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InfoNetOLAP: OLAP and Mining
of Information Networks
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Abstract Databases and data warehouse systems have been evolving from han-
dling normalized spreadsheets stored in relational databases to managing and ana-
lyzing diverse application-oriented data with complex interconnecting structures.
Responding to this emerging trend, information networks have been growing rapidly
and showing their critical importance in many applications, such as the analysis of
XML, social networks, Web, biological data, multimedia data, and spatiotemporal
data. Can we extend useful functions of databases and data warehouse systems to
handle network structured data? In particular, OLAP (On-Line Analytical Process-
ing) has been a popular tool for fast and user-friendly multi-dimensional analysis of
data warehouses. Can we OLAP information networks and perform mining tasks
on top of that? Unfortunately, to our best knowledge, there are no OLAP tools
available that can interactively view and analyze network structured data from dif-
ferent perspectives and with multiple granularities. In this chapter, we argue that
it is critically important to OLAP such information network data and propose a
novel InfoNetOLAP framework. According to this framework, given an information
network data set with its nodes and edges associated with respective attributes, a
multi-dimensional model can be built to enable efficient on-line analytical process-
ing so that any portions of the information networks can be generalized/specialized
dynamically, offering multiple, versatile views of the data set. The contributions of
this work are threefold. First, starting from basic definitions, i.e., what are dimen-
sions and measures in the InfoNetOLAP scenario, we develop a conceptual frame-
work for data cubes constructed on the information networks. We also look into
different semantics of OLAP operations and classify the framework into two major
subcases: informational OLAP and topological OLAP. Second, we show how an
information network cube can be materialized by calculating a special kind of mea-
sure called aggregated graph and how to implement it efficiently. This includes
both full materialization and partial materialization where constraints are enforced
to obtain an iceberg cube. As we can see, due to the increased structural complexity
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of data, aggregated graphs that depend on the underlying “graph” properties of the
information networks are much harder to compute than their traditional OLAP coun-
terparts. Third, to provide more flexible, interesting, and insightful OLAP of infor-
mation networks, we further propose a discovery-driven multi-dimensional analysis
model to ensure that OLAP is performed in an intelligent manner, guided by expert
rules and knowledge discovery processes. We outline such a framework and discuss
some challenging research issues for discovery-driven InfoNetOLAP.

16.1 Introduction

OLAP (On-Line Analytical Processing) [2, 7, 11, 12, 31] is an important notion in
data analysis. Given the underlying data, a cube can be constructed to provide a
multi-dimensional and multi-level view, which allows for effective analysis of the
data from different perspectives and with multiple granularities. The key operations
in an OLAP framework are slice/dice and roll-up/drill-down, with slice/dice focus-
ing on a particular aspect of the data, roll-up performing generalization if users only
want to see a concise overview, and drill-down performing specialization if more
details are needed.

In a traditional data cube, a data record is associated with a set of dimensional
values, whereas different records are viewed as mutually independent. Multiple
records can be summarized by the definition of corresponding aggregate measures
such as COUNT, SUM, and AVERAGE. Moreover, if a concept hierarchy is asso-
ciated with each attribute, multi-level summaries can also be achieved. Users can
navigate through different dimensions and multiple hierarchies via roll-up, drill-
down, and slice/dice operations. However, in recent years, more and more data
sources beyond conventional spreadsheets have come into being, such as chemi-
cal compounds or protein networks (chem/bio-informatics), 2D/3D objects (pattern
recognition), circuits (computer-aided design), XML (data with loose schema), and
Web (human/computer networks), where not only individual entities but also the
interacting relationships among them are important and interesting. This demands
a new generation of tools that can manage and analyze such data.

Given their great expressive power, information networks have been widely used
for modeling a lot of data sets that contain structure information. With the tremen-
dous amount of information network data accumulated in all above applications,
the same need to deploy analysis from different perspectives and with multiple
granularities exists. To this extent, our main task in this chapter is to develop an
InfoNetOLAP framework, which presents a multi-dimensional and multi-level view
over information networks.

In order to illustrate what we mean by “InfoNetOLAP” and how the OLAP glos-
sary is interpreted with regard to this new scenario, let us start from a few examples.

Example 1 (Collaboration Patterns) There are a set of authors working in a given
field: For any two persons, if they coauthor w papers in a conference, e.g.,
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SIGMOD 2004, then a link is added between them, which has a collaboration fre-
quency attribute that is weighted as w. For every conference in every year, we may
have a coauthor network describing the collaboration patterns among researchers;
each of them can be viewed as a snapshot of the overall coauthor network in a bigger
context.

It is interesting to analyze the aforementioned network data set in an OLAP
manner. First, one may want to check the collaboration patterns for a group of
conferences, say, all DB conferences in 2004 (including SIGMOD, VLDB, ICDE,
etc.) or all SIGMOD conferences since the year it was introduced. In the language
of data cube, with a venue dimension and a time dimension, one may choose to
obtain the (db-conf, 2004) cell and the (sigmod, all-years) cell, where the venue
and time dimensions have been generalized to db-conf and all-years, respectively.
Second, for the subset of snapshots within each cell, one can summarize them by
computing a measure as we did in traditional OLAP. In the InfoNetOLAP context,
this gives rise to an aggregated graph. For example, a summary network displaying
total collaboration frequencies can be achieved by overlaying all snapshots together
and summing up the respective edge weights, so that each link now indicates two
persons’ collaboration activities in the DB conferences of 2004 or during the whole
history of SIGMOD. �

The above example is simple because the measure is calculated by a simple sum
over individual pieces of information. A more complex case is presented next.

Example 2 (Maximum Flow) Consider a set of cities connected by transportation
networks. In general, there are many ways to go from one city A to another city B,
e.g., by bus, by train, by air, by water, and each is operated by multiple companies.
For example, we can assume that the capacity of company x’s air service from A
to B is cx

AB , i.e., company x can transport at most cx
AB units of cargo from A to B

using the planes it owns. Finally, we get a snapshot of capacity network for every
transportation means of every company.

Now, consider the transporting capability from a source city S to a destination
city T ; it is interesting to see how this value can be achieved by sending flows
of cargo through different paths if (1) we only want to go by air or (2) we only
want to choose services operated by company x . In the OLAP language, with a
transportation-type dimension and a company dimension, the above situations cor-
respond to the (air, all-companies) cell and the (all-types, company x) cell, while the
measure computed for a cell c is a graph displaying how the maximum flow can be
configured, which has considered all transportation means and operating companies
associated with c. Unlike Example 1, computing the aggregated graph of maximum
flow is now a much harder task; also, the semantics associated with un-aggregated
network snapshots and aggregated graphs are different: The former shows capacities
on its edges, whereas the latter shows transmitted flows, which by definition must
be smaller. �

Example 3 (Collaboration Patterns, Revisited) Usually, the whole coauthor network
could be too big for the users to comprehend, and thus it is desirable to look at a
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more compressed view. For example, one may like to see the collaboration activities
organized by the authors’ associated affiliations, which requires the network to be
generalized one step up, i.e., merging all persons in the same institution as one node
and constructing a new summary graph at the institution level. In this “general-
ized network”, for example, an edge between Stanford and University of Wisconsin
will aggregate all collaboration frequencies incurred between Stanford authors and
Wisconsin authors. Similar to Examples 1 and 2, an aggregated graph (i.e., the
generalized network defined above) is taken as the OLAP measure. However, the
difference here is that a roll-up from the individual level to the institution level
is achieved by consolidating multiple nodes into one, which shrinks the original
network. Compared to this, the graph in Examples 1 and 2 is not collapsed because
we are always examining the relationships among the same set of objects; it poses
minimum changes with regard to network topology upon generalization. �

The above examples demonstrate that OLAP provides a powerful primitive to
examine information networks. In this chapter, we will give a systematic study
on InfoNetOLAP, which is more general than the traditional OLAP: In addition
to individual entities, the mutual interactions among them are also considered in the
analytical process. Our major contributions are summarized below.

1. On conceptual modeling, an InfoNetOLAP framework is developed, which
defines dimensions and measures in the information network context, as well
as the concept of multi-dimensional and multi-level analysis over network struc-
tured data. We distinguish different semantics of OLAP operations and catego-
rize them into two major subcases: informational OLAP (as shown in Examples 1
and 2) and topological OLAP (as shown in Example 3). It is necessary since
these two kinds of OLAP demonstrate substantial differences with regard to the
construction of data cubes over information networks.

2. On efficient implementation, the computation of aggregated graphs as
InfoNetOLAP measures is examined. Due to the increased structural complex-
ity of data, calculating certain measures that are closely tied with the “graph”
properties of the information networks, e.g., maximum flow, centrality, poses
greater challenges than their traditional OLAP counterparts, such as COUNT,
SUM, and AVERAGE. We investigate this issue, categorize measures based on
the difficulty to compute them in the OLAP context, and suggest a few measure
properties that might help further optimize processings. Both full materialization
and partial materialization (where constraints are enforced to obtain an iceberg
cube) are discussed.

3. On utilizing the framework for knowledge discovery, we propose discovery-
driven InfoNetOLAP, so that interesting patterns and knowledge can be effec-
tively discovered. After presenting the general ideas, we outline a list of guiding
principles and discuss some associated research problems. Being part of an ongo-
ing project, it opens a promising path that could potentially lead to more flexible
and insightful OLAP of information networks, which we shall explore further in
future works.
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The remainder of this chapter is organized as follows. In Section 16.2, we for-
mally introduce the InfoNetOLAP framework. Section 16.3 discusses the general
hardness to compute aggregated graphs as InfoNetOLAP measures, which catego-
rizes them into three classes. Section 16.4 looks into some properties of the mea-
sures and proposes a few computational optimizations. Constraints and partial mate-
rialization are studied in Section 16.5. Discovery-driven InfoNetOLAP is covered
in Section 16.6. We report experiment results and related work in Sections 18.7 and
16.8, respectively. Section 16.9 concludes this study.

16.2 An InfoNetOLAP Framework

In this section, we present the general framework of InfoNetOLAP.

Definition 1 (Information Network Model) We model the data examined by InfoNe-
tOLAP as a collection of network snapshots G = {G1,G2, . . . ,GN }, where each
snapshot Gi = (I1,i , I2,i , . . . , Ik,i ;Gi ) in which I1,i , I2,i , . . . , Ik,i are k informa-
tional attributes describing the snapshot as a whole and Gi = (Vi , Ei ) is a graph.
There are also node attributes attached with any v ∈ Vi and edge attributes attached
with any e ∈ Ei . Note that since G1,G2, . . . ,GN only represent different observa-
tions, V1, V2, . . . , VN actually correspond to the same set of objects in real applica-
tions.

For instance, with regard to the coauthor network described in the introduction,
venue and time are two informational attributes that mark the status of individual
snapshots, e.g., SIGMOD 2004 and ICDE 2005, authorID is a node attribute indicat-
ing the identification of each node, and collaboration frequency is an edge attribute
reflecting the connection strength of each edge.

Dimension and measure are two concepts that lay the foundation of OLAP
and cubes. As their names imply, first, dimensions are used to construct a cuboid
lattice and partition the data into different cells, which act as the basis for
multi-dimensional and multi-level analysis; second, measures are calculated to
aggregate the data covered, which deliver a summarized view of it. Below, we
are going to formally re-define these two concepts concerning the InfoNetOLAP
scenario.

Let us examine dimensions at first. Actually, there are two types of dimensions
in InfoNetOLAP. The first one, as exemplified by Example 1, utilizes informational
attributes attached at the whole snapshot level. Suppose the following concept hier-
archies are associated with venue and time:

• venue: conference→ area→ all,
• time: year→ decade→ all;

the role of these two dimensions is to organize snapshots into groups based on
different perspectives, e.g., (db-conf, 2004) and (sigmod, all-years), where each of
these groups corresponds to a “cell” in the OLAP terminology. They control what
snapshots are to be looked at, without touching the inside of any single snapshot.
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Definition 2 (Informational Dimensions) With regard to the information network
model presented in Definition 1, the set of informational attributes {I1, I2, . . . , Ik}
are called the informational dimensions of InfoNetOLAP, or Info-Dims in short.

The second type of dimensions is provided to operate on nodes and edges within
individual networks. Take Example 3 for instance; suppose the following concept
hierarchy

• authorID: individual→ department→ institution→ all

is associated with the node attribute authorID, then it can be used to group authors
from the same institution into a “generalized” node, and a new network thus formed
will depict interactions among these groups as a whole, which summarizes the orig-
inal network and hides specific details.

Definition 3 (Topological Dimensions) The set of dimensions coming from the
attributes of topological elements (i.e., nodes and edges of Gi ), {T1, T2, . . . , Tl},
are called the topological dimensions of InfoNetOLAP, or Topo-Dims in short.

The OLAP semantics accomplished through Info-Dims and Topo-Dims are
rather different, and in the following we shall refer to them as informational OLAP
(abbr. I-OLAP) and topological OLAP (abbr. T-OLAP), respectively.

For roll-up in I-OLAP, the characterizing feature is that snapshots are just differ-
ent observations of the same underlying network, and thus when they are all grouped
into one cell in the cube, it is like overlaying multiple pieces of information, without
changing the objects whose interactions are being looked at.

For roll-up in T-OLAP, we are no longer grouping snapshots, and the reorgani-
zation switches to happen inside individual networks. Here, merging is performed
internally which “zooms out” the user’s focus to a “generalized” set of objects, and
a new information network formed by such shrinking might greatly alter the original
network’s topological structure.

Now we move on to measures. Remember that, in traditional OLAP, a measure
is calculated by aggregating all the data tuples whose dimensions are of the same
values (based on concept hierarchies, such values could range from the finest un-
generalized ones to “all/*”, which form a multi-level cuboid lattice); casting this to
our scenario here:

First, in InfoNetOLAP, the aggregation of graphs should also take the form of
a graph, i.e., an aggregated graph. In this sense, graph can be viewed as a special
existence, which plays a dual role: as a data source and as an aggregated measure.
Of course, other measures that are not graphs, such as node count, average degree,
diameter, can also be calculated; however, we do not explicitly include such non-
graph measures in our model, but instead treat them as derived from corresponding
graph measures.

Second, due to the different semantics of I-OLAP and T-OLAP, aggregating data
with identical Info-Dim values groups information among the snapshots, whereas
aggregating data with identical Topo-Dim values groups topological elements inside
individual networks. As a result, we will give a separate measure definition for each
case below.
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Definition 4 (I-Aggregated Graph) With regard to Info-Dims {I1, I2, . . . , Ik}, the
I-aggregated graph M I is an attributed graph that can be computed based on a set
of network snapshots G′ = {Gi1,Gi2 , . . . ,GiN ′ } whose Info-Dims are of identical
values; it satisfies the following: (1) the nodes of M I are as same as any snapshot
in G′, and (2) the node/edge attributes attached to M I are calculated as aggregate
functions of the node/edge attributes attached to Gi1 , Gi2 , . . . , GiN ′ .

The graph in Fig. 16.1 that describes collaboration frequencies among individual
authors for a particular group of conferences during a particular period of time is an
instance of I-aggregated graph, and the interpretation of classic OLAP operations
with regard to InfoNet I-OLAP is summarized as follows:

• Roll-up: Overlay multiple snapshots to form a higher-level summary via I-
aggregated graph.

• Drill-down: Return to the set of lower-level snapshots from the higher-level over-
laid (aggregated) graph.

• Slice/dice: Select a subset of qualifying snapshots based on Info-Dims.

Fig. 16.1 The OLAP scenario for Example 1
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Definition 5 (T-Aggregated Graph) With regard to Topo-Dims {T1, T2 . . . , Tl}, the
T-aggregated graph MT is an attributed graph that can be computed based on an
individual network Gi ; it satisfies the following: (1) the nodes in Gi that have iden-
tical values on their Topo-Dims are grouped, whereas each group corresponds to
a node of MT , and (2) the attributes attached to MT are calculated as aggregate
functions of the attributes attached to Gi .

The graph in Fig. 16.2 that describes collaboration frequencies among institu-
tions is an instance of T-aggregated graph, and the interpretation of classic OLAP
operations with regard to InfoNet T-OLAP is summarized as follows:

• Roll-up: Shrink the network topology and obtain a T-aggregated graph that dis-
plays compressed views. Topological elements (i.e., nodes and/or edges) are
merged and replaced by corresponding higher-level ones during the process.

• Drill-down: A reverse operation of roll-up.
• Slice/dice: Select a subgraph of the network based on Topo-Dims.

Fig. 16.2 The OLAP scenario for Example 3

16.3 Measure Classification

Now, with a clear concept of dimension, measure, and possible OLAP operations,
we are ready to discuss implementation issues, i.e., how to compute the aggregated
graph in a multi-dimensional and multi-level way.

Recall that in traditional OLAP, measures can be classified into distributive, alge-
braic, and holistic, depending on whether the measures of high-level cells can be
easily computed from their low-level counterparts, without accessing base tuples
residing at the finest level. For instance, in the classic sale(time, location) example,
the total sale of [2008, California] can be calculated by adding up the total sales
of [January 2008, California], [February 2008, California], . . ., [December 2008,
California], without looking at base data points such as [04/12/2008, Los Angeles],
which means that SUM is a distributive measure. Compared to this, AVG has been
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used to illustrate algebraic measures, which is actually a semi-distributive category
in that AVG can be derived from two distributive measures: SUM and COUNT, i.e.,
algebraic measures are functions of distributive measures.

(Semi-)distributiveness is a nice property for top-down cube computation, where
the cuboid lattice can be gradually filled up by making level-by-level aggregations.
Measures without this property is put into the holistic category, which is intuitively
much harder to calculate. Now, concerning InfoNetOLAP, based on similar criteria
with regard to the aggregated graphs, we can also classify them into three categories.

Definition 6 (Distributive, Algebraic, and Holistic) Consider a high-level cell
ch and the corresponding low-level cells it covers: c1

l , c2
l , . . .. An aggregated

graph Md is distributive if Md(ch) can be directly computed as a function of
Md(c1

l ), Md(c2
l ), . . ., i.e.,

Md(ch) = Fd
[
Md(c

1
l ), Md(c

2
l ), . . .

]
.

For a non-distributive aggregated graph Ma , if it can be derived from some other
distributive aggregated graphs M1

d , M2
d , . . ., i.e., for ∀ch ,

Ma(ch) = Fa
[
M1

d (ch), M2
d (ch), . . .

]
,

then we say that it is algebraic. Aggregated graphs that are neither distributive nor
algebraic belong to the holistic category.

If we further distinguish between I-OLAP and T-OLAP, there are actually
six classes: I-distributive, I-algebraic, I-holistic and T-distributive, T-algebraic,
T-holistic. Because of their wide differences with regard to semantics as well as
implementation, let us first focus on InfoNet I-OLAP.
I-Distributive. The I-aggregated graph describing collaboration frequency in Exam-
ple 1 is an I-distributive measure, because the frequency value in a high-level I-
aggregated graph can be calculated by simply adding those in corresponding low-
level I-aggregated graphs.
I-Algebraic. The graph displaying maximum flow configuration in Example 2 is
an I-algebraic measure based on the following reasoning. Suppose transportation
type and company comprise the two dimensions of a cube, and we generalize from
low-level cells (all-types, company 1), (all-types, company 2), . . . to (all-types, all-
companies), i.e., compute the maximum flow based on all types of transportation
operated by all companies. Intuitively, this overall maximum flow would not be a
simple sum (or other indirect manipulations) of each company’s individual max-
imum flows. For instance, company 1 may have excessive transporting capability
between two cities, whereas the same link happens to be a bottleneck for company
2: Considering both companies together for determination of the maximum flow can
enable capacity sharing and thus create a double-win situation. In this sense, maxi-
mum flow is not distributive by definition. However, as an obvious fact, maximum
flow f is decided by the network c that shows link capacities on its edges, and this
capacity graph is distributive because it can be directly added upon generalization:
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When link sharing is enabled, two separated links from A to B, which are operated
by different companies and have capacities c1

AB and c2
AB , respectively, are no differ-

ent from a single link with capacity c1
AB + c2

AB , considering their contributions to
the flow value. Finally, being a function of distributive aggregated graphs, maximum
flow is algebraic.
I-holistic. The I-holistic case involves a more complex aggregated graph, where
base-level details are required to compute it. In the coauthor network of Example
1, the median of researchers’ collaboration frequency for all DB conferences from
1990 to 1999 is holistic, similar to what we have seen in a traditional data cube.

Based on the same classification criteria, considering InfoNet T-OLAP,
T-distributive, T-algebraic, and T-holistic aggregated graphs also exist. As an exam-
ple, we will prove below that the measure graph showing degree centralities of
vertices in a social network G is T-algebraic, where the degree centrality CD(v)

of a vertex v is equivalent to the number of edges that connect v to other vertices
in G.

Suppose we are performing topological roll-up operations on the coauthor net-
work as we did in Fig. 16.2, and we are going from the individual level to the
department level and then to the institution level. Here, we count each coauthored
publication as an edge; so, if the collaboration frequency of two persons is 4, it
means that there are four edges. Now, consider a set of vertices V = {v1, v2, . . . , vs}
that belong to the same node group and thus will be merged together into a single
vertex v′ by T-OLAP operations; it is easy to verify that

CD(v′) =
∑

1≤i≤s

CD(vi )− 2|EV |,

where EV is the number of edges that have both their ends in V . Figure 16.3 is an
illustration of the computation process. In G ′′, it can be seen that CD(v′) is a total of
4, 2, 5, and 3, which is 14. We can get this number directly from the original network
G by the given formula

∑
1≤i≤s CD(vi )−2|EV | = (3+8+3+7+10+11+7+5+

6)−2(2+3+3+1+2+4+1+2+4+1) = 14, while we can also leverage results
obtained from the intermediate network G ′: (8+12+14)−2(3+1+6) = 14. Since
the computational cost is O(s + |EV |), where s = |V | is the number of vertices in
V , this example demonstrates that the computation cost can be greatly reduced by
following the top-down materialization order and taking advantage of results that
are already computed along the way, as G ′ has much less vertices than G.

16.4 Optimizations

Being (semi-)distributive or holistic tells us whether the aggregated graph computa-
tion needs to start from completely un-aggregated data or some intermediate results
can be leveraged. However, even if the aggregated graph is distributive or algebraic,
and thus we can calculate high-level measures based on some intermediate-level
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Fig. 16.3 Computing degree centrality

ones, it is far from enough, because the complexity to compute the two functions Fd

and Fa in Definition 6 is another question. Think about the maximum flow example
we just mentioned; Fa takes the distributive capacity graph as input to compute the
flow configuration, which is by no means an easy transformation.

Based on our analysis, there are mainly two reasons for such potential difficulties.
First, due to the interconnecting nature of graphs, the computation of many informa-
tion network properties is “global” as it requires us to take the whole network into
consideration. In order to make this concept of globalness clear, let us first look at a
“local” situation: For I-OLAP, aggregated graphs are built for the same set of objects
as the underlying network snapshots; now, in the aggregated graph of Example 1,
“R. Agrawal” and “R. Srikant”’s collaboration frequency for cell (db-conf, 2004)
is locally determined by “R. Agrawal” and “R. Srikant”’s collaboration frequency
for each of the DB conferences held in 2004; it does not need any information
from the other authors to fulfill the computation. This is an ideal scenario, because
the calculations can be localized and thus greatly simplified. Unfortunately, not all
measures provide such local properties. For instance, in order to calculate a maxi-
mum flow from S to T for the cell (air, all-companies) in Example 2, only knowing
the transporting capability of each company’s direct flights between S and T is not
enough, because we can always take an indirect route via some other cities to reach
the destination.

Second, the purpose for us to compute high-level aggregated graphs based on
low-level ones is to reuse the intermediate calculations that are already performed.
Taking I-OLAP for example, when computing the aggregated graph of a low-level
cell ci

l (i = 1, 2, . . .), we only had a partial view about the ci
l -portion of network
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snapshots; now, as multiple pieces of information are overlaid into the high-level
cell ch , some full-scale consolidation needs to be performed, which is very much
like the merge sort procedure, where partial ranked lists are reused but somehow
adjusted to form a full ranked list. Still, because of the structural complexity, it
is not an easy task to develop such reuse schemes for information networks, and
even if it is possible, reasonably complicated operations might be involved. Similar
problems exist for InfoNet T-OLAP as well.

Admitting the difficulties above, let us now investigate the possibility to alleviate
them. As we have seen, for some aggregated graphs, the first aspect can be helped by
their localization properties with regard to network topology. Concerning the second
aspect, the key is how to effectively reuse partial results computed for intermediate
cells so that the workload to obtain a full-scale measure is attenuated as much as
possible. In the following, we are going to examine these two directions in sequel.

16.4.1 Localization

Definition 7 (Localization in InfoNet I-OLAP) For an I-aggregated graph M I
l that

summarizes a group of network snapshots G′ = {Gi1 ,Gi2 , . . . ,GiN ′ }, if (1) we
only need to check a neighborhood of v in Gi1 , Gi2 , . . . , GiN ′ to calculate v’s
node attributes in M I

l , and (2) we only need to check a neighborhood of u, v in
Gi1 , Gi2 , . . . , GiN ′ to calculate (u, v)’s edge attributes in M I

l , then the computation
of M I

l is said to be I-OLAP localizable.

Example 4 (Common Friends) With regard to the coauthor network depicted in
Example 1, we can also compute the following aggregated graph: Given two authors
a1 and a2, the edge between them records the number of their common “friends”,
whereas in order to build such “friendship”, the total collaboration frequency
between two researchers must surpass a δc threshold for the specified conferences
and time. �

The above example provides another instance that leverages localization to pro-
mote efficient processing. Consider a cell, e.g., (db-conf, 2004), the determination
of the aggregated graph’s a1-a2 edge can be restricted to a 1-neighborhood of these
two authors in the un-aggregated snapshots of 2004’s DB conferences, i.e., we only
need to check edges that are directly adjacent to either a1 or a2, and in this way a
third person a3 can be found, if he/she publishes with both a1 and a2, while the total
collaboration frequency summed from the weights of these adjacent edges is at least
δc. Also, note that the above aggregated graph definition is based on the number of
length-2 paths like a1-a3-a2 where each edge of it represents a “friendship” relation;
now, if we further allow the path length to be at most k, computations can still be
localized in a 2 k

23-neighborhood of both authors, i.e., any relevant author on such
paths of “friendship” must be reachable from either a1 or a2 within 2 k

23 steps. This
can be seen as a situation that sits in the middle of Example 1’s “absolute locality”
(0-neighborhood) and maximum flow’s “absolute globality” (∞-neighborhood).



16 InfoNetOLAP: OLAP and Mining of Information Networks 423

There is an interesting note we want to put for the absolutely local distributive
aggregated graph of Example 1. Actually, such a 0-neighborhood localization prop-
erty degenerates the scenario to a very special case, where it is no longer necessary
to assume the underlying data as an information network: For each pair of coau-
thors, we can construct a traditional cube showing their collaboration frequency
“OLAPed” with regard to venue and time, whose computation does not depend on
anything else in the coauthor network. In this sense, we can treat the coauthor net-
work as a union of pairwise collaboration activities, whereas Example 1 can indeed
be thought as a traditional OLAP scenario disguised under its information network
appearances, because the cube we constructed here is nothing different from a col-
lection of pairwise traditional cubes. As a desirable side effect, this enables us to
leverage specialized technologies that are developed for traditional OLAP, which in
general could be more efficient. Nevertheless, the case is special, anyway: Absolute
localization would not hold for most information network measures, which is also
the reason why traditional OLAP proves to be extremely restricted when handling
network data.

The corresponding definition of localization in InfoNet T-OLAP is given as fol-
lows, and it can be easily proved that the degree centrality we have discussed above
is 1-neighborhood T-OLAP localizable.

Definition 8 (Localization in InfoNet T-OLAP) For a T-aggregated graph MT
l

where a vertex v′ of it represents a group of nodes V = {v1, v2, . . . , vs} of the
original network Gi , if (1) we only need to check a neighborhood of v1, v2, . . . in
Gi to calculate v′’s node attributes in MT

l , and (2) we only need to check a neigh-
borhood of u1, u2, . . . and v1, v2, . . . in Gi to calculate (u′, v′)’s edge attributes in
MT

l , then the computation of MT
l is said to be T-OLAP localizable.

16.4.2 Attenuation

Below, we are going to explain the idea of attenuation through examples, and the
case we pick is maximum flow. In a word, the more partial results from intermediate
calculations are utilized, the more we can decrease the cost of obtaining a full-scale
aggregated graph.

To begin with, let us first review some basic concepts, cf. [8]. Given a directed
graph G = (V, E), c : (V

2

) → R≥0 indicates a capacity for all pairs of vertices
and E is precisely the set of vertex pairs for which c > 0. For a source node s
and a destination node t , a flow in G is a function f : (V

2

) → R assigning values
to graph edges such that (i) f (u, v) = − f (v, u): skew symmetry, (ii) f (u, v) ≤
c(u, v): capacity constraint, and (iii) for each v �= s/t,

∑
u∈V f (u, v) = 0: flow

conservation. Since most maximum flow algorithms work incrementally, there is an
important lemma as follows.

Lemma 1 Let f be a flow in G and let G f be its residual graph, where residual
means that the capacity function of G f is c f = c − f ; now, f ′ is a maximum flow
in G f if and only if f + f ′ is a maximum flow in G.
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Note that the +/− notation here means edge-by-edge addition/subtraction; and
in summary, this lemma’s core idea is to look for a flow f ′ in G f and use f ′ to
augment the current flow f in G.

For the InfoNetOLAP context we consider, in order to compute the algebraic
aggregated graph displaying maximum flow, the function Fa takes a distributive
capacity graph c as its input; now, since capacity can be written as the sum of a flow
and a residual graph: c = f + c f , does this decomposition provide us some hints to
pull out the useful part f , instead of blindly taking c and starting from scratch?

Suppose that the capacity graph of cell (all-types, company 1) is c1, where
f1 is the maximum flow and c1

f1
= c1 − f1 denotes the corresponding residual

graph. Likewise, we have c2, f2, and c2
f2

for cell (all-types, company 2). Without
loss of generality, assume there are only these two companies whose transporta-
tion networks are overlaid into (all-types, all-companies), which has a capacity of
c = c1 + c2.

Claim f1 + f2 + f ′ is a maximum flow for c if and only if f ′ is a maximum flow
for c1

f1
+ c2

f2
.

Proof Since f1 and f2 are restricted to the transportation networks of company 1
and company 2, respectively, the overall capacity c = c1 + c2 must accommodate
f1 + f2, even if link sharing is not enabled. As a result of subtracting f1 + f2, the
residual graph becomes

c f1+ f2 = (c1 + c2)− ( f 1 + f 2)

= (c1 − f 1)+ (c2 − f 2) = c1
f1
+ c2

f2
.

A direct application of Lemma 1 finishes our proof. �
As it is generally hard to localize maximum flow computations with regard to

network topology, the above property is important because it takes another route,
which reuses partial results f1, f2 and attenuates the overall workload from c1+c2 to
c1

f1
+c2

f2
. By doing this, we are much closer to the overall maximum flow f1+ f2+ f ′

because a big portion of it, f1 + f2, has already been decided even before we start
an augmenting algorithm.

However, we should admit that attenuation schemes usually take widely different
forms, which might need to be developed with regard to specific aggregate measure
graphs; furthermore, as we shall see next, there do exist cases where such properties
are hard, if not impossible, to think of.

Example 5 (Centrality) Centrality is an important concept in social network anal-
ysis, which reflects how “central” a particular node’s position is in a given net-
work. One definition called betweenness centrality CB uses shortest path to model
this: Let n jk denote the number of shortest paths (as there could be equally short

ones) between two nodes j and k; for any node i ,
n jk(i)

n jk
is the fraction of shortest

paths between j, k that go through i , with CB(i) summing it up over all possible

pairs: CB(i) = ∑
j,k �=i

n jk(i)
n jk

. Intuitively, for a “star”-shaped network, all shortest
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paths must pass the network center, which makes CB achieve its maximum value
(|V | − 1)(|V | − 2)/2.

Only considering shortest paths is inevitably restrictive in many situations; and
thus, information centrality CI goes one step further by taking all paths into account.
It models any path from j to k as a signal transmission, which has a channel noise
proportional to its path length. For more details, we refer the readers to [25], which
has derived the following formula based on information theoretic analysis: Let A
be a matrix, whose ai j entry designates the interaction strength between node i and

node j ; define B = D− A+ J , where D is a diagonal matrix with Dii =∑|V |
j=1 ai j

and J is a matrix having all unit elements; now, perform an inverse operation to get
the centrality matrix C = B−1; write its diagonal sum as T =∑|V |

j=1 c j j and its row

sum as Ri =∑|V |
j=1 ci j ; the information centrality of node i is then equivalent to

CI (i) = 1

cii + (T − 2Ri )/|V | .

Now, with regard to the coauthor network described in Example 1, if we define
the interaction strength between two authors as their total collaboration frequency
for a set of network snapshots, then an aggregated graph Mcen can be defined, whose
node i is associated with a node attribute CI (i) equivalent to its information cen-
trality. �

Claim The computation of Mcen is hard to be attenuated in a level-by-level aggre-
gation scheme.

Proof As we can see, the core component of information centrality computation is
a matrix inverse. Now, given two portions of network snapshots that are overlaid,
the overall centrality matrix is

[
(D1 + D2)− (A1 + A2)+ J

]−1 = (B1 + B2 − J )−1.

From calculations performed on lower levels, we know the centrality matrices C1 =
B−1

1 and C2 = B−1
2 ; however, it seems that they do not help much to decrease the

computation cost of inverting B1 + B2 − J . �

When things like this happen, an alternative is to abandon the exactness require-
ment and use intermediate results that are readily available to bound the answer
within some range instead; as we shall elaborate in the following section, this will
become very useful if the cube construction is subject to a set of constraints.

16.5 Constraints and Partial Materialization

Above, we have focused on the computation of a full cube, i.e., each cell in each
cuboid is calculated and stored. In many cases, this is too costly in terms of both
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space and time, which might even be unnecessary if the users are not interested
in obtaining all the information. Usually, users may stick with an interestingness
function I , indicating that only those cells above a particular threshold δ make sense
to them. Considering this, all cells c with I (c) ≥ δ comprise an iceberg cube, which
represents a partial materialization of the cube’s interesting part. Taking Example
2 for instance, it is possible that people may only care about those subnetworks that
can transmit at least δ| f | units of cargo, while the other cells are discarded from
consideration, due to their limited usefulness for the overall transportation business.

Optimizations exist as to how such an iceberg cube can be calculated, i.e., how
to efficiently process constraints like I (c) ≥ δ during materialization, without gen-
erating a full cube at first. Below, we will first classify different constraints into
categories (Section 16.5.1) and then combine with some examples to see how each
category should be dealt with (Section 16.5.2).

16.5.1 Constraint Classification

Two most important categories of constraints are anti-monotone and monotone.
They relate cells on different levels of the cube together and are defined as follows.

Definition 9 A constraint C is anti-monotone, if for any high-level cell ch and
a low-level cell cl covered by ch , the following must hold: ch violates C ⇒ cl

violates C .

Definition 10 A constraint C is monotone, if for any high-level cell ch and a
low-level cell cl covered by ch , the following must hold: ch satisfies C ⇒ cl

satisfies C .

Note that, in Definition 9, “ch violates C⇒ cl violates C” is equal to “cl satisfies
C ⇒ ch satisfies C” and, in Definition 10, “ch satisfies C ⇒ cl satisfies C” is equal
to “cl violates C ⇒ ch violates C”; so, depending on whether ch or cl is computed
(and thus verified against C) first, there are different ways to make use of these
constraints, which we will demonstrate below.

16.5.2 Constraint Pushing

The anti-monotone and monotone constraints can be “pushed” deep into the compu-
tation process using the Apriori principle [30]. In general, there are two approaches
to compute a data cube over information networks, bottom-up and top-down. In
bottom-up computation, which can be contrasted with BUC [2] in traditional OLAP,
high-level cells are calculated first, before drilling down to low-level cells they
cover. In top-down computation, which can be contrasted with Multi-Way [31] in
traditional OLAP, we calculate low-level cells first, and then aggregate to high-level
cells. Finally, which approach to adopt will depend on various parameters, including
the size of the network, data sparsity, the measures to be computed, and the available
constraints.
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Now consider the bottom-up approach; on the one hand, if a high-level cell ch

does not satisfy an anti-monotone constraint, then we know that no low-level cell cl

covered by ch would satisfy it, and thus the calculation can be immediately termi-
nated, pruning cl and its descendants from the cuboid lattice; on the other hand, if
a high-level cell ch already satisfies a monotone constraint, then we no longer need
to perform checkings for any low-level cells covered by ch because they would
always satisfy it. As for top-down computations, the roles of anti-monotonicity and
monotonicity are reversed accordingly.

It is easy to see that anti-monotone and monotone properties depend on specific
analysis of measures and interestingness functions. Here, since we are working with
network data, some graph theoretic studies need to be made. Let us examine a few
examples.

Claim Suppose maximum flow is the I-OLAP measure to be calculated, regarding
its flow’s value | f | = ∑

v∈V f (s, v) = ∑
v∈V f (v, t), i.e., the highest amount

of transportation a network can carry from s to t , constraint | f | ≥ δ| f | is anti-
monotone.

Proof Intuitively, the transporting capability of one company must be smaller than
that of all companies together, since there are now more available links for the flow
to pass. In fact, as we showed in Section 16.4, the flow value of ch is no smaller than
the flow sum of all cl ’s that are covered by ch , which is a condition stronger than the
normal anti-monotonicity defined between a high-level cell and a single low-level
cell it covers. �
Claim The diameter of an information network G is designated as the maximum
shortest path length for all pairs of nodes in G. Now, denote diameter as d and let it
be the T-OLAP measure we want to calculate, constraint d ≥ δd is monotone.

Proof As we perform roll-up in InfoNet T-OLAP and shrink the network, some
nodes are merged into one during this process, which can only shorten relevant
paths. �

Because of space limit, we are not going to list more examples here. Certainly,
having the conditions on interestingness classified into anti-monotone and mono-
tone will greatly help us in constructing an iceberg graph cube. Here, combined
with top-down/bottom-up calculations, Apriori is a simple and effective principle to
align search space pruning with particular computation orders. But unfortunately,
we cannot use it to push every constraint into the mining process, as there do exist
situations that are neither anti-monotone nor monotone. To this extent, we shall
further investigate how the other kinds of more complex constraints can be nicely
handled in the future.

16.6 Discovery-Driven InfoNetOLAP

Apart from the type of data being dealt with, another important distinction of
InfoNetOLAP from the traditional one is the need for flexibility in manipulating
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information networks. Thus, in addition to the uniform drilling of traditional OLAP,
where all nodes at a given level of abstraction are simultaneously rolled up or
drilled down, e.g., from month to quarter, and then to year, InfoNetOLAP may
require selective drilling for a given node or neighborhood. For instance, in the
coauthor network example, a user could be interested in the collaborative relation-
ship between Yahoo! Labs and related individual researchers. Such an analysis may
show strong collaborations between AnHai Doan at Wisconsin and people at Yahoo!
Labs. So, if all Wisconsin researchers are merged into a single institution in the
same way as Yahoo! Labs, it would be hard to discover such a relationship since,
collectively, there would be even stronger collaborations between Wisconsin and
Berkeley (instead of Yahoo! Labs), which may overshadow AnHai’s link to Yahoo!
Labs.

Selective drilling, though promising, may generate an exponential number of
combinations, which are too costly to compute and explore. To ensure that one
can pinpoint to the “real gold” during exploration, discovery-driven InfoNetOLAP
should be adopted, i.e., rather than searching the complete cube space, one has to be
sure that the planned drilling should help the discovery of interesting knowledge.

16.6.1 Discovery-Driven: Guiding Principles

In the following, we first outline a few guiding principles for discovery-driven
InfoNetOLAP.
Discovery Driven by Rule-based Heuristics. When performing InfoNetOLAP, we
usually have some general intuition about where and when the selective drilling
should be focused and at what levels/nodes one is most likely to discover something
interesting. For instance, when studying research collaborations, it may not be wise
to quickly merge prominent researchers into groups, before exploring some interest-
ing patterns for them at first. As an example, if Raghu Ramakrishnan is merged into
an even “bigger” entity like Yahoo! Labs, it may blur the individual relationships
that can be discovered; rather, we could keep his own identity in the network, on
which clearer patterns with finer granularity are observed. Alternatively, for ordi-
nary graduate students, it seems to be more interesting to group them together or
have them absorbed by nearby “hub” nodes, because for such individuals, it is not
likely that something significant can stand out from the rest. In this sense, a rule like
delay the merge of ‘big’ or ‘distinct’ nodes could be quite simple to work out and
follow, as the system only needs to consult attributes of an entity itself (e.g., how
many papers a researcher has published) or explore some very local information
(e.g., how many persons he/she has collaborated with) for decision making.
Discovery Driven by Statistical Analysis. In many cases, it is beneficial to conduct
some global (rather than local) preliminary analysis before choosing any drilling
operation. Consider a top-down exploratory scenario where the granularity is cur-
rently set at the institution level, e.g., both Yahoo! Labs and University of Wisconsin
are treated as a whole; now, if an automatic background computation shows that
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the collaboration activities between Yahoo! Labs and AnHai Doan are significantly
higher than normal, then it is rewarding to drill-down, because the status of AnHai
is like an outlier in Wisconsin; otherwise, such drilling may not disclose anything
truly interesting. This is similar to discovery-driven OLAP proposed by [23], but in
the environment of information networks. As a simple implementation of this idea,
we may take the collaboration frequencies between Yahoo! Labs and every person
from Wisconsin, and calculate the variance: If the variance is high, one may set up
an indicator which may suggest people to click on “U. of Wisc.” and expand it to
get a refined view, which is just the situation described in Fig. 16.4. Compared to
the first guiding principle, there are no longer simple rules that stipulate whether a
drill-down or roll-up should be performed; everything depends on a global statistical
analysis about the entities in the network, which aims to find out those interesting
(or outlying) phenomena that are worthwhile to explore.
Discovery Driven by Pattern Mining. Another way for discovery-driven OLAP is
fueled by the potential to discover interesting patterns and knowledge on informa-
tion networks using data mining techniques: If splitting or merging of certain sets
of nodes may lead to the discovery of interesting clusters, frequent patterns, clas-
sification schemes, and evolution regularities/outliers, then the drilling should be
performed, with the results/patterns demonstrated to users. Otherwise, the drilling
will not be performed. Notice that, although such pattern discovery can be exe-
cuted on the fly at the time of user interaction, the discovery process could be too
time-consuming with regard to the user’s mouse clicking. Therefore, we suggest the
pre-computation of some promising drilling paths as intermediate results to speed
up interactive knowledge discovery. It is an interesting research issue to determine
the things to be computed in order to facilitate such on-line analysis.

Fig. 16.4 Discovery-driven InfoNetOLAP
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16.6.2 Network Discovery for Effective OLAP

As we discussed above, for effective discovery-driven OLAP, it is important to per-
form some essential data mining on the underlying information networks to reveal
interesting network patterns that may help us discover the hidden knowledge. Here,
we discuss some interesting network discovery procedures by taking the collabora-
tion scenario of researchers as an example.

For studying coauthor networks, it is important to distinguish different roles the
authors may play in the network. For example, based on the coauthor relationships
over time, it is possible to dig out advisor–advisee relationships. Usually, advisee is
a mediocre node in the network without many publications, who then starts to coau-
thor substantially with his prominent advisor; after graduation, he/she joins industry
or moves on to another institution, and the publishing behaviors are changed again.
Advisors can also be identified, based on his/her long-term publication history as
well as a center role of working with many junior coauthors. It is interesting to orga-
nize researchers under such a phylogeny tree and examine the interactions between
different clusters of academic “families”.

Besides some not-so-sophisticated knowledge discovery procedures, a mining
process may involve induction on the entire information networks as well. For exam-
ple, in order to partition an interconnected, heterogeneous information network into
a set of clusters and rank the nodes in each cluster, one could develop a RankClus
framework [26], which integrates clustering and ranking together to effectively
cluster information networks into multiple groups and rank nodes in each group
based on certain nice properties (such as authority). By examining authors, research
papers, and conferences, one can group conferences in the same fields together
to form conference clusters, group authors based on their publication records into
author clusters, and in the meantime rank authors and conferences based on their
corresponding authorities. Such clustering results enhanced by ranking information
would be an ideal feed into InfoNetOLAP. Interestingly, such clustering-ranking can
be performed based on the links only, without checking the citation information and
the keywords or text information contained in the conferences and/or publication
titles. The details of such techniques are beyond the discussions of this chapter, but
it sheds light on automated processes to effectively identify concept hierarchies and
important nodes for discovery-driven InfoNetOLAP.

16.7 Experiments

In this section, we present empirical studies evaluating the effectiveness and effi-
ciency of the proposed InfoNetOLAP framework. It includes two kinds of data
sets, one real data set and two synthetic data sets. All experiments are done on a
Microsoft Windows XP machine with a 3 GHz Pentium IV CPU and 1GB main
memory. Programs are compiled by Visual C++.
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16.7.1 Real Data Set

The first data set we use is the DBLP Bibliography (http://www.informatik.uni-
trier.de/∼ley/db/) downloaded in April 2008. Upon parsing the author field of
papers, a coauthor network with multiple snapshots can be constructed, where an
edge of weight w is added between two persons if they publish w papers together.
We pick a few representative conferences for the following three research areas:

• Database (DB): PODS/SIGMOD/VLDB/ICDE/EDBT
• Data Mining (DM): ICDM/SDM/KDD/PKDD
• Information Retrieval (IR): SIGIR/WWW/CIKM

and also distribute the publications into 5-year bins: (2002, 2007], (1997, 2002],
(1992, 1997],. . . . In this way, we obtain two informational dimensions: venue and
time, on which I-OLAP operations can be performed.

Fig. 16.5 A multi-dimensional view of top-10 “Central” authors

Figure 16.5 shows a classic OLAP scenario. Based on the definition in
Section 16.4, we compute the information centrality of each node in the coauthor
network and rank them from high to low. In general, people who not only publish a
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lot but also publish frequently with a big group of collaborators will be ranked high.
Along the venue dimension, we can see how the “central” authors change across dif-
ferent research areas, while along the time dimension, we can see how the “central”
authors evolve over time. In fact, what Fig. 16.5 gives is a multi-dimensional view of
the cube’s base cuboid; without any difficulty, we can also aggregate DB, DM, and
IR into a broad Database field, or generalize the time dimension to all-years, and
then compute respective I-OLAP cells. Given each author’s affiliation information,
we may conduct T-OLAP and obtain most “central” research groups and institutions
as well. The results are omitted here.

16.7.2 Synthetic Data Sets

We use synthetic data sets to demonstrate the effectiveness of the optimizations that
are proposed to efficiently perform OLAP operations over information networks.
The first test we pick is the computation of maximum flow as an InfoNetI-OLAP
measure, which has been used as an exemplifying application in our discussions.
Generator Mechanism. Since it is generally hard to get real flow data, we develop
a synthetic generator by ourselves. The data is generated as follows: The network
has a source node s and a destination node t , and in between them, there are L
intermediate layers, with each layer containing H nodes. There is a link with infinite
capacity from s to every node in layer 1, and likewise from every node in layer L to
t . Other links are added from layer i to layer i + 1 on a random basis: For the total
number of H · H choices between two layers, we pick αH2 pair of nodes and add a
link with capacity 1 between them.

For the cube we construct, there are d dimensions; each dimension has card
different values (i.e., cardinality), which can be generalized to “all/*”. For a base
cell where all of its dimensions are set on the finest ungeneralized level, we gen-
erate a snapshot of capacity network L5H1000α0.01, i.e., there are five layers of
intermediate nodes, and 0.01 ·(1000)2 = 10, 000 links are randomly added between
neighboring layers.

The algorithm we use to compute the maximum flow works in an incremental
manner. It randomly picks an augmenting path from s to t until no such paths
exist. To accommodate top-down computation, where high-level cells are com-
puted after low-level cells so that intermediate results can be utilized, we integrate
our attenuation scheme with the classic Multi-Way aggregation method for cube
computation [31].

The results are depicted in Figs. 16.6 and 16.7, with Fig. 16.6 fixing the cardi-
nality as 2 and varying d from 2, 3, . . ., up to 6, and Fig. 16.7 fixing the number
of dimensions as 2 and varying card from 2, 4 . . ., up to 8. It can be seen that
the optimization achieved through attenuation is obvious, because in effect we do
not need to compute a full-scale aggregated graph from scratch, and part of the
burden has been transferred to previous rounds of calculations. Especially, when the
dimensionality goes high in Fig. 16.6, so that more levels of cube cells are present,
the superiority of attenuation-based methods becomes more significant, and one
may reap orders of magnitude savings.
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Fig. 16.6 The effect of optimization w.r.t. number of dimensions
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Fig. 16.7 The effect of optimization w.r.t. dimension cardinality

The second test we perform is on the calculation of degree centrality with regard
to InfoNet T-OLAP.
Generator Mechanism. The synthetic data networks in this experiment are gener-
ated in the following manner: For a network G, n vertices are generated first, i.e.,
|V (G)| = n; as the next step, edges are randomly attached to vertices such that (1)
the entire network is connected, (2) the vertices have an average degree of d , and
(3) the edges have an average weight of w.

Given a network G, users can choose a subset of vertices V ⊆ V (G) to merge
into a single vertex v′ and compute the T-aggregated graph for the generalized net-
work G ′. Such a roll-up operation is called a user T-OLAP request. For a network
G, we recursively partition G into π non-overlapping connected components with
equal number of vertices, e.g., suppose |V (G)| = 1024 and π = 4, we can first par-
tition G into 4 connected subgraphs with 256 vertices, and then recursively partition
these 4 subgraphs until there is only one vertex left. Finally, if we reverse the above
sequence of partitioning, a series of T-OLAP requests will be naturally formed, and
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Fig. 16.8 Running time w.r.t. network size

our task next is to compute the corresponding aggregated graphs along the drilling
path.

We refer to the baseline algorithm for comparison as Naive OLAP. For each
T-OLAP request, this method would directly compute the T-aggregated graph from
the original network G. As shown in Section 16.3, degree centrality is T-algebraic:
Therefore, we can leverage the (semi-)distributiveness property and make use of the
degree centralities that have been calculated for lower-level intermediate networks,
which can offer significant efficiency boost. This computation strategy is denoted as
T-distributive OLAP.

We set the average vertex degree as d = 5, and fix the number of partitions per
step as π = 4. Figure 16.8 shows the running time comparison for the two alterna-
tive approaches as the number of vertices in G increases. Here, the running time is
the total computation cost summed over all T-OLAP requests, and it can be easily
observed that with T-distributiveness the computation cost increases much slower
than Naive OLAP. In Fig. 16.9, we fix V (G) as 4096 and vary π , which depicts how
the granularity of T-OLAP operations can affect both approaches: As π increases,
the granularity difference between adjacent levels of networks becomes larger. Since
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the computation of degree centrality is not too complex, both approaches have rather
slow increase with regard to the running time, as we can see from the picture.
However, notice that the T-distributive OLAP still features a flatter growth curve
compared with that of the Naive OLAP approach.

16.8 Related Work

OLAP (On-Line Analytical Processing) is an important notion in data mining, which
has drawn a lot of attention from the research communities. Representative stud-
ies include [7, 11], and a set of papers on materialized views and data warehouse
implementations are collected in [12]. There have been a lot of works that deal with
the efficient computation of a data cube, such as [2, 31], whereas the wealth of
literature cannot be enumerated. However, all these researches target conventional
spreadsheet data, i.e., OLAP analysis is performed on independent data tuples that
mathematically form a set. In contrast, as far as we know, ours is the first that
puts information networks in a rigid multi-dimensional and multi-level framework,
where due to the nature of the underlying data, an OLAP measure in general takes
the form of an aggregated graph.

The classification of OLAP measures into distributive, algebraic, and holistic
was introduced in the traditional OLAP arena, where we can also find related works
for iceberg cubing [9], partial materialization [17], and constraint pushing [21]. It
is important to see how these basic aspects are dealt with in the InfoNetOLAP
scenario; and as we have seen from the discussions, things become much more
complicated due to the increased structural complexity.

In InfoNetOLAP, the aggregated graph can be thought as delivering a summa-
rized view of the underlying networks based on some particular perspective and
granularity, which helps users get informative insights into the data [6]. In this sense,
concerning the generation of summaries for information networks, there have been
quite a few researches that are associated with terminologies like compression, sum-
marization, and simplification. For example, Boldi and Vigna [3, 22] study the prob-
lem of compressing large graphs, especially Web graphs; however, they only focus
on how the Web link information can be efficiently stored and easily manipulated
to facilitate computations such as PageRank and authority vectors, which do not
provide any pointers into the network structures. Similarly, Beyer and Ramakrish-
nan [2] develop statistical summaries that analyze simple characteristics like degree
distributions and hop-plots on information networks; Lu et al. [18] go one step fur-
ther by looking into the evolutionary behavior of these statistics and proposes a
generative model that helps explain the latent mechanism. These compressed views
are useful but hard to be navigated with regard to the underlying networks; also, the
multi-dimensional functionality that can conduct analysis from different angles is
missing. Another group of papers [1, 15, 19, 29] are often referred as graph simpli-
fication, e.g., Archambault et al. [1] aim to condense a large network by preserving
its skeleton in terms of topological features, and Kossinets et al. [15] try to extract
the “backbone” of a social network, i.e., the subnetwork that consists of edges on
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which information has the potential to flow the quickest. In this case, attributes on
nodes and edges are not important, and the network is indeed an unlabeled one in
its abstract form. Works on graph clustering (to partition similar nodes together),
dense subgraph detection (for community discovery, link spam identification, etc.),
graph visualization, and evolutionary pattern extraction/contrast include [20], [10],
[13, 28], and [5] respectively. They all provide some kind of summaries, but the
objective and result achieved are substantially different from those of this chapter.

With regard to summarizing attributed networks that incorporates OLAP-style
functionalities, [25] is the closet to ours in spirit. It introduces an operation called
SNAP (Summarization by grouping Nodes on Attributes and Pairwise relation-
ships), which merges nodes with identical labels (actually, it might not be necessary
to require exactly the same label for real applications, e.g., Lu et al. [18] introduce
a way to find similar groups of entities in a network, and this can be taken as the
basis to guide node merges), combines corresponding edges, and aggregates a sum-
mary graph that displays relationships for such “generalized” node groups. Users
can choose different resolutions by a k-SNAP operation just like rolling up and
drilling down in an OLAP environment. This can be seen as a special instance of
InfoNet T-OLAP that is defined in this chapter.

Sarawagi et al. [23] introduce the discovery-driven concept for traditional OLAP,
which aims at pointing out a set of direct handles or indirect paths that might lead
to the interesting/outlying cells of a data cube. Their method is statistics oriented.
As we proposed in this chapter, InfoNetOLAP can also adopt the discovery-driven
concept, but in the context of information networks, which suggests new classes of
discovery-driven methods using topological measures and network patterns. Differ-
ent from traditional OLAP, where dimensions are often globally drilled down and
rolled up, InfoNetOLAP takes selective drilling into consideration, which leverages
graph mining (e.g., [14]), link analysis (e.g., [24]), etc., and might only involve some
local portion of a big network.

16.9 Conclusions

We examine the possibility to apply multi-dimensional analysis on information
networks, and develop an InfoNetOLAP framework, which is classified into two
major subcases: informational OLAP and topological OLAP, based on the different
OLAP semantics. Due to the nature of the underlying data, an OLAP measure now
takes the form of an aggregated graph. We categorize aggregated graphs based on
the difficulty to compute them in an OLAP context and suggest two properties:
localization and attenuation, which may help speed up the processing. Both full
materialization and constrained partial materialization are discussed. Toward more
intelligent InfoNetOLAP, we further propose a discovery-driven multi-dimensional
analysis model and discuss many challenging research issues associated with it.
Experiments show insightful results on real data sets and demonstrate the efficiency
of our proposed optimizations.
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As for future works, there are a lot of directions we want to pursue on this
topic, for example, extending the current framework to heterogeneous-typed infor-
mation networks, hyper-graphs, etc., and our immediate target would be refining the
discovery-driven InfoNetOLAP idea and testing it on several interesting application
domains.
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