



this, we alter the game structure by introducing subsidy into
the system. In other words, we relax the budget balance
property and formulate this implementation problem as an
optimization problem, to find an allocation scheme that is
stable and in proportions to the Shapley value, while re-
quiring minimum subsidy. We then propose δ-BSA, a sim-
ple iterative-based scheme that satisfies these requirements.
Second, when evaluating the value of a particular coalition,
we actually have to solve the vehicle routing problem that
pools all demand points and the fleet depots (which are
owned by individual LSPs in this coalition). To address this,
we present an MILP model for computing coalition values,
which is an extension of VRP to multiple depots. By us-
ing synthetic data, we show the feasibility of the proposed
scheme by comparing required subsidies to the surplus gen-
erated by grand coalitions.

Related Works
Cooperative games in the context of single-vehicle routing
problems (VRP) can be traced back to the 1980s in the op-
erations research literature. Games in this category include
variants of traveling salesman games (Fishburn and Pollak
1983; Potters, Curiel, and Tijs 1992) and Chinese postman
games (Hamers et al. 1999). In these games, players are
associated with edges or vertices of the graph, and they
are concerned with fair allocations of the cost of optimal
routes. In the context of multi-vehicle routing games, Göthe-
Lundgren, Jörnsten, and Värbrand (1996) studied the routing
of multiple vehicles from a single depot, and is concerned
with the allocation of the cost to the customers. Krajewska
et al. (2008) studied the multi-depot VRP, and define each
player to represent a single VRP; and Shapley value is used
as the allocation scheme which may not be stable.

Profit sharing has also been studied as a cooperative game
in the context of cooperative truckload delivery (CTLD) by
Hezarkhani, Slikker, and Van Woensel (2015) where a set
of formal properties have been proposed that have the abil-
ity to capture the notions of fairness and/or competitiveness
with regard to allocations in CTLD situations, as well as a
solution that satisfies such properties.

Among many solution concepts in cooperative game the-
ory, the Shapley value (Shapley 1953) is one of the most
well-known and well-adopted axiomatization approach. By
formulating a set of axioms that uniquely characterizes a so-
lution concept, one hopes to demonstrate the “reasonable-
ness” of the solution. In other words, if players agree that
these axioms are reasonable, then they should accept the
solution concept uniquely defined by them. One of the in-
teresting aspects of this approach is that a solution con-
cept can be characterized by seemingly very different sets
of axioms, like in the case of Shapley value (Young 1985;
Hart and Mas-Colell 1989; Chun 1989). Examples of ax-
iomatizations of other solution concepts include variants of
the core (Peleg 1985) and the nucleolus (Sudhölter 1997).
In this paper, we demonstrate the reasonableness of our pro-
posed scheme by describing desirable properties from the
core and the Shapley value that are satisfied. We leave the
full axiomatizations of the scheme to future works.

Most formulations of computational cooperative games
involve hard optimization problems; in our case, the VRP.
This issue is aggravated by the fact that the naive approach
to compute the Shapley value involves solving O(2n) in-
stances of hard problems where n is the number of play-
ers. As such, exact methods can only be applied in spe-
cial cases (Conitzer and Sandholm 2004; Michalak et al.
2013), while approximations are inevitable for more gen-
eral cases (Fatima, Wooldridge, and Jennings 2007; 2008;
Soufiani et al. 2014).

Since computing the core and the Shapley value is in-
tractable in most real-world applications, there are also ef-
forts in looking into relaxed versions of these concepts. Such
approach is further justified by the fact that most agents are
computational bounded anyway, and they can only compute
value functions approximately. Sandhlom and Lesser (1997)
explored such relaxations. Similarly, Li and Conitzer (2015)
explored the non-exact solution concepts when only noisy
estimates are available for the value function.

Cooperative Vehicle Routing Game
In this section, we define the cooperative vehicle routing
game (CVRG), which extends classical cooperative games
by having coalition values computed by solving multi-depot
vehicle routing problems. Formally speaking, a cooperative
game is characterized by the pair (N,ϕ), where N is the set
of n agents and ϕ : 2N → R is the characteristic function
that assigns a real value ϕ(S) to every subset S ⊆ N . The
set S contains members of a coalition, whileϕ(S) represents
the value of such coalition.

In the following, we define N and ϕ in the context of
CVRG. LetN = {1, . . . , n} be the set of players (providers)
who operate on a directed graph G = (V,E). The vertex
set V = D ∪ M consists of both the set of depots (D =
{d1, . . . , dn}) and the set of requests (M = M1∪· · ·∪Mn),
where player i’s depot and request set are denoted as di and
Mi. All Mi are disjoint as well. The edge set E is defined
as: {(u, v)|∀u ∈ D,∀v ∈ M} ∪ {(u, v)|∀u, v ∈ M,u 6=
v} ∪ {(u, v)|∀u ∈ M,∀v ∈ D)}. The cost of traversing
an edge e ∈ E is assumed to be the same for all players
and denoted as c(e). For i ∈ N and j ∈ Mi, q(j) > 0
denotes the quantity of goods requested by j from i, where
the revenue for fulfilling the request is r(j) > 0. Vehicles
are assumed to be homogeneous with capacity Q, and each
customer demand is assumed to be at most Q (so that no
split delivery is required). A coalition S ⊆ N is a subset
of players, where N is called the grand coalition. Given a
coalition S, we define the following restricted graph GS =
(VS , ES) based on G:
• VS = DS ∪ MS , where DS = {di ∈ D|i ∈ S} and
MS =

⋃
i∈SMi,

• ES = {(u, v) ∈ E|u, v ∈ VS}.
The value (profit) of the grand coalition, denoted as ϕ(N), is
the objective function value obtained by solving the follow-
ing multi-depot vehicle routing problem (MDVRP), while
the value of a nonempty coalition S, ϕ(S), is obtained by
solving the same problem over the restricted graph GS . By
definition, ϕ(∅) = 0.



MDVRP Formulation
For all e ∈ E and d ∈ D, let xde be the binary decision
variable where xde is set to 1 if and only if e is traversed by a
vehicle starting from depot d, and 0 otherwise. Let ye be the
amount of goods carried by a vehicle traversing edge e. The
value of the grand coalition is obtained by solving:

ϕ(N) = max
∑
j∈M

∑
u∈V

∑
d∈D

xdujr(j)−
∑
e∈E

∑
d∈D

xdec(e),

subject to∑
u∈V

xduv =
∑
u∈V

xdvu, ∀v ∈ V, d ∈ D (1)∑
u∈V

∑
d∈D

xduv ≤ 1, ∀v ∈M (2)

xd
′

dv = 0, ∀v ∈M,∀d, d′ ∈ D, d 6= d′ (3)

xd
′

ud = 0, ∀u ∈M,∀d, d′ ∈ D, d 6= d′ (4)

ydv ≤ Qxddv, ∀d ∈ D, v ∈M (5)

yuv =
∑
d∈D

xduv

(∑
u′∈V

yu′u − q(u)

)
,∀u ∈M,v ∈ V (6)

xde ∈ {0, 1}, ye ∈ R≥0, ∀e ∈ E, d ∈ D

In the above formulation, (1) represents flow conservation
constraints, (2) constrains that a customer is visited at most
once; (3) and (4) constrain that all vehicles return to the same
depot they originate from; and finally (5) and (6) represent
the capacity constraints.

Equivalent VRP Formulation
While the above formulation is used in our implementation,
the following equivalent formulation is used in the analysis.
Given a coalition S ⊆ N , we define an S-partition as the
set zS = {zSi }i∈S such that

⋃
i∈S z

S
i = MS , and for all

i, j ∈ S, i 6= j, zSi ∩ zSj = ∅. In other words, an S-partition
divides and assigns the collective requests of coalition S to
its members such that each request is assigned to exactly
one member. Next, for all i ∈ N and w ⊆ M , we define
the function VRPi(w) as the objective value obtained from
solving the MDVRP with a single depot di ∈ D and the
request set w. An equivalent definition of ϕ(S), in terms of
VRPi and S-partition, is given by

ϕ(S) = max
zS

∑
i∈S

VRPi(z
S
i ) =

∑
i∈S

VRPi(z
S
i ),

where zS denotes an S-partition that gives the maximum
ϕ(S) value.

The Core and Shapley Value
An allocation π = (π1, . . . , πn) describes the payoff re-
ceived by each provider in the grand coalition. We are con-
cerned with the following two solution concepts: the core

and the Shapley value. The core is defined as:

Core(ϕ) =

{
(π1, . . . , πn) ∈ Rn≥0

∣∣∣∣∣∑
i∈N

πi = ϕ(N)∧

∑
i∈S

πi ≥ ϕ(S),∀S ⊆ N

}
,

that is, the set of allocations satisfying budget-balance and
stability simultaneously. A budget balanced allocation is one
where the total values allocated equals the values generated
by the coalition. A stable allocation is one that satisfies sub-
group rationality, where no sub-coalition is able to generate
higher values (than those allocated) by leaving the coalition.

The Shapley value (Shapley 1953; Roth 2005), (Shi)i∈N ,
on the other hand, is an allocation where for each player
i ∈ N , Shi(ϕ) is given by∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(ϕ(S ∪ {i})− ϕ(S)) ,

which allocates the profit according to respective marginal
contribution that each player brings to the coalition. To-
gether with budget balance, the Shapley value is character-
ized by the following properties1:
• Symmetry. Two players i, i′ ∈ N are symmetric if for all
S ⊂ N where i, i′ /∈, ϕ(S ∪ {i}) = ϕ(S ∪ {i′}). An
allocation π is symmetric if for any symmetric players i
and i′, πi = πi′ .

• Dummy player. An allocation π satisfies this property if,
for any dummy player i, i.e., ϕ(S ∪ {i}) = ϕ(S) for all
S ⊂ N , we have πi = 0.

• Additivity. Let 〈N,ϕ1〉, 〈N,ϕ2〉, 〈N,ϕ3〉 be cooperative
games such that ∀S ⊆ N,ϕ3(S) = ϕ1(S) + ϕ2(S).
And let π1, π2, π3 be the allocations for the games respec-
tively under an allocation scheme. The scheme is additive
if π3 = π1 + π2.
While a core allocation removes the incentive to deviate

due to higher profit, the Shapley value obviates perceived
unfairness. It is known that in a general cooperative game,
the core may or may not be empty. And even if it is not
empty, the Shapley value may or may not lie in the core.
On the contrary, if the core is empty, the Shapley value is
necessarily not stable. Recall that the purpose of this paper
is to propose an allocation scheme that is both stable and
fair, in addition to being budget balanced. In this regard, we
use the three axioms above as the conditions for fairness. In
the following, we define classes of games with well-known
properties that are relevant to our purpose, and in the next
section, we show the extent to which these properties are
present in CVRG.
Definition. A cooperative game has nonempty core iff it is
balanced (Shapley 1967). We denote by Bal the class of bal-
anced games.

1In his original paper (Shapley 1953), Shapley presents sym-
metry, carrier and additivity as the axioms for the value. Most later
works, however, divide the carrier property into budget balance and
dummy player.



Definition. A cooperative game 〈N,ϕ〉 is totally balanced
iff every subgame of 〈N,ϕ〉 is balanced. We denote by TBal
the class of totally balanced games.
Definition. A cooperative game 〈N,ϕ〉 is convex iff
∀S, T ⊆ N , ϕ(S)+ϕ(T ) ≤ ϕ(S∪T )+ϕ(S∩T ). Further-
more, if 〈N,ϕ〉 is convex, then Sh(ϕ) ∈ Core(ϕ). We denote
by Conv the class of convex games.

The relationship between the classes of games is given as
follows:

Conv ⊂ TBal ⊂ Bal.

Properties of CVRG
In this section, we establish some of the properties of
CVRG. The first property is superadditivity. A cooperative
game 〈N,ϕ〉 is superadditive if for all S, T ∈ N such that
S ∩ T = ∅, ϕ(S) + ϕ(T ) ≤ ϕ(S ∪ T ).
Proposition 1. CVRG is superadditive.

Proof. Let S, T ⊆ N , S ∩ T = ∅. Let zS and zT

be S and T -partition with values ϕ(S) and ϕ(T ). As S
and T are disjoint, the set zS ∪ zT is an W -partition,
where W = S ∪ T . Let zW = zS ∪ zT . We have
ϕ(S) + ϕ(T ) =

∑
i∈S VRPi(z

S
i ) +

∑
i∈T VRPi(z

T
i ) =∑

i∈W VRPi(z
W
i ) ≤

∑
i∈W VRPi(z

W
i ) = ϕ(W ).

Since ϕ is superadditive, the grand coalition achieves the
highest value and thus, from a social perspective, is the most
desirable outcome. Superadditive games also ensure that in-
dividual rationality can always be achieved in any coalition.
Next, we establish that the core of CVRG is nonempty by
showing that it is balanced.
Proposition 2. CVRG ∈ Bal.

Proof. We start by introducing a class of games called mar-
ket games. A market game is a cooperative game 〈N,φ〉,
where for each S ⊆ N ,

φ(S) = max
α

{∑
i∈S

ui(αi)

∣∣∣∣∣α ∈∏
i∈S

Rβ≥0,
∑
i∈S

αi =
∑
i∈S

γi

}
where ui is a concave utility function of player i. The vec-
tor γi ∈ Rβ≥0 can be viewed as the initial distribution of
continuous goods of β types among the players. When play-
ers form a coalition, they redistribute their collective goods
among themselves in such a way that maximizes the sum of
their utility. Market games have been shown to be balanced
(Shapley and Shubik 1969). Notice the close resemblance
of market games to the VRP formulation of CVRG. The
differences are: (1) In CVRG, we are dealing with discrete
requests instead of continuous goods, and (2) the utility of
players are discrete set functions (obtained by solving VRP)
instead of concave continuous functions. In the following we
show that, given a CVRG, we can construct an equivalent
market game, thus showing that CVRG is balanced.

Let 〈N,ϕ〉 be a cooperative game. For any subset of all
requests w ⊆ M , we define the indicator vector 1w as
(1wj )j∈M ∈ {0, 1}|M | such that

1wj =

{
1 if j ∈ w,
0 otherwise.

The initial distribution of requests can then be denoted by
1M1 , . . . ,1Mn for each player 1, . . . , n respectively, and a
player i’s utility function can be defined as the set function
VRPi : {0, 1}|M | → R. Now, let VRP+

i : [0, 1]|M | → R
be the concave closure of VRPi. A concave closure is an ex-
tension of a set function to continuous domain (other exten-
sions include multilinear, convex, and Lovász extensions). It
has the properties that (1) it agrees with the original func-
tion on discrete inputs, i.e., VRPi(1w) = VRP+

i (1w) for all
w ∈ M , and (2) it is concave. We now define a cooperative
game 〈N,ϕ+〉, where for all S ⊆ N , the value ϕ+(S) is
defined as

max
α

{∑
i∈S

VRP+
i (αi)

∣∣∣∣∣α ∈∏
i∈S

R|M |≥0 ,
∑
i∈S

αi = 1MS

}
.

By property (2), 〈N,ϕ+〉 is a market game and thus is bal-
anced. The maximization problem above admits integer so-
lution when the cost function c satisfies triangle inequality.
Due to space constraint, the proof of this is omitted. Together
with property (1), this establishes that 〈N,ϕ〉 and 〈N,ϕ+〉
are equivalent.

Since every subgame of a CVRG is still a CVRG, by
Proposition 2, it is balanced, and we have the following
corollary.

Corollary 1. CVRG ∈ TBal.

Unfortunately, CVRG is a non-convex game, as shown in
the counterexamples in the experiment section. Proposition
3 below introduces a special case for which CVRG is con-
vex. The conditions given in Proposition 3 are however very
restrictive, and would probably never be satisfied in real-
world instances. Simply relying on the Shapley value and
hoping that it lies in the core, therefore, is not sufficient in
the context of our application, where stability is considered
as the most important property.

Proposition 3. Let CVRG− be cooperative vehicle routing
games where

1. all providers have the same depot location,
2. vehicles have unlimited capacity, and
3. the edges have uniform cost.

Then, CVRG− ∈ Conv.

Proof. (Sketch) Let A,B,C ⊂ N,A ∩ B ∩ C = ∅ be dis-
joint subcoalitions of a given CVRG−. And let h(A∪B) and
h(B ∪ C) be the sets of optimal routes obtained by solving
the MDVRP for subcoalitionsA∪B andB∪C respectively.
Let h(A∪B) +h(B∪C) be the superimposition of the two
sets of routes. Now if we remove all loops involving the re-
quests of subcoalition B from h(A ∪ B) + h(B ∪ C), and
put it in the set h′(B), we end up with two valid subopti-
mal routes h′(A ∪B ∪C) and h′(B) for A ∪B ∪C and B
respectively. These suboptimal routes are valid precisely be-
cause of the conditions given above. The value of the super-
imposition is ϕ(A ∪B) + ϕ(B ∪C) since both are optimal
routes. This is less than or equal to the value of the routes



h′(A∪B∪C) plus the value of the routes h′(B) by the prop-
erty of the described procedure. Since the later two are sub-
optimal routes, we have ϕ(A∪B)+ϕ(B∪C) ≤ val(h′(A∪
B ∪ C)) + val(h′(B)) ≤ ϕ(A ∪B ∪ C) + ϕ(B).

δ-Balanced Stable-Fair Allocation (δ-BSA)
Since CVRG has been shown to be non-convex in general
above, the Shapley value may not be stable. In other words,
the existence of a fair, stable, and budget balanced allocation
is not guaranteed in general. In the following, we propose an
allocation scheme that returns the Shapley value if it is sta-
ble, otherwise, the “best” allocation is returned by relaxing
the budget balance property.

The proposed scheme, denoted by δ-BSA, tries to find an
allocation that are both stable and fair by allowing some ex-
ternal subsidy into the system. Here, we seek an allocation
that minimizes subsidy required to achieve the properties of
both the core and the Shapley value (except budget balance).
The central idea of δ-BSA revolves around the normalized
Shapley value (Sh0i )i∈N , which is defined as

Sh0i (ϕ) =
Shi(ϕ)∑

i′∈N Shi′(ϕ)
,

with respect to a cooperative game 〈N,ϕ〉. It is used as the
measure of relative contributions of players in the grand
coalition. As such, any amount of profit to be distributed
should be done so in proportion to this value. From this per-
spective, the Shapley value is simply the distribution of the
exact profit of the grand coalition in proportion to the nor-
malized values. By relaxing budget balance, we allow the
distributed amount to exceed the actual profit. In this sec-
tion, we formally state the problem of achieving stability
with minimal subsidy. We also point out when subsidy be-
comes infeasible.

Algorithm 1: COMPUTE δ-BSA

Input: 〈N,ϕ〉,Sh0(ϕ)
begin

1 π ←− 0, (T,∆, f)←− (∅, 0, 0)
2 (T,∆, f)←− UPDATE(π)
3 while ∆ > 0 do
4 for i ∈ N do
5 πi ←− πi + (Sh0i (ϕ)× 1/f ×∆)
6 (T,∆, f)←− UPDATE(π)

7 δ ←−
∑
i∈N πi − ϕ(N)

return (π, δ)

UPDATE(π):
begin

8 T ←− arg maxS(ϕ(S)−
∑
i∈S πi)

9 ∆←− ϕ(T )−
∑
i∈T πi

10 f ←−
∑
i∈T Sh0i (ϕ)

return (T,∆, f)

The procedure for computing δ-BSA is given in Algo-
rithm 1. In each iteration, using the UPDATE() function (line

8-10), it finds a coalition that is least stable, i.e., one with the
largest discrepancy between allocation and profit (line 2, 6).
The idea then, is to increase the allocation for this coalition
by ∆ such that the discrepancy is eliminated (line 5). Play-
ers not in the coalition will receive increments as well to
keep the overall allocation π in proportion to the normalized
Shapley value. The value f (line 10) represents the contri-
bution of the chosen coalition, and since it receives an incre-
ment of ∆, each player i (whether inside or outside of the
coalition) receives an increment of Sh0i (ϕ) × ∆/f , where
∆/f is the total amount added to the system in each iter-
ation. Note that after the first iteration, the value of π is al-
ways in proportion to the normalized Shapley value. Further-
more, if the game is superadditive, then in the first iteration,
the grand coalition will be chosen, since it has the highest
profit, and the first allocation computed is the Shapley value,
which is returned in the next iteration if it is stable. The value
δ is the subsidy needed to realize the resulting allocation. In
the following, we establish the properties of δ-BSA. The first
property is on minimum subsidy.
Proposition 4. Algorithm 1 gives a stable allocation that is
in proportion to the normalized Shapley value with minimum
subsidy.

Proof. At each iteration of Algorithm 1, a coalition is cho-
sen, and the amount ∆ is added to the coalition so that its
allocation equals its profit (line 9). Let S be the coalition
chosen at the last iteration, and π the final allocation, then
we have

∑
i∈S πi = ϕ(S). Let π′ be an allocation that is

in proportion to the normalized Shapley value, but requiring
less subsidy than π, in other words,

∑
i∈N π

′
i <

∑
i∈N πi. If

f is the contribution of coalition S, then we have
∑
i∈S π

′
i =

f(
∑
i∈N π

′
i) < f(

∑
i∈N πi) =

∑
i∈S πi = ϕ(S), which

means that π′ is necessarily unstable.

Note that the argument above does not use the fact that
the coalition chosen at each iteration has the maximum dis-
crepancy (line 8). In fact, the property still holds if at each
iteration, we choose an arbitrary coalition with positive ∆
instead. The difference is, this will require more iterations.
Next, we establish that δ-BSA satisfies stability and the ax-
ioms of the Shapley value except budget balance. Stability,
symmetry and dummy player are satisfied exactly while ad-
ditivity is satisfied approximately.
Proposition 5. δ-BSA satisfies the properties of stability,
symmetry, and dummy player.

Proof. Stability. Algorithm 1 terminates when the condition
in line 3 is violated, at which point ∆ ≤ 0. By the definition
of ∆ given in the UPDATE() function, this implies that at
termination, we have ∆ = maxS

(
ϕ(S)−

∑
i∈S πi

)
≤ 0,

in other words, ∀S ∈ N,
∑
i∈S πi ≥ ϕ(S).

Symmetry. Since the Shapley value is symmetric, two
players who are symmetric have the same Shapley value.
Next, note that by definition, for two players i, i′ ∈
N, Sh0i (ϕ) = Sh0i′(ϕ) iff Shi(ϕ) = Shi′(ϕ), that is, two
players have the same normalized Shapley value if and only
if they have the same Shapley value. To establish the sym-
metry of δ-BSA, therefore, we just need to show that if two



players i, i′ ∈ N have the same normalized Shapley value,
Sh0i (ϕ) = Sh0i′(ϕ), then Algorithm 1 assigns the same value
to both. This can be straightforwardly inferred from step 5.
At each iteration, the amount of value added to a player i
depends on Sh0i (ϕ), 1/f and ∆. Since the latter two are the
same for all players in any iteration, two players i, i′ ∈ N
with the same normalized Shapley value will get the same
increment. And since all players start with the same initial
value, we have πi = πi′ in each iteration and at termination.

Dummy player. Similarly, the Shapley value of a dummy
player i is zero, implying that its normalized value is also
zero. Step 5 of Algorithm 1 shows that, this player receives
zero increment in each iteration. And since its initial value
is zero, πi is zero at termination.

Proposition 6. Let 〈N,ϕ1〉, 〈N,ϕ2〉 and 〈M,ϕ3〉 be three
games with the same players such that ∀S ⊆ N,ϕ3(S) =
ϕ1(S) + ϕ2(S). And let π1, π2 and π3 be their respective
allocations under δ-BSA. Then ∀i ∈ N ,

∣∣π1
i + π2

i − π3
i

∣∣ ≤
max{δ1 + δ2, δ3}, where δ1, δ2 and δ3 are the subsidies for
the games.

Proof. Proposition 4 establishes that δ-BSA allocates pay-
offs in proportions to the normalized Shapley value. In other
words, if π is the allocation for a cooperative game 〈N,ϕ〉
under δ-BSA, then ∀i ∈ N ,

πi = Sh0i (ϕ)× [ϕ(N) + δ] ,

where δ is the subsidy computed by Algorithm 1. Now, let
〈N,ϕ1〉, 〈N,ϕ2〉 and 〈M,ϕ3〉 be arbitrary games defined as
above. Since the Shapley value is additive, we have

Shi(ϕ1) + Shi(ϕ2) = Shi(ϕ3),

and by definition,

Sh0i (ϕ1)ϕ1(N) + Sh0i (ϕ2)ϕ2(N) = Sh0i (ϕ3)ϕ3(N),

for all i ∈ N . If δ1, δ2 and δ3 are the subsidies for the games
respectively under δ-BSA, then

∣∣π1
i + π2

i − π3
i

∣∣
=
∣∣Sh0i (ϕ1)× [ϕ1(N) + δ1] + Sh0i (ϕ2)×
[ϕ2(N) + δ2]− Sh0i (ϕ3)× [ϕ3(N) + δ3]

∣∣
=
∣∣Sh0i (ϕ1)ϕ1(N) + Sh0i (ϕ2)ϕ2(N)− Sh0i (ϕ3)ϕ3(N)+

Sh0i (ϕ1)δ1 + Sh0i (ϕ2)δ2 − Sh0i (ϕ3)δ3
∣∣

=
∣∣Sh0i (ϕ1)δ1 + Sh0i (ϕ2)δ2 − Sh0i (ϕ3)δ3

∣∣
≤ max{δ1 + δ2, δ3}.

Finally, we have to establish the feasibility of the sub-
sidy: subsidy only makes sense when it doesn’t exceed
the surplus of the grand coalition. In other words, when
ϕ(N) −

∑
i∈N ϕ({i}) > δ. Here, we define the surplus to

be the difference between the profit of the grand coalition
and the sum of individual profits. But this is only an approx-
imation. To be more precise, for the latter, we should instead
use the value generated by the best collection of stable, fair,
and budget balanced disjoint subcoalitions. But computing

this value is, in itself, a very challenging problem, which we
will address in future works. Rather, in our experiments be-
low, we will empirically examine the characteristics on the
problem instances under which subsidy is feasible.

Numerical Experiments
In this section, we present the numerical results of com-
puting δ-BSA for random instances of CVRG. For each in-
stance, the locations of the depots and requests are generated
uniformly over a 1× 1 2D plane. The revenue from serving
a request is generated according to a normal distribution, the
quantity of goods according to a uniform distribution, while
the cost of traveling is a factor of the Euclidean distance.
The value function for each instance is generated using an
exact solver based on a CPLEX implementation of the MD-
VRP given in the first formulation. We first present a small
example of an instance of CVRG together with the solution
concepts discussed in this paper. This example illustrates the
case when the Shapley value is not in the core. It also shows
how δ-BSA is able to resolve this conflict by relaxing the
budget balance constraint.

In this example, the number of players is 4 and the total
number of requests is 12, with the distribution of {3, 5, 2,
2}. The quantity of goods requested is randomly generated
in the range of 1-3, and the vehicle capacity is set to 3. The
mean of the revenue is 10 with standard deviation 20, while
the travel cost is 25 times the Euclidean distance. The results
are shown in Figure 1. Figure 1(a) shows the optimal routes
for subcoalition {1, 3}, while Figure 1(b) shows the opti-
mal routes of the grand coalition. Together, they illustrate
the superadditivity property of CVRG, how surplus values
are generated, and the attractiveness of the grand coalition
from the social perspective. While subcoalition {1, 3} can-
not serve some of their requests profitably (which is also
the case for most subcoalitions in this instance), by forming
the grand coalition, all requests could be served profitably.
Figure 1(c) compares values based on different solution con-
cepts. The first bars are the values of the function ϕ; the sec-
ond bars are the marginal contributions of each subcoalition
S ⊆ N to the grand coalition, i.e., ϕ(N) − ϕ(N \ S); the
third bars are values derived from an allocation in the core;
the fourth bars are the Shapley value; and the last bars are
the δ-BSA values. To illustrate why a core allocation may
not be fair, we can compare players 2 and 3 under this allo-
cation. Both players have roughly the same marginal contri-
butions, yet the payoff to player 3 is much higher. The value
of player 2 is zero because it cannot serve any of its requests
profitably. Its marginal contribution comes from the fact that
these requests become profitable in the grand coalition. At
the same time, the Shapley value allocation is not stable be-
cause subcoalition {0, 1, 2} has the incentive to leave since
its own value exceeds its Shapley value. δ-BSA, on the other
hand, is both stable and fair (allocations are in proportion to
Shapley values). For this instance, it’s also feasible as the
subsidy is much smaller than the surplus generated by the
grand coalition.

Finally, we try to identify the key factor that determines
the feasibility of subsidy. Intuitively speaking, coalition only
makes sense when players are dependent on each other; in
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Figure 1: An example of CVRG: (a) The optimal routes for subcoalition {1, 3}, (b) The optimal routes for the grand coalition,
(c) The value function and the values of different solution concepts.
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Figure 2: Measuring the feasibility of δ-BSA.

other words, we expect the value of coalition to be low
(thus making subsidy less likely to be feasible) when play-
ers are relatively independent. To test our hypothesis, we
define the following two variables to be measured: (1) σ,
which measures how independent individual players are, is
defined as the average ratio of individual profit to marginal

contribution, i.e., for each instance 〈N,ϕ〉, σ = 1/|N | ×∑
i∈N ϕ({i})/(ϕ(N)− ϕ(N \ {i}); and (2) p, which mea-

sures the difference between surplus and subsidy under δ-
BSA; p = ϕ(N)−

∑
i∈N ϕ({i})− δ.

100 instances of CVRG are generated with the follow-
ing parameters: The number of players is set to 8 and total
requests to 24, with a random initial distribution. The quan-
tity of goods requested is between 1-3 with vehicle capacity
set to 3. The mean and standard deviation of revenues are
5 and 10 respectively, while the travel cost is 12 times the
Euclidean distance.

Figure 2 shows the results of the experiment by plotting
p against σ. It confirms our conjecture that higher player
independence (σ) leads to lower feasibility (p).

Conclusions
In this paper, we presented the cooperative vehicle rout-
ing game (CVRG) as the solution model, and established
some of its properties to help understand the viability of ur-
ban collaborative logistics delivery operations. We showed
that under budget balance, stability and fairness can always
be achieved individually, but not always simultaneously. We



then proposed δ-BSA, an allocation scheme that guarantees
both stability and fairness while requiring minimum sub-
sidy. In our numerical experiments, we demonstrated the
effectiveness of our proposed allocation scheme, and we
also established player independence as one major contribut-
ing factor in determining the feasibility of giving out sub-
sidy. The following are potential future works: (1) scaling
δ-BSA to larger (real-world) problem instances by consider-
ing computationally bounded solution concepts, (2) related
to the above, designing (approximate) methods for efficient
computation of δ-BSA, and finally (3) providing full axiom-
atization of the proposed allocation scheme.
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