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ABSTRACT
We study the problem of large-scale social identity linkage across
different social media platforms, which is of critical importance
to business intelligence by gaining from social data a deeper un-
derstanding and more accurate profiling of users. This paper pro-
poses HYDRA, a solution framework which consists of three key
steps: (I) modeling heterogeneous behavior by long-term behav-
ior distribution analysis and multi-resolution temporal information
matching; (II) constructing structural consistency graph to measure
the high-order structure consistency on users’ core social structures
across different platforms; and (III) learning the mapping func-
tion by multi-objective optimization composed of both the super-
vised learning on pair-wise ID linkage information and the cross-
platform structure consistency maximization. Extensive experi-
ments on 10 million users across seven popular social network
platforms demonstrate that HYDRA correctly identifies real user
linkage across different platforms, and outperforms existing state-
of-the-art algorithms by at least 20% under different settings, and 4
times better in most settings.
Categories and Subject Descriptors: H.2.8 Database applications:
Data mining

General Terms: Algorithms; Experimentation.

Keywords: User linkage, multiple information, social networks,
heterogeneous behavior model.

1. INTRODUCTION
The recent blossom of social network services of all kinds has

revolutionized our social life by providing everyone with the ease
and fun of sharing various information like never before (e.g., micro-
blogs, images, videos, reviews, location check-ins). Meanwhile,
probably the biggest and most intriguing question concerning all
businesses is how to leverage this big social data for better business
intelligence. In particular, people wonder how to gain a deeper and
better understanding of each individual user from the vast amount
of social data out there. Unfortunately, information of a user from
the current social scene is fragmented, inconsistent and disruptive.
The key to unleashing the true power of social media analysis is
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Figure 1: Ambiguity between users on different social com-
munities. The left figure illustrates possible linked users be-
tween Twitter and Facebook. The right figure illustrates possi-
ble linked users between two popular Chinese platforms, Sina
Weibo and Renren.

to link up all the data of the same user across different social plat-
forms, offering the following benefits for user profiling.
Completeness. Constrained by the features and design of each, any
single social network service offers only a partial view of a user
from a particular perspective. Cross-platform user linkage would
enrich an otherwise-fragmented user profile to enable an all-around
understanding of a user’s interests and behavior patterns.
Consistency. For various reasons, information provided by users
on a social platform could be false, conflicting, missing and decep-
tive. Cross-checking among multiple platforms helps improve the
consistency of user information.
Continuity. While social platforms come and go, the underlying
real-world users remain, who simply migrate to newer ones. User
identity linkage makes it possible to integrate useful user informa-
tion from those platforms that have over time become less popular
or even abandoned.

In this paper, we study the problem of automatically linking user
accounts belonging to the same natural person across different so-
cial media platforms. It is beneficial to first explore the research
challenges for a better understanding of this problem.

1.1 Research Challenges
Unreliable Usernames. How users register their names online
varies among different platforms. Taking Figure 1 as an exam-
ple, while a user tends to add family name after “Adele" in English
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Figure 2: Challenges of cross-platform social identity linkage.
(a) Statistics of missing information in social media data (seven
different platforms). (b) The online heterogeneous behavior
represented by multiple media, where the similarity between
users cannot be identified due to the platform difference.

communities, the user could be very likely to put a Chinese name
before or after “Adele" in a Chinese community. To make things
worse, some users may even add bizarre characters for eccentric-
ity on certain platforms. Traditional approaches that heavily rely
on username parsing [16, 32] to link users may fail on more di-
versified communities. On the other hand, statistical models (e.g.
SVM [16, 32, 15]) or rule based models [33, 11] constructed with
mere username and attribute analysis are far from being robust to
accurately identify user linkage across online social communities.
Missing Information. Due to privacy considerations, users may
deliberately hide certain pieces of information online. Figure 2 (a)
shows our study on real social media data. At least 80% of users
are missing at least two profile attributes out of the six most popular
ones, and merely 5% of users have all attributes filled up.
Misaligned Data. One main challenge is that user data on different
social platforms could be misaligned in various ways.

• Information Veracity. Users may deliberately provide false
data on selected platforms. For example, many people do
not use their true names, some women would not tell their
true ages, and some males even pretend to be females.
• Platform Difference. User behavior may be divergent and

platform dependent. For example, users might post their
opinions about “life of youth" on Facebook and their politi-
cal views on Twitter. Our study on 5 million users from five

most popular Chinese social platforms and 5 million users
from two most popular English social platforms reveals a
25% to 85% difference in user generated content between
different platforms. Moreover, the user behavior can be rep-
resented by various types of media, e.g., locations, blogs,
tweets, videos and images, which we refer to as heteroge-
neous behavior in this paper. The platform-dependent and
heterogeneous behavior on multiple platforms would lead to
extremely low-quality information matching. (Figure 2 (b)).
• Behavior Asynchrony. Even semantically similar actions of-

ten exhibit significant temporal variance. For example, a user
posts selected pictures from a trip on Facebook in a certain
time period. At a different time, the same or different pic-
tures from the trip may be posted again on Twitter.
• Data Imbalance. There has been observed a huge imbalance

in terms of data volume between a user’s primary social ac-
count and the rest.

1.2 Our Contribution
To address these challenges, we propose HYDRA, a framework

for cross-platform user identity linkage via heterogeneous behavior
modeling. Compared with the record linkage problem long stud-
ied in database community [8, 11, 24], our technical breakthrough
comes from taking advantage of two important features unique to
social data: (I) user behavior trajectory along temporal dimension:
both empirical and social behavior studies (e.g., [23]) demonstrate
that, over a sufficiently long period of time, a user’s social behav-
ior exhibits a surprisingly high level of consistency across different
platforms. (II) user’s core social network structure: the part formed
by those closet to the user, and is called “core structure” for short.
A user’s core structures across different platforms share great simi-
larity and offer a highly discriminative characterization of the user.

Based on (I), we model the behavior similarity among online
users with multi-dimensional similarity vectors with the following
information: a) the relative importance of the user attributes, which
measures how likely two user accounts belong to the same person
when any one of their attributes is identical; b) the statistical diver-
gence of topic distributions, describing the potential inclination of
users over a long period of time; c) the overall degree of matching
between users’ behavior trajectories, capturing the highly corre-
lated actions between user accounts over a certain period of time.
Based on (II), we develop a linkage function learning methodology
by taking full advantage of the agreement of the social structure
level behavior consistency. The key intuition is to propagate the
linkage information based on the linked users and the strong in-
teraction along their social structures. Consequently, the linkage
function can be effectively learned even with partial ground truth
linkage information. In summary, our key contributions are:
1. Heterogeneous Behavior Modeling. We design a new hetero-
geneous behavior model to measure the user behavior similarity
from all aspects of a user’s social data. The proposed framework is
able to robustly deal with missing information and misaligned be-
havior by long-term behavior distribution construction and a multi-
resolution temporal behavior matching paradigm.
2. Structure Consistency Modeling. We propose a novel social
structure modeling method to leverage users’ core social network
structure to identify user linkage. We measure the high order pair-
wise behavior similarity and structure consistency by a graph rep-
resentation. The model is learned to maximize the structure consis-
tency, which is equivalent to a convex objective function minimiza-
tion. By incorporating structure consistency, our model is capable
of identifying user linkage even when ground-truth labeled linkage
information is insufficient.



3. Multi-objective Model Learning. We put forward a multi-
objective optimization (MOO) framework [19] to solve the overall
social identity linkage problem, which jointly optimizes the super-
vised learning on labeled user linkage pairs and the cross-platform
structure consistency maximization. To deal with missing informa-
tion, we further enhance the model into an iterative learning one.
We also provide theoretical proof that our model is a generalization
of the traditional semi-supervised learning, and can be efficiently
solved by convex optimization.
4. Experiments on Large-scale Real Data Sets. We evaluate
HYDRA against existing state-of-the-art approaches on two big
real data sets — I) five popular Chinese social network platforms
and (II) two popular English social network platforms — a total
of 10 million users on seven social media platforms amounting to
more than 10 TB data. Experimental results demonstrate that HY-
DRA significantly outperforms existing algorithms in identifying
true user linkage across different platforms.

Road Map. Section 2 discusses related work. Section 3 formally
defines the social identity linkage problem. Section 4 presents an
overview of our approach. Section 5 presents our heterogeneous
behavior model and Section 6 proposes the multi-objective model
learning. Section 7 presents the experimental results on different
data sets. Finally, Section 8 concludes the paper.

2. RELATED WORK

2.1 User Linkage across Social Media
User linkage was firstly formalized as connecting corresponding

identities across communities in [31] and a web-search-based ap-
proach was proposed to address it. Previous research can be catego-
rized into three types: user-profile-based, user-generated-content-
based and user-behavior-model-based. User-profile-based methods
collect tagging information provided by users [13] or user profiles
from several social networks and then represent user profiles in vec-
tors, of which each dimension corresponds to a profile field (e.g.,
username,profile picture,description,location,occupation, etc.) [18,
22, 27]. Methods in this category suffer from huge effort of user
tagging, different identifiable personal information types from site
to site, and privacy of user profile. User-generated-content-based
methods [16], on the other hand, collect personal identifiable in-
formation from public pages of user-generated content. Yet these
methods still make the assumption of consistent usernames across
social platforms, which is not the case in large-scale social network
platforms. User-behavior-model-based methods [32] analyze be-
havior patterns and build feature models from usernames, language
and writing styles. Unfortunately, previous methods 1) have not
handled the missing information prevalent among usernames, user-
generated content, user behavior and social structures; 2) have not
explored the underlying reasons for the missing information and
its impact on user identity linkage; 3) have not well formalized the
user linkage problem with a solution of a sound theoretical foun-
dation. To the best of our knowledge, our work is the first to link
users across different social media platforms by integrating all the
social data associated with a user in a unified model.

2.2 Authorship Identification across Documents
Authorship identification is a task that identifies the authors by

analyzing their writing and language styles from their correspond-
ing documents. Previous studies on authorship identification can
be categorized into two kinds: content-based and behavior-model-
based. Content-based-methods identify content features across a
large number of documents [7, 5]. Behavior-model-based methods

capture writing-style features [33], or build language models [21]
to identify content authorship. However, different from the docu-
ment setting, social media platforms are characterized by data of
much greater heterogeneity, complicated network structures and a
high degree of missing information, which could easily compro-
mise most authorship identification methods.

2.3 Entity Resolution across Records
User linkage is also in one way or another related to problems

from other research communities including co-reference resolution
in natural language processing [4], inter-media data retrieval [26],
entity matching [28], record linkage in database [8, 11, 24], and
name disambiguation in information retrieval [20, 14], which can
be generalized as entity resolution across different records. In con-
trast to previous studies, we consider the user linkage problem in a
much more challenging setting where we examine multiple features
along time-line with missing and misaligned information across
multiple media platforms.

Also related are previous studies on user identification on a sin-
gle site and de-anonymization in social networks, which have been
well surveyed in [16, 32].

3. PROBLEM DEFINITION
Denote as P the set of all natural persons in real life. For a so-

cial network platform S, denote as CS the set of all usernames each
belonging to a distinct user and φS : CS 7→ P the injective func-
tion mapping each online user of S to a natural person. Our social
identity linkage problem is defined as follows.

DEFINITION 1. Social Identity Linkage (SIL): Given two so-
cial network platforms S and S’, the problem of Social Identity
Linkage (SIL) is to find a function f to decide if any two users
picked from S and S’ respectively correspond to the same natural
person, i.e., f : CS × CS’ 7→ {0, 1} such that for any pair of users
(ui, ui′) ∈ CS × CS’, we have

f(ui, ui′) =

{
1 , if φS(ui) = φS’(ui′)
0 , otherwise

(1)

It is worth noting that the straightforward approach to solve this
problem by examining every user pair without any attribute filter-
ing entails high computational cost. Given an SIL problem instance
of two social network platforms S and S’ withN1 andN2 users re-
spectively, the number of all possible functions f we are to examine
is given by:

min(N1,N2)∑
n=1

N1!N2!

n!(N1 − n)!n!(N2 − n)!
(2)

where N ! =
N∏
k=1

k.

When we try to solve the SIL problem on even more platforms,
the search space size grows exponentially with the number of dif-
ferent platforms. A natural solution is to apply certain filtering to
reduce the number of candidate user pairs. Existing work have ap-
plied heuristic knowledge on the profile information such as partial
username overlap and solved the problem by a set of binary classi-
fication models [16, 32]. However, these methods may work well
only when the ground-truth labels are available for training. More-
over, the heuristics they rely on are not always valid among plat-
forms of different languages and cultures, resulting in low recall
and significant bias.

We classify all user pairs in our data into three kinds: (1) ground-
truth linked pairs; (2) pre-matched pairs by rule-based filtering; and
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the rest are called (3) unlabeled pairs. We call (1) and (2) together
as labeled data. Our solution differs from previous work in the
following two aspects.

1. We consider both labeled and unlabeled data in computing
the linkage function. While the labeled training data plays a
role, it does not work alone. The power of our solution lies in
combining heterogeneous behavior modeling and user core
social network structure, together with labeled data, into a
multi-objective optimization, such that linkage can be identi-
fied even between two users of unlabeled pairs which are not
pre-matched by rule-based filtering.

2. The pre-matched labeled data is generated by our rule-based
filtering, which includes a much more sophisticated set of
measures than existing methods, including partial username
overlapping [16, 32], user attribute matching and user profile
image matching by face recognition techniques[12].

4. FRAMEWORK OVERVIEW
In this paper, we propose HYDRA, which integrates both users’

heterogeneous behavior and their core social network structure into
a unified multi-objective user linkage framework. HYDRA is com-
posed of the following three main steps as illustrated in Figure 3.
Step 1. Behavior Similarity Modeling. We calculate the similar-
ity between two users of a pair for all user pairs via heterogeneous
behavior modeling. Details are discussed in Section 5.
Step 2. Structure Consistency Modeling. We construct the struc-
ture consistency graph on user pairs by considering both the core
network structure of the users and their behavior similarities. De-
tails are discussed in Section 5.
Step 3. Multi-objective Optimization. Based on the previous
two steps, we convert the SIL problem into a two-class classifi-
cation problem and construct multi-objective optimization which
jointly optimizes the prediction accuracy on the labeled user pairs
and multiple structure consistency measurements across different
platforms. Details are discussed in Section 6.

5. HETEROGENEOUS BEHAVIOR MODEL
The key challenges in modeling user behavior across different

social media platforms are (I) the heterogeneity of user social data
and (II) the temporal misalignment of user behavior across plat-
forms. The high heterogeneity of user social data can be appreci-
ated by the following categorization of the data about a user avail-
able on a typical social platform.

1. User Attributes. Included here are all the traditional struc-
tured data about a user, e.g., demographic information, con-
tact information, etc. (Subsection 5.1)

2. User Generated Content (UGC). Included here are the un-
structured data generated by users such as text (reviews, micro-
blogs, etc.), images, videos and so on. Modeling is primarily
targeted at topic (Subsection 5.2) and style (Subsection 5.3).

3. User Behavior Trajectory. User behavior trajectory refers
to all the social behavior of a user exhibited on the platforms
along the time-line, e.g., befriend, follow/unfollow, retweet,
thumb-up/thumb-down, etc. (Subsection 5.4)

To address these two challenges, we propose a behavior model-
ing framework which computes the similarity between two users
by capturing the heterogeneity in their behavior as well as the char-
acteristics of their temporal evolution.

5.1 User Attribute Modeling
Textual Attributes. Common textual attributes in a user pro-

file include name, gender, age, nationality, profession, education,
email account, etc. While user profile information is effective in
distinguishing different users, the relative importance of these at-
tributes could be different, since attributes such as gender and pop-
ular names like “John" are not as discriminative in identifying user
linkage as some others such as email address. Yet, the weights of
the attributes used in the matching can be learned from large train-
ing data by probabilistic modeling.

Specifically, given a set of N labeled training user pairs from
different platforms, the relative importance of the attributes can
be estimated by data counting. For a specific attribute ak, k =
1, ...,MA, we estimate the relative importance score of ak by the
following equation:

mt(k) = PD(k)
PD(k)+ND(k)

, mt(k) = mt(k)+ε
MA∑
k′=1

mt(k′)+MAε
(3)

where PD(k) represents the number of user pairs matched on ak
in the positive labeled set PD , and ND(k) represents the number
of pairs matched on ak in the negative labeled set ND . ε denotes
a small real number used to avoid over-fitting. If ak is absent for
user i or i′, it is denoted as a missing feature.

Visual Attributes. Besides textual attributes, visual attributes
such as face images used in the profile can also help link users.
However, such information could be very noisy as the face images
might not be real, or come with poor illumination and severe oc-
clusion. We design a matching scheme as shown in Figure 4 to
compare two user profile images. In particular, if faces are detected
from both images, the pre-trained classifier is used to determine if
the two faces correspond to the same person. We use the face de-
tector, facial feature extraction and face classifier provided by [12].

5.2 User Topic Modeling
An important feature of social media platform is that in general,

over a sufficiently long period of time, the UGC of a user collec-
tively gives a faithful reflection of the user’s topical interests. Fak-
ing one’s interests all the time defeats the purpose of using a social
network service. Therefore, we propose to model a user’s topical
interests by a long-term user topic model. We first construct a latent
topic model using Latent Dirichlet Allocation on every textual mes-
sage, the output of which is a probability distribution over the topic
space. We then calculate the multi-scale temporal topic distribution
within a given temporal range for a user using the multi-scale tem-
poral division similar to [17]. As shown in Figure 5, first, the time
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Figure 5: Illustration of user topic modeling. First, the tempo-
ral axis is divided into a series of time buckets with predefined
scales (e.g., 16 days or 8 days). Then all the distribution vectors
within a time bucket are aggregated into one topic distribution.
After that, the corresponding similarity between the topic dis-
tributions in each time bucket can be constructed. Finally, the
overall similarity between user i and i′ is calculated by averag-
ing over the similarities of all the time buckets.

axis is divided into multiple time buckets with different scales (we
use 1, 2, 4, 8, 16 and 32 days in this paper to guarantee the optimal
performance), then all the topic distribution vectors within each
bucket are aggregated into a single distribution, which represents
the topic distribution pattern within this time bucket. In Figure 5,
Ct denotes the number of time buckets when the scale is selected
to be 16. Correspondingly, the number of time buckets will be 2Ct
and 4Ct respectively for 8 days and 4 days. Based on this, the simi-
larity of topic evolution of a specific scale between two users can be
simply calculated by averaging over the similarities of all temporal
intervals, where each similarity can be measured by the chi-square
kernel or histogram intersection kernel [17]. Finally, all the simi-
larities calculated using different time scales are concatenated into
a similarity vector.

The proposed long-term user topic model captures the behavior
similarity from pair-wise topic correlation at a series of coarse-to-
fine resolutions. In this paper, we analyze the following distribution
types using this proposed strategy:

Content Genre Distribution. The content genre measures the
relevance between the textual messages and popular topics on so-
cial media sites, e.g., sports/ music/ entertainment/ society/ history/
science/ art/ high-tech/ commercial/ politics/ geography/ traveling/
fashions/ digital game/ industry/ luxury/ violence.

Sentiment Pattern Distribution. According to studies in sen-
timent mining [10], we can model sentiment patterns using a two-
dimensional space (arousal-valence) [10] or roughly group all emo-
tions into several categories, e.g., happy/ fear /sad /neutral. It can be
done by extracting representative emotional key words in the tex-
tual content and learning a sentiment vocabulary. After that, each

textual message can be represented by a probabilistic distribution
on the sentiment vocabulary. We use the scheme in this section
to compute a multi-scale similarity measure on sentiment patterns
between two users.

5.3 User Style Modeling
The language style of a user including personalized wording and

emoticon adoption is usually well reflected in comments, tweets
and re-tweets (e.g. function words extraction [16]), which is bene-
ficial to distinguishing between different users. To model a user’s
characteristic style, we extract the most unique words of each user
by a simple term frequency analysis on the whole database. Note
that since these unique words may also be inaccurate, we select the
k (k = 1, 3, 5) most unique ones after removing stop words from
the least-used terms of the whole user data repository. Such choices
of k have been adopted widely in related studies [29].

For user pairs, we can measure Slea (the similarity on the unique
word pattern) by word matching (the words should be converted
into a uniform format, such as lower-case and singular form):

Slea =
#matched_words

k
(4)

5.4 Multi-resolution Behavior Modeling
User behavior trajectory is a unique feature of social media data

laying out a user’s social behavior along the timeline. In this paper,
we are mainly concerned with the following patterns:

Mobile Trajectory and Location Information. Social media
sites with location-based-service provide strong support and incen-
tive for users to record and share their locations. Generally, users
with similar trajectory patterns and no conflicting instances over an
extended period of time are likely to be the same person in real life.

Multimedia Content Generation and Sharing. Users may post
similar multimedia content on the web. For example, they may
upload or share exactly the same image/ video/music. However,
If a high level of synchrony is observed over an extended period
of time between two user accounts from different platforms, it is
reasonable to hypothesize that these two users correspond to the
same person.

A natural solution is to construct a set of pattern-matching sen-
sors, one for each modality (location, visual, textual and audio),
and use them to collectively evaluate user similarity. However, as
people are not always using multiple social platforms simultane-
ously, a significant amount of information could be missing in such
a task. We therefore propose a multi-resolution temporal behavior
model to perform pattern matching with the ubiquitous presence of
missing information.

As shown in Figure 6, given two users i and i′, we first construct
a set of pattern-matching sensors with different temporal searching
ranges. If matched patterns (denoted by pentagons) are identified
within the selected range of a pattern-matching sensor, a positive
stimuli signal would be generated. After we have collected all the
stimuli signals along a certain time period, we calculate the lq-norm
non-linear stimulation function as follows:

Smr =
1

N

(
N∑
i=1

(smr(i))
q

) 1
q

, q ≥ 1 (5)

Next we fit a sigmoid function to transform Smr into a new stim-
ulated signal Ŝmr ∈ [0, 1]. We repeat such processing with differ-
ent pattern-matching sensors. Finally, a multi-dimensional pattern-
matching feature is formed between user i and i′, with the number
of dimensions the same as the number of pattern-matching sensors.
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Figure 6: Multi-resolution temporal behavior modeling. A set
of pattern-matching sensors are designed. For two users, sen-
sors are used to detect the corresponding type of matched be-
havior within certain temporal scales. When all the matched
behaviors have been detected by sensors, an lq norm pooling
and nonlinear sigmoid mapping then aggregates all matched
behavior signals into a multi-resolution similarity vector.

The choice of lq-norm is inspired by bio-stimulation. It has
been found that the maximum stimulation from a pooled signal
set plays a significant role for perception. When q approaches
infinity, the signal selection tends to better approximate the max-
imum stimulation (i.e., max-pooling). Since the pattern-matching
would be performed under different temporal scales, we can extract
a multi-resolution temporal matching pattern between two users on
the sparsely and asynchronously occurring patterns. The sigmoid
function Ŝmr = 1

1+e−λSmr
is a typical nonlinear transformation

function, where the parameter λ can be tuned on the specific val-
idation dataset. The pattern-matching sensors we construct in this
paper are the following:

Location Matching Sensor. A location matching sensor calcu-
lates location adjacency by a Gaussian kernel on geo-coordinates
of user i and user i′ within the predefined spatial range [17].

Near Duplicate Multimedia Sensor. A near duplicated image
sensor or down-sampling method [9] is constructed for near dupli-
cate multimedia sensor.

6. MULTI-OBJECTIVE MODEL LEARNING
Based on the heterogeneous behavior modeling from user at-

tributes, UGC and behavior trajectories as explained in Section 5,
we propose to learn the linkage function via a multi-objective opti-
mization framework.

Supervised Learning. Some social media platforms allow users
to log in to different platforms with one account. For example, we
can use a Facebook account to log in to Twitter. We collect such
user-provided linkage information as the ground-truth label infor-
mation. We notice that the labeled training pairs collected by our
paradigm is much cleaner (precision over 95%) than the approach
in [16] (precision around 75%) where the labeled training pairs are
automatically generated based on the uniqueness (n-gram proba-
bility) of user names. We also collect label information by user
attribute matching as the pre-linked label information. By utilizing
the collected label information, we minimize the structured loss
(SVM objective function) on the labeled training data.
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Figure 7: Structure consistency maximization. Given two plat-
forms, we measure both behavior similarity and structure con-
sistency among their most frequently communicating friends
(elliptical rings), especially those with ground truth linkage in-
formation (linked by black arrows). The arrows within each
platform indicate how the linkage information can be propa-
gated along the social structure of each user. Consequently, the
true user linkage (red dashed arrows) are correctly identified
while the falsely linked user pairs (green dashed arrows) are
filtered out.

Structure Consistency Modeling. We optimize the linkage func-
tion by maximizing both behavior similarity and social structure
consistency between platforms. By constructing a positive semidef-
inite second-order structure consistency matrix among candidate
linked user pairs, our model is able to consider the global struc-
ture between platforms to identify the true linkages and filter out
those false ones, as illustrated in Figure 7. Most importantly, it
compensates for the shortage of ground truth linkage information
for user-level supervised learning by propagating the linkage infor-
mation along the core social structure (i.e., friends with the most
frequent interactions) of each individual user.

Multi-objective Optimization. We learn the linkage function
by jointly minimizing the two objective functions via a unified
multi-objective optimization framework. We prove that our model
is a generalized semi-supervised learning approach by leveraging
both ground truth linkage information and social structure.

6.1 Decision Model on Pairwise Similarity
Given a set Pl of Nl user pairs with ground-truth labels repre-

sented as: {(xii′ , yii′)}, where xii′ denotes the D-dimensional
pair-wise similarity vector between user i and user i′ calculated by
the above behavior modeling methods, and yii′ ∈ {1,−1} denotes
the label indicating whether the two users correspond to the same
natural person. We denote the index set of user pairs with labels as
Pl. The decision model f to predict if a pair of users belong to the
same natural person is represented as:

f(x) = wTx+ b (6)

where w and b are the model parameters that can be learned by
minimizing the following objective function:

FD(w) = γL
2
||w||2 +

∑
ξii′

s.t. yii′(w
Txii′ + b) ≥ 1− ξii′

(7)

where ξii′ denotes the slack variables that allow the model for non-
linearly separable cases and b denotes the bias learned from the
data. The optimization of objective function FD is the standard
structured risk minimization of binary classification model.

6.2 Structure Consistency Modeling
The supervised learning relies heavily on a sufficient amount of

ground truth linkage information. On the other hand, users’ social



structure information is an important complementary piece of in-
formation if its power in inferring user linkage is fully unleashed,
as illustrated by the example in Figure 7. IfAlice,Bob andHenry
are friends in real life, there would most likely be a high level of
interaction frequency and behavior similarity among their corre-
sponding accounts on the same platform. Such a consistent struc-
ture is indicated by the elliptic rings in Figure 7. A main strongly-
connected cluster formed by correctly linked users (the dashed red
arrows in Figure 7) would generate agreement links (edges with
positive weights) among one another. These links are formed when
behaviors between pairs of linked users agree at the level of social
structure (their frequently interacting friends). Second, incorrect
user linkage outside the cluster or weakly connected to it do not
form strongly connected clusters due to the slim chance of estab-
lishing agreement links coincidentally (the dashed green arrows in
Figure 7). When the ground truth linkage between the accounts
of Alice and Henry is not available, we can still reliably link
their accounts across the platforms based on the linked accounts
of Bob together with the strong interaction observed from their so-
cial structures. Such linkage prediction can be further propagated
to other frequently interacting friends of Alice and Henry. Con-
sequently, the linkage can still be constructed and propagated along
the social structure even when the ground truth linkage information
is not available for every training user pairs.

To model the structure consistency, first, a set of candidate match-
ings are generated by measuring the behavior similarity between
users i and i′ from platform S and S’, respectively, given two plat-
forms S and S’ containing NS and NS’ users. For each candidate
matching a = (i, i′), there is an associated affinity score that mea-
sures the similarity between user i and user i′. For each pair of
assignments (a, b), where a = (i, i′) and b = (j, j′), there is an
affinity score that measures how compatible the users (i, j) are with
the users (i′, j′). Given a list of candidate user pairs Pl

⋃
Pu, we

store the affinities on every candidate a ∈ Pl
⋃

Pu and every pair
of candidate a, b ∈ Pl

⋃
Pu in M, such that (I) M(a, a) is the

affinity score measuring the individual-level similarity for candi-
date matching user pair a = (i, i′) based on the cross-platform
behavior similarity. User pairs that are unlikely to be linked due to
significant discrepancy in behavior patterns will be filtered out; (II)
M(a, b) is the affinity score measuring the similarity between user
pairs a = (i′, j′) and b = (i, j) based on the pairwise behavior
similarity as well as social structure consistency. M(a, b) = 0 if
the inconsistency between (i, j) and (i′, j′) is too large. We assume
M(a, b) = M(b, a) without loss of generality.

We represent the agreement cluster C∗ by an indicator vector
y, such that y(a) = 1 if a ∈ C∗ and zero otherwise. The cor-
respondent problem is reduced to find a cluster C∗ of candidate
user pairs (i, i′) that maximizes the structure consistency FS(y) =∑
a,b∈C∗M(a, b) = yTMy. We relax both the mapping con-

straints and the integral constraints on y, such that its elements can
take real values in [0, 1]. By the Raleigh’s ratio theorem, the solu-
tion that maximizes the inter-cluster score yTMy is the principal
eigenvector of M.

By defining the relation between y and w as y(ii′) = wTxii′ ,
maximizing FS(y) is equivalent to the following problem:

min
w

FS(w)=wTXT (D−M)Xw

s.t. ||w||2 ≤ s,D(a, a) =
∑
bM(a, b)

(8)

where s is a predefined real positive number which is used to pre-
vent the norm of w from being arbitrarily large.

For users from C social platforms, we can decompose the prob-
lem into a set of one-to-one SIL problems with respect to Mcc′ ,
where c ≤ c′, c = 1, ..., C − 1 and c′ = 2, ..., C, without much
effort. Then, the objective function FS(w) can be extended to an

objective function vector FS(w) = [F cc
′

S (w)]. The structure con-
sistency matrix Mcc′ is constructed as follows. First, for each can-
didate user pair a = (i, i′), their behavior similarity is calculated

by Mcc′(a, a) = exp
(
−||xi−xi′ ||

2

σ2
1

)
, where σ1 denotes the band-

width to control the sensitivity on behavior similarity. Second, for
candidate user pair a = (i, i′) and b = (j, j′), their structure con-
sistency is calculated by:

Mcc′(a, b) = exp

(
−(||xi−xi′ ||

2+||xj−xj′ ||
2)

2σ2
1

)
·(

1− (dij−di′j′ )
2

σ2
2

) (9)

where σ2 denotes the bandwidth to control the structure sensitivity
of user social relations. dij denotes the n-hop distance measuring
the closeness of two users. Specifically, we define kij as the num-
ber of intermediate users from user i to j, and then their distance is
dij = (kij + 1)2.

It is not hard to prove that matrix Mcc′ is positive-definite, and
consequently, matrix Θcc′ = Dcc′ −Mcc′ is positive-semidefinite
by spectral graph theory. Details are omitted due to space limit.

6.3 Multi-objective Optimization
Based on the two above-mentioned objective functions (FS and

FD), given C social platforms and their users, we formulate the
SIL problem as a multi-objective optimization problem [19]:

min
w

F (w) = [FD(w),FS(w)]

s.t. cii′(w
Txii′ + b) ≥ 1− ξii′ , i ∈ S, i′ ∈ S’, ||w||2 ≤ s

(10)
where F (w) denotes a (C − 1)C/2 + 1 dimensional objective
function vector.

A feasible solution does not typically exist that minimizes all
objective functions simultaneously in such a problem. Note that
since a penalty on the squared norm of w has been included in FD ,
constraint ||w||2 ≤ s can be omitted. Therefore, we define a utility
function to aggregate all the objective functions in the form of a
generalized weighted exponential sum as:

U =
(C−1)C/2+1∑

k=1

wk[Fk(w)]p, ∀k, Fk(w) > 0, wk ≥ 0 (11)

where the weight parameter wk is a preference parameter. By min-
imizing utility function U , we seek the Pareto optimal solutions
[19], which cannot be improved for any of the objectives without
degrading at least one of the other objectives.

PROPOSITION 1. The solution of the weighted exponential sum
utility function U is sufficient and neccessary for Pareto optimality.

PROOF. See Athan et. al. [1] and Yu [30] for details.

When p = 1, this utility function is similar to traditional semi-
supervised learning models with a weighted combination of empir-
ical loss, the penalty on w and a graph Laplacian regularizer [2].
When p > 1, our model can be viewed as minimizing the distance
function between the solution point and Utopia points [1] in the
multi-dimensional objective function space.

Dual Problem. By introducing a nonlinear mapping φ(·) to a
higher (possibly infinite) dimensional Hilbert space H. w and b
define a linear regression in that space. According to the Repre-
senter Theorem [25], the decision function w can be expressed by
the dual problem as the expansion over labeled user pairs and un-
labeled candidate user pairs w =

∑
ii′∈Pl

⋃
Pu
αii′φ(xii′). Then, the



decision function is given by:

f(xt) =
∑

ii′∈Pl
⋃

Pu
αii′K(xii′ , xt) + b (12)

where we use K to denote the kernel matrix formed by kernel func-
tions K (xii′ , xjj′) = 〈φ (xii′) , φ (xjj′)〉. Take p = 1 as the il-
lustrative example, by setting w(1) = 1 and w(k) = γM , k =
2, ..., (C−1)C/2+1, we plug Eqn. 12 into Eqn. 11 and introduce
the Lagrangian multipliers, and obtain the following regularized
utility function to be minimized:

min
α,β

{
1
2
αT
(

2γLK + 2γM
|Pl

⋃
Pu|2

K(D−M)K
)
α

−αTKJYβ + βT1
} (13)

where β denotes an Nl-dimensional Lagrangian parameter vector,
J = [I,0] is an Nl × |Pl

⋃
Pu| with I as the Nl × Nl identity

matrix (the first Nl pairs are labeled) and Y = diag{y1, ..., yNl}.
M denotes the cross-platform structure consistency matrix:

M =


M12 0 ... 0

0 ... ... ...

... ... Mcc′ 0
0 ... 0 ...

 (14)

where c < c′, c = 1, ..., C − 1, c′ = 2, ..., C. Similarly, D is the
diagonal matrix. We obtain the solution by taking derivatives w.r.t.
α:

α =
(

2γLI + 2 γM
|Pl

⋃
Pu|2

(D−M)K
)−1

JTYβ∗ (15)

Again, substituting Eqn. 15 into the dual function Eqn. 14, we
obtain the following smooth quadratic programming problem to be
solved:

β∗= max
β

{
βT1− 1

2
βTQβ

}
s.t.

∑
ii′∈l

βii′yii′ = 0, 0 ≤ βii′ ≤ 1
|Pl|

(16)

where:

Q = YJK

(
2γLI + 2

γM
|Pl
⋃

Pu|2
(D−M)

)−1

JTY (17)

The derivation above shows that the entire user identity linkage
problem can be well cast into a standard convex programming prob-
lem that can be solved by many off-the-shelf optimization pack-
ages. Although we only introduce the model construction for p =
1, similar derivation can also be readily performed for p > 1. The
resulting objective function is also convex due to the convexity of
the individual objective functions and the convexity of the utility
function U . Moreover, setting higher values for p would increase
the effectiveness of the method in providing the complete Pareto
optimal set [1, 19].

Dealing with Missing Information. When constructing the pair-
wise similarity between users, it is not uncommon to observe a sig-
nificant amount of information missing among real-life social plat-
forms due to: (I) intrinsically heterogeneous information sources,
(II) unpredictable user log-in and log-out, and (III) privacy con-
cerns. Previous approaches [16, 32] construct discriminate models
where a missing feature is automatically filled with zeros based on
the assumption that the values do exist but are not observed, which,
unfortunately, is not the case for our problem. To effectively handle
missing information, we fill the missing information by making use
of the core social network structure. For each user pair, we denote
their top-3 interacting friends as i1, i2, i3, and i′1, i′2, i′3. The
average behavior similarity and the standard deviation of the social
connection of user i and i′ can be calculated as:

s(i, i′) =

3∑
p=1

3∑
q=1

s(ip,i
′
q)

9

(18)

where s(ip, jq) denotes the similarity of any particular similarity
measure as described in previous sections. If the information of
their friends are still missing, we automatically fill the correspond-
ing dimension as 0.

Due to the extremely large data size, we adopt the distributed
convex optimization method [3] to optimize the objective func-
tion distributively on several servers in parallel with a carefully de-
signed model synchronization strategy. In summary, the sketch of
the optimization process is described in Algorithm 1.

6.4 Model Analysis
We learn the linkage function via optimizing two kinds of objec-

tive functions, i.e., the supervised learning using the reliable ground
truth, and the structure consistency maximization by modeling the
core social network behavior consistency. They are complemen-
tary to each other by jointly measuring user behavior similarity at
both individual and group levels. When the ground truth informa-
tion is insufficient (e.g., less than 10% of the pairs are assigned
with labels), the model will be more dependent on the core social
network structure. The linked user pairs will be served as “an-
chor" pairs from which the linkage information can be propagated
along the core social network. However, the learned model tends
to be over-smooth (under-fitting) by over-emphasizing the struc-
ture consistency. When the ground truth information is sufficient
(e.g., more than 80% of the training pairs are assigned with labels),
the model can still be endowed with greater generalization power
by the decision boundary smoothed towards better group level be-
havior consistency. The lp-norm in the utility function determines
how the two kinds of objective functions interact with each other,
such that a larger p imposes greater uniqueness on the dominant
objective function. Correspondingly, model over-fitting is likely to
take place. Therefore, a better trade-off can be steadily achieved
by appropriately tuning ωk and p on different behavior data record
repositories from different communities.

Algorithm 1 The HYDRA algorithm
Input: Data: X,Y, Parameters: γL, γM , p, σS , σD
Output: α, β
1: Select the candidate pair set Pu by comparing the pair-wise

similarity.
2: Construct structure consistency graph M.
3: while the stopping criterion is not reached do
4: Find optimal βt by solving (Eqn. 16).
5: end while
6: Obtain αt by Eqn. 15.

7. EXPERIMENTAL EVALUATION

7.1 Experiment Setup
Real Data. We use two publicly available large-scale real data sets
for our experiments. The first one, referred to as “Chinese”, in-
cludes five popular social networks services which were originated
from China and have since gained global popularity.

1. Sina Weibo: (www.weibo.com) A hybrid of Twitter and Face-
book with a user base of 500 million users and 47 million
daily active users by December 2012.

2. Tecent Weibo: (t.qq.com) Another twitter-like micro-blogging
service with 500 million users and over 100 million daily ac-
tive users.



3. Renren: (www.renren.com) A social network service dubbed
as the Facebook of China with 162 million registered users.

4. Douban: (www.douban.com) A social network service for
people to share content on topics of movies, books, music,
and other off-line events in Chinese cities, with over 100 mil-
lion monthly unique visitors.

5. Kaixin: (www.kaixin001.com) A social network service with
160 million registered users.

We use 5 million Chinese users in this data set, each with ac-
counts on every one of the five platforms. The time span of this
data set is from June 2012 to June 2013.

The second one, referred to as “English”, includes two globally
popular social networks: (1) Twitter (twitter.com); and (2) Face-
book (www.facebook.com). We use 5 million Chinese users in this
data set each with accounts on both Twitter and Facebook. The
time span of this data set is from June 2012 to June 2013.

For the social networks above, we collect user profiles (e.g. gen-
der, city, and favorites), social content (e.g. tweets, posts, and sta-
tus), social connections (e.g., friendship, comments, and repost or
retweet contents), and timeline information (e.g., time index for
each behavior).

Our ground truth of the linkage of each user across all the plat-
forms are provided by a third-party data provider who has access to
each Chinese user’s national ID number, IP address and home ad-
dress used by the user to register all accounts on different websites,
all of which collectively serve as the most reliable data to uniquely
identify a natural person and link all the different accounts. Note
that users in the English data set are all Chinese users of our choice.

In the following experiment result, x-axis is the decreasing ranked
result (user is by degree, and community is by size). The ratio be-
tween the labeled data to unlabeled data is set to 1/5, but we have
also tested other ratio settings in our experiment.
Experiment Environment. Our experiments and latency observa-
tions are conducted on 5 standard servers (Linux), with Intel (R)
Xeon (R) Processor E7-4870 (30M Cache, 2.40 GHz, 6.40 GT/s
Intel (R) QPI, 10 cores), 64 GB main memory and 10,000RPM
server-level hard disks.
Compared Methods. We compare both our methods with the fol-
lowing state-of-the-art approaches and our own baselines.

(I) MOBIUS: a behavior-modeling approach to link users across
social media platforms [32].

(II) Alias-Disamb: an unsupervised data-driven approach based
on username analysis to link users across platforms [16].

(III) SMaSh: a record linkage approach finding linkage points
over Web data [11].

(IV) SVM-B: binary prediction on user pairs using support vec-
tor machines on the proposed similarity calculation schemes.

(V) HYDRA-Z: a degenerate version of our model HYDRA where
all the missing features are filled with zeros.

(VI) HYDRA-M: our model HYDRA with missing features filled
with the core social network friend structure described in Section
7. Without specification, we call HYDRA-M as HYDRA.
Parameter Settings. To achieve better performance of all the ap-
proaches, a validation set with 5 million user pairs and their ground
truth labels have been used.

For the pair-wise similarity calculation in this paper, the parame-
ters (e.g., ε for user profiling, q and λ for multi-resolution temporal
similarity modeling) are tuned by a grid search procedure to maxi-
mize the performance of a linear SVM on the validation set. Then
the optimized multi-dimensional similarity xii′ are used for model
construction of (IV), (V) and (VI).

For both HYDRA-Z and HYDRA-M, we need to tune the model
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Figure 8: Performance curve with various settings of γM and
γT under varied p.
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(d) Recall in English

Figure 9: Performance w.r.t. #labeled pairs.

parameters γL, γM , p, σS and σD . We construct the models on the
training data and conduct parameter tuning on the validation set. In
the following sections, we will illustrate the functional properties
with respect to different model parameter settings.
Evaluation Metrics. In our experiments, we use precision and
recall to evaluate the effectiveness, and the total execution time (at
different scales) to evaluate the efficiency. Precision is defined as
the fraction of the user pairs in the returned result that are correctly
linked. Recall is defined as the fraction of the actual linked user
pairs that are contained in the returned result.

The parameters of all the kernels for HYDRA are tuned strictly
according to the methods described in the previous sections.

7.2 Effectiveness Evaluation
Performance w.r.t. Varied γM and γL. We compare the per-
formance of our approaches with different settings of γM and γL
under p = 1, 2, 3, 4, and show the performance curves in Figure
8. From Section 6 we see that γM and γL determine the relative
importance of the problems in MOO framework from a decision
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Figure 10: The precision and recall curve w.r.t. different p.
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(d) Recall in English

Figure 11: Performance w.r.t. #unlabeled pairs.

maker’s perspective, while p determines how the learned model
approximates the Utopia solution, thus determining the intrinsic
structure of the utility function. However, for real data, a decision
maker’s preference does not necessarily give the best performance,
as can be seen from Figure 8. The results show that different set-
tings of p lead to different optimal settings of γM and γL.
Performance w.r.t. Varied p. Figure 10 shows our performance
with p varied from p = 1 to p = 10 and the optimal setting of
γM and γL. Although increasing p will help obtain the complete
Pareto optimal solution, it does not necessarily correspond to the
optimal solution of our SIL problem. In fact, imposing larger p
leads to heavier preference on objective functions with larger val-
ues, leading inevitably to model over-fitting. We see from Figure
10 that both precision and recall reach optimum with an appropri-
ate setting of p (p = 6 and p = 5 for best precision and recall,
respectively).
Performance w.r.t. Varied Numbers of Labeled Pairs. Fixing
the level of structure information, we vary the number of labeled
user pairs from one million to five million users. The experiment
results are reported in Figure 9. Note that, although the perfor-
mance of all five methods shows improvement along with the in-
creasing number of labeled pairs, the improvement of HYDRA’s
is the most significant and exhibits noticeably greater acceleration
compared to the baseline methods. Another interesting observation
is that the performance on English platforms are better than that on
Chinese ones, which is also true for Figure 11. Our interpretation of
it goes as follows. First, the complexity of the SIL problem grows
with the number of platforms involved — we used five Chinese
platforms and only two for English platforms. Second, the social
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Figure 12: Performance with #social communities.

structure and user behavior on Chinese platforms are characterized
with greater complexity and a higher level of temporal dynamics
than those on English platforms. Taking Twitter and Sina Weibo
for example. In comparison, Sina Weibo has much more retweets
and a greater diffusion speed for retweet than Twitter, which means
the information diffusion in Sina Weibo is much faster than in Twit-
ter. We also find out that Sina Weibo contains much richer and
more dynamic information than Twitter, presenting a much more
challenging task for the SIL problem. Note that most users in Sina
Weibo have much more followers and followees than those in Twit-
ter. Consequently, the much more complicated social structure con-
tributes to the greater challenge for the SIL problem on Chinese
platforms.
Performance w.r.t. Varied Structure Information Levels. Fix-
ing the number of labeled user pairs, we vary the numbers of user
pairs with no ground truth labels, and evaluate the linkage preci-
sion. The results are illustrated in Figure 11. Compared against
Figure 9, we notice that the performance of baseline methods with
unlabeled data is much worse than the performance with labeled
data in Figure 9. But our HYDRA survives the unlabeled data setup
and performs much better than the baseline methods. In Figure 9
and Figure 11, HYDRA not only performs much better (higher pre-
cision and recall) than the baseline methods, but also shows better
performance along with the increasing number of users.
Performance w.r.t. Varied Numbers of Social Communities. We
evaluate how the structure information from other social communi-
ties [6] could help enhance the model generalization power. Specif-
ically, given the top five largest overlapping communities A, B, C,
D, E with labeled training pairs between A and B. To judge whether
a user pair from CA × CB corresponds to the same person, we in-
crementally incorporate structure information of training pairs from
CA×CC ,CA×CD ,CA×CE ,CB×CC ,CB×CD andCB×CE
for model training, and report the results on the test set of user pairs
from CA ×CB in Figure 12. An interesting observation is that so-
cial community structure has much greater impact on the results for
Chinese platforms than those for English. It may due to the more
complicated social community structure and social behaviors. But
as we notice in Figure 12, social community structure indeed help
HYDRA achieve better results than baseline methods.
Performance w.r.t. Varied Social Platforms. We study SIL across
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Figure 13: Performance on various social platforms.
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Figure 14: Efficiency evaluation.

culturally different social platforms, that is, between Chinese plat-
forms and English platforms. In this experiment, we use the whole
data set with all seven different social networks. The results are
reported in Figure 13. Compared with the previous results, there is
an obvious performance drop (affected by different writing styles
in Chinese and English, and social friends), but HYDRA performs
even better than the baseline methods, and has better performance
improvement with the increasing number of users. This shows that
heterogeneous behavior model demonstrates better fitting to on-
line social behaviors and social structure modeling helps to capture
more linkable information.

Based on effectiveness evaluation by varying (I) parameter set-
tings, (II) numbers of labeled data pairs, (III) structure information
levels and (IV) numbers of social communities, we conclude that
HYDRA significantly outperforms the baseline methods and dis-
plays good scalability with the increasing amount of data, for both
Chinese and English platforms.

7.3 Efficiency Evaluation
We use the total execution time at different scales to evaluate

the efficiency. From the results reported in Figure 14, HYDRA
consumes less time than the baseline methods (except SVM-B and
SMaSh) on the same scaling-up number of users, for both Chi-
nese and English platforms. Since HYDRA solves a convex opti-
mization problem where a unique global optimal solution can be
achieved. It is interesting that the runtime cost of HYDRA in-
creases at a slower speed than the baseline methods. Along with
the scaling-up number of users, the runtime of HYDRA displays
a converging tendency, which is a desirable feature for handling
large-scale data sets. The explanation for this favorable charac-
teristics lies in the social structure we incorporate into the HYDRA
model — for such a five-million-user social network, when we have
accumulated around three million users and their one-hop friends,
the social structure is almost well-constructed. Then the resulting
utility function would contain a rather sparse structure consistency
matrix M which is easy to solve with many accelerating techniques
(e.g., accelerated coordinate descent method). For Alias-Disamb
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Figure 15: Performance with missing data.

[16], it automatically generates a large number of training pairs by
analyzing the uniqueness of the usernames, where most of the gen-
erated label information may be incorrect, resulting in an extremely
large quadratic programming problem and extremely slow conver-
gence rate. SVM-B corresponds to one of the objective functions
in our MOO learning framework, and it therefore consumes less
time for model construction. SMaSh employs a totally different
paradigm for record linkage. As a result, the property of its effi-
ciency behavior is quite different from other discriminative-model-
based approaches for SIL. In conclusion, HYDRA is capable of
handling large-scale data sets.

7.4 Sensitivity Evaluation
Sensitivity evaluation is to test HYDRA-M and HYDRA-Z under

varied missing information settings (from varied number of users).
According to the results in Figure 15, for both Chinese and En-

glish platforms, HYDRA-M outperforms HYDRA-Z although both
achieve high precision and recall. The results clearly demonstrate
the superiority of HYDRA-M (HYDRA) in handling missing infor-
mation without compromising performance.

7.5 Discussion
The data sizes in this paper are prohibitively large for a single PC

or server. Despite that we deal with millions of user records when
optimizing the convex problem in Eqn. 16, the problem can still be
handled efficiently by several servers for the following reasons.

Firstly, their behavior information are extremely sparse. For ex-
ample, the total amount of non-missing or non-zero features on the
data of English communities are no more that 4%, and the amount
of available similarities between users are no more than 2%. Even
though some missing values can be filled using the core social
structure, the amount of available similarities are still no more than
3%. Similarly, the available similarities are about 2% on the data
of Chinese communities. Besides, the structure consistency matrix
M is even more sparse, which typically contains less than 1% non-
zero elements for both English and Chinese communities. Such
data sparsity allows efficient data storage and successful execution
of our learning algorithm with 5 high-end servers in our experi-
ments.

Moreover, we learn the model by a distributed optimization method
[3] which optimizes the linkage function in parallel on several servers
with a carefully designed synchronization strategy. The core idea
of the distributed optimization is that the overall objective function
can be optimized towards the optimal solution via the optimiza-
tion of a series of sub-problems on different parts of the data stored
distributively across different servers. Meanwhile, our model uses
support vector representation, i.e., α and β, where at least 90% of
the dimensions in β are zeros on a million-scale data. For each step
of the model optimization, we perform a coefficient space shrink-
ing process to actively identify the non-zero dimensions in β with



a simple gradient thresholding technique. Consequently, the corre-
sponding zero entries in β in all the matrices (e.g., M and K) can
be excluded from the memory when optimizing βt. Finally, we fur-
ther improve the efficiency of the model learning by using βt as a
warm start to optimize βt+1.

8. CONCLUSION
In this paper, we link up user accounts of the same natural per-

son across different social network platforms. We propose a frame-
work, HYDRA, a multi-objective learning framework incorporat-
ing heterogeneous behavior modelingvand core social network struc-
ture. We evaluate HYDRA against the state-of-the-art solutions on
two real data sets — five popular Chinese social networks and two
popular English social networks, a total of 10 million users and
more than 10 tera-bytes of data. Experimental results demonstrate
that HYDRA outperforms existing algorithms in identifying true
user linkage across different platforms.
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