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Abstract. Despite the recent emergence of many large-scale networt-i
ferent application domains, an important measure thatucapta participant’s
diversityin the network has been largely neglected in previous ssudiamely,
diversity characterizes how diverse a given node conneitsits peers. In this
paper, we give a comprehensive study of this concept. Weldiysbut two cri-
teria that capture the semantic meaning of diversity, aet ffropose a com-
pliant definition which is simple enough to embed the idea.effitient top-k
diversity ranking algorithm is developed for computationdynamic networks.
Experiments on both synthetic and real datasets give Bttegeresults, where
individual nodes identified with high diversities are iriue.

1 Introduction

Mining diversity is an important problem in various areas éinds many applications
in real-life scenarios. For example, in information retaik people use information en-
tropy to measure the diversity based on a certain distobyé.g., one person’s research
interests diversity[12]. In social literature, diversityhich has been proposed under
other terminologies likdridging social capital proves its importance in many social
phenomena. Putnam found that bridging social capital bisreftieties, governments,
individuals and communities[11]. In particular, bridgisgcial capital helps reduce an
individual's chance of catching certain diseases and taa@hof dying, e.g., joining an
organization cuts in half an individual’'s chance of dyinghin the next year, leading
to the conclusion that “Network diversity is a predictor ofer mortality”.

Mining diversity on network data is also critical for netwaanalysis as network
data emerge in abundance in many of today’s real world agijidics. For example,
advertisers may be very interested in the most diverse issrxial network because
they connect with users of many different types, which méansd of mouth” market-
ing on these users could reach potential customers of a miger apectrum of varied
tastes and budgets. In a research collaboration networ&ropater scientists, the di-
versity of a node could indicate the corresponding resesiivorking style. A highly
diverse researcher collaborates with colleagues from & wadge of institutions and
communities, while a less diverse one might only work withrealt group of people,
e.g., his/her students. As such, an interesting query am aunetwork could be “Who
are the top ten diversely-collaborating researchers im#t@ mining community?”. To
illustrate the intuition of diversity on networks, let usloat an example.
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Fig. 1. Three Examples

Example 1 Consider a social network example in which nodes repressoplp and
edges represent social connections between correspquatings. Suppose we examine
two nodesA and B in Fig.1(a) whereA connects to 5 neighbors arigl connects to 4
neighbors. However, the 5 neighbors 4fare all from the same profession and the
same community, while the 4 neighbors Bfare from 4 different professions and/or
communities. Here, although the neighborhoodhofs smaller than that ofd, it is
obvious thatB connects to a more diverse group of people, which could lmapeitant
implications regarding the role he/she may play in the nétwe.g., the profitability
and impact if we are to choose a node to launch a marketing aigmp

Example 1 demonstrates that the diversity of a node on nktiewdetermined by the
characteristics of its neighborhood. Greater differeretesben the neighbors translates
into greater diversity of the node. In Example 1, the attéswr the labels are used
to distinguish the neighbors. Then how can we measure therdily if no attribute
information is given? Example 2 illustrates another way tmerdiversity which is
based on the topological structure of the network.

Example 2 In Fig.1(b), comparing noded and C with the same degree of 3, it is
easy to observe significant difference between the divessif their neighborhoodst
connects to three neighbors, each of which belongs to andistommunity, whileC
connects to three closely connected neighbors that fornrhartdn many applications,
A might be more interesting, because of its role of joiningedént persons together.

The two examples above give two different ways to measumrsity on networks.
However regardless of using either neighborhood attrotetopology, certain com-
mon principles conveying the semantic meaning of diversitgerlie any particular
kind of computation or definition of diversity. In fact, it @ir observation that there are
two basic factors impacting the diversity measure on a ngtwo

¢ All else being equal, the greater the size of the neighbaththe greater the diver-
sity.
When all the neighbors are the same, in terms of both aseddabels and neigh-
borhood topology, more neighbors lead to a greater diyersit

e The greater the differences among the neighbors, the grdsaliversity

The neighbors can be distinguished either by their atte#b@ind labels or by the
topological information of the neighborhood. Whicheverywa larger difference
should translate into a greater diversity.



The above two factors can also been treated as two critdein tas the basis for
proposing a reasonable definition for measuring divergityhis paper, we focus on
mining the diversity on network based on the topologicalcttire. As pointed out
in Section 2, existing measures like centrality can not eately capture the notion
of diversity in general, although certain degree of cotiretabetween them can be
observed for some data sets.

Our contributions can be summarized as follows.

e As far as we know, there has been no research work to invéstijaersity on
network structure data based on network characteristiesaM/the first to propose
the diversity concept on network and give two criteria thaptare the semantic
meaning of diversity.

¢ We investigate mining diversity based on topological infation of a network, find
a function which is simple enough to embed the two criteréhopose an efficient
algorithms to obtain top-k diverse nodes on dynamic netaiork

e Extensive experiment studies are conducted on syntheticesal data sets includ-
ing DBLP. The results are interesting, where individual e®aientified with great
diversities are highly intuitive.

The remaining of this paper is organized as follows. In $&cH, the related work
is introduced and compared with our work. In Section 3, weppse a diversity defi-
nition based on topological information of network and depean efficient top-k di-
versity ranking algorithm for dynamic networks in SectionTéhe experiment results
are reported in Section 5. Other kinds of diversity defimitiwe discussed in Section 6.
Section 7 concludes this study.

2 Related Work

As network data emerge in abundance in many of today’s redth@pplications, many
research work has been done on network analysis in recerdtlires. Properties re-
flecting the overall characteristics of network, such asdgrsmall world, hierarchical
modularity and power law [15, 5, 2, 10], have been observed fong time. Compared
to these, many measures that focus on individual componesnts degree, between-
ness, closesness centrality, clustering coefficientaityhand etc, have also been pro-
posed to distinguish the roles of nodes in network [13, 971.8Besides, some other
types of patterns, e.g., frequent subgraphs that focus orotecal topologies [8, 16],
can be mined from the network.

However, all these measures are different from diversity thns could not accu-
rately capture the idea behind. Degree centrality, whictiened as the number of
links for a given node, does not consider whether the neighéd@ similar. Between-
ness centrality assigns higher value to nodes appearingeoshiortest paths of more
node pairs. As we shall observe in the experiments, it mightdrrelated with di-
versity to some extent in particular data scenarios, bu ftat a direct modeling of
diverseness and thus would not satisfy the two criteria we oposed in general.
Closeness centrality, which measures the average shpgtstength from a node to
all other nodes in the network, has similar problems. Moee@uch shortest-path based



measures require the global computation of all-pair skbpaths, which leads to the
time-consuming measure calculations on a large network. dlastering coefficient
value of a node corresponds to the number of edges amongigtishoes normalized
by the maximum number of such edges; intuitively, with higtiestering coefficient,
the neighbors have more connections among them and thusaaeesimilar to each
other, which leads to lower diversity. However, clusteraogfficient does not consider
the scale of the neighborhood and only counts number of ealgjdse sole parameter,
which is inevitably restricted. Interestingly, it can bedted as a degenerated version of
our diversity definition when the latter is confined to a vepgaal setting.

3 Diversity Definition

In this section, we will propose concrete diversity defors based on nodes’ neigh-
borhood topology. First, a simple definition is given out dmel calculation results on
Example 2 illustrate that it matches our intuition of divgrsThen we will propose
a general definition and show its calculation results on nes@mples, in which we
analyze its parameters and compare it with centrality.

3.1 Terminology and Representation

Let an undirected unweighted network@e= {(V, E) | V is a set of nodes anfl is a set
ofedgesE € V x V, an edge: = (i, j) connects two nodesandyj,i,j € V,e € E}.

N (v) denotes the set afs neighbors| N (v)| denotes the cardinality d¥ (v), i.e., the
number of neighbors: is the radius of the neighborhood. If it is set to beNl(v) is
the set of directly connected nodes dAdv)| equals to the degree of nodeN_, (v)
denotes the set afs neighbors which excludes the nodes that becoim@eighbors
throughu. For example, whem = 1, N_,(v) is the set of the direct neighbors of
exceptu itself; whenr = 2, N_,,(v) = N(v) - {z|there is only one shortest path from
v to x which is throughu}. L(i, j) denotes the length of shortest path from node
nodej.

3.2 A Simple Diversity Example

To illustrate the diversity measure, we first use a simplenétefn as below, which can
get the intuitive results of Example 2 in Fig.1(b).

Definition 1. Given a networlG and a node € V(G), thediversity D(v) is defined

as
_ N @) VW)
pw= 2 (- ) @

The underlying intuition of the definition is that, for a tetghodev, if a neighboru
has fewer connections with other neighbors pfi is considered to contribute more to
the diversity ofv. Therefore the diversity of is defined as the aggregation of every
neighboring node:’s contribution which equals to the probability of leavirgetdirect
neighborhood of throughu [7].



Based on this definition, we can get that the diversity vatifes B,C in Example 2
are 3, 2, 1.167 respectively. The relative values matchrduition of diversity ranking
on this network.

3.3 Diversity: General Definition

While the previous definition based on direct common neighbod is simple and in-
tuitive in some cases, we need more flexibility and genegratithe diversity definition
for most applications to capture the measure more accyrétewe discussed above,
the diversity in general grows in proportion with the sizehaf neighborhood. With this
notion of each neighbor contributing to the diversity of teatral node, we propose the
general definition of diversity in an aggregate form as feio

Definition 2. [Diversity]. The diversity of a nodeis defined as an aggregation of each
neighboru’s contribution tov’s diversity.

D)= Y wolu)*F(u,v) &y
u€N (v)
whereF (u, v) is a function measuring the diversity introducedby, (u) is u’s weight
in the aggregation.

According to our guiding principles, if a neighbeis less similar to other neighbors
of v, w would contribute more to’s diversity. ThusF'(u, v) is a function evaluating the
dissimilarity between and other neighbors afin the set radius, i.e., the sefV_,, (v).

In general,F'(u, v) can be defined as a linear function of the similarity betweemd
N_,(v) as
Fu,v) =1—ax*xS(u, N_(v)) 3)

S(u, N_,(v)) is a function measuring the similarity betweeandN_,,(v) up to a nor-
malization « indicates its weight, which can be set empirically. We defite, N_,,(v))

as the average similarity betweemand each node of N_,,(v). There are various ways
to measure the similarity between two nodesndz, e.g., shortest path is a reasonable
choice for many real-world scenario. However, computingrsst paths on a global
scale is inefficient. Fortunately, since diversity is a lquaperty defined on a neigh-
borhood with a set radius, we can use the following definibased on local shortest
path computation.

Definition 3. [Similarity Between Node Pair]. The similarity between two nodesnd
x is defined as:

g sV 0< s <1if L(u,x) =1<r
(u,z) = .
0 otherwise

If two nodes are too far apart, in the sense that their distamdarger than the
neighborhood radius of our interest, their similarity is considered to be zerth&-
wise, their similarity is inversely proportional to theisthnces is a damping factor to
reflect the notion that nodes farther apart share less sityil&he effect ofé is further
explored in Section 3.4. With the similarity between a pdinodes defined, we can
give the definition of similarity between a node and a set afa®



Table 1. Computation Results for Example 2

Diversity (@ = 0.8 § = 0.8)

NodgDC|BC r=1|r=2|r=3 r=4
A | 3(48| 3 |5.2085.208 5.208
B | 4|27| 1.6 |2.7634.147 4.245
C | 3|0/0.8671.7672.962 4.489

Definition 4. [Similarity Between Node and Node Set] The similarity between a node
u and a set of node®_,, (v) is defined as

ZzeN,u(v)mN,v(u) (wy(2) * S(u, x))
ZIGN—U(U) S(u,x)

wherew, (z) is the weight of in v’s neighborhood.

S(u, N_y(v)) =

(4)

The purpose of setting weight, e.@., («) andw, (z), is to prioritize all the nodes in
v's neighborhood. There are more than one possible ways tosdiife weights. In this
paper, we define, (z) = S(v, z) based on the argument that distance-based similarity
is an appropriate way to evaluate the priority of a node’'sneighborhood when a
radius larger than 1 is needed. Putting it together, we have

ZZEEN—1L(U>ON7U(U) (S(Uv I) * S(ua I))
ZmeN,u(u) S(’u,,l’)

It is easy to notice that the definition in Section 3.2 is a sle@ase of this general
definition.

S(u, N_y(v)) = (5)

3.4 Examples and Analysis

To illustrate the intuition of the diversity measure abowne analyze the impact of its
parameters, we get the computation results for Example 23aindFig.1(b)(c) with
changing parameters and show them in Table 1 and 2, wherehgutation results of
degree and betweenness centrality are also fisted

Comparison with Degree and Betweennes&xample 2 demonstrates that diver-
sity does not equal to degree. E.g., A and C are with the sagreelbut their diversities
differ a lot. In Example 3, as the neighbors of all the nodesrat directly connected
with each other, the value of diversity equals to degree when 1. But whenr in-
creases from 1 to 2, the diversity ranking changes. ExamgEn®onstrates that diver-
sity does not equal to betweenness centrality either. Befweenness centrality of
andC in Fig.1(c) are roughly the same, but their diversities dr@ausly different.

Radius of Neighborhood Table 1 and 2 show all the calculation results when
changes from 1 to the possible maximal value (it means tlabhéiighborhood would
no longer change whenincreases more). It is found that a larger radius may lead to

1 DC and BC denote degree and betweenness centrality forraispectively in this paper.



Table 2. Computation Results for Example 3

Diversity (o« = 0.8, § = 0.5) | Diversity (o« = 0.8, § = 0.8)
NodgDC| BC r=1|r=2|r=3|r=4|r=5{r=6 ||r=1{r=2| r=3 | r=4| r=5|r=6
A | 2|42 21|4.704.744.744.744.74| 2 |5.31]4.97/4.97/4.97/4.97
B | 6|47 6(3.193.923.993.993.99| 6 [3.044.374.394.394.39
C | 5]43| 5/2.983.903.963.963.96| 5 |2.854.504.51/4.51/4.5]]
D | 216} 2|2.392.693.193.243.24)| 2 |2.332.964.254.384.37
E | 2|2.25| 2 [2.162.483.103.153.15| 2 |2.142.824.41/4.51/4.51
F |5]| 5| 5(2.342.733.153.393.41|| 5 |2.133.014.115.065.18
G | 4| 3| 4(2.082.472.903.193.21|| 4 |1.922.833.945.135.25

counter-intuitive ranking results. However, it is our leéland definition that diversity
should measure an aspect of a node’s interaction with itd legighborhood. To judge
a node’s diversity on a global scale (e.g., consideringhal nodes as neighbors of
the center node) is semantically controversial. On therdihad, it is discovered that
“small world” phenomenon applies to a wide range of networks such as thenétt
the social networks like Facebook and the bio-gene netwarkieh means most nodes
in these networks are found to be within a small number of Haops each other. In
particular, the theory of “six degrees of separation” ialés that in social network
most people can reach any other individuals through sixgmetdt follows that when
r increases beyond a small number, a node’s diversity woulahlpeegated by nearly
all the nodes’ contributions in the network, which deviaesy from what diversity is
meant to capture based on our previous discussion. Therefemall radius should be
chosen in the computation. Furthermore, the results shawthie top-k results in the
diversity ranking become stable when= 2 or r = 3 in most cases.

Damping Factor The damping factod controls a neighbor’s impact on the di-
versity measure in relation to its distance to the centralendntuitively, neighbors
far away should have smaller impact on the central nodewrslity. As we discussed
above, diversity is influenced mainly by two factors: theesid the neighborhood and
the difference among the neighbors. On real data sets, aadhes increases, the num-
ber of neighbors increases enormously, which makes theo$ineighborhood be a
dominating factor of diversity computation. This imbalangould sometimes distort
the ranking result. Therefore an appropriate damping fazia be chosen to balance
the two factors, e.g4 = 0.5 in Table 2.

4 Top-K Diversity Ranking Algorithm

In real applications, top-k diversity ranking for querysed dynamic networks is often
required in data scenarios. Still take the DBLP examplep®ae the original input net-
work is the entire DBLP co-authorship netwakkgenerated by including papers from
all the eligible conferences. If a user poses a query “Whaorerenost diverse researcher
in Database community?”, it would result in the dropping d§es which correspond
to papers published in non-database conferences. Divessiking is then computed
on the resulting sub-network. The challenge for computiegsures on dynamic net-



works is that it is no longer possible to compute once foradl answer all the queries
by retrieving saved results. As such, the task is to devdfagpent algorithms for top-k
diversity measure on dynamic networks generated by useregue

Our strategy is to find ways to quickly estimate an upper-ldoafnD (v) for each
nodew in the new sub-network. Meanwhile we store the smallestrditevalue of
top k& candidates which is denoted Asound. If the upper-bound of is smaller than
[_bound, it can be tossed away to save computation. Otherwise wenperfiore costly
computation to get the accurate measure valul @f) and updaté_bound.

We obtain the upper-bound based on two scenarios. Firstileesity of a node
should be smaller than the cardinality of its neighborh&@den all the neighbors have
no connections, the diversity reaches the maximal valueth@mother hand, as the
query-based dynamic network is a subgraph of original nétwane node’s neighbor-
hood should be the sub-set of its original neighborhood sTino nodes’ similarity
should be smaller than their similarity on the original netikv By using the mono-
tonicity property, we obtain the upper-bounds and proposefficient top-k diversity
ranking algorithm.

For any quantityy¥ computed on a networ&, we uselV’ to represent the same
quantity computed on a sub-netwaik C G. We useN,, (v) to denote the set of nodes
in v's r-neighborhood which can only be reached by shortest paisnmathroughu,
i.e., N, (v) = N(v) \ N_y(v).

Lemma 1. For a networkG and a nodey € V(G), D(v) < 3, c n(y) Wo(u).

Lemma 1 is due to the fact that(u, v) < 1 by definition andF'(u,v) = 1 only when
all the neighbors of have no connections.

Lemma 2. For a networkG and a sub-networlky’ C G, for any two nodes, v €
V(G),0< S (u,v) < S(u,v) < 1.

Lemma 2 is due to the fact that the length of the shortest pathv) for any two nodes
u andv in G increases monotonically in sub-netwdrk.

We define some notations to simplify the formulas. Wecslet) = >, v, wo (w).
According to Lemma 1¢'(v) is an upper bound ab(v). Since in this paper we define
wy(u) = S(u,v), we also hav€'(v) = _,c v, S(u, v). Hence, for any sub-network
G'C G C(W) =Y enwS (u,v). Wedenotes = >° n  ynn, ) (S0, 2) *
S(u, z)) for short.

Since0 < S(u,v), S’ (v,z) < 1 for any nodes: andv, we have for any node,

S(v,z) — S (v,z) + S(u,z) — S (u,z)
> (S(v,2) — '(0,2)) * S(u, ) + (S(u,) — 8 (w,)) * S' (v, 7)
= S(v,z) * S(u,x) — S (u,x) * S' (v, )

If we sum up byx for the above inequality, sinc&(v, z) = 0 for x ¢ N(v) (resp.
for S(u,x)), andS(v, ) * S(u,z) = 0forz ¢ (N(v) [ N(u)), we have

C)=C'(v)+C(u) —C'(u) >S -5 + Z S(u,x) * S(v,z) — Z S'(u,x) * S (v, )

z€A zEB



Input:  Sub-networlG’ and K

Output: A setl’ of K nodes with top diversity
1: Q < Queue ofV (@), sorted byC’ (v)
2:l_bound — 0; T — 0;

3: Pop out the top nodein Q

4:  if C'(v) < lbound@ retunT;

5. foreachu € N'(v)

6: ComputeUpper(u, v);

7 UP(v) «— UP(v) + min{l, Upper(u,v)}
8 if UP(v) < l_bound continue;

9: foreachu € N'(v)

10: Computel” (u, v);

11 D'(v) « D'(v) + F'(u,v);

12: if D'(v) > l_-bound insertvintoT
13: if [T > K

14: remove the last node if;

15: [_bound « smallest diversity ifl’;
16:return T

Algorithm 1: Top-K Diversity Ranking

whereA = N (u)NN(v)—N_,(u)NN_y(v). B = N'(u)NN'(v)—N" ,(u)NN",(v).
AsB C A, S(u,x) > S"(u, ), > pen S(u, 2)xS(v,2) = 5 S (u, 2) xS (v, 2) >

€A
0. Therefore,

Cl)—C'(W)+Cu)—C'(u) > -9
So

Sl
ZzeN,U(u) S (u, )
(8= (C(u) = C"(w) + C(v) = C'(v)))
ZzeN,U(u) S (u, )
(8= (Cu) = C"(w) + C(v) = C'(v)))
()

F'(u,v) =1—a*

<l-—-ax

<l—-ax

= Upper(u,v)

We thus derived another upper-boutigper(u, v) for F’(u,v). ThusF’'(u,v) <
min{1, Upper(u,v)}.

To use this upper-bound, we computéor each paifu, v) which are each other’s
r-neighbors in the original network and store these valuéisdpre-computation stage.
Likewise, we also compute and starév). When the user inputs a query, we just need
to computeC’(u) and C’(v) for the sub-network, which is simply a local neighbor
checking, to getVpper(u, v).

The top-k diversity ranking algorithm is as shown in Algbnit 1.



(a) Diversity whenr=1 (b) Diversity whenr=2 (c) Betweenness Centrality (d) Degree Centrality

Fig. 2. Synthetic network results

(a) Surajit Chaudhuri (b) Guy M. Lohman (c) Philip Yu (d) Jiawei Han

Fig. 3. Neighborhood of four authors

(a) Diversity whenr=1 (b) Diversitywhenr=2 (c) Betweenness Centrality

Fig. 4. Network of American football games



5 Experimental Results

In this section, we did extensive experiments on both syittlamd real data and gen-
erated some interesting results. The most diverse node#feredt types of networks

are highlighted to illustrate an intuition of diversity. Wempare the results of diversity
with two classical centrality measures — degree and bemesncentrality and show
both the difference and the correlation between them. AtVesimplemented our top-

k ranking algorithm on dynamic network and demonstrateffisiency.

5.1 Results on Synthetic Network

We first applied the algorithm to a synthetic network comsisbf 92 nodes and 526
edges shown in Fig.2. The network was generated as folloiisg we generated three
clusters of nodes; in each cluster the nodes only connebttivt nodes in the same
cluster randomly; then we generated other 10 nodes comgeotiany node arbitrarily.

Fig.2 shows the top 20 nodes ranked by degree, betweenmasditgand diversity
respectively. The top 10 nodes are highlighted with redrcaial the sizes of nodes are
linear with the ranking (The higher the rank, the larger tize)s The second top 10
nodes are highlighted with blue color [1].

This figure demonstrates that the nodes which connect matesnivom different
clusters tend to be more diverse. Wheimcreases from 1 to 2, the diverse nodes will
further move to the connection points of clusters. It sedmasdiversity is highly cor-
related with betweenness centrality on this network. Theirelation coefficients are
shown in Table 5 This large correlation is caused by the characteristibisfrietwork
structure. As the network consists of three clusters ancesatimer nodes connecting
the clusters, the nodes with high betweenness centralitiesalso tend to locate on
the connection points of clusters. However, diversity fiedént from betweenness cen-
trality as we analyzed above. And we will show that they aveyaorrelated on some
networks with different structures.

5.2 Results on DBLP Network

We extracted the network of co-authorship on conferencé/®G, VLDB and ICDE
from DBLP data®, which means that if two authors cooperated a paper publishe
these conferences, an edge was generated to link them. Jalompares the top 20
author ranked by diversity and betweenness centrality.8¥a s= 0.8, § = 0.5. As it
is proved that on an undirected network degree is consistegithority (eigenvector
centrality) obtained by PageRank [4], we can also treatekegs an authority value and
compare it with diversity. Thus Table 3 demonstrates tharity ranking is different
from betweenness centrality ranking as well as authoritg(ee).

Table 3 demonstrates some interesting results. For exaaifileugh the difference
between the degrees of R. Agrawal and D. DeWitt is as largeddagh@ir diversities
are nearly the same. The reason should be that R. Agrawairis ifrdustry area and

2 SN denotes synthetic network for short.
% This network is called as "DB” for short in the remainder oé thaper.



Table 3. Author Ranking Results on DB

Diversity whenr=1 Diversity whenr =2 Betweenness Centrality
Author DC |Value|Author Value |Author Value
Rakesh Agrawal 98 |50.94Rakesh Agrawal 450.84Rakesh Agrawal 971048.8
David J. DeWitt 11850.6(David J. DeWitt 434.7fMichael J. Carey  |785089.9
Hector Garcia-Moling98 |48.20Surajit Chaudhuri  |402.93Christos Faloutsos |747502.4
Divesh Srivastava |89 |46.79Michael J. Carey  |386.83David J. DeWitt 746523.
Surajit Chaudhuri |73 |45.53Divesh Srivastava |373.34Umeshwar Dayal |737304.2
Raghu Ramakrishng®0 |44.95Jennifer Widom 367.29Michael Stonebrake705067.8
H. V. Jagadish 82 |41.53Hector Garcia-Moling864.51Hector Garcia-Moling85955.
Hamid Pirahesh 83 |41.45Raghu Ramakrishng860.98Surajit Chaudhuri  |631760.8
Michael J. Carey  |11541.05Michael J. Franklin |360.09Philip A. Bernstein |628037.%

Michael Stonebrake11340.93Jeffrey F. Naughton [349.62H. V. Jagadish 604977.7
Jennifer Widom 84 |40.29Hamid Pirahesh 343.99Divesh Srivastava [562573.6
Christos Faloutsos |94 |39.21H. V. Jagadish 339.80Raghu Ramakrishngs55216.

Jeffrey F. Naughton |95 |38.8§Gerhard Weikum  (333.76Gerhard Weikum  |540029.%
Guy M. Lohman 73 |37.98§Umeshwar Dayal [330.88Elisa Bertino 533129.3
Michael J. Franklin |76 |37.42Philip A. Bernstein [327.78Dennis Shasha 526097.3
Nick Koudas 69 [37.32Michael Stonebraker326.91Jiawei Han 520527.3
C. Mohan 66 [36.19Abraham Silberschaf226.70Michael J. Franklin |518074.6
Gerhard Weikum 80 |34.11C. Mohan 322.23Gio Wiederhold 517573.1
Philip A. Bernstein |61 |33.45Guy M. Lohman 320.67Kian-Lee Tan 513349.

Rajeev Rastogi 75 |33.3§Bruce G. Lindsay [312.36C. Mohan 509267.1

has worked in many companies, e.g., Microsoft, IBM Almadeséarch Center, Bell

Laboratories, etc. Therefore, Agrawal’s cooperators arg diverse. We also compare
the diversity of two authors, Surajit Chaudhuri and Guy Mhhwn, who have the

same degree. Their neighborhoods as shown in Fig.3(a) &n8(F) demonstrate that
Lohman’s cooperators connect with each other more closely €Chaudhuri’s. There-

fore the diversity of Chaudhuriis larger than Lohman as iolethin Table 3.

We can also get similar results on the co-author network afexence KDD and
ICDM from DBLP datd as shown in Table 4. For example, although Philip S. Yu
and Jiawei Han's degrees are roughly the same, their disrsiiffer a lot, which can
also be demonstrated from their neighborhoods as showrnyi(€) and Fig.3(d). The
reason should be that Philip S. Yu had worked in industry anebhas cooperated with
many different persons who have no close relationship. filediversity value is much
larger than Jiawei Han.

5.3 Results on Network of American Football Games

We obtained another social network of American football gafnetween Division 1A
colleges during regular season Fall 2000 [6]. In this datales represent teams and
edges denote that two teams had a game. Fig.4 shows the topd&8 with largest

4 The network is called as "DM” for short in the remainder of tiaper.



Table 4. Author Ranking Results on DM

Diversity whenr =1 Diversity whenr =2 Betweenness Centrality
Author DC|Value|Author Value |Author Value
Philip S. Yu 76 |139.72Philip S. Yu 160.82Philip S. Yu 544203.
Jiawei Han 73 |26.25Haixun Wang 107.158Christos Faloutsos 335598.
Christos Faloutsos 60 |24.77Jiawei Han 96.85 |Heikki Mannila 179383.3
Jian Pei 51 |20.37Christos Faloutsos |93.26 |Mohammed Javeed Zaki158551.1
Haixun Wang 32 |19.21Ke Wang 92.37 |Jiawei Han 132043.%
Ke Wang 36 |17.30Jian Pei 91.13 |[Eamonn J. Keogh 123389.1
Heikki Mannila 39 |16.54Ada Wai-Chee Fu |82.14 |Padhraic Smyth 116926.1
Bing Liu 32 |15.15Jianyong Wang 75.56 |Jian Pei 112538.7
Mohammed Javeed ZgB0 (14.50Charu C. Aggarwal |74.11 |Charu C. Aggarwal 107042.4
Eamonn J. Keogh 37 |14.32Wei Fan 73.63 |Bing Liu 103081.9
Wei Fan 29 |14.26Wei Wang 71.52 |Gregory Piatetsky-Shapifb01267.2
Padhraic Smyth 32 |13.89Bing Liu 70.26 |Srinivasan Parthasarathy95692.4
Wei-Ying Ma 34 |13.73Spiros Papadimitrio®9.17 |Ada Wai-Chee Fu 91889.1
Ada Wai-Chee Fu 25 |13.70Hong Cheng 69.14 |Ke Wang 90909.1
Qiang Yang 41 |13.6§Eamonn J. Keogh |67.69 |Haixun Wang 88484.7
Vipin Kumar 29 |13.21Alexander Tuzhilin |64.71 |Vipin Kumar 82333.2
Wei Wang 39 |13.13Jiong Yang 63.58 |Rakesh Agrawal 80409.2
Hui Xiong 27 |13.02Hongjun Lu 62.50 |Huan Liu 79472.5
Huan Liu 28 |12.92David W. Cheung |60.45 |Spiros Papadimitriou 78784.6
Alexander Tuzhilin 17 |12.16Michail Vlachos 60.28 |Prabhakar Raghavan |77359.7

diversity and betweenness centrality, which are highédhty the larger sizes of nodes.
The degrees of all the nodes are roughly the same, with tlgerfrom 8 to 12. Thus
we do not show the degree ranking results. The data alsoindhtanode labels which
indicate the conference that each team belongs to. We useathif colors to distinguish
the labels in the figure. Therefore the results illustrase tihe diversity calculated based
on network topology is consistent to the diversity based aterlabels, which means
that the nodes whose neighbors are from more clusters telmg noore diverse. Table
5° demonstrates that on this network the diversity is lowlyretated with degree and
betweenness centrality.

5.4 Performance Comparison

Fig.5(a) compares the running time of Top-K algorithm whk time of ranking all the
nodes on DB and DM networks. It demonstrates that Top-K é@lyoris much more
efficient and can meet online query needs. We also implerdemefficient between-
ness algorithm [3] and compared it with diversity. Fig.5@e@monstrates that diversity
calculation is much faster than betweenness calculatibe r&ason is that to some ex-
tent betweenness centrality is a global measure based ahéneest path calculation
between all the pair-nodes which is very time consumingevtiie diversity measure
only needs to count the local neighborhood.

5 FN denotes the social network of American football gamesthart.



Table 5. Correlation Coefficients of Metrics

DC vs|DC vs. DiversityBC vs. Diversit
BC r=1 [r=2 (|r=1 [r=2
SN 92 | 526 | 0.470| 0.874| 0.399| 0.709 | 0.828
FN 115 | 616 | 0.151| 0.345| 0.224 | 0.413| 0.463
DB |7640|22309 0.810( 0.881| 0.819 | 0.829| 0.716
DM |3405| 6496| 0.665| 0.908 | 0.683 | 0.701 | 0.576

Networkl#nodea#edge

6 Discussion

As diversity is a highly subjective concept, we do not thinére exists one optimal def-
inition which is applicable for all scenarios. Rather thamrowing ourselves down to
one specific definition, we are fully aware of other possilgérdtions that may be bet-
ter geared for other applications. For example, a highlyitine definition can be based
on clustering, where nodes are first assigned labels byicettestering algorithm and
then diversity is computed by calculating the informatiorepy of the cluster distri-
bution of neighbors. This kind of definition needs to at lesmdve the following issues:
(i) The choice of the clustering algorithm dictates the Hasg clusters, which in turn
determines the diversity computation. The decision ontetirsy parameters becomes
critical and difficult. (i) The internal cohesion of cluste which reflects the topology
of network, is also an important component for diversityeThversity of a node con-
nected with a compact cluster should be different from therdity of a node connected
with a loose cluster. Therefore in general still lots of aspand factors should be ex-
ploited for the clustering-based definition. In this papes, propose a straightforward
diversity definition based on the similarity between neigistinstead of solving these
problems of clustering.

DB DM " DB 3 DM
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Running Time (Second)
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] 10°
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(a) Top-K Algorithm Comparison (b) Betweenness VS. Diversity

Fig. 5. Performance comparison

7 Conclusion

In this paper, we investigated the problem of mining diwgren networks. We gave
two criteria to characterize the semantic meaning of dityeesd to provide the ba-



sis of proposing a reasonable measure definition. Then vekestwiversity measure
based on network topology and picked a concrete definitioeantbed the idea. We
developed an efficient algorithm to find top-k diverse nodeglynamic networks. Ex-
tensive experiment studies were conducted on syntheticeaidiata sets. The results
are interesting, where individual nodes identified withthétiversities are intuitive.
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