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SUMMARY

We investigate whether TV watching at ages 6—7 and 8-9 affects cognitive development measured by math
and reading scores at ages 8-9, using a rich childhood longitudinal sample from NLSY79. Dynamic panel
data models are estimated to handle the unobserved child-specific factor, endogeneity of TV watching, and
dynamic nature of the causal relation. A special emphasis is placed on the last aspect, where TV watching
affects cognitive development, which in turn affects future TV watching. When this feedback occurs, it is
not straightforward to identify and estimate the TV effect. We develop a two-stage estimation method which
can deal with the feedback feature; we also apply the ‘standard’ econometric panel data approaches. Overall,
for math score at ages 8—9, we find that watching TV during ages 6—7 and 8-9 has a negative total effect,
mostly due to a large negative effect of TV watching at the younger ages 6—7. For reading score, there
is evidence that watching no more than 2 hours of TV per day has a positive effect, whereas the effect is
negative outside this range. In both cases, however, the effect magnitudes are economically small. Copyright
© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

US children spend the second largest chunk of their waking time watching television (Juster and
Stafford, 1991). That is, the most time-consuming activity after attending school is TV watching.
For example, an average 8-year-old in NLSY79 (National Longitudinal Survey of Youth 1979)
child sample spends about 25 hours per week in front of the television. Despite the widespread use
of computers and the Internet, television (TV) remains the dominant form of media in children’s
lives. A recent nationally representative survey found that 8-18 year-olds watch an average of
3 hours of television a day compared with 1 hour a day spent on recreational computer use
(Rideout et al., 2005; see also Chernin and Linebarger, 2005; Pecora et al., 2006). Not surprisingly,
the public and parents are concerned about potentially bad effects of child TV watching. The goal
of this paper is to discover the effects of TV watching on child cognitive development measured by
standardized mathematics and reading scores.

Cognitive development in early childhood may be crucial to human capital formation in later
years, since ‘success or failure at this stage feeds into success or failure in school which in turn
leads to success or failure in post-school learning’ (Heckman, 2000). This relation is just one of
many such relations where something that happened far back has long-term lingering effects. For
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instance, skill heterogeneity at age 16 has been shown to account for as much as 90% of the total
variation of one’s lifetime earnings (Keane and Wolpin, 1997).

There are, however, a number of difficulties in establishing the causal link between TV watching
and cognitive development. First, inappropriate home and school inputs (for instance, economically
and intellectually deficient environments) may induce both more TV watching and lower test
scores. This is an omitted variable (or ‘unobserved confounder’) problem, which can be resolved
by detailed data with sufficient ‘environmental’ control variables. Second, children and parents
may share predispositions for certain habits and behaviors that cannot be measured. This is an
‘individual-specific effect’ problem, which may be overcome with panel data. Third, TV watching
can affect cognitive development, which can in turn affect future TV watching. This is an issue
of dynamic treatment effects with feedback, calling for a proper dynamic model and estimation
method. With a rich childhood longitudinal sample from NLSY79 child data that have not only
child characteristics and family background variables but also detailed home and school inputs in
the current and earlier periods, we will estimate dynamic models to overcome these problems.

Possibly due to the above difficulties, there has been hardly any research in the economics
literature on the effects of TV watching on cognitive development. An exception is Zavodny
(2006), who studied the effects of TV watching for high school students and reviewed related
studies in other social sciences. Her main finding is that, although there exist significantly negative
effects in cross-sectional results, TV watching has no effect on test scores once individual-specific
effects are taken into account. In contrast to Zavodny (2006), who deals with individual-specific
effects with panel data and family-specific effects with twins and siblings data, we tackle the
dynamic nature of the causal relation; also we focus on young children, not on high school students.
Another exception is Gentzkow and Shapiro (2008), who use the well-known ‘Coleman study’
data and difference-in-differences methods, taking advantage of different TV introduction timings
across regions. Their preferred estimate shows a small (about 2% of one standard deviation) but
positive effect of TV watching on test scores at ages 11-17. As in Zavodny (2006), this study
does not address the dynamic nature of the causal relation.

The impact of TV viewing on child development has been studied also in the literature of
communication, child development, and other psychological domains. This non-economic literature
tends to focus more on content-specific studies through experiments and detailed routes for how TV
viewing may affect child development. As far as the effects of TV viewing hours are concerned,
the statistical analysis is mostly on the correlation rather than the causal relationship, and most
studies found modest and negative associations of TV viewing with cognitive development of
young children (Van Evra, 2004; Zimmerman and Christakis, 2005; Anderson, 2005).

Putting our main findings in advance, TV effects are statistically significant but economically
small in terms of their magnitude. The directions of the effects vary across ages, and differ for
math and reading scores—two different measures of cognitive development used in this paper.
Our preferred estimates indicate that the total effect of TV watching during ages 6—7 and 8§-9
is negative for math score at ages 8—9, where the ‘indirect effect’ of TV viewing at the younger
ages 6—7 transmitted through the score at ages 6—7 is much larger than the direct effects of TV
viewing at ages 6—7 and 8-9. For the reading score at ages 8—9, however, watching not more
than 2 hours TV per day brings a small but positive effect compared to too much TV viewing.
For example, watching 2 hours TV per day during ages 6—7 and 8—9 reduces one’s math score
at ages 8—9 by 4% of one standard deviation, but increases one’s reading score at ages §—9 by
3% of one standard deviation, compared with not watching TV at all.
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This paper differs from the TV effect literature in economics on several grounds. First, we
develop a two-stage procedure to deal with the dynamic feedback feature of TV watching on
test scores. Second, we focus on the effects of TV watching for children at ages 8—9, who are
younger than in the two studies mentioned above. Third, with many control variables including
detailed home and school inputs, we still find significant concave/convex effects of TV watching
on both scores based on conventional methods of least squares estimator (LSE) and fixed-effect
models, which differs from Zavodny (2006). Additionally, when the dynamic feedback feature of
earlier TV watching is taken into account, the estimated overall effects of TV watching at ages
6—7 and 8-9 are significantly negative for math score, mostly due to a large harmful effect of
TV viewing at the earlier ages 6—7. This contrasts with the positive effects found by Gentzkow
and Shapiro (2008). On the other hand, our results are consistent with these former studies on the
small magnitudes of TV effects, and on the possible positive effects of TV viewing for reading
score.

The rest of this paper is organized as follows. Section 2 reviews the ‘G-algorithm’ used in
biostatistics, which can identify the desired full TV effects taking the dynamic causal feature into
account, which then motivates our two-stage procedure using linear models. Section 3 presents
typical econometric dynamic panel data approaches. Section 4 describes our data. Section 5
presents the empirical findings. Finally, Section 6 concludes.

2. G-ALGORITHM AND LINEAR-MODEL TWO-STAGE PROCEDURE
2.1. G-Algorithm Basics

Suppose
/ / / .
(X0, Yios Xip> dits Yit, Xjpodin, Yi), i=1,...,N

are observed and i.i.d. across i = 1, ..., N. We will often omit the subscript i in the rest of this
paper in view of the i.i.d. assumption. In each period, x;, is the ‘period-¢ baseline’ covariate which
can affect the treatment d;, and response y;,, and d;, then may affect y;,. The dynamic framework,
omitting x;,’s, is shown in Figure 1.

The feedback feature is y; — dy: d, gets adjusted after the interim response y; has been
observed. This sounds natural: parents adjust their children’s TV watching hours having seen their
test scores, but the feedback feature y, — d, makes d, non-randomized even if d| were so.

Define the ‘potential responses’ for the observed responses y; and y;:

y{ : when treatment j is given exogenously at time 1,

yék : when treatments j, k are given exogenously at time 1,2 j, k € [0, o0)

d — — —

N A
Y1 )
a T

d — — — 1

Figure 1. Dynamic Framework with Feedback from y; to d,
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With d; and d, observed, we have y; = y‘fl1 and y, = yg 12 e, only the potential responses
corresponding to the realized treatment levels are observed, and all the other potential responses—
‘counterfactuals’ —are not. Also define the ‘potential treatment’ for d,:

dé . when treatment j is given exogenously at time 1 (thus ylj realized)

with d; observed, we have d, = dgl. '

Our goal is to find the mean effect E (yz”k” — ygo) for the intervened treatment ‘profile’ (j,, k,)
versus no treatment at all. Although the mean effect on some treated group may be also of
interest, there are problems in identifying the effect on the treated unless essentially the treated
are only for the first period; this is discussed in detail by Lechner and Miquel (2001). In this
paper, we take the position that TV effect is of interest to the entire population, not just to some
subpopulation. Nevertheless, if desired, our models allow interaction terms between the treatments
and some elements of the covariates/lagged responses, which can account for the effect on the
subpopulation characterized by those elements.

Let

X> = (xg, Yo, x|, X3)’

and denote the conditional independence of @ and b given ¢ as ‘a LI b|c’. Assume ‘no unobserved
confounder’ (NUC):

NUCI : yi* dy|X,, for j = j,,0and k =k,,0
NUC2 : yi* Udi|d, = j,yl,X,), for j=j,,0and k =k, O

If the interest is also in the effect of d; on y;, following the usual static counterfactual causal
framework, assume additionally:

NUCO : y/ L1 d,|(xo, Yo, X1)

NUCI holds if d; is determined by X, and some error term independent of y{k given X,. Saying
‘d; determined by X,” may sound preposterous because parts of X, are realized after d;, but the
dependence betweer_l dy and those components of X, in NUCI1 should be construed as d; being
allowed to affect y2 through those components in Xz If one finds NUC2 somewhat confusing,
it may help to rephrase 1t with densities: with f (y20|d20, d1o; Y1y Xzo) denoting the conditional
density/probability of y; (i, dy, yl,Xg) evaluated at (yzo, d}, dio, ¥l X20), NUC2 states:

f (yz(,|d20, J, ylo, X»,) does not change as dzn changes

Both NUC1 and NUC2 are ‘selection-on-observables’, because NUCI states that the d; selection
is 1ndependent of y2 given the observable X5, and NUC2 states that the d2 selection is independent
of y2 given the observable (d; = J, yl,Xz)

The G-algorithm (or G-estimation) under NUC is (see Robins, 1986 (with errata and addendum
1987), 1998, 1999 and references therein)

E(y£k|X2) = / Enl|dy = j,do =k, y1, X2) f(yild1 = J, X2)0y (1)

Copyright © 2010 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 392419 (2010)
DOI: 10.1002/jae



396 F. HUANG AND M.-J. LEE

k)

where f(yi|d| = j,X;) denotes the conditional density of y|(d; = j, X;), ‘9’ is used for
integration/differentiation to avoid confusion with treatment d, and y; in equation (1) is an
integration dummy, not a random variable.

The important point is that the right-hand side of (1) is identified and operational as it depends
on observed variables, which means that E (yék |X5) is identified and can be estimated with the
right-hand side. The G-algorithm holds because the right-hand side of (1) is

/ EGRd = jodl =k, yi, X2 f(lldy = j X2)dy]

= / EG I = j, ¥, X2)f(y]ldy = j, X2)dy]  (due to NUC2) )

= E(yékldl =j, Xp) (for y{ is integrated out)
= E(y |X2) (due to NUC1)

As NUCI is invoked only at the last equality, if NUC1 does not hold one may go for
E(y2 dy =j, X») —E(y2 |di = j, X»), which is the mean treatment effect on the ‘treated
(dy = j)’—a kind of treatment effect in Lechner and Mlquel (2001), as mentioned already.

In essence, the G-algorithm starts with the mean of y2 for the subpopulation (d; = j, d, =
k, y1). The condition d| = j,d, = k is needed because y2 is observed only for those with
dy = j,dy =k, and y; is needed to account for the dynamic feedback. The subpopulation is
then generalized to the whole population (i.e., the selection problem ruled out) as d; = j and
dy =k are removed by NUC1 and NUC2, respectively, and y; is removed by integration.

Getting E (y2” ”|X2) and £ (y80|X2) and then integrating out X,, we obtain the desired

E(y — 2% = Ex,[{rhss. of (1) for j = j,. k = k,} — {r.hus. of (1) for j =0, k = 0}]

which is a ‘marginal’ effect relative to E (yz”k” — y80|X2); Ex,[-] means integrating out X, using
its population distribution and ‘r.h.s.” stands for ‘right-hand side’.

Even for two periods, implementing the G-algorithm in (1) requires finding E(y;|d; = j, d> =
k, y1, X7) and f(y1|d; = j, X») first, and then carrying out the one-dimensional integration, which
could be daunting. We will pursue two directions to avoid this computation problem. One is using
a binary response, which turns the integral into a simple sum with two terms. The other is adopting
linear models, which we will explain shortly.

The G-algorithm in the aforementioned papers of Robins assumes discrete treatments and
covariates, and generalizing the G-algorithm to continuous treatments/covariates needs more
conditions. Theorem 2 of Gill and Robins (2001) shows that the G-algorithm also works for
continuous cases with zero probability of the conditioning event. Gill and Robins (2001) also
show that a probability space can be constructed where the counterfactuals live with the observed
variables, hence presupposing counterfactuals are ‘free’ or ‘harmless’ as they do not impose any
extra restrictions on the factuals. A review of dynamic treatment effects from the econometric
viewpoint can be seen in Abbring and Heckman (2007).
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2.2. A Simple Linear Model and G-Algorithm

To avoid the computation problem in the G-algorithm, we may adopt a linear model, which will
also demonstrate well what is actually going on within the G-algorithm. Suppose that a simple
linear model (omitting xy and yy) holds:

di =&+ X8+ e

vl = Bi +x\Be + Baj+u (dy = j affects y;)

d) =&+ xp8e+ &yl + 82 (3] affects dy), ®)
¥ = Bi+ x4 Bag) + Bak + By +uz (v = ). da=k ] affect y2)

where ¢ and B are parameters and (g, &;, U1, ip) are mean-zero errors. For this model, the desired
effect is

E(y3™ — 3
= E{B1 + x5Bs + Baagjo + Bako + Byyi” + uz — (B1 + X3 + Byy) + u2)}
= Bangjo + Bako + ByE(Y” — ¥0) = Bawagjo -+ Bako + ByBajo (4)

This consists of two parts: the direct effect Bgiagjo + Bako of (di,d>) on y, and the indirect
effect B,B4jo of di on y, through y;.

Barring some regularity conditions, the following condition is sufficient for NUC1 and NUC2,
and thus for G-algorithm:

(a) : (u1, up) Uey|X, for NUCI %)
(b) . us H82|(81,M1,X2) for NUC2

In (3), given (d, = j, y{ , X2), y‘zjk and dé depend only on u; and &5, respectively. NUC?2 holds
thus if (b) holds. Analogously, given X5, d; depends only on ¢, and yék depends only on u; and
y] which in turn depends only on u;. Hence (a) implies NUCI.

To better understand (5), omit ‘|X,’ for a while and observe the fact:

(w1, up) L (g1, &2) <= (1, up) L &2]eq and (ug, up) L &4

in (uy, up) L &5]ey, it looks as if &, may be related to (u;, up) through &, but this is ruled out in
(u1, up) U ey. In comparison to this display, in (5) with ‘|X,’ omitted, we get (u;, up) Ll &; and
up L ey|(e1, up): €, may be related to u, through u;. Also heteroskedasticity and serial correlations
within (g1, &) as well as within (u;, u,) are allowed.

A condition stronger than (5) is

(w1, up) L (&1, £2)|X>

This is easier to understand: the selection equation (i.e., the treatment equation) error terms
should be unrelated to the outcome equation errors conditional on the covariates—the famil-
iar ‘static’ selection-on-observable condition. The only difference between this and (5) is that
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(5)(b) has u; in the conditioning set, which is necessary as y{ gets conditioned on in G-algorithm
to allow for the dynamic feedback. Because y; is observed at period 2, (5) is also a selection-on-
observable condition.

Getting into G-algorithm details with the linear model (3), observe

EG'dy = j,d} =k, y],X2)
= B1 4 XpBe + Baag) + Bak + Byy] + E(waldy = j,d5 =k, y],X2)
= B1 + X5 B + Bawg) + Bak + Byyi + E(uald) = j, y], X») using (5)(b) (6)

Substitute this into the G-algorithm to get
E(33'1X2)
= [+ 380+ B + Bk + B3] + Etanldy = . XD £l = . X0y
= Bi + x5 Bx + Baiag + Bak + :ByE(y{|d1 = j, Xo) + Ewld, = j, X>)
Observe

E(]ldy = j, X2) = Bi + X\ B + Baj + Euild) = j, X2)
E(u|d, = j,X2) =0 and E(uy)d, = j, X,) = 0 using (5)(a) (7)

Substitute these into the preceding display to obtain

E(1X2) = B + %58 + Bawg + Bak + By(B1 + X, Be + Ba)
— E(yi* = yO1X2) = Bitag) + Bak + ByBaj = E(yi* — )

Comparing the last display with (4), we can see that E (yék — ygo) is identified and estimable
with the G-algorithm. As will be shown later, typical econometric panel dynamic models will miss
the effect conveyed by yj, i.e., the part due to E (yf |d; = j, X»). Note that (5) is sufficient for the
G-algorithm to work with the linear model; the necessary and sufficient condition can be seen in
(7) and (6):

(@:  E(uld; =j,X2)=0and Euld, = j,X,) =0 for NUCI (8)
®): E(uld, = j,d} =k, y/.Xy) = E(u|d, = j, y/,X,) for NUC2

Although we considered the linear model to simplify G-algorithm computation, (4) shows
that the effect E (yék — y3%) can be found by estimating the yﬁk equation in a single step
because only Biig, Ba, and B, appear in E(y‘z’k — ygo); finding E(y2|dy = j,d» =k, y1, X») and
f(nldy = j, X») and then doing the integration in the G-algorithm is all unnecessary. The linear
model (3), however, looks too simple to be realistic. For one thing, it assumes linear effects of d;
and d,; for another, it assumes a stationary environment. For child TV watching, both restrictions
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are implausible, and hence we consider a nonstationary model allowing for nonlinear effects of d,
and d, next, which will then lead to a two-stage procedure to be used in our empirical analysis.

2.3. A More General Linear Model and Two-Stage Procedure

Instead of (3), consider

(dy and dé equations are the same as in (3))
M=o+ Xy + @i+ aagi’ + ©)
yék = Bi + XoBx + Barj + Bargi + Bk + Bargk® + ﬂyy‘li +up

This generalizes (3) for nonlinear treatment effects and non- stationary parameters by introducing
quadratlc terms in j and k and allowing the parameters of the y{ equation to differ from those
of the y2 equation. The quadratic terms j> and k> are to account for the potential nonlinear
effects of TV watching hours: even if TV watching is beneficial, too much TV watching should
be harmful. If necessary, various interaction terms can be included in these equations to capture
the effect on the subpopulatlons characterized by the variables interacting with the treatments.
Also the squared y{ can be included as well in the y2 equation. But, for our data with N >~ 2180
and high-dimensional x; and x,, adding high-order terms can quickly get out of hand.

The desired effect is

E(yi™ — 3
= E{B1 +X)Bx + Barjo + Baigi> + Backo + Bazgk? + Byyi” +uz — (B + x5B: + Byy) + u2))
= Batjo + Bargi> + Bazko + Burgk? + ﬂyE()"llo -
= Barjo + BargJy + Bazko + Bazgki + By(@ar jo + caiqJy) (10)

Although we can show that the G-algorithm identifies this effect, it is not necessary, because we
can just estimate the y| and y2 equations separately for the a and B parameters first, and then
combine those estimators to find the deszred effect. This two-stage procedure is our main proposal.
As in (4), the parameters in the d; and d} equations do not appear in the desired effect, which is
why we did not bother with generalizing the d; and d2 equatlons in (9).

Estimating the « and B parameters in the linear y| and y2 equations brings up a new issue for
observational data. For instance, consider the y; equation in the observed random variables:

yi = ay +Xj0 + agdy + o ds +u (11)

For this to be taken as a data-generating process, we need to specify how d; and u; (and x;)
are related to each other. In the y] equation, we may assume E(u;|x;) = 0, but this is moot on
how d; is related to u;—no d; in E(u;|x;) is natural as j is a constant in the y‘l’ equation. In
contrast, in order to estimate the o parameters in (11) with LSE, we need E(u|x;,d;) = 0 (or at
least zero correlations), which in fact appeared in (8) for the G-algorithm.
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Specifically, getting E(yi|x1, d1) = o + xjox + aq1d) + adlqd% from
E(yle) = o + xjox + earj + aangj” <= Euilxy) = 0
in (9) requires
E(y{ld) = j.x1) = E(y{lx)) = E(ui|d, = j.x1) = E(u1|x;) = 0 12)

Formally, this can be seen in
E(yildy, x1) :/ E(yildi = j,x1)01[j <d] = /E(y{|d1 = j,x1)01[j < di]
=/ E(y{lx1)d1[j < di] (using (12))
= [ (e e o+ g P = i) = e+ X+ aand: + and:

where 1[j <d;] denotes the distribution for j with unit mass at j =d;. The requirement
(12)—i.e., no selection problem from d;—was in fact noted in Lee and Kobayashi (2001) when
d) is binary. Equation (12) is weaker than (8)(a) for the G-algorithm in that x, does not appear in
the conditioning set. '

Analogously, E(yldy, da, y1, %) = Bi + x3Bx + Bardy + Bargdi + Barda + Bargds + Byyi
from

E Y], x2) = Bi + X584 Barj + Barg > + Baok + Baogk® + Byy] <= E(ua|yl, x,) =0

which requires

Edy = j,dy =k, v, x2) = EGI|y], x2)
— Ewld, = j,dy=k y],x)=E@ly],x) (=0) (13)

Equation (13) is weaker than (8)(b) for the G-algorithm in that x; does not appear in the
conditioning set. The separate appearance of x; and x; in (12) and (13) is due to estimating
the period 1 and 2 equations separately in the two-stage procedure, while the G-algorithm does
the computation together and thus needs X, in the conditioning set. Earlier we noted that the
dynamic feedback nature y; — d, makes d, non-randomized even if d; were so. NUC2 and (13)
show clearly how this problem gets handled: assume that d is as good as randomized conditioning
on y{ (and other variables).

The main advantage of the two-stage procedure is ease of implementation: only two LSEs are
needed. Of course, this practicality comes at the cost of specifying the linear functional form for
the conditional mean in the G-algorithm which is nonparametric in its original form. Other than
the G-algorithm and our two-stage linear-model-based procedure, other approaches are certainly
possible for dynamic treatment effects. For instance, Lechner (2004, 2008) proposes matching
approaches using the ‘propensity score’ idea in Rosenbaum and Rubin (1983), which is, however,
applicable only when the treatment is binary.
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2.4. Covariates Affected by Early Treatment or Response

Turning back to the G-algorithm, there is a complication in the G-algorithm in relation to x; being
affected by either y; or d;, and we address this issue in this subsection. Note that, by construction,
x1 precedes d| and yj, and thus x; cannot be affected by d; or y;.

First, suppose that d; affects x,, which in turn affects y, (i.e., d; — x, — y,). For example,
the period 1 TV hours may affect the physical fitness x, of the child and the fitness may influence
y2. In this case, the role of x, differs little from that of the early response y;. This means that x;
affected by d; can be handled in the same way as y; is handled: replace y; in the G-algorithm
with (v}, x2) and integrate (y;, x;) out conditioning, not on X, but on

Xl = (-x(/)1 y07-xi)/

Specifically, with xé denoting the potential version for x, when d; = j is exogenously set, we
need new NUCs conditioned on X;:

NUCI’:  yf1dy|X,, for j = j,. 0and k =k, 0 (14)
NUC2 . y* Udj|(d) = j.yl,x}.X\), for j=j, 0andk=k,0

Under this, the G-algorithm (1) should be modified as
EGPI0 = [ [ BGuldy = jids = koo, XS Orlds = J. X0,
= [ [ B0t = .k =k stxd X0£ O iy = X000

_ / / EGHd) = ju vl xh X0 f O xildy = j, X1)dylax) (NUC2' used) (15)

= E(yJ|d, = j, X)) (y] and xJ integrated out)
= E(y}"|X)(NUCI’ used)

We get E(yi” — y9|X 1), not E(y3* — y%°|X,), from which E(y{** — y%) can be obtained by
integrating out X ;. In our data, we do not have period 2 covariates for d; — x, — y,, and thus
this generalization of the G-algorithm will not be needed.

Second, suppose that y, affects x,, which in turn affects y, (i.e., yj — x, — ). For instance, if
the period 1 test score is poor (good), the parents may take some disciplinary (rewarding) measure,
such as grounding the child (taking the child out to a ballpark), and this can affect the period 2
test score. As in the preceding case, this requires the xj equation, and the modified G-algorithm
(15) still works. But the problem is that there might be too many such variables in our data,
which makes the G-algorithm non-operational. We will assume that the effects of such variables
are negligible. As the disciplinary/rewarding measure example suggests, those variables are of
temporary nature rather than persistent, and if there are any effects they would be small.

To better see the problems we will encounter if we try to account for all effects in the latter
case y; — Xxp — )», observe that F (y‘zok” - ygo) in (4) consists of three effects shown by three
arrows pointing to y, in Figure 2; the part y; — d, in Figure 1 is ‘blocked’ as E(y‘zok” — %)
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is the ‘intervention’ effect of setting d; = j, and d, = k, exogenously given the observables. In
Figure 3 with y; — x, — y, added, there are now four arrows pointing to y,. The G-algorithm
can accommodate this with (15), but if the dimension of x, is large then the G-algorithm is not
operational. Our two-stage procedure can also accommodate the added arrow effect, but this will
make (10) too complicated by adding too many terms.

In principle, there is no compelling reason why we should exclude the effect from d; —
yi — X — y,. But, as argued above, this effect seems negligible in our application, as one can
immediately see after examining the list of home inputs at ages 6—7 and 8§-9 in the Appendix
which are mostly family routines represented by binary variables that these intermediate covariates
are not likely to change responding to earlier test outcomes. For example, parents may reduce the
number of trips to museums after seeing a bad test score, but so long as they take the child to
museums at least several times a year, the value of the binary variable does not change according
to the way the museum visit variables are constructed. As in any treatment effect analysis, we will
never be able to account for all effects, as ‘a butterfly’s flutter in one side of the Pacific may cause
a hurricane on the other side’. It is either the foreseeable negligible magnitude or the technical
difficulty of gauging the effect that keeps us from pursuing all effects.

2.5. G-Algorithm with Binary Responses

We proposed a linear model approach to the G-algorithm to alleviate the implementation problem
of the G-algorithm in (1). If many high-order terms should appear (particularly y?, y?, ...1in the y,
equation), however, then even the linear model approach becomes cumbersome. The G-algorithm
can be implemented with much ease if y is binary—no need for y?, y;, ... any more—in which
case the G-algorithm becomes a sum of two terms:

E()"zik|yo,X2) =POo=1ldi=j,dy =k y1=0,X2)- P(y1 =0ld| = j, X3)
+P(y=1ldi =j,da =k, y1 =1,X2)-P(y1 = 1|ld1 = j, X>») (16)

d — — — o

A

Y1 )

a T
T

d — — —

Figure 2. Dynamic Framework without Feedback

dy — — — — Y2
/ A
vy T2 T
/! T
dq — — — — — 7
Figure 3. Dynamic Framework without Feedback from y, to z,
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Other than for avoiding yf, yf, ..., binary response may be less susceptible to recall errors; in our
data, the TV watching hours may be subject to recall errors.

For instance, apply probit (or logit) to y, on d;,d», y; and X, to obtain the two probit
probabilities for y, = 1 in (16):

QW1 + Vardi + Vards + Yy y1 + ¥, X>)

where the -parameters are to be estimated. Also apply probit (or logit) to y; on d; and X, to
get the probit probabilities for y; = 1 (and y; = 0):

O (n + nardy + 0. X2)

where the n-parameters are to be estimated. Substituting these into (16) will do. This version will
be applied to our data as well.

3. DYNAMIC PANEL DATA MODEL ESTIMATORS

Facing the task of finding the effect of (d;, d;) on y, when d, can influence y, through y; as well,
the usual econometric panel data approach would be using a dynamic panel data model. Various
dynamic panel data models are conceivable (see, e.g., Lee, 2002), but a comprehensive model is

Va2 = Bi + X\ Bet + X582 + Bardi + Bargd: + Barda + Bargds + Byoyo + Byiyi + 2 (17)

where v; is an error term. But this model cannot deliver the desired effect E (y'z“k“ — ) in (10)
because the indirect effect By(aa1jo + ota1g ji) of dy on y, through y, is missed. This, which is
due to controlling y;, is the main disadvantage of the usual dynamic panel data approach. Our
proposed two-stage method is a simple adjustment of this: estimate the y; equation as well, and
construct (10) adding the missed indirect effect B, (aq1j, + @aiq jf,).

If we do not control y; in (17) to avoid the problem of missing the indirect effect, then the
effect of d, on y, may get distorted because the omitted y, becomes a ‘common factor’ for d,
and y,, causing an omitted variable bias. That is, even if there is no true effect of d, on y,, we
may find a spurious effect of d, due to not controlling y,. This dilemma is fundamental to dynamic
treatment effect analysis under feedback: control y; to miss the indirect effect, or not control y,
to incur an omitted variable bias.

For our empirical analysis, we will use and compare a number of estimators: first, LSE to
(17), in which the test for ‘H,: all coefficients for the treatments are zero’, amounts to ‘Granger
noncausality test’ (Granger, 1969, 1980); second, ‘fixed-effect estimator’ to the model (with
AYir = yir — Yii—1 and Ad} =d% —d?,_)):

Yir = 0 + aqdip + 0tagd’ + X0 + 8 + vy
= Ayp=ar —a; + agAdp + Olqudl-zz —f-x;z()lxg — xl{laxl + Avjpp (18)

Third, in this differenced model, the lagged variables in Ay, Ad;, and Ad%2 appear with
the restricted coefficient —1, and if we remove these restrictions we get (17) (without yp); the
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instrumental variable estimator (IVE) to (17) is our third estimator, which is the most ‘endogeneity-
conscious’ estimator. Fourth is LSE to the observed version of (9):

yi = oy + X1 + agdy + ag,ds +u (19)
y2 = B+ 5B + Bardi + Bargd: + Baxda + Bangds + Byy1 + ua

which is our main two-stage estimator. Fifth is the G-algorithm to binary response (16) after
transforming y, to the binary response taking O or 1, depending on whether y, is smaller than its
mean or not.

As for Granger causality, we consider this for two reasons. Firstly, although we adopt the
‘counterfactual causality’ framework as explained in the preceding section, dissenting views on
causality are also strong, as can be seen in Holland (1986) and Dawid (2000). Because Granger
causality is widely used in time-series econometrics with its panel version in Holtz-Eakin et al.
(1988, 1989), it seems sensible to consider a model that can test for Granger causality. Secondly,
although Granger causality does not imply nor is implied by the counterfactual causality in general,
Robins et al. (1999) show that the two concepts do agree in some cases; see also Lechner (2006) on
the comparison of counterfactual and Granger-type causalities. In our framework, the magnitude of
the (dy, d,) effect estimated in (17) is not meaningful as (17) misses the indirect effect, as already
pointed out, but Granger noncausality of (di, d2) is meaningful under the stationary environment
of the same o and S parameters, which can be seen in (4):

E(y§’)k0 - YQO) = ,Bdlagj() + ﬂdko + ,Bylgdjo =0 if ,Bdlag = ﬂd =0

That is, the missed indirect effect is also zero when the direct effect is zero thanks to the
‘stationarity’ assumption that B, appears in the y{ equation as well as in the yék equation in
(3).

Turning to the fixed-effect estimator, it is one of the most popular estimators in panel data,
which is one reason why we apply this to our data. As is well known, an important source of
endogeneity in a panel data model is the ‘unobserved unit-specific effect 8;" when v;, is redefined
as &; + vi;. The endogeneity is then removed by differencing the model as in (18). To further
remove any remaining endogeneity, IVE can be applied to the differenced model, but we chose
to apply IVE to (17) for even more generality because (17) includes the differenced model as a
sub-model.

Note that removing §; by first-differencing requires a kind of stationarity that §; enters both
equations with the same ‘slope’. If one believes that the TV effect is stationary, being the same at
all ages, then the same slope specification for §; may be adopted and differencing may be the way
to go. The effect found there would be applicable to all ages, leading to a ‘long-run effect’, despite
that the NUCs hold only at two periods. But this scenario seems overly optimistic. Rather, the TV
effects and the §; slopes are all likely to be non-stationary. We therefore allow the nonstationary
aspect in our two-stage procedure, and this should matter greatly.

In econometrics, most ‘energy’ seems to have been spent on dealing with endogeneity, in
contrast to the statistical literature for the G-algorithm, where accounting for the full effect is given
more priority while the endogeneity problems are ‘swept under the rug’ with NUC conditions.
It is therefore interesting to see how the dynamic panel data (IVE) econometric approaches with
emphasis on endogeneity differ from G-algorithm-based approaches with emphasis on getting the
full effect.
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As for instruments, Angrist and Krueger (2001) show an ingenious list of instruments in various
studies, but having those types of instruments is not always possible. Rather, in typical panel data,
it is unavoidable that one finds instruments within the data—namely, lagged regressors. Because
(17) involves already y;, d», dy, x;, and x|, the only source left for instruments for endogenous
regressors is xg, and xo will be the source for our instruments. As x( is not an ‘ideal’ instrument,
this part of the empirical analysis should be taken with a grain of salt. .

Related to endogeneity, we point out that the identification of the desired effect £ (yz"k" — ygo)
as in (10) is a separate matter from specifying the data-generating process and getting concerned
about the ensuing endogeneity there. In dynamic panel data models, often the interest falls on
the initial condition yy and the unobserved unit-specific effect §. This is relevant to estimating
the model with observed data, but not to specifying the desired effect. To see this, observe that
no matter what yp and § might be, so long as they do not interact with the treatments, they get

canceled out in the difference yzl”k" — ygo, and thus have no impact on the desired effect.

4. DATA DESCRIPTION

The NLSY79 child sample contains rich information on children born to women respondents of
the NLSY79. Starting from 1986, a set of questionnaires was developed to collect information
about the cognitive, social, and behavioral development of children. The collected variables include
detailed home inputs as well as family backgrounds and school inputs. Based on children surveyed
from 1986 to 1998, we constructed a longitudinal sample of about 2600 children with no missing
values in the Peabody Individual Achievement Test (PIAT) math and reading scores at ages 8—9
(»2) and TV watching hours at ages 6—7 and 8-9 (d, d»). The first period is ages 6—7, and the
second period is ages 8—9; the ages 4—5 are then used as the base period (period 0). When we
include PIAT scores at ages 6—7 (y;), the available sample size remains almost the same; it gets
smaller when PIAT scores at ages 4—5 (yp) are included, since only children aged 5 and above
are tested with PIAT. The change of sample size is shown at the bottom of Table I. The missing
data for PIAT scores at ages 4—5 are due to the simple fact that many children of ages 4-5 are
below age 5 and hence not eligible for the tests.

The relevant questions on TV watching ask a mother how many hours her child watches TV
on a typical weekday and weekend day. While examining the data, we found that some answers
do not seem valid: the reported hours sometimes go well beyond 24 hours. This may be due to
a confusion between a daily measure and a weekly measure of TV watching hours. Thus we
excluded children reportedly spending more than 10 hours watching TV on a typical day at any
age. This left us with a sample of 2180 children, based on which all of our empirical analyses
were conducted. The summary statistics of some variables in this sample are listed in Table I,
and the complete set of variables is provided in the Appendix. Since school inputs were not
available for children above 5 years old before 1992, there are many missing entries in school
inputs.

PIAT math score offers a wide-range measure of achievement in mathematics, and PIAT reading
recognition score assesses their attained reading knowledge. Both are among the most widely
used assessments of academic achievements. The norming sample has mean 100 and standard
deviation (SD) 15 for both math and reading scores; these were normed against the standards
based on a national sample of children in the USA in 1968. The PIAT math in our sample
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Table I. TV watching and math and reading scores: summary statistics

Daily TV watching hours PIAT scores at ages 8-9 Group size

At ages 8-9 At ages 6-7 Math Reading
Main sample 3.5 (2.0 3.3 (2.0 102.2 (13.9) 105 (14.6) 2180
Race
White 2.9 (1.7) 2.9 (1.8) 106.3 (13.0) 108.0 (13.8) 1165
Non-White 4.1 2.2) 3922 97.5 (13.4) 101.6 (14.7) 1015
Sex
Boy 3.5(2.0) 33 (1.9) 102.6 (14.6) 103.6 (15.3) 1095
Girl 3.5(2.0) 34 (2.1) 101.7 (13.2) 106.4 (13.7) 1085
Birth order
First-borns 3.2 (1.9) 3.1(1.9) 104.3 (13.6) 108.4 (13.3) 868
Others 3.7 (2.1) 35 (2.1 100.7 (13.9) 102.7 (15.0) 1312
How many children books a child has at home at ages 6—7
>10 at both 33 (1.9) 3.2 (2.0) 103.8 (13.2) 106.7 (13.7) 1862
<10 at either 4.6 2.2) 4.1 (2.2) 92.6 (13.2) 94.6 (15.4) 313
Mother reads to child at ages 6—7
Often 3.3 (2.0 3.3 (2.0) 103.1 (13.5) 105.7 (14.2) 1636
Not often 4.1 (2.1) 3.6 (2.0) 99.2 (14.6) 102.7 (15.5) 540
Whether parents discuss TV programs with a child
Discuss 3.4 (2.0 3.3 (2.0) 103.2 (13.8) 106.0 (14.4) 1801
Not discuss 3922 3.6 (1.9) 97.0 (13.2) 100.2 (14.7) 354
School type
Public 3.5 (2.0) 3.4 (2.0 102.6 (14.4) 104.8 (14.7) 885
private 2.6 (2.0) 2.3 (1.6) 105.7 (11.6) 111.1 (11.5) 66
Mother’s highest grade
>16 2.7 (1.8) 2.7 (1.8) 107.0 (13.6) 109.4 (13.4) 534
<16 3.7 (2.0 3.6 (2.0) 100.6 (13.6) 103.5 (14.7) 1646
Mother’s AFQT score in 1981
Above mean 2.7 (1.6) 2.7 (1.7) 107.5 (12.5) 109.9 (12.9) 999
Below mean 4.1 (2.1) 39 (2.1 97.6 (13.2) 100.9 (14.7) 1181
Earlier PIAT scores
PIAT Math at ages 6—7 100.8 (12.1) 2180
PIAT Math at ages 4-5 99.2 (14.7) 1250
PIAT Reading at ages 67 103.3 (11.7) 2180
PIAT Reading at ages 4-5 106.5 (14.8) 1175

Note: The entries are group means and standard deviations (in parentheses). The main sample is composed of children
watching 10 hours or less TV per day between ages 6 and 9.

has mean 102.2 and SD 13.9 around age 9, and the PIAT reading score has mean 105 and SD
14.6.

In the sample, the average child spends 3.5 hours per day watching TV at ages 8—9 and
3.2 hours at ages 6—7. Specifically, around 60% of children aged 8—9 watch more than 2 hours
TV per weekday, and 21% of them more than 4 hours; on weekends, they watch TV for longer
hours: around 72% exceeding 2 hours and 35% exceeding 4 hours. These patterns are quite similar
to those at ages 6—7, though younger children usually watch less TV. We choose to use a measure
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of daily TV viewing hours in the form

1
7{5 x (average weekday watching hours) 4+ 2 x (average weekend-day watching hours)}

White children on average watch about 1 hour less TV per day at both ages 6—7 and 8—9 than
the others, and their PIAT scores are 8.8 points higher in math and 6.4 points higher in reading.
There is virtually no difference between boys and girls in TV watching hours and PIAT scores,
while first-borns watch about half an hour less than the others and get higher math and reading
scores. A child with 10 or more children’s books at home watches around 1.2 hours less TV at
ages 8—9 and have much higher scores (11.2 points higher in math and 12.1 in reading) than those
with fewer books. Similarly, children whose mothers read to them frequently (at least three times
per week) and whose parents discuss TV programs with them spend less time in watching TV
than others and get higher grades. In general, TV watching times are significantly and negatively
correlated with other activities such as going to museums and theaters.

Public school children watch about 1 hour more TV on a daily basis at ages 6—7 and 8—9 than
those in private schools, and their math and reading scores are lower. The perceived quality of
detailed school inputs (including the skills of the principal and teachers, how much teachers care
about the students, whether parents are given enough information and opportunity to participate in
school affairs, the safety and order of the school, and whether moral teaching is offered), however,
does not seem to affect much TV watching time, although it is positively associated with both
math and reading scores. The correlation between TV watching hours and time spent on math
homework or reading and writing assignments is quite weak and sometimes positive, which is
possibly due to multitasking, where many children watch TV while doing homework (Rideout
et al., 2005).

Children with mothers having 16 or more years of schooling watch about 1 hour less TV.
Similarly, children whose mothers have above average AFQT scores watch 1.4 hours less TV
at ages 8—9 and around 1.2 hours less at ages 6—7, and their PIAT scores are much higher (10
points higher in math and 9 in reading). In summary, children with high-quality home inputs and
better-educated mothers watch much less TV, while school inputs have relatively less influence.

A salient feature in Table I is that less time spent viewing TV is almost always associated with
higher math and reading scores. The potentially harmful effects of TV watching, however, may
be overestimated if detailed home inputs are not controlled, since a child watching more TV also
lacks important home inputs. The strength of our data is that a rich set of home inputs from birth
up to age 9 as well as key family background variables are available; for some children, there
are also many detailed school inputs available. This would greatly reduce potential biases due to
omitted variables. Most home and school input variables were categorical with multiple levels,
which were converted to dummy variables according to sample medians. The age-specific Home
Observation Measurement of the Environment variable (HOME), which is a simple summation
of the dichotomized individual input item scores, is often used in child development research as
an aggregate quality indicator of home environment. The completion rates of HOME, however,
are in general very low for children under age 4, which causes many missing values. Whenever
possible, HOME is included as a control in addition to detailed home inputs.

In discussing the dynamic treatment effects, we desire the time sequence x, — d; — Y, in each
period so that x; works as the time-¢ baseline covariates which affect d, and possibly y,, and then
the treatment d, affects y,. In our data, this temporal order is plausible for a couple of reasons.
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First, y, is measured on the interview day, which means that x;, and d, precede y,. Second, many
family characteristics in x, are likely to be determined independently of d,. Third, overall, TV
watching hours tend to be the ‘residual’ usage of time, and thus is unlikely to influence other time-
consuming activities, although we cannot completely rule out TV watching taking precedence over
the other activities.

The availability of a rich set of control variables in out data is crucial for the application of G-
estimation, which relies on the credibility of the ‘no unobserved confounder’ assumption. As listed
in the Appendix, our control variables contain four groups: (1) a child’s demographic information
including race, sex, and birth order; (2) home inputs at different ages 4-5, 6—7, and 8-9, which
cover many aspects of a child’s life at home, such as the number of children’s books at home,
how often the mother reads to the child, how often the child is taken to a museum, performance,
outdoor activities, meeting with relatives, having meals with parents, etc.; (3) school inputs at
ages 6—7 and 8-9, including the number of hours spent on math and writing homework, whether
the school is public or private, the mother’s rating of school quality such as the skills of the
principal and teachers, and the safety and order of the school; (4) family backgrounds including
the mother’s AFQT score, highest grade, marriage status, age at the child’s birth, whether the
child was breast-fed, and family income. These variables constitute a highly comprehensive set
of controls for our purpose of finding the dynamic effects of TV viewing on math and reading
scores for children at ages 8—9. After controlling them, it is not easy to think of any important
unobserved confounders that may affect both TV viewing time and math and reading scores. That
said, a better dataset should also include more information about the child’s father, such as his
AFQT score and education level, and more objective variables on school quality.

5. EMPIRICAL RESULTS
5.1. Granger Causality

Table II presents results for Granger causality for model (17). The various specifications differ
mainly in the control variables used. In the first column (‘OLS’) of both math and reading score
regressions, the earlier scores y; at ages 6—7 and yy at ages 4-5 are used as well as the basic
group of controls which include the child’s race, sex, birth order, home inputs at ages 6—7 and
8-9, and family background variables (mother’s AFQT score, her age at the child birth, whether
the child was breast-fed, her marriage status, her highest grade, and family income). The sample
sizes drop substantially when the school inputs at ages 6—7 and 8-9 are controlled in the second
column (‘OLS(S)’). Home inputs at ages 4—5 are further added in the third column (‘OLS(SH)"),
which contains the most comprehensive set of controls and hence the smallest sample size.

For math scores at ages 8—9, TV watching hours at ages 6—7 and 8-9 are jointly significant
across these specifications with p-values at least 0.07, though the coefficients of individual TV
watching variables are sometimes not significant; TV hours at ages 6—7 have positive and concave
effects, while those at ages 8—9 have negative and convex effects. For reading scores at ages 8—9,
the joint significant levels of TV watching hours are overall lower than those for math except
in the most comprehensive specification (‘OLS(SH)’), where TV hours at ages 6—7 and 8§-9 are
jointly significant, with a p-value 0.009. The effects of TV watching hours at both age periods
seem to have positive and concave effects.

For later comparison with the other tables, the mean differences in PIAT scores between different
TV watching hours at ages 6—7 and 8-9 are listed in the lower half of Table II. More time spent
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Table II. TV watching on math and reading: Granger causality

PIAT Math at ages 8-9 PIAT Reading at ages 8-9
OLS OLS(S) OLS(SH) OLS OLS(S) OLS(SH)

Daily TV hours at ages 8—9 —1.05 —2.15 —2.68 —0.06 2.21 2.49

(0.77) (1.74) (2.52) (0.61) (1.83) (2.60)
Daily TV hours at ages 8—9 squared 0.16** 0.36™* 0.40 0.03 —0.23 —0.25

(0.08) (0.18) (0.26) (0.07) (0.18) (0.25)
Daily TV hours at ages 67 0.89 4.79%* 5.50** 0.58 1.96 2.54

(0.68) (1.89) (2.31) (0.60) (1.79) (2.0)
Daily TV hours at ages 6—7 squared  —0.11 —0.56%** —0.66** —0.07 —0.37* —0.57**

(0.08) 0.21) (0.26) (0.07) 0.21) (0.23)
PIAT score at ages 6—7 0.59*** 0.58*** 0.65%** 0.78*** 0.83%** 0.88***

(0.04) (0.12) (0.13) (0.03) (0.09) 0.12)
PIAT score at ages 45 0.10*** 0.13 0.12 0.09%** 0.06 0.09

(0.03) (0.09) 0.11) (0.03) (0.08) (0.09)
Joint significance of TV at 6-9 0.07* 0.03** 0.04** 0.60 0.12 0.009%**
Joint significance of TV at 8-9 0.02** 0.02** 0.15 0.50 0.46 0.61
Joint significance of TV at 6-7 0.38 0.03** 0.048** 0.60 0.04** 0.0017*
Sample size 871 178 155 835 175 152
R? 0.49 0.71 0.72 0.64 0.75 0.79

Mean difference in PIAT scores (bootstrapped SD in parentheses)

Daily TV hours at ages 6—9 PIAT Math at ages 8§-9 PIAT Reading at ages 8—9
OLS OLS(S) OLS(SH) OLS OLS(S) OLS(SH)
1 hour versus 0 hour —0.12 2.43 2.56 0.49 3.57 4.20
(0.72) (2.68) (5.82) (0.61) (2.44) (4.23)
2 hours versus 0 hour —0.13 4.46 4.62 0.90 5.94 6.77
(1.27) 4.73) (9.95) (1.07) (4.30) (7.34)
3 hours versus 0 hour —-0.04 6.08 6.17 1.25 7.11 7.69
(1.66) (6.21) (12.5) (1.39) (5.59) 9.41)
4 hours versus 0 hour 0.15 7.28 7.21 1.52 7.07 6.97
(1.9) (7.16) (13.5) (1.59) (6.38) (10.57)
5 hours versus 0 hour 0.45 8.08 7.73 1.72 5.83 4.61
(2.0) (7.68) (13.5) (1.67) 6.77) (11.06)
6 hours versus 0 hour 0.85 8.47 7.75 1.86 3.38 0.60
(2.0) (7.96) (13.1) (1.67) (6.95) (11.35)
4 hours versus 2 hours 0.28 2.82 2.58 0.62 1.13 0.20
0.67) (2.65) (4.37) (0.56) (2.32) (3.78)
6 hours versus 2 hours 0.98 4.01 3.13 0.95 —2.56 —6.16
(1.0) (4.53) (8.73) (0.88) (4.04) (7.26)

Notes: * p < 0.1; ** p < 0.05; ** p < 0.01. Standard deviations are in parentheses. The sample is composed of children
watching 10 hours or less TV per day at ages 6—9. The controlled inputs include a child’s race, sex, birth order, home
inputs at ages 6—7 and 8-9, and family background (mother’s AFQT score, her age at childbirth, whether the child was
breast-fed, her marriage status, highest grade, and family income). OLS(S): school inputs at ages 6—7 and 8—9 as listed
in the Appendix are included. OLS(SH). Home inputs at ages 4—5 are included as well as the above school inputs.

on watching TV (up to 6 hours daily) is associated with higher math scores, while TV effects on
reading scores seem positive and concave, with the best outcome achieved at 3 hours in ‘OLS(S)’
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and ‘OLS(SH)’. These results, however, are not significantly different from zero. As emphasized
earlier, these mean differences capture only the direct effects of TV watching since the lagged
PIAT scores are controlled.

In summary, there exists clear evidence of Granger causality of TV watching at ages 6—7 and
8—9 on PIAT math and reading scores at ages 8—9. The effects of TV watching seem to differ
in both magnitude and sign for math versus reading scores. With Granger causality establishing
that at least there are direct effects of TV watching on the scores, the orderly thing to do is to
proceed further to obtain the full dynamic effects of TV watching including the indirect effect that
is missed in Granger causality. Before that, however, in the next subsection we will present some
estimation results for typical econometric panel data methods.

5.2. Fixed Effect with IV

In Table III, columns ‘FE(IV)’ present the results based on model (17), where home inputs at
ages 4-—5 are used as instruments for the current home inputs at ages 8—9; as in Table II, squared
treatment variables are used. As noted already, (18) may be regarded as (17) with the restriction
that the lagged variables have opposite signs and the same magnitude. This proposition is supported
partly by the different signs of d| and d, and their squared versions in Tables II and III

Table III allows for endogeneity of the current home inputs, which are the G2 group of variables
in the Appendix, including daily TV viewing hours, whether the child has more than 10 books,
whether the child’s mother reads to him/her at least three times a week, whether the child reads
every day for enjoyment, whether the child’s family encourages hobbies, whether the child is
taken to a museum or performance at least several times a year, whether the child’s family gets
together with relatives or friends at least two or three times a month, whether the child does
outdoor activities with the father at least once a week, whether the child eats with parents at least
once a day, and whether parents discuss television programs with the child. The instruments for
these variables are the home inputs at ages 4—5, which are listed in the Appendix as the G4 group
of variables and are very similar to the home inputs at ages 8-9.

Consistent with the OLS specification for Table II, TV hours at ages 6—7 have positive and
concave effects, while those at ages 8—9 have negative and convex effects for math score; the
coefficients of individual TV watching variables, however, are insignificant due to the low precision
in estimation. But, in contrast to the OLS results in Table II, spending more time watching TV
at ages 6—7 and 8-9 is associated overall with lower math scores in ‘FE(IV)’, as shown in the
lower half of the table in the same column. This is due to the much larger negative marginal
effect of the current TV hours (—7.90 in ‘FE(IV)’ versus —2.68 in ‘OLS(SH)’ in Table II) when
they are instrumented by TV hours and other home inputs at ages 4—5. Similar results apply to
reading score, where the different coefficients and effects of TV hours at ages 8—9 do not amount
to significant differences from the OLS specification (Hausman test used for this).

Columns ‘DF’ and ‘DF(S)’ are based on the first-difference model (18); they differ only in terms
of control variables, where school inputs at ages 6—7 and 8—9 are further controlled in ‘DF(S)’.
For PIAT math scores at ages 8—9, TV watching time at ages §—9 has a negative and convex
effect on math scores under both specifications, which leads to an overall negative effect between
TV hours and math scores, as shown in the lower half of the table. For reading scores at ages
8-9, TV watching time at ages 8—9 has a positive and concave effect under both specifications,
where 3-hour TV watching achieves the best outcome in ‘DF’, while 4-hour watching is best when
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Table III. TV watching on math and reading: fixed-effect model
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PIAT Math PIAT Reading
At ages 8—9  Difference b/w ages At ages Difference b/w ages
8-9 and 6-7 8-9 8-9 and 6-7
FE(IV) DF DF(S) FE(IV) DF DF(S)
Difference in daily TV hours b/w agesw —0.18 —1.41 0.084 1.38
8-9 and 6-7 (0.50) (1.26) (0.39) (0.90)
Difference in squared daily TV hours b/w 0.02 0.14 -0.015 —-0.17*
ages 8—9 and 6-7 (0.05) (0.13) (0.04) (0.09)
Daily TV hours at ages 8-9 —-7.90 —1.89
(11.3) (8.28)
Daily TV hours at ages 8—9 squared 0.61 0.14
(1.68) (1.15)
Daily TV hours at ages 6—7 5.76 0.92
(5.41) (3.68)
Daily TV hours at ages 6—7 squared —0.55 —.08
(0.46) (0.34)
PIAT score at ages 67 0.627%** 0.72%**
0.12) (0.10)
Sample size 1050 1555 299 1043 1539 299
R? — 0.04 0.22 — 0.06 0.27

Mean difference in PIAT scores (bootstrapped SD in parentheses)

Daily TV hours at ages 6—9

PIAT Math at ages 8—9

PIAT Reading at ages 8§-9

FE(IV) DF DE(S) FE(IV) DF DF(S)

1 hour versus 0 hour —2.08 —0.16 —1.27 —-0.91 0.07 1.21
(13.4) 0.47) (1.22) (24.1) (.36) (0.98)

2 hours versus 0 hour —4.03 —0.28 —2.26 —1.70 0.11 2.10
(22.8) (0.84) (2.19) (43.2) (.64) (1.77)

3 hours versus 0 hour —5.86 —0.35 —2.96 —2.37 0.12 2.65
(28.1) (1.11) (2.90) (57.3) (.85) (2.37)

4 hours versus 0 hour —7.57 —0.38 —3.38 —2.91 0.10 2.88
(29.7) (1.29) (3.36) (66.8) (1.0) (2.80)

5 hours versus 0 hour —9.15 —-0.37 —-3.51 —3.33 0.05 2.77
(28.1) (1.39) (3.61) (71.8) (1.08) (3.07)

6 hours versus 0 hour —10.6 —-0.31 —-3.37 —3.63 —0.02 2.34
(25.2) (1.41) (3.68) (72.8) (1.12) (3.22)

4 hours versus 2 hours —3.53 —0.10 —1.12 —1.21 —0.13 0.24
(8.41) (0.47) (1.31) (24.3) (.57) (1.65)

6 hours versus 2 hours —6.57 —0.03 —1.11 —1.93 —0.01 0.78
(16.8) (0.65) (1.92) (33.95) (0.36) (1.04)

Note: * p <0.1; ™ p <0.05; ** p < 0.01. Standard deviations are in the parentheses. The sample is composed of
children watching 10 hours or less TV per day between ages 6 and 9. The controlled inputs include a child’s race, sex,
birth order, home inputs at ages 6—9, and family backgrounds. FE (IV): current home inputs at ages §—9 are instrumented
by earlier home inputs at ages 4—5. DF(S): school inputs at ages 6—9 are included.
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school inputs are controlled under ‘DF(S)’. These estimated TV effects, however, are statistically
insignificant for both math and reading scores. There is a notable but statistically insignificant
difference for math scores between the negative TV effects in the first-difference results and
the positive effects under various OLS specifications in Table II, suggesting that the unobserved
child-specific factor may matter more for math scores than for reading scores.

The overall results of these fixed-effect models with IVE are not significantly different from
the OLS specifications for Table II, possibly because many detailed home inputs and family
backgrounds are already controlled. This finding suggests that we may proceed to G-estimation
and the two-stage procedure without worrying too much about the potential biases caused by the
unobserved child-specific fixed effect or the endogeneity of the current inputs.

5.3. Two-Stage Procedure with Linear Models

Table IV presents results for the two-stage procedure with the linear model (19). The two
specifications ‘OLS’ and ‘OLS(S)’ differ only in their control variables, where the current school
inputs are included in ‘OLS(S)’ for both periods. Under both specifications, the effects of TV
watching at ages 6—7 on scores at ages 6—7 are negative and convex for math scores and just
negative for reading scores. As shown in the lower half of Table IV, however, the overall effects
of TV watching across ages 6—7 and 8—9 on math and reading scores at ages 8—9 in ‘OLS(S)’
are negative for math scores and concave for reading scores, where the best outcome is achieved
at 2 hours in column ‘TSE(S)’, where the school inputs are controlled (and at 6 hours in column
‘TSE’), where TSE stands for ‘two-stage estimator’. Overall, however, the magnitudes of most TV
effects are quite small and statistically insignificant. For example, based on estimates in columns
‘TSE(S)’, watching 2 hours TV per day during ages 6—7 and 8—9 reduces the math score at ages
8—9 by 4% of one standard deviation, but increases reading score at ages 8—9 by 3% of one
standard deviation, compared with not watching TV at all.

To get a sense of the relative importance of the indirect effect of TV watching at ages 6—7
on the math and reading scores 2 years later, we did some calculation based on the estimates in
columns ‘OLS(S)’. For math score, compared with not watching TV at all, the effect of 1-hour TV
watching at ages 6—7 on the math score at ages 6—7 is (—0.74 4+ 0.01) = —0.73, which leads to
an indirect effect on the math score at ages 8—9, —0.73 x 0.64 = —0.47, while its direct effect is
(—0.06 4 0.02) = —0.04. The effect of 1-hour TV viewing at ages 8—9 is (0.20 + 0.002) = 0.202.
Thus the indirect effect of earlier TV watching at ages 6—7 (which is —0.47) is almost three times
the total direct effect of TV watching at both ages 6—7 and 8—9 (which is 0.162 = 0.202 — 0.04),
and makes the total effect of 1-hour TV watching at ages 6—7 and 8-9 negative (—0.30, as
reported at the first row in column ‘TSE(S)’ for math), despite the positive effect of current TV
viewing at ages 8-9.

Analogously, based on the estimates in column ‘OLS(S)’ for reading score, the mean difference
between the effects of 6-hour and 2-hour TV viewing at ages 6—7 and 8—9 on reading scores
at ages 8—9 (which is —1.78, as reported in the last row in column ‘TSE(S)’ for reading) can
be decomposed into three components: the indirect effect of TV viewing time at ages 6-—7 is
[(—0.49 x 6 — 0.01 x 36) — (—0.49 x 2 — 0.01 x 4)] x 0.78 = —1.78, the direct effect of d, and
d% is (—0.47 x 6 +0.02 x 36) — (—0.47 x 24+ 0.02 x 4) = —1.24, while the direct effect of d,
and d% is (1.27 x 6 — 0.12 x 36) — (1.27 x 2 — 0.12 x 4) = 1.24. Again, the indirect effect of TV
viewing at ages 6—7 dominates the total direct effect of TV viewing at ages 6—7 and 8-9, and
outweighs the positive effect of the current TV watching.
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Table IV. TV watching on Math and Reading: two-stage with linear model

PIAT Math PIAT Reading

OLS OLS(S) OLS OLS(S)

at 8-9 at 6-7 at 8-9 at 6-7 at 8-9 at 6-7 at 8—-9 at 6-7

Daily TV hours at ages 8-9 —0.42 0.20 0.37 1.27*
(0.54) 0.77) (0.48) (0.68)
Daily TV hours at ages §8-9  0.06 0.002 —0.04 —0.12*
squared
(0.06) (0.08) (0.05) 0.07)
Daily TV hours at ages 6-7  0.13 —-0.27  —0.06 —0.74 0.18 —-0.11 —-047 —0.49
(0.50) 0.44)  (0.76) (0.44) 0.43)  (0.67) 0.97)
Daily TV hours at ages 6-7 —0.01 0.02 0.02 0.01 —0.01 —0.01 0.02 —0.01
squared
(0.05) (0.05)  (0.08) 0.12) (0.05) (0.05)  (0.08) (0.10)
PIAT score at ages 6—7 0.60*** 0.64*** 0.75%* 0.78***
(0.03) (0.04) (0.03) (0.04)
Sample size 1594 1555 663 299 1578 1539 661 299
R? 0.46 0.25 0.50 0.42 0.54 0.22 0.57 0.35

Mean difference in PIAT scores (bootstrapped SD in parentheses)

Daily TV hours at ages 6-9 PIAT Math PIAT Reading
TSE TSE(S) TSE TSE(S)

1 hour versus 0 hour —0.38 (0.57) —0.30 (1.25) 0.42 (0.54) 0.31 (1.23)
2 hours versus 0 hour —0.64 (1.0) —0.54 (2.20) 0.76 (0.96) 0.40 (2.18)
3 hours versus 0 hour —0.76 (1.31) —0.73 (2.84) 1.02 (1.25) 0.28 (2.85)
4 hours versus 0 hour —0.75 (1.50) —0.86 (3.23) 1.19 (1.42) —0.06 (3.29)
5 hours versus 0 hour —0.62 (1.58) —0.94 (3.41) 1.27 (1.50) —0.62 (3.54)
6 hours versus 0 hour —0.35 (1.61) —0.96 (3.51) 1.28 (1.53) —1.39 (3.68)
4 hours versus 2 hours —0.12 (0.54) —0.32 (1.17) 0.43 (0.51) —0.46 (1.23)
6 hours versus 2 hours —0.37 (0.95) —0.56 (2.05) 0.52 (0.85) —1.78 (2.15)

Note: * p < 0.1; * p < 0.05; ** p < 0.01. Standard deviations are in parentheses. The sample is composed of children
watching 10 hours or less TV per day between ages 6 and 9. The controlled inputs include a child’s race, sex, birth order,
family backgrounds, and detailed current home inputs. OLS(S): detailed current school inputs are included.

5.4. G-Algorithm with Discrete Responses

The insignificance of the total TV effects in Table IV might be due to measurement errors, since
few parents can recall with much accuracy the exact hours their children watch TV every day. It is
quite plausible, however, that most parents know the time range their children spend in front of the
TV. This prompts us to apply simplified G-estimation with discrete responses, where we convert
the average daily TV watching hours to three dummy variables: High TV if a child watches TV
for more than 4 hours per day, Middle TV if between 2 and 4 hours, and Low TV if less than or
equal to 2 hours. The three levels are used mainly to capture the possible concavity feature of TV-
watching effects. We also convert PIAT math and reading scores to dummy variables, which take
on 1 if higher than the sample mean and O otherwise. The basic set of controls includes detailed
home inputs at ages 6—7 and 8-9, home environment indicators at ages 4—5, child demographic
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information and family background variables, while detailed home inputs at ages 4—5 are further
added in columns labeled ‘Probit(H)’ and ‘G-est.(H)’.

The probit results are shown in the upper part of Table V, where the entries are the estimated
marginal effects calculated at the sample means of the control variables ( i.e., the derivatives of
P(y; = 1]...) evaluated at the sample averages). For math scores at ages 8—9 and 6-7, none
of the TV dummies is significant. For reading score at ages 8—9, the coefficient of High TV at
ages 6—7 is insignificantly negative in column ‘Probit’, while that at ages 89 is significantly
positive in ‘Probit (H)’. There seems to be some nonlinear effects, but most individual estimates
are insignificant.

G-estimation using the above probit regressions is presented in the lower half of Table V.
Compared to the benchmark of watching TV less than or equal to 2 hours per day at both ages
6—7 and 8-9, the total effects of watching TV for more than 4 hours at both ages are negative and
significant for both math and reading scores at ages 8—9 over different models. Specifically, a child
with High TV at ages 6—7 and 8-9 reduces his/her probability of having a higher than average
math score by 18% in the first column (‘G-est.”) and 23% in the second column (‘G-est.(H)’); the
corresponding probability for reading scores is lowered by 21% and 23%, respectively, for the two
specifications. Since the SD of having a higher than average score is around .50, these percentage
reductions amount to almost half the SD. Middle-level TV hours (between 2 and 4 hours per
day) at ages 6—7 and 8—9 also have negative and significant effects on math and reading scores,
though their magnitudes are smaller than those of High TV: the probability of having a higher
than average PIAT score is reduced by 16—18% for math and 13—14% for reading.

It seems that TV watching at ages 6—7 has much larger negative effects on both math and
reading scores at ages 8—9 than TV watching at ages 8§—9. For example, in the last two rows
of Table V, the results in the first column (‘G-est.”) show that watching more than 4 hours TV
daily at ages 6—7 reduces the probability of having a higher than average math score by 23%,
while watching between 2 and 4 hours TV daily reduces it by 19% even when the TV watching
time is less than or equal to 2 hours per day at ages 8—9; the corresponding numbers (unreported
in Table V) are 18% and 16%, respectively, when TV-watching hours at ages 8—9 are High and
Middle instead. These results imply that watching more TV at ages 8—9 actually does much less
harm compared to the effects of TV hours 2 years earlier. More or less the same statements can
be made for reading scores.

6. CONCLUSIONS

When multiple treatments are given over time with a feedback of interim responses affecting
some future treatments, finding the total effect of all treatments on the final response measured
at the end is difficult. The fundamental dilemma is that, if the interim responses are controlled
as in the usual dynamic models, then the indirect effect from the earlier treatments on the final
response through the interim responses is missed; if not controlled, the interim responses become
unobserved confounders for the direct effect of the affected treatments on the final response.
Despite this difficulty, the G-estimation (or G-algorithm) originally developed in biostatistics can
identify the total effect, unlike the usual OLS or IVE applied to dynamic models with lagged
responses on the right-hand side.

This paper reviewed G-estimation, developed a two-stage procedure, and applied a discretized
version of the G-algorithm as well as the two-stage procedure to an important issue: the effect
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Table V. TV watching on math and reading: G-estimation with discrete responses
Marginal effects

PIAT Math (higher than mean) PIAT Reading (higher than mean)

Probit Probit (H) Probit Probit (H)

at 8-9 at 6-7 at 8-9 at 6-7 at 8-9 at 6-7 at 8-9 at 6-7

High TV at ages 8-9 0.05 —0.006 0.06 0.10*
(0.06) 0.07) (0.05) (0.05)
Middle TV at ages —0.007 —0.07 —0.02 0.01
8-9
(0.06) (0.06) (0.05) (0.05)
High TV at ages 6-7 0.05 —0.05 0.06 —0.04 —0.07* 0.01 —0.07 0.01
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
Middle TV at ages —0.03 —0.04 —0.002 —0.05 —0.004 —0.001 —0.01 0.001
6-7
(0.05) (0.05) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05)
PIAT score higher 0.37** 0.40%** 0.51%* 0.51%**
than mean at ages
6-7
(0.04) (0.04) (0.04) (0.05)
PIAT score higher 0.03 0.31% 0.04 0.26%** 0.14%* 0.327%% 0.13** 0.29%**
than mean at ages
4-5
(0.04) (0.04) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05)
Sample size 720 720 651 651 687 687 622 622
Pseudo R? 0.29 0.23 0.31 0.22 0.40 0.26 0.41 0.23

Mean difference in probability of PIAT score higher than mean at ages 8—9 (bootstrapped SD in parentheses)

Daily TV hours at ages 6—9 PIAT Math PIAT Reading
G-est. G-est. (H) G-est. G-est. (H)
High versus Low TV at ages 6—9 —0.18** —0.23%** —0.21%** — Q3
(0.08) (0.08) (0.08) (0.09)
Middle versus Low TV at ages 6—9 —0.16** —0.18** —0.13* —0.14*
0.07) (0.07) (0.07) (0.08)
High versus Low TV at ages 6—7 with low at 8-9 —0.23* —0.19 —0.23* —0.26*
0.13) (0.13) 0.12) 0.14)
Middle versus Low TV at ages 6—7 with low at 8-9 —0.19%* —0.20** —0.11 —0.13
(0.08) (0.08) (0.08) (0.08)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. Standard deviations are in parentheses. High TV: watching TV more than
4 hours per day; Middle TV: more than 2 but less than or equal to 4 hours per day; Low TV: less than or equal to 2 hours
per day. The sample is composed of children watching 10 hours or less TV per day between ages 6 and 9. The controlled
inputs include a child’s race, sex, birth order, detailed home inputs at ages 6—9, home environment indicators at ages 2—3
and 4-5, and family backgrounds. Probit (H): detailed home inputs at ages 4-5 are included.

of watching TV on child cognitive development measured by math and reading scores. For math
score, the two-stage results indicated that watching TV for any amount of time during ages 6-—7
and 8-9 has a negative total effect at ages 8—9 where the negative effects of TV watching at
younger ages 6—7 are much larger, which was not expected beforehand. Furthermore, results from
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these estimators as well as typical panel data econometric approaches using continuous response
variables led to coherent evidence that around 2 hours TV watching per day seems to bring the
best reading scores than too much or too little TV hours, while the effects of TV watching on
math scores are usually negative.

These findings collectively explain why the effect of TV watching on child cognitive devel-
opment has been controversial: the effect varies depending on the TV watching age, and it is
nonlinear with changing signs. Also its magnitude is small, suggesting that TV effect may not
matter that much after all. The total effect feature found by our dynamic framework provided a
richer ‘story’, taking only part of which would convey misleading messages.
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APPENDIX: LIST OF VARIABLES AND SUMMARY STATISTICS

Variable Mean (SD) Size
PIAT Math at ages 8—9 102.2 (13.9) 2180
PIAT Math at ages 67 100.8 (12.1) 2180
PIAT Math at ages 4-5 99.2 (14.7) 1250
PIAT Reading at ages 8—9 105.0 (14.6) 2180
PIAT Reading at ages 67 103.3 (11.7) 2180
PIAT Reading at ages 4-5 106.5 (14.8) 1175
(G1) Child demographic information

Race of child: Black or Hispanic 0 .47 (0.5) 2180
Sex of child: boy 0.50 (0.5) 2180
Birth order of child 2.0 (1.0) 2180
(G2) Home inputs for 8- to 9-year-olds

Number of hours per day child sees TV 3.49 (2.03) 2180
Child has 10 or more children’s books at home 0.88 (0.32) 2173
How often mother reads to child: at least 3 times per week 0.59 (0.49) 2172
How often child reads for enjoyment: every day 0.35 (0.48) 2174
Family encourages hobbies 0.93 (0.25) 2169
How often child taken to museum: at least several times per year 0.43 (0.50) 2173
How often child taken to performance: at least several times per year 0.35 (0.48) 2172
How often family gets with relatives/friends: at least 2—3 times per month 0.59 (0.49) 2177
How often child with father outdoors: at least once per week 0.49 (0.50) 2083
How often child eats with parents: at least once per day 0.57 (0.50) 2081
Parents discuss TV programs with child 0.84 (0.37) 2155
(G3) Home inputs for 6- to 7-year-olds

Number of hours a day child sees TV 3.35 (2.02) 2180
Child has 10 or more children’s books at home 0.86 (0.35) 2175
How often mother reads to child: at least 3 times per week 0.75 (0.43) 2176
How often child reads for enjoyment: every day 0.67 (0.47) 2170
Family encourages hobbies 0.91 (0.29) 2173
How often child taken to museum: at least several times per year 0.78 (0.41) 2177
How often child taken to performance: at least several times per year 0.61 (0.49) 2178
How often family gets with relatives/friends: at least 2—3 times per month 0.61 (0.49) 2180
How often child with father outdoors: at least once per week 0.50 (0.50) 2134
How often child eats with parents: at least once per day 0.78 (0.41) 2173
Parents discuss TV programs with child 0.83 (0.37) 2168
(G4) Home inputs for 4- to 5-year-olds

Number of hours per weekday child sees TV 3.31 (3.22) 1505
Number of hours per weekend day child sees TV 3.66 (3.19) 1511
Number of hours TV is on per day 5.44 (5.64) 2002
How many books child has: 10 or more books 0.82 (0.39) 2029
How often mother reads to child: at least 3 times per week 0.58 (0.49) 2029
How often child taken to museum: at least several times per year 0.72 (0.45) 2021
How many magazines family gets: 3 or more 0.61 (0.49) 2024
How often child taken on outing: at least several times a week 0.56 (0.50) 2016
how often child eats with mom & dad: at least once a day 0.76 (0.43) 2011
Home Observation Measurement of the Environment variable (HOME) 206.1 (34.3) 2109
(G5) Family background

Mother’s AFQT score taken in 1981 41.3 (28.2) 2117
Mother’s highest grade at 1988 12.6 (2.2) 2133
Family salary income in 1988 6895.8 (8414.8) 2112
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(Continued)

Variable Mean (SD) Size
Mother was married in 1988 0.81 (0.39) 1819
Mother’s age at child’s birth 25.0 (3.0) 2179
Child is breast-fed 0.52 (0.50) 2085
(G6) School inputs for 8- to 9-year-olds

Hours per week a child spends on math homework 2.24 (3.39) 970
Hours per week a child spends on writing homework 1.75 (3.06) 899
The school is public 0.93 (0.25) 951
Mother’s rating of teacher caring—high 0.60 (0.49) 994
Mother’s rating of principal as leader—high 0.51 (0.50) 991
Mother’s rating of teacher skill—high 0.52 (0.50) 990
Mother’s rating of safety of school—high 0.64 (0.48) 993
Mother’s rating of school communicating with parents—high 0.57 (0.49) 994
Mother’s rating of parents participating with school—high 0.32 (0.47) 991
Mother’s rating of school teaching right and wrong—high 0.54 (0.50) 994
Mother’s rating of school maintaining order—high 0.56 (0.50) 994
Mother’s rating of teacher caring—middle 0.31 (0.46) 994
Mother’s rating of principal as leader—middle 0.33 (0.47) 991
Mother’s rating of teacher skill—middle 0.38 (0.49) 990
Mother’s rating of safety of school—middle 0.28 (0.45) 993
Mother’s rating of school communicating with parents—middle 0.31 (0.46) 994
Mother’s rating of parents participating with school—middle 0.37 (0.48) 991
Mother’s rating of school teaching right and wrong—middle 0.34 (0.47) 994
Mother’s rating of school maintaining order—middle 0.32 (0.47) 994
(G7) School inputs for 6- to 7-year-olds

Hours per week a child spends on math homework 1.15 (2.30) 414
Hours per week a child spends on writing homework 0.79 (1.62) 356
The school is public 0.95 (0.22) 450
Mother’s rating of teacher caring—high 0.65 (0.48) 484
Mother’s rating of principal as leader—high 0.55 (0.50) 485
Mother’s rating of teacher skill—high 0.55 (0.50) 482
Mother’s rating of safety of school—high 0.63 (0.48) 486
Mother’s rating of school communicating with parents—high 0.58 (0.49) 484
Mother’s rating of parents participating with school—high 0.31 (0.46) 485
Mother’s rating of school teaching right and wrong—high 0.58 (0.49) 486
Mother’s rating of school maintaining order—high 0.60 (0.49) 484
Mother’s rating of teacher caring—middle 0.25 (0.43) 484
Mother’s rating of principal as leader—middle 0.27 (0.45) 485
Mother’s rating of teacher skill—middle 0.34 (0.48) 482
Mother’s rating of safety of school—middle 0.26 (0.44) 486
Mother’s rating of school communicating with parents—middle 0.29 (0.46) 484
Mother’s rating of parents participating with school—middle 0.41 (0.49) 485
Mother’s rating of school teaching right and wrong—middle 0.30 (0.46) 486
Mother’s rating of school maintaining order—middle 0.29 (0.45) 484
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