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Abstract

In emergency medical systems, arriving at the incident loca-
tion a few seconds early can save a human life. Thus, this
paper is motivated by the need to reduce the response time
— time taken to arrive at the incident location after receiving
the emergency call — of Emergency Response Vehicles, ERVs
(ex: ambulances, fire rescue vehicles) for as many requests as
possible. We expect to achieve this primarily by position-
ing the “right” number of ERVs at the “right” places and at
the “right” times. Given the exponentially large action space
(with respect to number of ERV's and their placement) and the
stochasticity in location and timing of emergency incidents,
this problem is computationally challenging. To that end, our
contributions building on existing data-driven approaches are
three fold:

1. Based on real world evaluation metrics, we provide a risk
based optimization criterion to learn from past incident
data. Instead of minimizing expected response time, we
minimize the largest value of response time such that the
risk of finding requests that have a higher value is bounded
(ex: Only 10% of requests should have a response time
greater than 8 minutes).

2. We develop a mixed integer linear optimization formula-
tion to learn and compute an allocation from a set of input
requests while considering the risk criterion.

3. To allow for "live” reallocation of ambulances, we provide
a decomposition method based on Lagrangian Relaxation
to significantly reduce the run-time of the optimization for-
mulation.

Finally, we provide an exhaustive evaluation on real-world
datasets from two asian cities that demonstrates the improve-
ment provided by our approach over current practice and the
best known approach from literature.

Introduction

Emergency Medical Systems (EMS) — which aim to provide
timely care to victims of sudden and unforeseen accidents,
injuries or illnesses — are an integral part of the health care
system. Saving a few seconds in responding to an incident
can save a human life and due to this reason, many major
cities around the world invest heavily in building emergency
response systems that can reduce response time of ERVs.
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Figure 1: Process Flow

Increasing the fleet size of ERVs continuously to meet the
varying demand and performance benchmarks is not prac-
tically feasible and hence research in EMS has focussed on
optimizing the utilization of existing emergency vehicles. In
this paper, we specifically focus on ambulances. However,
the formulations and mechanisms developed are applicable
to other emergency response settings. Figure 1 provides the
sequence of events in responding to an emergency request.

The significance of optimization in EMS is best illus-
trated by the rich research history it bears. The existing
research has specifically focussed on the twin problem ar-
eas of: ambulance allocation and reallocation to base loca-
tions and ambulance dispatch to incidents. A survey of the
existing approaches (?) highlights that much of the previ-
ous work in EMS has been on dispatch of ambulances from
the base locations (?; ?; ?). While dispatch is an important
research problem, given the practical difficulty of ascertain-
ing the criticality of an emergency request over phone, in
many EMS systems, ambulance dispatch procedure is fixed
wherein the requests are served in the order of their arrival
and from the nearest base location that has an idle ambu-
lance. Furthermore, dispatch problem can only be simplified
with a good allocation of ambulance to locations. Hence,
our focus in this paper is on the first problem area of EMS —
ERV allocation and reallocation to the base locations.

In this paper, we focus on ambulance allocation and dy-
namic reallocation for the entire ambulance fleet and not for
an individual ambulance (?). To facilitate the detection of
patterns and avoid heuristic worst case planning (?), we em-
ploy a data-driven approach, similar to the work by (?). Iron-
ically, even though target metrics and actual evaluation of



EMS are based on the notion of bounded risk (?; ?; ?; ?;
?; ), researchers have focussed on optimizing other metrics
such as expected response time (?; ?). We address this dis-
crepancy by considering the risk based optimization crite-
rion and that is also the main distinction from existing work.

In addition to the greedy mechanism! by (?), existing
work has provided heuristic search based mechanisms for
computing allocation (?) based on modelling as a coverage
problem. On the contrary, we focus on a scalable approx-
imation approach with guarantees on learned allocation to
learn from past data. To that end, our main contribution
is an optimization formulation that provides novel insights
on enforcing resource capacity constraints for a continuous
time line using scalable linear constraints. Furthermore, by
employing intuitions from Sample Average Approximation
(?), we enforce the risk constraint using discrete variables
and a linear constraint. In order to achieve scalability that
will assist in live decision support, we also develop a parti-
tion technique based on Lagrangian relaxation.

We evaluate the effectiveness of our techniques on real-
world ambulance data sets from two large cities in Asia. The
experimental results show that in addition to outperforming
the best known approach in the literature (?), our approach
is able to reduce the response time by at least a few minutes
over current practice.

Motivation: Ambulance Allocation

Formally, ambulance allocation problem for a given set of
requests is given by the tuple:

<R? B? A? T’ C7 a>

The set of emergency requests is given by R and any
emergency request, r in R is defined as the tuple (¢, s, h),
where ¢ is the arrival time, s is the source location of the
emergency and h is the nearest hospital to serve the request.
The set of base locations is given by 5 and the set of ambu-
lances is given by A. T is a two dimensional vector provid-
ing the time taken to travel between any two locations in the
city and this information is typically obtained from mapping
services like google maps. More specifically, 1;, ;, is the
time taken to travel from [; to l5. C) provides the maximum
number of ambulances that can be stationed at base location
l.

The goal is to compute an allocation, a of ambulances to
base locations, that has the least value of response time, such
that the percentage of requests exceeding that response time
is less than the tunable input paramater, a. We refer to this
response time as the a-response time. Since a request can
be served from more than one base locations, the MILP for-
mulation to determine the “right” allocation of ambulances
to base locations such that the a-response time is reduced,
becomes challenging.

!'Unlike for expected response time objective (?), the learning
problem for a given set of requests when optimizing with bounded
risk notion is not sub-modular. Hence, greedy mechanism is also a
heuristic and does not provide any quality guarantees.

Variables/ | Definition

Constants

a; Number of ambulances at [

aj Number of ambulances at [ when r arrives

Yy Binary variable that indicates if request r is
served by an ambulance from [.

Frr Binary constant indicating whether an ambu-
lance at [, if deployed to serve request g, will
be available to serve the next request r

Table 1: Notation

MILP formulation for Ambulance Allocation

We now provide a Mixed Integer Linear Program (MILP)
formulation for ambulance allocation. A detailed discussion
on major assumptions made in the formulation and how they
can be relaxed are presented in the latter section. Table 1
provides the variables and constants that are employed in
the formulation.

The goal of the linear formulation is to minimize a re-
sponse time value § by addressing the following challenges:

1. Ensuring that the probability of exceeding J is
bounded by «a: This is a chance constraint:

Pr(é" >9) <«

where §" is the response time for request r and probability
is computed over the set of requests R.

Insight 1 Since we have a discrete set of requests, we can
use the technique adopted in Sample Average Approxima-
tion (SAA) (?; ?) to provide an equivalent set of linear
constraints as follows:

)
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It should be noted that the variable 2" is set to 1 if §"
is greater than § and O otherwise. Therefore, sum of all
z" variables divided by total number of requests gives the
percentage and hence should be less than «.

2. Computing available ambulances at each location /, at

the point of arrival of request :

Insight 2 Since the set of requests are known before
hand, by computing binary constants, F{"", we can com-
pute number of available ambulances using a linear con-
straint on the binary variables y as shown in Equation 3.
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For each location, constraint 3 computes the number of
idle ambulances based on the number of ambulances still
serving previous requests(second part of right hand side)?.
Constraints 4,5,6 ensure number of ambulances is a whole
number and is within the capacity of the location, while
also preventing any violation of the fleet size.

3. Preventing service of a request when there are no am-
bulances available: This is achieved by using a logical
constraint that sets y;” variables for all locations to be zero.

Zy{ = min(1, Z ay),
]

l

Vrer (1)

4. Computing response time given y variables: We can
only ensure that the response time has a lower bound
using the following constraint. However, in conjunction
with objective and bounded risk constraint, response time
for every request is equivalent to the lower bound.

S>3 T +(1=>"9)-M VreR (8
l l

Constraints 1-8 along with an objective of “min, 6” form
the complete MILP. Henceforth, we refer to the response
time J, as a-response time for the given set of requests, R.

Partitioning the Request Set for Scalability

The computational complexity of the MILP introduced in
the previous section increases rapidly with increase in the
number of requests (Figure 6). To counter this computa-
tional complexity, we exploit the notion of independence
among requests. A formal definition of dependence of re-
quests is presented below using the binary vector, F.

Definition 1 Two requests q and r are dependent if there
exists at least one location | for which F"" = 1.

The dependency between requests is with respect to being
served by an ambulance from the same base location. We
pursue a two step approach to identify and exploit indepen-
dence between requests:

1. Identify the minimum set of requests, say G in the request
set R, that if removed can create £ independent partition
sets of the request set with Uk§|g|fk =R\G

2. Given the independent partitions and the new set of re-
quests R \ G, we compute one ambulance allocation
(and not one ambulance allocation for each partition)
that works across the independent partitions by using the
well known technique of Lagrangian dual decomposi-
tion(LDD) (?)3.

For (1), in the case of dynamic reallocation of ambulances
for a small interval of time (say 4 hours), we only consider
requests for those 4 hours on multiple different days in cre-
ating the request set. Hence, all these requests over different
days are naturally independent. In the more interesting case
of static allocation, there may not exist an exact partition
across days. Figure 2 provides a small example of requests

2Please refer to supplementary file for steps to compute F value.
3Please refer to the supplementary material for a background on
Lagrangian dual decomposition.
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Figure 2: Partition of requests on a real request set

(taken from data set) and their connectivity (obtained from
F). In such cases, we adopt minimal separator algorithm (?)
to provide the partitions and correspondingly get the num-
ber of requests to be removed. In the example of Figure 2,
we had to remove 12% requests to obtain the two partitions.
Even though we remove requests, it is possible to maintain
the risk bound of the original problem and obtain a conser-
vative estimate of the optimal « response time by increasing
the risk bound to o + €*, where € corresponds to the percent-
age of requests that are removed. This provides a conserva-
tive estimate, because we assume that all €% of requests will
have a response time higher than the optimal in the original.

An updated optimization corresponding to partitions, £ is:

s.t. Pr(d > 0k) < a+e,
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In the above optimization problem, we employ n; to ensure
all partitions have the same allocation of ambulances. Con-
straint 16 ensures that allocations across partitions are equal.

Dual Decomposition——

Except for constraint 16, all the other constraints are defined
on a specific partition. Hence, we obtain the Lagrangian by
dualizing constraint 16:

L()\) = min Z o + Z/\uc (ane —m)
ag,n

- k<Z[g] Lk

“It should be noted that there may be no solution once the risk
value is increased to account for the removed requests. In such a
case, we can only get a heuristic approximation with this algorithm.
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Table 2: SOLVESLAVE(k)

or alternatively

:main( Z [5k+z)\z,k'al,k])—mnin Z Akl

k<|€] ! k<|€|,l

Since n; is unbounded, the overall optimization will be unbounded.
The equivalent bounded optimization for calculating £(\) is:

main( Z [5k -+ Z)\l’k . alvk}) s.t. Z Akﬂl = O,Vl (17)

k<|€] l k<|g]

If we use an update rule for A that ensures the constraint 17

is always satisfied, then £()\) decomposes over the indi-
vidual partitions. Table 2 provides the slave optimization
problem corresponding to each partition k.

Update of Price Variables

In order to ensure that dualized constraint violations
are minimized, the final optimization at the master is:
maxy £(A\) and we solve this optimization using sub-
gradient descent on A\. Combining the update required for
sub-gradient descent and for satisfaction of constraint 17,
we have the following update rule:

- Pk -
MR =N Y e && N =M e (18)
k Zk )‘l,k

Primal Extraction from Dual Solution, {A } ,<|c——
Let the dual solution values be {A }1,<|¢|, once all the slave
optimization problems are solved. When the ambulance al-
locations across the partitions are not equal, the obtained
dual solution is not a feasible primal solution. However, all
the following derived allocations are feasible solutions given
the dual solution: (A1, Ay, -, A1), (Ao, Ag, -+ ,Ag), ...
Amongst all these solutions, we take the one which provides
the least value of a-response time as the primal solution for
the current iteration. a-response time for a given ambulance
allocation, Ay, for a partition ¢ is obtained by replacing all
occurrences of a; ; with A; ;, in SOLVESLAVE(q);
Algorithm 1 provides the pseudo code for the overall pro-
cedure of Lagrangian dual decomposition. We stop our la-
grangian approach when the duality gap (difference between
the primal and dual value) falls below a tunable value, .

Algorithm 1: SolveLDD()

1 Initialize: \°, it «— 0 ;

2 repeat

3 Vk : di, Ay < SOLVESLAVE(k)

4 Update prices according to Equation 18
5 p,A, < EXTRACTPRIMAL ({Ag}r<e))s
6 it — it +1;

7 until [p — 2ok<le] di] < s

8 return p, A,

Dynamic Reallocation

When there exists a strong pattern of requests coming
through in a few hours, it is beneficial to alter the alloca-
tion computed from a large set of requests. For instance, on
a wednesday or friday night, there is high chance of emer-
gency events occuring near areas with clubs as there are
large gatherings of people due to ladies’ night or weekend.
By using request sets for the next few hours from multiple
days, SOLVELDD() can be used to obtain a new allocation.
While such a modification is applicable, there are practical
concerns: (a) only a few ambulances are available for al-
location at that time step; and (b) ambulances could spend
a significant time moving between base locations without
serving requests.

Therefore, we consider reallocating ambulances by mini-
mizing movements with respect to existing allocation of am-
bulances. This ensures that many ambulances do not remain
unavailable for long while undergoing reallocation. We in-
troduce a penalty parameter p, that is calculated as the dif-
ference between the orginal allocation and the planned re-
allocation. This penalty paramater helps to keep a check
on drastic changes to the existing allocation and to ensure
better a-response time with minimal movement of ambu-
lances. Users can adjust the input parameter I" which serves
as upper bound for the penalty parameter p, to balance per-
formance and reallocation of the fleet. We add the following
constraints to achieve the reallocation with minimal move-
ment. a; denotes the number of ambulances at [, obtained
by previous allocation and n; denotes the number of ambu-
lances at [ after reallocation.

p=> (nu—a); p<T (26)
l

Experimental Results

We perform experiments on real world data by varying pa-
rameters to make the following performance comparisons:

e Risk based optimization (RBO) and the current practice
(response time observed from the data).

e RBO and the best known approach for ambulance alloca-
tion in the literature(?).

e RBO with and without LDD.
e Dynamic reallocation and static allocation.

We experiment with two data sets, namely Dataset] and
Dataset2 obtained from two asian cities. Dataset2 is adopted
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Figure 3: RBO Vs Current practice

from (?). Both these datasets provide information about
emergency requests over a sustained period of time (1 year).
An emergency request consists of the time of request arrival,
incident location and hospital location for the request. We
also have information about number of ambulances, cate-
gories of ambulances, base locations etc.

The metrics employed for performance comparisons in-
clude the: « response time (a-rt), percentage of requests
with response time less than 15 minutes’ and run time. An
a— 1t = 8 when o = 80% indicates that at least 80% of the
requests are served with response time < 8 minutes. Given
the number of cities that employ « response time as the per-
formance indicator for emergency medical systems (?; ?; ?;
2, 7, ?), we also use that as our main evaluation criterion.
RBO (Risk Based Optimization) represents the approach in-
troduced in this paper, "CP” refers to current practice and
”Greedy” denotes the greedy approach (?).

In making a comparison, we always consider a training
set and test set. Training sets are used to obtain an allocation
and testing sets are used to evaluate such an allocation.
To calculate the o response time on the test set using the
obtained allocation, we use the standard dispatch technique,
wherein a request that arrives first is serviced and by an
available ambulance nearest to the incident location. Unless
otherwise stated, the default settings of the experiments are
a = 0.2, fleet size of dataset] = 40 and fleetsize of datatset2
= 58. The experiments involving RBO refer to RBO with
LDD.

RBO vs Current practice

Figure 3(a) plots the a-rt for 20 different test sets from
Datatsetl, that were created from requests on different days.
An allocation for RBO was computed from a training data
set consisting of requests spread over a week. In addition
to comparing with CP, we also compare with an approach,
wherein we use RBO to compute an allocation on the test set
requests. As it can be expected, this approach will provide a
lower bound on the optimal a-rt, as test set requests are as-
sumed to be known in advance. We observe that results from
RBO are always better than CP, with the difference as much
as 6 minutes in some occasions. Furthermore, results from
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RBO are typically closer to the lower bound on optimal a-rt
than to the results from CP.

Figure 3(b) presents the results of our approach on
Dataset]l in comparison with current practice, when « is
increased. On Y-axis, we provide the a-response time for
both our approach and current practice. The « response
time values reduce as « is increased for both approaches,
since risk reduces as « is increased.The key result however
is that RBO was able to provide lower a-response time
value than CP for all values of «. In some instances, this
difference was as high as 3 minutes. Since we did not
have sufficient information to compare our approach with
the current practice on dataset2, we restrict the compar-
ison of our approach against the current practice to datatset].

RBO vs Greedy:

Figure 4 presents the results with respect to the a-rt
metric on both the datasets. Figure 4(a)-(b) compare a-rt
performance as fleet size is varied on both the datasets.
Irrespective of the fleet size, we observe that RBO performs
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better than greedy. The difference is particularly significant
on Dataset2. Figure 4(c)-(d) compare the a-rt performance
as « is increased. We again observe that RBO performs
better than Greedy. Previously, the metric employed in
evaluating the ”Greedy” technique of (?) is the maximum
number of requests with a response time less than 15
minutes. Figure 5 shows the % of requests served within
the metric by our approach in comparison with the greedy
approach on both the datasets. As can observed from the
graph, RBO outperforms greedy by atleast 20% on all
instances of dataset2.

RBO with and without LDD——

From figure 6, we demonstrate the reduction in runtime
when LDD is used in conjunction with the MILP. While
the time taken by RBO with LDD increases linearly, the
time taken by RBO without LDD increases exponentially
for Dataset2. However, on Dataset]l for same number of
requests in the training set,while LDD provides a difference,
it is not significant. This is because the run time depends on
how densely populated the requests are on the time line.

Dynamic Reallocation——
To allow for "live” reallocation of ambulances and to de-
termine the significance of dynamic reallocation, we apply
RBO with minimal movements constraints (constraint 26)
on both datasets. By varying the upper bound I' of the
penalty parameter p , we observe the effect on the perfor-
mance when a fraction of the fleet is used for reallocation.
Figures 7(a) and (b) provide the a-rt on Dataset]l and
Datatset2 for different reallocation intervals and different
percentage of ambulances available for reallocation (I').
When I' = 0, no ambulances are allowed for reallocation
and hence this result gives us the result of existing alloca-
tion for that interval of time. We observe that as we increase
the I' value, we allow more ambulances to be reallocated

and the o response time either reduces or remains the same
as that of static allocation in most cases.From figure 7(c)
and (d), we observe that our reallocation technique provides
better results than the greedy reallocation apporach over the
three reallocation intervals.

In some cases, dynamic reallocation did not improve a-
rt (as shown in Figure 7) and in few other scenarios (not
shown here), the a-rt with dynamic reallocation was worse
than with the static allocation. Hence, identifying when and
where dynamic reallocation is helpful and is an important
problem for future work.

Discussion and Future Work

In this section, we discuss some of the important assump-
tions made in the paper. First, in the MILP formulation for
ambulance allocation, we assumed that if there is no ambu-
lance to serve a request when it arrives, then the optimization
problem assigns a large value of response time or equiva-
lently it is considered as not served. However, in practice,
the dispatcher would wait for a grace time (ex: 5-10 min-
utes) before considering the request as unserved. This can
be trivially implemented in our model by modifying the def-
inition of """ to consider the grace time. That is to say, for
a grace time of 5 minutes, F}""" is set to 0 if request ¢ finishes
within 5 minutes after arrival of request r.

Second, after serving a request, ambulances return to the
respective base locations from where they were dispatched
to serve the request. We can potentially allocate ambulances
after the victim has been delivered to the hospital. Exploit-
ing on the fly allocation may or may not be an opportunity
depending on how the requests arrive. Understanding when
and where on the fly allocation is useful, is an important
problem and we intend to explore it in the future.

Third, in dynamic reallocation, it is advisable to not move
the same ambulance repeatedly over two locations. Since we



cannot identify individual ambulances in our model(as we
consider homogenous fleet), this criteria cannot be explicitly
handled by our model. However, it is possible to have a more
specific penalty constraint, wherein ambulance movement
from different base locations are penalised differently.

Finally, while we assume that all ambulances can cater to
all requests, certain very specific requests such as cardiac
emergencies will need ambulance with specialized cardiac
support system. In such cases, allocation and dispatch of
ambulances should be based on the type of request. To per-
form this, additional information about the type of illness
should be considered in the definition of emergency request.
‘With minor modifications to our MILP, we can address such
specific constraints.
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