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ABSTRACT

Despite the wealth of research on frequent graph pattern mining,
how to efficiently mine the complete set of those with constraints
still poses a huge challenge to the existing algorithms mainly due to
the inherent bottleneck in the mining paradigm. In essence, mining
requests with explicitly-specified constraints cannot be handled in
a way that is direct and precise. In this paper, we propose a direct
mining framework to solve the problem and illustrate our ideas in
the context of a particular type of constrained frequent patterns —
the “skinny” patterns, which are graph patterns with a long back-
bone from which short twigs branch out. These patterns, which we
formally define as [-long J-skinny patterns, are able to reveal in-
sightful spatial and temporal trajectory patterns in mobile data min-
ing, information diffusion, adoption propagation, and many others.

Based on the key concept of a canonical diameter, we develop
SkinnyMine, an efficient algorithm to mine all the {-long §-skinny
patterns guaranteeing both the completeness of our mining result
as well as the unique generation of each target pattern. We also
present a general direct mining framework together with two prop-
erties of reducibility and continuity for qualified constraints. Our
experiments on both synthetic and real data demonstrate the effec-
tiveness and scalability of our approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-

ing; 1.2.8 [Problem Solving, Control Methods, and Search]: Graph

and tree search strategies

Keywords

Direct mining, frequent graph pattern mining, constrained pattern
mining, skinny pattern

1. INTRODUCTION

The problem of mining frequent graph patterns is fundamental
with many important applications including graph indexing [24,
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25], graph clustering and classification [3], and graph query pro-
cessing [2]. A wealth of mining algorithms have been proposed
along the years [1, 9, 11, 12, 17, 20, 23], among which many of
them handle various constraints on top of the frequency require-
ment [26]. However, the constrained graph pattern mining problem
so far still poses a huge challenge to the existing algorithms mainly
due to the inherent bottleneck in the mining paradigm. In essence,
mining requests with explicitly-specified constraints cannot be han-
dled in a way that is direct and precise. In this paper, we propose
a direct mining framework to solve the problem and illustrate our
ideas with a particular type of constrained frequent patterns — the
“skinny” patterns. Recently, the importance of these skinny pat-
terns has been increasingly recognized in heterogenous information
network analysis [19] and social network studies.

A “skinny” pattern, formally called a [-long §-skinny pattern, is
essentially a graph pattern with a long backbone of length ! from
which short twigs no longer than § branch out. It has found im-
portant applications for the descriptive power of its long backbone
to represent spatial and temporal trajectories in heterogeneous in-
formation networks, and of the short twigs the various kinds of
associated information, as illustrated in the following application
examples.

Mobile data mining. In mobile applications with location based
services and user-generated trajectory data and other content, e.g.,
foursquare and Instagram, skinny patterns can capture popular trav-
eling routes and patterns (the backbone) together with the associat-
ed attributes/entities of interest (the twigs), e.g., nearby businesses,
topics of user-generated-content, activities and so on. These pat-
terns would offer useful knowledge for tasks such as recommenda-
tion, scheduling, clustering, etc.

Information diffusion analysis in social networks. In social net-
work services, especially microblogging services like Twitter, skin-
ny patterns mined from the re-tweeting network of tweets reveal in-
sightful information diffusion patterns and different roles of users
in the dissemination process. These patterns are key to network ma-
nipulation to either facilitate or hinder information diffusion [21].

Unfortunately, existing algorithms are not able to mine these
skinny patterns efficiently. Essentially, algorithms exhausting all
frequent patterns, gSpan [23] as a representative, are not able to
find patterns larger than a threshold due to the exponential number
of pattern candidates to enumerate and examine. Probabilistic al-
gorithms returning a sample of the pattern output space, ORIGAMI
[7] as a representative, would miss all but a few patterns of interest.
The most relevant work is SpiderMine [26] designed for mining
large patterns. However, due to the diameter bound constraint and
the pattern growth based on “spiders”, SpiderMine tends to find



patterns that are large but “fat”. As a result, as shown by our exper-
iments, skinny patterns with long diameters but sparse twigs will
often be missed.

A pattern lattice perspective for constrained frequent pattern mining
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Figure 1: A conceptual comparison among different mining
paradigms

More importantly, similar gap for the mining tools challenges a
large number of application settings where users are seeking the
complete (or almost complete) set of patterns satisfying certain
explicitly-specified constraints. What is ideal is a mining frame-
work such that all target patterns can be reached fast (making it
direct) with minimum visits to irrelevant ones (making it precise).
As illustrated in Figure 1 from a pattern lattice perspective [28], the
target mining result is “carved” by the constraint into pattern clus-
ters indicated by the shaded areas. Probabilistic methods cannot
accomplish the mining task because most of them are only capable
of returning a sparse sample of the complete set of skinny pattern-
s. Traditional “enumerate-and-check” approaches try to return all
qualified results at the cost of exhaustively traversing the pattern
space, failing usually halfway due to intractability. The direct min-
ing approach, which we illustrate in this paper with SkinnyMine on
the skinny pattern mining problem, provides a much more efficient
way to reach straight some patterns in each of the target clusters
and only examine locally those relevant candidates. Direct mining
has been studied not on constraints on patterns but on certain util-
ity of patterns such as discriminativeness measured on the mining
results [4], which is a different problem from ours.
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Figure 2: An architectural view of the direct mining framework

An architectural overview comparing our direct mining approach
and traditional mining approach is depicted in Figure 2. Suppose
user-specified mining requests are “find all skinny frequent patterns
with diameter of length [” with varied [. Upon request with each
[, traditional mining would make a almost exhaustive traversal of
the pattern space, and every time enumerate an exponential number
of frequent pattern candidates to check constraints before it finally
generates the target pattern set. In contrast, direct mining work-
s in a completely different way. It pre-computes all the minimal
constraint-satisfying patterns, which we will define later, and build
indexing structures to efficiently access the corresponding embed-

dings. Upon request with each [, it would directly access the proper
minimal patterns associated with that /, and only examine locally
all the relevant pattern candidates to generate the same target pat-
tern set but much more efficiently.

Our Contributions. We propose a novel direct mining framework
for efficient constrained graph pattern mining and demonstrate the
idea and algorithms in the context of the skinny pattern mining
problem.

First, we develop SkinnyMine, an efficient algorithm to mine all
the [-long d-skinny patterns. The algorithm is based on our pro-
posed concept of canonical diameters that is important for both
guaranteeing the unique generation of each target pattern as well as
achieving a partition of all skinny patterns into disjoint result set-
s, thus enabling direct and precise mining. For example, suppose
users are interested in finding all J-skinny patterns with diameter
length between /1 and l2 (I1 < l2), we are indeed able to mine
exactly all the target patterns without even visiting those whose di-
ameters are shorter than [, or longer than l5.

Second, we formally prove that, by maintaining the canonical di-
ameter through pattern extension, we can guarantee the complete-
ness of our mining result. In order to efficiently maintain the canon-
ical diameter, instead of invoking the expensive shortest path com-
putation upon every edge extension, we decompose the task into
maintaining three sufficient and necessary constraints, and propose
and prove the correctness of a solution that only requires us to lo-
cally update two simple distance indices, significantly improving
the mining efficiency.

Third, interestingly, to mine the canonical diameters, which are
essentially frequent paths of length [, is not an easy task. We pro-
pose a novel and efficient mining algorithm based on the idea of
progressively concatenating and merging existing paths of length
in powers of 2, which gives us quick access to some patterns in the
result pattern clusters.

An important contribution of this study is that we generalize
the mining approach to propose a direct mining framework for a
class of constrained frequent graph pattern mining problems. We
present the direct mining framework and propose two properties of
reducibility and continuity that a constraint should possess in order
to apply the framework.

Road-map. The rest of the paper is organized as follows. We for-
mulate our problem in Section 2. Section 3 presents the design
ideas and overview of our approach. Algorithm details and im-
plementation issues are discussed in Section 4. The direct mining
framework is proposed in Section 5. Section 6 gives the experi-
mental results. We discuss related works in Section 7 and conclude
our paper in Section 8.

2. PROBLEM FORMULATION

As a convention, the vertex set of a graph G is denoted by V' (G)
and the edge set by E(G). Without specification, the size of a
graph P is defined by the number of edges of P, written as |P)|.
In our setting, a graph G = (V(G), E(G)) is associated with a
label function l¢ : V(G) — 3%, where X is a label set. Graph
isomorphism in our problem setting requires matching of the labels
for each mapped pair of vertices. Our method can also be applied
to graphs with edge labels.

DEFINITION 1. (Labeled Graph Isomorphism) Two labeled
graphs G and G' are isomorphic if there exists a bijection f :
V(G) — V(G"), such that Yu € V(G), lg(u) = lg/(f(w)) and
(u,v) € E(G) ifand only if (f(u), f(v)) € E(G").

We use G =21, G’ to denote that two labeled graphs G and G’



are isomorphic. Given two graphs P and G, a subgraph G’ of G is
called an embedding of P in G if P =1, G'. For a single graph G
and a pattern P, we use ep to denote a particular embedding of a
pattern P, and the set of all embeddings of P is denoted as E[P].

Given a graph G, a path L of G is represented as a sequence
of vertices L = [vs,, Vi, ..., vs,] Where i1,12, ..., are their
physical vertex IDs and (vi,,,vi,, ;) € E(G),1 < m < k.
By default, all paths in this paper are simple paths, i.e., all ver-
tices are distinct. Without loss of generality, we assume there is a
lexicographic order among all labels in 3, and for any two labels
l1,l2 € X, denote as [; < l2 if [; is ordered ahead of [5. We first
define a lexicographical order among paths.

DEFINITION 2. [Lexicographical Path Order] For two labeled
paths Li=[v], ,v},, ..., Uilk-l] and Ly = [1)12-1 , 0]2-2, o 7’1}]2-k_2] of a
graph G with label function I, we say L1 is lexicographically s-
maller than La, denoted as i <r Lo, if (I) k1 < ko; or (II)
k1 = ko and there exists an index i*, 1 < i* < ki, such that
W(v,) =10} ) forl < m <% andl(vill*) =< l(vi*). We
say L1 is lexicographically equal to La, denoted as Ly =y, Lo, if
ki =koandl(v})) =1(v2,) for 1 <m < k.

With this we can define a total order among all paths of a graph.
Essentially, for two given paths, we first compare their lexicograph-
ical order; and if they are lexicographically equal, we further com-
pare their physical vertex ID sequences numerically. Formally, we
have the following definition.

DEFINITION 3. [Total Path Order] For any two labeled sim-
ple paths Li=[v} vil?, R vilkl] and Ly = [vjzl , vJ2»2, e, vjz»k2 of
a graph G with label function l, we say L1 is smaller than s, de-
noted as Ly < Lo, if (I) L1 <r La; or (1) Ly =1 La and there
exists an index i*, 1 < i* < ki, such that for their physical ID
sequences, we have im = jm for 1 <m < i*, and i;+ < j=.

The diameter of a connected graph G is the maximum over the
shortest distances between all pairs of vertices in V(G), and is de-
noted as D(G). Given a connected graph G, let D¢ be the set of
all simple paths of length D(G) realizing the diameter. We define
a canonical diameter of G as the smallest simple path in D¢. For-
mally, we have Definition 4.

DEFINITION 4. [Canonical Diameter] Given a graph G of di-
ameter D(Q), let D¢ be the set of all simple paths of length same
with D(G). The Canonical Diameter of G, denoted as L, is de-
fined as L. € Dg such that for any ' € Dg, L < L.
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Figure 3: A 6-long 2-skinny graph (e.g., a1 denotes the vertex
with physical ID 1 and label ’a’)

Let the canonical diameter of a current pattern P be L = [v H =
V1,V2,V3,...,Un+1 = vr| with length |L| = n. Let vy and
vr denote the head and tail of the diameter respectively. Fig-
ure 3 shows an example graph G with canonical diameter Lg =
[v1,v2, v3, V4, Vs, Ve, V7], the head vy = vy and the tail v = vr.
Another path in the example is L' = [v1,v2, v3,v4, 5, V6, V11]

which is of the same length as L but is lexicographically larger by
Definition 2. By Definition 3, each graph has a unique canonical
diameter, which is the foundation for the unique pattern generation
guaranteed in our framework.

For a graph G with canonical diameter L and a vertex v €
V(G), let Dist(v,L) denotes the shortest distance from v to L,
i.e., Dist(v,L) = argmin {Dist(v,u)|u € V(L)}.

Dist(v,u)

DEFINITION 5. [Vertex Level] Given a graph G with canon-
ical diameter L, a vertex v € V(QG) is called a d-level vertex if
Dist(v,L) = d.

Next we define a ¢-skinny graph, followed by a [-Long d-skinny
graph.

DEFINITION 6. [§-skinny Graph] A graph G is called d-skinny
if forallv € V(Q) such that v is a d-level vertex, we have d < 6.

DEFINITION 7. [I-Long §-Skinny Graph] A graph G is called
I-long &-skinny if its canonical diameter L is of length li.e., |L| =
[, and G is §-skinny.

Figure 3 presents an example of a 6-long 2-skinny graph G (in solid
black edges) with vertices of each level shown at the bottom of the
figure. Now we are ready to give our problem definition as follows.

DEFINITION 8. [I-Long 0-Skinny Pattern Mining]
Given a graph G, a frequency threshold o, a length | and a skin-
niness bound 6, the problem of 1-Long §-Skinny Pattern Mining
((1,8)-SPM) is to find all l-long &-skinny subgraphs P of G such
that |E[P]| > o.

Note that although our problem definition given above is under the
single-graph setting, the corresponding version for graph transac-
tion setting can be easily derived.

3. OUR APPROACH

3.1 Overview

As illustrated in Figure 1, to solve the (, §)-SPM problem with a
direct mining approach, we identify two main challenges: (I) how
to quickly reach certain patterns in the result set; and (II) Once
inside in the result set, how to efficiently find the rest of the patterns.
‘We have the following observation:

OBSERVATION 1. Any frequent path L of length l is by itself a
minimal pattern in the result set. On the other hand, any pattern
P in the result set must contain a canonical diameter which is a
[frequent path of length .

This observation leads to the following two-stage algorithm:

Stage I: Mining Canonical Diameters.
Given a graph G, a frequency threshold o and a user mining re-
quest with diameter constraint [ = [*, we mine all frequent simple
paths of length [*, and denote the result set as So. This gives us
direct access to some patterns in the result set. Each such path is
eventually the canonical diameter of all patterns grown from it.
Note that in a typical setting of our direct mining framework, we
handle not just one mining request of a single [*, but a sequence of
mining requests with different constraint values of [*. In this sense,
canonical diameters are pre-computed as in Stage I and indexed by
[* with the corresponding embeddings.

Stage II: Growing Canonical Diameters to Skinny Patterns.
For each path L € Sy such that |L| = [*, grow L in at most §



iterations. In each iteration 7,1 < ¢ < 4, a current pattern P is
extended by adding only two kinds of edges — (1) Edges connect-
ing one (¢ — 1)-level vertex and one i-level vertex; and (2) Edges
connecting two i-level vertices.

Figure 3 shows the corresponding patterns we would obtain by
the end of each iteration. Note that Iteration 0 is simply Stage I, i.e.
vertices on the canonical diameter are 0-level.

We maintain the following important loop invariant for each it-
eration as Loop Invariant 1.

LooOP INVARIANT 1. When growing a current pattern P with
canonical diameter 1L, I must remain the canonical diameter after
each edge extension.

By maintaining this loop invariant, we can guarantee the unique
generation of each skinny pattern. To see this, first observe that
the canonical diameters partition all [-long d-skinny patterns into
disjoint sets, all patterns in each set sharing the same canonical di-
ameter. Within the same set, patterns are ordered lexicographically
in a similar fashion as in gSpan [23], the details of which are omit-
ted here due to space limit. Essentially, each pattern is encoded first
by the number of levels and within the same level, “forward” edge
and “backward” edges are defined similarly as in [23]. Each edge
is encoded lexicographically by the labels of the two end vertices.

3.2 Mining Canonical Diameters

The challenge of mining canonical diameters is how to efficiently
mine all the frequent paths of length {*. Despite the much research
work in frequent graph mining, few, if any, has focused on mining
frequent simple paths to the best of our knowledge. Therefore we
propose the following two-step algorithm.

Step L. First, we mine all the frequent paths whose lengths are

powers of 2 and less than I*, i.e., 20, 21 922 2’C where k =

argmax{j|2’ < ["}. To get paths of length 2°, we concatenate
J

two current frequent paths of length 2°~! with the initial set being
the set of all frequent edges of length 2°. Compared against in-
cremental edge extension, this approach provides the most efficient
way to find all the paths with length of powers of 2, and we denote
the set as Sp.

Step II. Next, we use S, to find all frequent paths of length [ where

[ is not a power of 2. We propose an efficient method that is based

on the observation that any path of length [ can be obtained by

merging two paths of length 2% where k = argmax{j[2’ < I}.
J

Note that in this case, in stead of concatenation, we merge two

paths that are partially overlapping. The efficiency of this method
is a result of the following two observations.

Firstly, any path L of length [ can be uniquely obtained by merg-

ing two paths of length 2* where k = argmax{j|2/ < I}. This
i

is because we have defined vy and v as the head and tail of L,
which are unique unless L is self-isomorphic. It follows that, if L
is obtained by merging two paths, they must be the prefix of L con-
taining vy and the suffix of L containing vr, both of which are of
length 2k,

Secondly, the fact that there are fewer frequent paths of longer
lengths leads to the consequence that for longer paths, it is more
efficient to obtain them by merging two longer sub-paths than con-
catenating a series of sub-paths of lengths of distinct powers of 2.
For example, if L is of length 15, instead of concatenating 4 paths
of lengths of distinct powers of 2, i.e. 15 = 8+ 4+ 2+ 1, we only
need to merge 2 paths each of length 8.

3.3 Maintaining Canonical Diameters

Given a current pattern P with canonical diameter L, we have
shown that as long as we maintain Loop Invariant 1, we would be
able to guarantee the unique pattern generation. In Section 3.5, we
will further prove the completeness of our mining result as a con-
sequence of maintaining Loop Invariant 1. Now we first discuss
how to efficiently maintain Loop Invariant 1. A naive way is to in-
voke all-pair shortest path computation after each edge extension.
If Loop Invariant 1 is violated, we drop the pattern. This straight-
forward approach, however, is highly inefficient as all-pair shortest
path computation is high costly for large graphs. Therefore we
need to investigate smarter ways to maintain this constraint more
efficiently.

Recall that vy and vr denote the head and tail of the diameter
respectively. The key observation is that, when P is extended to P’,
to maintain that L is still the canonical diameter of P’ is equivalent
to maintaining the following three constraints:

1. Constraint I: Diameter is not increased.
This means D(P’) < D(P), which guarantees that the edge
extension does not create a longer diameter.

2. Constraint II: L still realizes the shortest distance be-
tween vy and vr.
This means in P’, Dist(vm,vr) = |L| and therefore D(P")
> D(P), which guarantees that the edge extension does not
shorten the distance between vy and vr.

3. Constraint III: L < 1’ for any newly generated diameter
L’ of the same length.

As indicated in Figure 3, we show (in red dotted lines) three
examples of edge extension each violating one of the three above-
mentioned constraints. For Constraint I, the extension would cre-
ate a longer diameter of [v1, v2, v3, V4, Us, Us, V11, v15] of length 7.
For Constraint II, the extension would shorten Dist(vy,vr) to 5
via the new edge. For Constraint III, the extension would create
a new diameter [v1, v2, v3, V4, Us, Vs, V1] With the same length as
the current canonical diameter but smaller in lexicographical order.

It is worth noting that these three constraints are independent of
one other, the satisfaction of any one of them does not guarantee
the satisfaction of the other two. However, when maintained si-
multaneously, they are sufficient and necessary to guarantee Loop
Invariant 1, i.e., the canonical diameter is preserved from P to P’,
as proved by the following lemma.

LEMMA 1. Given a pattern P with its canonical diameter L. =
[veg = v1,v2,08,...,Vn41 = vr| with length |[L| = n, for any
pattern P’ such that P’ is obtained from P by one edge extension,
P C P'and |E(P")| = |E(P)| 4+ 1, Constraint I, II and III are
the sufficient and necessary conditions to guarantee that L is still
the canonical diameter of P'.

PROOF. We first show these three constraints are the sufficien-
t conditions. The satisfaction of Constraint I means the diameter
of P’ is either the same as P or shorter. Constraint II, if satisfied,
would then guarantee that the diameter of P’ is not shorter than that
of P since D(P') > Dist(vy,vr) = |L| = n = D(P). There-
fore, Constraint I and II combined lead to the fact that . must be
one of the diameter(s) of P’. Constraint III then further guarantees
that, even the edge extension should create some new diameter I/,
we will have . < I/, making L the canonical diameter by defini-
tion. This completes the sufficient condition proof.

The necessary condition part is straightforward since if L is the
canonical diameter of P’, the diameter of P’ is then the length of LL,



satisfying Constraint I. There cannot be other shorter path between
the head, vy, and the tail, v7, of I without violating the definition
of a diameter. Constraint III is also trivial by Definition 4, which
completes the necessary condition proof. []

3.4 Efficient Constraint Maintanence

Next we discuss how to efficiently maintain the three constraints.
Recall that an i-level vertex is at distance ¢ from the canonical di-
ameter. So 0O-level vertices would just be those of the canonical
diameter itself. For each vertex u, we maintain two distances for
u, D% and D7, which denote the shortest distances from u to vy
and vr as the head and tail of the canonical diameter, respectively.
In the following, we prove that we only need to locally update DY,
and D7 to efficiently maintain all the three constraints.

3.4.1 Constraint I.

To maintain Constraint I, it turns out that we simply need to make
sure that, when a new vertex w is added on the current pattern,

DY <D(P) and D% < D(P)

We need the following lemma before proving the correctness of the
approach.

LEMMA 2. Given a pattern P and any pattern P’ such that P’
is obtained from P by adding one edge (u,v) such that v € V(P)
and u € V(P')\ V(P), we have Dist(u,v) < max(D}, DY)
foranyv € V(P).

PROOF. We prove by induction on ¢, the iteration number of pat-
tern growth. Recall that in the ¢-th iteration, only i-level vertices are
added. For ¢ = 0, the pattern P is simply the canonical diameter IL
itself. It is trivial to see that Dist(u,v) < max(D%, D7) for any
u,v € V(P). Assuming the proposition holds for ¢ = n — 1,
we consider the case when ¢ = n. In this case, the new edge
connects u and v that are (n — 1)-level vertices. Since by in-
duction Dist(v,v") < max(D¥,D}) for any o' € V(P), and
Dist(u,v") = Dist(u,v)+Dist(v,v") = 1+ Dist(v,v") for any
v’ € V(P), we therefore have Dist(u,v’) = 1+ Dist(v,v') <
14+ max(D%, D7) = max(Dy + 1, DT + 1) = max(D¥, D7).
The proposition holds for ¢ = n, which completes the proof. [J

THEOREM 1. Given a pattern P and any pattern P’ such that
P’ is obtained from P by adding one edge (u,v), to guarantee that
D(P") < D(P), it is sufficient to guarantee that D}; < D(P) and
DY < D(P) (assuming u is the new vertex if any).

PROOF. There are only two cases for the new edge (u,v): (1)
u € V(P)andv € V(P), i.e., the new edge connects two existing
vertices; and (2) v € V(P) and u € V(P') \ V(P), i.e., the new
edge connects an existing vertex v with a new vertex u. In case
(1), since connecting two existing vertices would only decrease the
diameter, and we have Dist(v’,v"”) < D(P) for all vertex pair
v’ 0" € V(P), we must have Dist(v’,v") < D(P) for all vertex
pair v’,v"” € V(P'). In case (2), first, for any existing vertex pair
v, 0", Dist(v',v") < D(P) still holds; we consider vertex pair
w,v in whichv € V(P) andu € V(P’) \ V(P). Due to Lemma
2, the proposition holds as well. [

3.4.2 Constraint I1.

To maintain Constraint II is to guarantee that the shortest dis-
tance between vy and vr is not reduced by the new edge. It is
possible to first generate the pattern and then check if the resulting
pattern satisfies Constraint II by running a breadth-first search with
vy as the root. However, a much more efficient way is make sure
that, when a new vertex w is added on the current pattern,

Dy + Dy > D(P)

The correctness is shown by the following theorem.

THEOREM 2. Given a pattern P and any pattern P such that
P’ is obtained from P by adding one edge (u,v), to guarantee that
D(P") > D(P), it is sufficient to make sure that D}y + D >
D(P).

PROOF. We prove by contradiction. Suppose for the purpose of
contradiction that, even though it is guaranteed that D + Dy >
D(P) for a new vertex u added during the growth iterations, LL still
is no longer the shortest path between vy and vt after adding edge
(u,v). Let the new shortest path between vy and vr be L', and
we have |L'| < |L|. Notice that the new shortest path L" must
pass through this new vertex u, otherwise IL will not be the shortest
path even before adding u. Now consider the two sub-paths of
L’ divided by u, denoted as I} and 5. By the property of sub-
modularity of shortest paths, I} must be the shortest path between
vy and u, and L) must be the shortest path between u and vr.
Accordingly we have |L}| = D} and |L5| = D%. Thus, we have
D} + D} = |Li| + |Ly| = |L'| < |L| = D(P), resulting in a
contradiction and completing the proof. [

3.4.3 Contraint I11.

To maintain Constraint ITI, it turns out that when P’ is obtained
from P by adding one edge (u, v), we only need to check whether
L < L' in the following two cases: (I) if v € V(P),u ¢ V(P)
and max (D%, D7) = D(P) — 1; and (2) if u,v € V(P) and
either D} + D = D(P) — 1 or D} + D} = D(P) — 1. In both
cases, the new diameter L.’ passes through the new edge (u, v).

THEOREM 3. Given a pattern P and any pattern P’ such that
P’ is obtained from P by adding one edge (u, v), to guarantee that
L < L' for any newly generated diameter 1, it is sufficient to check
two cases: (I) if v € V(P),u € V(P) and max (D, D) =
D(P)—1; and (2) ifu,v € V(P) and either D¥;+ D7 = D(P)—1
or DY + D} =D(P) — 1.

PROOF. We prove case (I), and case (II) can be obtained simi-
larly. First, note that if both u,v € V(P), no new diameter would
be created and since L is already the canonical diameter of P, Con-
straint III is satisfied automatically. It then follows that the newly
generated diameter I must contain the newly added vertex u as
one of the end vertex. By Theorem 2, the other end vertex must be
either vy or vr. Since the new diameter must be of length n, we
have either D}; = D(P) or D} = D(P). Therefore, the only case
this happens is when we have max (D%, D7) =D(P) — 1. [

3.5 Proof of Completeness

We now prove why maintaining Loop Invariant 1 could guaran-
tee the completeness of our mining result. To do that, we first ob-
serve that for each target pattern P, there exists a canonical diam-
eter L. As the [-long §-skinny constraint possesses the property of
weak pattern anti-monotonicity [27], P can be obtained through a
pattern growth sequence of sub-patterns of increasing sizes, which
all have L as their canonical diameter.

LEMMA 3. Given a graph pattern P, there must exist a canon-
ical diameter LL.

PROOF. Immediate from Definition 3 and 4. [

LEMMA 4. The constraint C of l-long §-skinny is weak pattern-
antimonotone [27], i.e., for a graph P where |V (P)| > k for some
constant k, fc(P) = 1 — fo(P') = 1 for some P' C P such
that |E(P")| = |E(P)| — 1. In particular; for a l-long &-skinny
graph pattern P with |E(P)| = m, there exists a sequence of sub-
graph patterns [Py, P41, ..., Pp = P] such that P, C P41 C



... C P =Pand |E(P;)| = |E(Pi+1)| — 1,1 < i < m where
P; denotes a pattern with |E(P)| = 1.

PROOF. We give a constructive proof. Given a [-long §-skinny
graph pattern P with |E(P)| = m and L as a canonical diam-
eter, partition the set of vertices in V(P) \ V(L) into at most
¢ disjoint sets according to their distance to L. and order these
sets in increasing order of the distances, denoting the result as
I = [mi,7m2,...,m],1 < j < §. We construct the subgraph
pattern sequence as follows. Start with P, = IL. What follows is
that at most  sub-sequence of graphs ordered according to II. In
each sub-sequence 7,1 < ¢ < j, each graph is obtained by adding
to the preceding one one edge connecting the vertices in 7; or one
vertex in 7; and one vertex in ;1. By Theorem 1, Theorem 2 and
Theorem 3, the canonical diameter L will be maintained through
this pattern growth process by edge extension. This means that all
the graph patterns in the sequence satisfy the [-long J-skinny con-
straint, proving its weak pattern-antimonotonicity. [

By Lemma 3 and Lemma 4, and the fact that we generate all
frequent paths of length [ in Stage I, we conclude that we mine the
complete set of {-long J-skinny graph patterns, which is formally
stated as follows.

THEOREM 4. Given a graph G, a frequency threshold o, a
length I, and a skinniness bound 6, SkinnyMine finds all i-long
d-skinny subgraphs P of G such that |E[P]| > o.

4. ALGORITHM DETAILS

In this section we give more detailed algorithm description. The
main SkinnyMine algorithm, as described in high level in Section
3, is shown in Algorithm 1. The two subroutines DiamMine() and
LevelGrow() are detailed in Algorithm 2 and Algorithm 3, respec-
tively.

Algorithm 1 SkinnyMine

Input: input graph G, length constraint [*, skinny threshold &
support threshold o
Output: Set of all qualified patterns .S

1: S« 0;

2:IfSo =0

3: So < DiamMine(G,1*,0);

4: For each L € Sy

5: For i =1To 6

6: Si + 0;

7: For each pattern P € S;_1
8: Si < S; |JLevelGrow(G, P, o);
9: If S;#0

10: S+ SUS:

11: Else

12: Break;

13: Return S;

DiamMine() is the routine to find all frequent paths of length
exactly ™, which, more typically, would be invoked only once in
the pre-computing stage of our direct mining framework. Sy is
assumed to be a global structure such that SkinnyMine can ac-
cess upon each mining request. Line 2 to Line 7 is the part where
we find all frequent paths whose lengths are powers of 2 by pro-
gressively concatenating current paths. Line 10 to Line 17 finds
all paths of length [* where [* is not a power of 2 by using the
paths found in the first part. Notice that in CheckConcat() we
only check if we can concatenate two paths by indexing their two

Algorithm 2 DiamMine

Input: input graph G, length constraint [*, support threshold o
Output: Set of all qualified frequent paths S

1: 8+ 0,i+0,5° < all frequent edges;

2: Do until 2° > [*

3 1141

4 For each pair of paths L', L” € §*7!

5: L «+ CheckConcat(L’, L");

6 If L is frequent

7: St SHU{LY;

8: T « S%

9: If I* > 2°

10: Foreach L' € T

11: Foreach L” € T

12: L « CheckMergeHead(L', L");
13: If L is frequent and |L| = I*
14: S« SU{LY;

15: I + CheckMergeTail(L’, L");
16: If L is frequent and |L| = I*
17: S« SU{LY;

18: Else S < T

19: Return S;

Algorithm 3 LevelGrow

Input: input graph G, current pattern P, support threshold o
Output: the set of extended patterns S

1: S« 0, Tpre + {P};

2: E < all possible edges for extension in canonical order;
3: While Ty, # 0

4- Tcurrcnt — T;m*e;

5: Tpre < 0;

6: For each pattern P € Teyrrent

7: For each edge (u,v) € E ordered after Pynchor
8: P+ PU(u,v);

9: Update Dy and Dt for u and v;

10: If CheckConstraint(P’)

11: If P’ is frequent

12: If P’ is closed, Then S <+ SJ P’;
13: Tpre < Tpre U{P'};

14: Panchor < (u,v);

15: Return S;

end-vertices. In CheckMergeHead() and CheckMergeTail(), we
merge two paths of length k by overlapping them. CheckMerge-
Head() checks the case when L’ forms the head of the resulting
path while CheckMergeTail() checks the case when L’ forms the
tail. Note that DiamMine() can be adapted to return frequent paths
of length at least [* with minor changes.

Given a pattern P such that the maximum distance from a vertex
to its canonical diameter is d, then LevelGrow() is the routine to
grow P to a set of super-patterns by adding only edges either con-
necting to new (d+1)-level vertices from d-level or connecting two
(d+ 1)-level vertices. Note that all edges qualified for extension in
each iteration are ordered lexicographically and a pattern records
in Pypchor the last edge added on to it so far, so that next time it
will only be extended with edges that are ordered after Pyychor. In
Line 10, we check all the three constraints as elaborated in Section
3. Note that in order to do that, we only need to check Dy and Dt
locally, which are two indices stored with each vertex and can be
updated incrementally when needed.



5. A DIRECT MINING FRAMEWORK

In this section we generalize our approach in the skinny pattern
mining setting to present a direct mining framework for a class of
constrained frequent graph pattern mining problems, and discuss
the properties that a constraint should have in order to apply the
framework.

5.1 Framework

The general problem description for constrained frequent graph
pattern mining is the following:

DEFINITION 9. Given a single graph or a graph transaction
database D, a minimum frequency threshold o, and a specified
constraint C, find all frequent subgraph patterns such that each
pattern satisfies C.

Note that the constraint C' represents a general constraint that is
not limited to a single constraint and could be a conjunction of a set
of atomic constraints. As illustrated in Figure 2, our direct mining
framework for the general mining problem works in two stages:

1. Minimal Constraint-satisfying Pattern Generation.
This stage of mining the minimal constraint-satisfying pat-
terns can often be pre-computed off-line. The corresponding
embeddings of each minimal pattern can be then indexed for
efficient access later.

2. Constraint-preserving Pattern Growth.
Upon user request for mining with a particular constraint,
the corresponding minimal patterns can be fetched and the
proper embeddings are retrieved from graph database. Next
the constraint-preserving pattern growth stage will grow each
minimal pattern to find all target patterns.

In order to apply the direct mining framework, the constraint of
interest needs to have certain properties, namely reducibility and
continuity, which we detail as follows.

5.2 Minimal Constraint-satisfying Pattern

The first stage of our mining framework is to find certain “an-
chor” pattern node to start the mining process. As we are adopting
a pattern-growth paradigm, the best choice is to find the minimal
pattern that satisfies the constraint. In our skinny pattern problem
setting, if the constraint is being I-long J-skinny, then the mini-
mal constraint-satisfying patterns are the frequent paths of length
[, which is why we mine them first. The importance of this stage
is that, due to the reduced pattern size and simplified constraint, it
is usually possible to develop more efficient algorithms customized
for mining these minimal patterns than using general-purpose min-
ing algorithms to get them by enumerate-and-check.

To enable this stage, the given constraint must admit the exis-
tence of such minimal patterns of non-trivial size, e.g. it cannot be
a single vertex. Formally, we have the following property. Given a
constraint C, we denote as fc(.) the boolean predicate defined on
the pattern space such that for a pattern P, fo(P) = 1 if and only
if P satisfies constraint C'.

PROPERTY 1. [Reducibility] A graph constraint C'is called re-
ducible if there exists a positive integer k and a nonempty set S
of graph patterns such that for each P € S, |E(P)| > k and
fc(P) =1, and for any pattern P’ C P, fc(P') = 0.

Note that not every graph constraint is reducible. Consider the
constraint of MaxDegree(G) < K, i.e., the maximum node de-
gree is smaller than K. It is easy to verify that there is no minimal

constraint-satisfying patterns except for the trivial single vertices.
This means that no efficient algorithm can be proposed to mine a
targeted subset of the whole pattern space in order to reduce pattern
enumeration. Indeed, in this case, all frequent patterns must be ex-
amined because the constraint does not define a subset of patterns
of non-trivial size.

5.3 Constraint-preserving Pattern Growth

The second stage of our mining framework is to grow each min-
imal constraint-satisfying pattern generated at the first stage while
still preserving the constraint during growth. Again as in our skin-
ny problem setting, we preserve the constraint by making sure that
the canonical diameter remains to be the canonical diameter after
each edge extension. Will we miss any target pattern in this way?
In order to mine the complete pattern set, the constraint must admit
the following property, which essentially states that the target pat-
terns within one pattern cluster defined by a minimal pattern should
be adjacent to some subpatterns in the same cluster.

PROPERTY 2. [Continuity] A graph constraint C' is called con-
tinuous if for each pattern P such that fc(P) = 1, one of the

following is true: (1)P is a minimal constraint-satisfying pattern;

(2)there exists at least one pattern P’ such that P’ C P, |E(P')| =
|E(P)| — 1and fc(P') = 1.

This property guarantees that we will not miss any target pat-
tern by growing from the minimal constraint-satisfying pattern-
s. Note that not every graph constraint is continuous. Consider
the constraint that “Degree(v) = Degree(v') for all vertex pair
v,v" € V(P)”, i.e., each vertex of the graph has the same degree.
It is easy to verify that this constraint is not continuous.

6. EXPERIMENTAL RESULTS

In this section, we present our performance study on SkinnyMine.
We first present our evaluation methodology.

6.1 Evaluation Methodology

We use both synthetic data and real data for our evaluation. On
synthetic data, we systematically evaluate SkinnyMine for both
effectiveness and scalability (Section 6.2). On real data sets, we
present interesting pattern examples in our mining result to demon-
strate the application of skinny patterns (Section 6.3).

6.1.1 Effectiveness

We demonstrate in Section 6.2.1 that SkinnyMine is able to mine
out skinny patterns that cannot be discovered by other algorithms.
We examine both graph-transaction setting and single graph set-
ting, and compare against the state-of-the-art algorithms. In each
setting, we first compare SkinnyMine against existing algorithms
under various data settings to show the difference in the patterns ob-
tained. Due to the inherent bottleneck in existing algorithms, these
comparisons have to be constrained to graphs with relatively small
sizes to allow all competing algorithms to run to completion. When
the limits of other algorithms are reached, we further demonstrate
the performance of SkinnyMine by itself.

6.1.2  Scalability

To demonstrate the scalability of SkinnyMine, we show the fol-
lowing in Section 6.2.2: (I) we compare SkinnyMine with existing
algorithms; (II) we present the runtime of SkinnyMine against var-
ied constraints, i.e., pattern diameter [ and pattern skinniness .

Experiments in this part also illustrate the impact of the two
properties of Reducibility and Continuity of our direct mining frame-



GID ‘V‘ f deg |VL| Ld Ls n |Vs‘ Sd SS
1 500 |80 |2 40 18 | 2 5 3 2 2
2 500 [ 80 |4 40 18 | 2 5 3 2 2
3 1000 | 240 | 2 40 18 | 2 5 3 2 20
4 1000 | 240 | 4 40 18 | 2 5 3 2 20
5 600 150 | 4 40 18 | 2 20 [ 3 2 2
Table 1: Data settings.

GID vs GID | difference in setting

2vs 1 GID 2 doubles the average degree

3vs1 GID 3 increases the support of short patterns.

4vs3 GID 4 doubles the average degree

Svs2 GID 5 increases the number of short patterns.

Table 2: Setting difference.

work by showing the break-down of the runtime for the two corre-
sponding mining stages.

All experiments were conducted on an Intel Core i7 2.7 GHz
CPU with 8GB main memory and running Ubuntu 12.04. Our
algorithm SkinnyMine was implemented in C++ using Standard
Template Library, while the other algorithms (SUBDUE (version
5.2.2), SEUS (version 1.0), MoSS (version 5.3), SpiderMine, and
ORIGAMI) are all obtained from their original authors to whom we
are greatly thankful. The algorithms are carefully chosen as they
represent the state of the art in this area, and readers are referred to
[26] for detailed descriptions for each.

6.2 Synthetic Data

6.2.1 Effectiveness

Single-Graph Setting. As SpiderMine [26] is the closest work to
ours which aims to find large patterns in a single-graph setting, we
have intentionally set our data settings similar to those in [26] such
that performance of the two algorithms can be more easily com-
pared. SkinnyMine is experimented on single graphs generated
with the well-known Erd&s-Rényi random network model. Using
the G(n, p) variant, our synthetic single graphs are constructed by
generating a background graph and injecting into it long (or short)
skinny patterns. Five different data sets (labeled GID 1 to 5) were
generated with varied parameter settings. The detail descriptions of
the five data sets are given in Table 1. The differences among the
data sets are described in Table 2. The description of the parameters
is given as follows: |V| is the number of vertices in the graph. f is
the number of different vertex labels. deg is the average degree. m
(or n) is the number of injected long (resp. short) patterns (m = 5
for all the five data sets and is omitted in the table). |V |(or |Vs]) is
the number of vertices of each injected long (resp. short) patterns.
Lg (or Sy) is the length of the diameter of each injected long (resp.
short) patterns. Ls (or Ss) is the number of embeddings of each
injected long (resp. short) patterns.

The scale of the synthetic data, e.g., the number of vertices, the
average degree, has been purposely set small so that all the three
algorithms (SUBDUE, SEuS and SpiderMine) are able to run to
completion.

Figures 4 to 8 show the distribution of patterns mined by SUB-
DUE, SEuS, SpiderMine and SkinnyMine for different parame-
ter settings in Table 1. Overlapping bars indicate the same pattern
size. To find as many patterns as possible, the minimum support
threshold has been set to a small value of 2 in all these cases and

PID 1 2 3 4 5 6 7 8 9 10
VI 60 | 60 | 60 [ 60 | 60 [ 20 | 30 [ 40 | 50 | 60
Diameter | 50 | 45 | 40 | 35 | 30 | 8 8 8 8 8

Table 3: 10 Graphs of varied skinniness.

the skinniness bound § is not specified. We have following obser-
vations.

1. SkinnyMine. Note that in all 5 cases, SkinnyMine success-
fully finds all the injected long patterns of diameter at least
18. In GID 2, after 5 patterns of size 40 have been explicitly
embedded into the background graph, the interconnections
between the patterns and the background graph actually give
rise to 3 patterns of size 41.

2. SpiderMine. We set K = 5 and D)., = 4. SpiderMine
is able to find most of the injected patterns when we set the
number of initial spiders to be picked to a fairly large value
of 200. However, even at the cost of run time as a result of
picking a large number seed spiders, SpiderMine misses the
longest patterns in GID 1, GID 2 and GID 3.

To further demonstrate that SkinnyMine can find skinny pat-
terns that SpiderMine will miss, we conduct the follow-
ing experiment. We generate a graph with 2,000 vertices,
deg = 3 and f = 100, and inject 10 different patterns each
with support 2. As shown in Table 3, the 10 patterns are de-
signed to be of decreasing degree of “skinniness” with PID
1 being the most skinny among the first 5 graphs (PID 1 to
PID 5) and PID 6 being the most skinny among the last 5
graphs (PID 6 to PID 10), and the first 5 graphs are more
skinny than the last 5 graphs as a whole. The result is that
SkinnyMine captures the most skinny ones (PID=1, 2, 3, 4,
5) while SpiderMine finds three least skinny ones and two
medium skinny ones (PID=4, 5, 8, 9, 10).

3. SUBDUE. SUBDUE focuses on small patterns with rela-
tively high frequency. In Figures 6 and 7 confirmed results
in [26], when the support of each small patterns increases, the
mining result of SUBDUE shifts significantly toward small-
er patterns. The same outcome can be observed in Figure 8
when the number of small patterns increases.

4. SEuS. SEuS adopts a node collapsing heuristics, which is
less powerful in handling a large number of patterns with
low frequency. In our experiments, like results shown in
[26], SEUS has mostly generated small patterns (|V| <= 3)
across the five data sets.

5. MoSS. Since MoSS aims to mine the complete pattern set,
its runtime complexity is high. Although it could generate
all frequent patterns in theory, in our experiments, MoSS
cannot run to completion for data sets with GID = 2,4,5
within 5 hours as shown in Figure 20.

Graph-Transaction Setting. Despite the fact that our SkinnyMine
is developed for the single-graph setting, we show that it can al-
so be adapted to apply to the traditional graph-transaction setting.
We construct a graph database by generating 10 graphs by Erdds-
Rényi random network model each with 800 vertices, deg = 5, and
f = 80. We then inject 5 distinct skinny patterns each with 40 ver-
tices, a diameter of 20, and a support of 5 embeddings. In Figure 9,
we compare SkinnyMine against SpiderMine and ORIGAMI for
the distribution of the patterns obtained. Observation is that Skin-
nyMine gets mostly the largest patterns while SpiderMine finds
those of medium to large sizes, and ORIGAMI returns a scattered
sample composed of a few medium-sized patterns and mostly small
ones. Next, we inject another 120 small patterns each of 5 vertices
and a support of 5 into the data set, and run the algorithms again.
This time, as shown in Figure 10, while SkinnyMine and Spider-
Mine still find the larger patterns, ORIGAMI finds mostly the small
ones and misses even the medium-sized ones. This further confirm-
s that both SpiderMine and ORIGAMI are not suitable for mining
skinny patterns.
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Run Time ( seconds )

GID | SkinnyMine | SpiderMine | SUBDUE | SEuS MoSS
1 0.312 0.335 0.34 0.812 2.196
2 0.647 2.634 6.12 92.574 > 18000
3 0.449 0.732 2.77 1.297 2.683
4 0.933 10.763 15.64 874.251 > 18000
5 0.440 5.322 8.26 1.724 > 18000

Figure 20: Runtime comparison.

6.2.2 Scalability

Comparisons. Since M0SS aims to mine the complete pattern
set, its runtime complexity is high. In Figure 20, we show the run
time of the 5 algorithms on the 5 data sets. M0OSS cannot run to
completion for data sets with GID = 2 4,5 within 5 hours. In
order to compare the runtime between MoSS and SkinnyMine,
we decrease the average node degree to 2 (deg = 2, f = 70) in
Figure 11 so that MoSS can finish execution.

In Figure 12 and Figure 13,we compare with SUBDUE and Spi-
derMine for runtime with deg = 3, label number f = 100, and
support threshold set to 2. The findings show that the runtime of
SkinnyMine grows much slower than that of SUBDUE and Spi-
derMine. For SpiderMine, we set K = 10 so that SpiderMine
would return the 10 largest patterns, while SkinnyMine aims to
find the skinny patterns with the longest diameter by growing all
the skinny patterns from the longest canonical diameters.

In Figure 14, we show the scalability of SkinnyMine on much
larger graphs up to 300,000 nodes with deg = 3 and f = 80.
The mining task is to find all frequent [-long §-skinny patterns with
Il > 4and § = 3. The support threshold is set to 2. We show
in Figure 14 the running time for Stage I DiamMine and Stage II
LevelGrow, respectively. The corresponding number of patterns
are shown in Figure 15.

Constraints. We show how the user-specified constraints could af-
fect the scalability of SkinnyMine. We also demonstrate the power
of the properties of Reducibility and Continuity of our direct mining
framework.

We first examine the diameter constraint [. In Figure 16 and
Figure 17, we show the runtime of the two stages of SkinnyMine
respectively together with the number of patterns found in the cor-
responding stage. We set the support threshold as 2, pattern skin-

Figure 9: Fewer smaller patterns Figure 10: More smaller patterns
injected.

[
100 150 200 250 300 350 400 450 500
Graph size |V|
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Figure 11: Runtime vs MoSS.

niness § = 2, |V| = 10,000, deg = 3, f = 10, and the longest
diameter found is of length 19. Figure 16 shows the runtime of the
DiamMine stage as [ increases from 2 to 18. Recall that for each
value [. of [, our aim in this stage is to find all frequent paths of
length exactly ., each of which corresponds to a canonical diam-
eter to be further grown in the second stage. As shown in the fig-
ure, there are significantly more shorter frequent paths than longer
ones, e.g., there are 549 distinct frequent paths of length 2, 30, 871
of length 4, 2, 842 of length 8, and only 3 of length 16.

The growth of the runtime of DiamMine can be best explained
by the way we use frequent paths of length 2k already found to ob-
tain longer ones, as detailed in Section 3.2. The step growth from
Il = 5tol = 8is due to the following two reasons: (1) The huge
number of paths of length 4 that are used to obtain these longer
paths means in general we have a large number of candidates to
check, and (2) As the target diameter length increases, the overlap-
ping part of two length-4 paths merged to obtain the target diameter
decreases. For example, to obtain the target length 5, the overlap-
ping part of two length-4 paths is of length 3, whereas for target
length 6, the overlapping part is then of length 2. The weaker con-
straint means we have more candidates to check as [ increases. The
almost flat growth curve from | = 8 onwards is due to the small
number of length-8 paths that are used to obtain these longer ones,
which is consistent with the general intuition that the truly long fre-
quent paths are rare. Notice that the runtime includes the time to
first obtain the length-8 ones. Hence the plateau shape.

The plateau-shaped growth curve demonstrates the power of the
Reducibility property of our direct mining framework. The fac-
t that we can efficiently mine all canonical diameters of various
sizes (even for the longer ones) means that, by exploiting the re-
ducibility property of the constraint, we have successfully avoided
being trapped in the exponential number of irrelevant patterns and
directly reach the minimal patterns in the mining result of interest.

Figure 17 shows the runtime of the LevelGrow stage as [ in-
creases from 2 to 18. Recall that for each value [. of [, our aim in
this stage is to grow each canonical diameter of length [. to all [.-
long d-skinny patterns. The distribution of the number of patterns
is also intuitive, e.g., there are 2, 931 distinct patterns for l. = 2,
36,956 for I, = 4, 4,258 for [, = 8, and only 16 for [. = 16.
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with # of patterns. with # of patterns.

It can be observed that the runtime of LevelGrow is linear to the
number of patterns in the final result, illustrating the effectiveness
of Constraint I, II, and III for efficient canonical diameter mainte-
nance as well as our techniques for efficient maintenance of these
three constraints themselves.

The fact that the runtime of LevelGrow is linear to the number
of patterns in the final result demonstrates the power of the Conti-
nuity property of our direct mining framework. Once the minimal
constraint-satisfying patterns are found, all constraint-satisfying pat-
terns can be found efficiently by examining locally those adjacent
to the minimal patterns, without checking all the irrelevant candi-
dates in the search space.

We next examine the skinniness constraint §. Since the DiamMine
stage would be the same for all varied § (which costs 41 second-
s), in Figure 18 we show the runtime of the LevelGrow stage as
the skinniness threshold § increases from 0 to 6, with the diame-
ter constraint fixed at [ = 20. The data graph is generated with
V] = 200,000, deg = 3, f = 100, and 250 distinct injected
patterns each with [ = 20, § = 6, |V| = 50, and 5 embeddings.
Figure 19 shows the largest size of patterns mined for each §. It
can be observed that the growth of runtime is linear up to § = 4
and the jump from & = 5 onwards is due to the significant increase
in the largest found pattern size as illustrated in Figure 19. In real
applications, J is usually a small number, e.g., 2 or 3.

6.3 Real Data

DBLP.

DBLP (http://www.informatik. uni-trier.de/~ley/db/) provides bib-
liographic information on major computer science journals and pro-
ceedings. As of November 2012, DBLP data contains more than
1,177,381 papers from 808, 657 distinct authors and 3, 285 con-
ferences. We count 263 top Database conferences provided by Mi-
crosoft Academic Research ', and then pick 86,443 authors who
published or coauthored at least one paper in these 263 Database
conferences. We construct from this DBLP data a graph dataset of
9, 363 graphs in which each graph is a heterogeneous network and
corresponds to one distinct author. In particular, the graph is com-

"http://academic.research.microsoft.com

with # of patterns.

posed of one continuous time-line where each node represents one
year. Each such node is connected to at most four types of author
nodes defined as follows.

First we give 4 types of labels to each author as: An author is
assigned a label “Prolific (P)” if the author published at least 50
papers in the area of Database. The “Senior (S)” label is assigned
to authors with 20 to 49 papers; “Junior (J)” with 10 to 19 paper-
s and “Beginner (B)” with 5 to 9 papers. The authors with fewer
than 5 papers are not considered. Note that when counting, we look
at the number of publications up to the particular year of interest.
Second, for two authors A and B, we say they collaborate in year
4 if they co-author at least one paper in that particular year. Third,
for each author A, we classify A into three levels of collaboration
strength (Level 1, 2, and 3 respectively) with an author category (P,
S, J, and B) by how many authors of that category A has collabo-
rated in that year. The levels are defined as follows: Level 1: if A
collaborates with 1 to 2 authors of that particular category in that
year, Level 2: 3 to 4 authors, and Level 3: 5 authors and above.
Finally, A is connected to a node with label in the form of “X}”
where X € {P,S,J, B} and k € {1,2,3} according to the above
requirements. For example, if A collaborates with 4 “Senior” au-
thors in that year, A will be connected to a node labeled “S2”.

We run SkinnyMine on the resulting graph dataset with frequen-
cy threshold as 2 and length constraint at least 19, which means we
are only interested in patterns across 20 years and above. Altogeth-
er SkinnyMine has found 84, 273 skinny frequent patterns whose
diameter is at least 19 in 947 seconds. There are 1,315 distinct
authors who have at least a 20-year DBLP timeline. We give some
pattern examples we have found in the dataset.

Pattern Example. We show two temporal collaborative patterns
each across a time-span of 20 years of the researchers’ publica-
tion records in DBLP. Note that the exact years are different in
each embedding. Figure 21 shows a temporal collaborative pat-
tern and the corresponding publication years shared by Jiawei Han
(1993 to 2012) and Philip S. Yu (1991 to 2010). This pattern shows
that these researchers have collaborated with an increasing num-
ber of more productive authors along their research career. Figure
22 shows a different temporal collaborative pattern and the corre-
sponding publication years with the three embeddings being Di-
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Figure 21: DBLP skinny pattern example 1: A temporal col-
laborative pattern across 20 years.
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Figure 22: DBLP skinny pattern example 2: A temporal col-
laborative pattern across 20 years.

vyakant Agrawal (1991 to 2010), Amr El Abbadi (1991 to 2010)
and Jeffrey F. Naughton (1988 to 2007). This pattern shows that,
since their early research career, these researchers have already col-
laborated with some fairly productive authors.

Sina Weibo.

Sina Weibo is a popular, Twitter-like micro-blogging service plat-
form originated from China 2. It is reported to have a registered
total user base of 358 million, of which roughly 36.5 million ac-
tive users daily. Two important features that are not yet available
on Twitter are (I) a user can comment on any other user’s tweets,
which results in more user interaction; and (II) the retweeting chain
is visible to the public, which is critically important for studying the
information diffusion process and user interaction pattern.

We use a Weibo dataset consisting of more than 1.8 million users
and 230 million tweets, of which 111 million are original tweet-
s. From this dataset, we create a graph dataset for all the popular
tweets that have been retweeted more than 100 times. We define
a conversation as the graph formed with the author of the origi-
nal tweet as the root, and each retweet and comment would add an
edge between the user performing the action and the target user.
Note that a user could appear multiple times within the same con-
versation. All users are assigned one of three labels: (1) the root
user, i.e., author of the original tweet, (2) the users who follow the
root user, and (3) all other users. A conversation example is shown
in Figure 23, in which the nodes in red represent the root user. We
set the length constraint as at least 10 as we aim to find long diffu-
sion paths, and frequency threshold as 2. Out of a resulting graph
dataset of a total number of 2,236,424 vertices and 1,978,311
edges, SpiderMine mined 13, 847 frequent skinny patterns in 806
seconds.

Pattern Example. Figure 24 shows an example of a frequent inter-
action pattern mined from the conversations. The skinny diffusion
chain is a 13-long 3-skinny pattern. The arrow denotes the direction
that the information flows, i.e., the direction in which the tweet gets
disseminated. The red nodes are the same root user who originates
the tweet, and the green nodes are all her followers. This pattern
reveals two interesting insights. First, the root user is the type of
micro-bloggers who enjoy interacting with her followers and would
indeed engage in dialogues with them as her tweets get passed on.
Second, each time the root users engage in the conversation, the
tweet get further promoted to reach a larger audience.

7. RELATED WORK

Many efficient algorithms have been developed to find frequent
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Figure 23: A conversation example in Sina Weibo
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Figure 24: Weibo: An interaction pattern in conversations

patterns in graph transactions, e.g., AGM by Inokuchi et al., [10,
11], FSG by Kuramochi and Karypis, [12], Borgelt and Berthold,
[1], gSpan by Yan and Han, [23] and FFSM by Huan et al., [9].
These algorithms aim to find the complete frequent pattern set, but
suffer from the fact that due to combinatorial complexity, the size
of the complete pattern set is exponential even for graphs of mod-
erate sizes. To void the search on a complete pattern set, SPIN
[17] and MARGIN [20] find all maximal patterns. Unfortunate-
ly, the number of all maximal patterns could still be too large to
handle. ORIGAMI as proposed in [7] is an algorithm to find a
representative pattern set based on output space sampling. Other
works include structural leap search introduced by Yan et al. [22],
which adopts structural similarity to mine significant graph patterns
efficiently and directly from two graph datasets. Mining frequen-
t pattern in single-graph setting is harder than mining in graph-
transaction setting due to the complexity of support computation
[13, 26]. One of the most recent work in this category is Spider-
Mine [26] which is designed to find the top- K largest patterns with
a high probability of 1 — ¢ for any user-specified error bound €. Due
to its constraint on diameter bound and spider-based merging, it is
hard for SpiderMine to find skinny patterns as we defined. Oth-
er important works in single graph setting include SUBDUE [8],
SEuS was proposed by Ghazizadeh and Chawathe [6], and GREW
[13], which have been thoroughly discussed in [26]. M0OSS [5] is
proposed for mining complete patterns in single graphs, which, as
any other algorithm mining for the complete pattern set, suffers
from the same scalability issue as the input graph size grows. All
these algorithms are not designed to mine patterns with constraints
directly as described in our direct mining framework.
Constraint-based pattern mining is of interest in a wide applica-
tions where a task integrates constraints into the mining process.
Recent work has highlighted the importance of constraint-based
mining in the context of mining frequent itemsets, sequential pat-
terns, associations, and graphs. Pei et al. [16] identify a class of
hard constraints called convertible constraints and develop its push-
ing method in itemset setting. The study [15] overviews the prin-
ciples of pattern-growth methods for constrained frequent pattern



mining according to the constraints in itemset settings and sequen-
tial pattern mining. Another work for itemset settings is proposed
by Zhu et al. [28], which mines large patterns probabilistically by
core pattern fusion. Ng et al. [14] study three important class-
es of constraints: monotonicity, antimonotonicity and succinctness
and develops efficient constraint-based frequent itemset mining al-
gorithms for a single constraint. Constraints in graph settings are
more complicated [18]. The study gPrune [27] discusses prun-
ing properties and techniques in both pattern space and data space.
SkinnyMine, on the other hand, examines the properties of con-
straints that would admit our proposed direct mining framework.
Direct mining has been studied not on constraints on patterns but
on certain utility of patterns such as discriminativeness measured
on the mining result [4], which is a different problem from ours.

8. CONCLUSION

In this paper, we propose a direct mining framework to solve the
problem of efficient constrained frequent graph mining and illus-
trate our ideas in the context of the problem of skinny pattern min-
ing. Based on the key concept of a canonical diameter, we develop
SkinnyMine, an efficient algorithm to mine all the /-long §-skinny
patterns guaranteeing both the completeness of our mining result
as well as the unique generation of each target pattern. We also
present a general direct mining framework together with two prop-
erties of reducibility and continuity for qualified constraints. We
conducted extensive experiments on both synthetic and real data to
demonstrate the effectiveness and efficiency of our approach.
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