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Abstract. Despite the recent emergence of many large-scale networks in dif-
ferent application domains, an important measure that captures a participant’s
diversity in the network has been largely neglected in previous studies. Namely,
diversity characterizes how diverse a given node connects with its peers. In this
paper, we give a comprehensive study of this concept. We firstlay out two cri-
teria that capture the semantic meaning of diversity, and then propose a com-
pliant definition which is simple enough to embed the idea. Anefficient top-k
diversity ranking algorithm is developed for computation on dynamic networks.
Experiments on both synthetic and real datasets give interesting results, where
individual nodes identified with high diversities are intuitive.

1 Introduction

Mining diversity is an important problem in various areas and finds many applications
in real-life scenarios. For example, in information retrieval, people use information en-
tropy to measure the diversity based on a certain distribution, e.g., one person’s research
interests diversity[12]. In social literature, diversity, which has been proposed under
other terminologies likebridging social capital, proves its importance in many social
phenomena. Putnam found that bridging social capital benefits societies, governments,
individuals and communities[11]. In particular, bridgingsocial capital helps reduce an
individual’s chance of catching certain diseases and the chance of dying, e.g., joining an
organization cuts in half an individual’s chance of dying within the next year, leading
to the conclusion that “Network diversity is a predictor of lower mortality”.

Mining diversity on network data is also critical for network analysis as network
data emerge in abundance in many of today’s real world applications. For example,
advertisers may be very interested in the most diverse usersin social network because
they connect with users of many different types, which means“word of mouth” market-
ing on these users could reach potential customers of a much wider spectrum of varied
tastes and budgets. In a research collaboration network of computer scientists, the di-
versity of a node could indicate the corresponding researcher’s working style. A highly
diverse researcher collaborates with colleagues from a wide range of institutions and
communities, while a less diverse one might only work with a small group of people,
e.g., his/her students. As such, an interesting query on such a network could be “Who
are the top ten diversely-collaborating researchers in thedata mining community?”. To
illustrate the intuition of diversity on networks, let us look at an example.
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(c) Example 3

Fig. 1.Three Examples

Example 1 Consider a social network example in which nodes represent people and
edges represent social connections between correspondingparties. Suppose we examine
two nodesA andB in Fig.1(a) whereA connects to 5 neighbors andB connects to 4
neighbors. However, the 5 neighbors ofA are all from the same profession and the
same community, while the 4 neighbors ofB are from 4 different professions and/or
communities. Here, although the neighborhood ofB is smaller than that ofA, it is
obvious thatB connects to a more diverse group of people, which could have important
implications regarding the role he/she may play in the network, e.g., the profitability
and impact if we are to choose a node to launch a marketing campaign.

Example 1 demonstrates that the diversity of a node on network is determined by the
characteristics of its neighborhood. Greater difference between the neighbors translates
into greater diversity of the node. In Example 1, the attributes or the labels are used
to distinguish the neighbors. Then how can we measure the diversity if no attribute
information is given? Example 2 illustrates another way to mine diversity which is
based on the topological structure of the network.

Example 2 In Fig.1(b), comparing nodesA andC with the same degree of 3, it is
easy to observe significant difference between the diversities of their neighborhoods.A
connects to three neighbors, each of which belongs to a distinct community, whileC
connects to three closely connected neighbors that form a cohort. In many applications,
A might be more interesting, because of its role of joining different persons together.

The two examples above give two different ways to measure diversity on networks.
However regardless of using either neighborhood attributes or topology, certain com-
mon principles conveying the semantic meaning of diversityunderlie any particular
kind of computation or definition of diversity. In fact, it isour observation that there are
two basic factors impacting the diversity measure on a network.

• All else being equal, the greater the size of the neighborhood, the greater the diver-
sity.

When all the neighbors are the same, in terms of both associated labels and neigh-
borhood topology, more neighbors lead to a greater diversity.

• The greater the differences among the neighbors, the greater the diversity.

The neighbors can be distinguished either by their attributes and labels or by the
topological information of the neighborhood. Whichever way, a larger difference
should translate into a greater diversity.



The above two factors can also been treated as two criteria taken as the basis for
proposing a reasonable definition for measuring diversity.In this paper, we focus on
mining the diversity on network based on the topological structure. As pointed out
in Section 2, existing measures like centrality can not accurately capture the notion
of diversity in general, although certain degree of correlation between them can be
observed for some data sets.

Our contributions can be summarized as follows.

• As far as we know, there has been no research work to investigate diversity on
network structure data based on network characteristics. We are the first to propose
the diversity concept on network and give two criteria that capture the semantic
meaning of diversity.

• We investigate mining diversity based on topological information of a network, find
a function which is simple enough to embed the two criteria and propose an efficient
algorithms to obtain top-k diverse nodes on dynamic networks.

• Extensive experiment studies are conducted on synthetic and real data sets includ-
ing DBLP. The results are interesting, where individual nodes identified with great
diversities are highly intuitive.

The remaining of this paper is organized as follows. In Section 2, the related work
is introduced and compared with our work. In Section 3, we propose a diversity defi-
nition based on topological information of network and develop an efficient top-k di-
versity ranking algorithm for dynamic networks in Section 4. The experiment results
are reported in Section 5. Other kinds of diversity definition are discussed in Section 6.
Section 7 concludes this study.

2 Related Work

As network data emerge in abundance in many of today’s real world applications, many
research work has been done on network analysis in recent literatures. Properties re-
flecting the overall characteristics of network, such as density, small world, hierarchical
modularity and power law [15, 5, 2, 10], have been observed for a long time. Compared
to these, many measures that focus on individual components, e.g., degree, between-
ness, closesness centrality, clustering coefficient, authority and etc, have also been pro-
posed to distinguish the roles of nodes in network [13, 9, 14,7]. Besides, some other
types of patterns, e.g., frequent subgraphs that focus moreon local topologies [8, 16],
can be mined from the network.

However, all these measures are different from diversity and thus could not accu-
rately capture the idea behind. Degree centrality, which isdefined as the number of
links for a given node, does not consider whether the neighbors are similar. Between-
ness centrality assigns higher value to nodes appearing on the shortest paths of more
node pairs. As we shall observe in the experiments, it might be correlated with di-
versity to some extent in particular data scenarios, but it is not a direct modeling of
diverseness and thus would not satisfy the two criteria we have proposed in general.
Closeness centrality, which measures the average shortest-path length from a node to
all other nodes in the network, has similar problems. Moreover, such shortest-path based



measures require the global computation of all-pair shortest paths, which leads to the
time-consuming measure calculations on a large network. The clustering coefficient
value of a node corresponds to the number of edges among its neighbors normalized
by the maximum number of such edges; intuitively, with higher clustering coefficient,
the neighbors have more connections among them and thus are more similar to each
other, which leads to lower diversity. However, clusteringcoefficient does not consider
the scale of the neighborhood and only counts number of edgesas the sole parameter,
which is inevitably restricted. Interestingly, it can be treated as a degenerated version of
our diversity definition when the latter is confined to a very special setting.

3 Diversity Definition

In this section, we will propose concrete diversity definitions based on nodes’ neigh-
borhood topology. First, a simple definition is given out andthe calculation results on
Example 2 illustrate that it matches our intuition of diversity. Then we will propose
a general definition and show its calculation results on moreexamples, in which we
analyze its parameters and compare it with centrality.

3.1 Terminology and Representation

Let an undirected unweighted network beG = {(V, E) | V is a set of nodes andE is a set
of edges,E ∈ V ×V , an edgee = (i, j) connects two nodesi andj, i, j ∈ V , e ∈ E}.
N(v) denotes the set ofv’s neighbors.|N(v)| denotes the cardinality ofN(v), i.e., the
number of neighbors.r is the radius of the neighborhood. If it is set to be 1,N(v) is
the set of directly connected nodes and|N(v)| equals to the degree of nodev. N−u(v)
denotes the set ofv’s neighbors which excludes the nodes that becomev’s neighbors
throughu. For example, whenr = 1, N−u(v) is the set of the direct neighbors ofv
exceptu itself; whenr = 2, N−u(v) = N(v) - {x|there is only one shortest path from
v to x which is throughu}. L(i, j) denotes the length of shortest path from nodei to
nodej.

3.2 A Simple Diversity Example

To illustrate the diversity measure, we first use a simple definition as below, which can
get the intuitive results of Example 2 in Fig.1(b).

Definition 1. Given a networkG and a nodev ∈ V (G), thediversityD(v) is defined
as

D(v) =
∑

u∈N(v)

(

1−
|N(v)

⋂

N(u)|

|N(u)|

)

(1)

The underlying intuition of the definition is that, for a target nodev, if a neighboru
has fewer connections with other neighbors ofv, u is considered to contribute more to
the diversity ofv. Therefore the diversity ofv is defined as the aggregation of every
neighboring nodeu’s contribution which equals to the probability of leaving the direct
neighborhood ofv throughu [7].



Based on this definition, we can get that the diversity valuesof A,B,C in Example 2
are 3, 2, 1.167 respectively. The relative values match our intuition of diversity ranking
on this network.

3.3 Diversity: General Definition

While the previous definition based on direct common neighborhood is simple and in-
tuitive in some cases, we need more flexibility and generality in the diversity definition
for most applications to capture the measure more accurately. As we discussed above,
the diversity in general grows in proportion with the size ofthe neighborhood. With this
notion of each neighbor contributing to the diversity of thecentral node, we propose the
general definition of diversity in an aggregate form as follows.

Definition 2. [Diversity]. The diversity of a nodev is defined as an aggregation of each
neighboru’s contribution tov’s diversity.

D(v) =
∑

u∈N(v)

wv(u) ∗ F (u, v) (2)

whereF (u, v) is a function measuring the diversity introduced byu. wv(u) isu’s weight
in the aggregation.

According to our guiding principles, if a neighboru is less similar to other neighbors
of v, u would contribute more tov’s diversity. ThusF (u, v) is a function evaluating the
dissimilarity betweenu and other neighbors ofv in the set radiusr, i.e., the setN−u(v).
In general,F (u, v) can be defined as a linear function of the similarity betweenu and
N−u(v) as

F (u, v) = 1 − α ∗ S(u, N−u(v)) (3)

S(u, N−u(v)) is a function measuring the similarity betweenu andN−u(v) up to a nor-
malization.α indicates its weight, which can be set empirically. We defineS(u, N−u(v))
as the average similarity betweenu and each nodex of N−u(v). There are various ways
to measure the similarity between two nodesu andx, e.g., shortest path is a reasonable
choice for many real-world scenario. However, computing shortest paths on a global
scale is inefficient. Fortunately, since diversity is a local property defined on a neigh-
borhood with a set radius, we can use the following definitionbased on local shortest
path computation.

Definition 3. [Similarity Between Node Pair]. The similarity between two nodesu and
x is defined as:

S(u, x) =

{

δ(l−1), 0 < δ < 1 if L(u, x) = l ≤ r
0 otherwise

If two nodes are too far apart, in the sense that their distance is larger than the
neighborhood radiusr of our interest, their similarity is considered to be zero; Other-
wise, their similarity is inversely proportional to their distance.δ is a damping factor to
reflect the notion that nodes farther apart share less similarity. The effect ofδ is further
explored in Section 3.4. With the similarity between a pair of nodes defined, we can
give the definition of similarity between a node and a set of nodes.



Table 1.Computation Results for Example 2

NodeDC BC
Diversity (α = 0.8 δ = 0.8)
r=1 r=2 r=3 r=4

A 3 48 3 5.2085.208 5.208
B 4 27 1.6 2.7634.147 4.245
C 3 0 0.8671.7672.962 4.489

Definition 4. [Similarity Between Node and Node Set] The similarity between a node
u and a set of nodesN−u(v) is defined as

S(u, N−u(v)) =

∑

x∈N−u(v)∩N−v(u) (wv(x) ∗ S(u, x))
∑

x∈N−v(u) S(u, x)
(4)

wherewv(x) is the weight ofx in v’s neighborhood.

The purpose of setting weight, e.g.,wv(u) andwv(x), is to prioritize all the nodes in
v’s neighborhood. There are more than one possible ways to define the weights. In this
paper, we definewv(x) = S(v, x) based on the argument that distance-based similarity
is an appropriate way to evaluate the priority of a node inv’s neighborhood when a
radius larger than 1 is needed. Putting it together, we have

S(u, N−u(v)) =

∑

x∈N−u(v)∩N−v(u) (S(v, x) ∗ S(u, x))
∑

x∈N−u(v) S(u, x)
(5)

It is easy to notice that the definition in Section 3.2 is a special case of this general
definition.

3.4 Examples and Analysis

To illustrate the intuition of the diversity measure above and analyze the impact of its
parameters, we get the computation results for Example 2 and3 in Fig.1(b)(c) with
changing parameters and show them in Table 1 and 2, where the computation results of
degree and betweenness centrality are also listed1.

Comparison with Degree and BetweennessExample 2 demonstrates that diver-
sity does not equal to degree. E.g., A and C are with the same degree but their diversities
differ a lot. In Example 3, as the neighbors of all the nodes are not directly connected
with each other, the value of diversity equals to degree whenr = 1. But whenr in-
creases from 1 to 2, the diversity ranking changes. Example 3demonstrates that diver-
sity does not equal to betweenness centrality either. E.g.,betweenness centrality ofA
andC in Fig.1(c) are roughly the same, but their diversities are obviously different.

Radius of Neighborhood Table 1 and 2 show all the calculation results whenr
changes from 1 to the possible maximal value (it means that the neighborhood would
no longer change whenr increases more). It is found that a larger radius may lead to

1 DC and BC denote degree and betweenness centrality for shortrespectively in this paper.



Table 2.Computation Results for Example 3

NodeDC BC
Diversity (α = 0.8, δ = 0.5) Diversity (α = 0.8, δ = 0.8)
r=1 r=2 r=3 r=4 r=5 r=6 r=1 r=2 r=3 r=4 r=5 r=6

A 2 42 2 4.704.744.744.744.74 2 5.314.974.974.974.97
B 6 47 6 3.193.923.993.993.99 6 3.044.374.394.394.39
C 5 43 5 2.983.903.963.963.96 5 2.854.504.514.514.51
D 2 1.6 2 2.392.693.193.243.24 2 2.332.964.254.384.37
E 2 2.25 2 2.162.483.103.153.15 2 2.142.824.414.514.51
F 5 5 5 2.342.733.153.393.41 5 2.133.014.115.065.18
G 4 3 4 2.082.472.903.193.21 4 1.922.833.945.135.25

counter-intuitive ranking results. However, it is our belief and definition that diversity
should measure an aspect of a node’s interaction with its local neighborhood. To judge
a node’s diversity on a global scale (e.g., considering all the nodes as neighbors of
the center node) is semantically controversial. On the other hand, it is discovered that
“small world” phenomenon applies to a wide range of networks such as the Internet,
the social networks like Facebook and the bio-gene networks, which means most nodes
in these networks are found to be within a small number of hopsfrom each other. In
particular, the theory of “six degrees of separation” indicates that in social network
most people can reach any other individuals through six persons. It follows that when
r increases beyond a small number, a node’s diversity would beaggregated by nearly
all the nodes’ contributions in the network, which deviatesaway from what diversity is
meant to capture based on our previous discussion. Therefore, a small radius should be
chosen in the computation. Furthermore, the results show that the top-k results in the
diversity ranking become stable whenr = 2 or r = 3 in most cases.

Damping Factor The damping factorδ controls a neighbor’s impact on the di-
versity measure in relation to its distance to the central node. Intuitively, neighbors
far away should have smaller impact on the central node’s diversity. As we discussed
above, diversity is influenced mainly by two factors: the size of the neighborhood and
the difference among the neighbors. On real data sets, as theradius increases, the num-
ber of neighbors increases enormously, which makes the sizeof neighborhood be a
dominating factor of diversity computation. This imbalance would sometimes distort
the ranking result. Therefore an appropriate damping factor can be chosen to balance
the two factors, e.g.,δ = 0.5 in Table 2 .

4 Top-K Diversity Ranking Algorithm

In real applications, top-k diversity ranking for query-based dynamic networks is often
required in data scenarios. Still take the DBLP example. Suppose the original input net-
work is the entire DBLP co-authorship networkG generated by including papers from
all the eligible conferences. If a user poses a query “Who arethe most diverse researcher
in Database community?”, it would result in the dropping of edges which correspond
to papers published in non-database conferences. Diversity ranking is then computed
on the resulting sub-network. The challenge for computing measures on dynamic net-



works is that it is no longer possible to compute once for all and answer all the queries
by retrieving saved results. As such, the task is to develop efficient algorithms for top-k
diversity measure on dynamic networks generated by user queries.

Our strategy is to find ways to quickly estimate an upper-bound of D(v) for each
nodev in the new sub-network. Meanwhile we store the smallest diversity value of
top k candidates which is denoted asl bound. If the upper-bound ofv is smaller than
l bound, it can be tossed away to save computation. Otherwise we perform more costly
computation to get the accurate measure value ofD(v) and updatel bound.

We obtain the upper-bound based on two scenarios. First, thediversity of a node
should be smaller than the cardinality of its neighborhood.When all the neighbors have
no connections, the diversity reaches the maximal value. Onthe other hand, as the
query-based dynamic network is a subgraph of original network, one node’s neighbor-
hood should be the sub-set of its original neighborhood. Thus two nodes’ similarity
should be smaller than their similarity on the original network. By using the mono-
tonicity property, we obtain the upper-bounds and propose an efficient top-k diversity
ranking algorithm.

For any quantityW computed on a networkG, we useW ′ to represent the same
quantity computed on a sub-networkG′ ⊆ G. We useNu(v) to denote the set of nodes
in v’s r-neighborhood which can only be reached by shortest paths passing throughu,
i.e.,Nu(v) = N(v) \ N−u(v).

Lemma 1. For a networkG and a nodev ∈ V (G), D(v) ≤
∑

u∈N(v) wv(u).

Lemma 1 is due to the fact thatF (u, v) ≤ 1 by definition andF (u, v) = 1 only when
all the neighbors ofv have no connections.

Lemma 2. For a networkG and a sub-networkG′ ⊆ G, for any two nodesu, v ∈
V (G), 0 ≤ S′(u, v) ≤ S(u, v) ≤ 1.

Lemma 2 is due to the fact that the length of the shortest pathL(u, v) for any two nodes
u andv in G increases monotonically in sub-networkG′.

We define some notations to simplify the formulas. We setC(v) =
∑

u∈N(v) wv(u).
According to Lemma 1,C(v) is an upper bound ofD(v). Since in this paper we define
wv(u) = S(u, v), we also haveC(v) =

∑

u∈N(v) S(u, v). Hence, for any sub-network
G′ ⊆ G, C′(v) =

∑

u∈N ′(v) S′(u, v). We denoteS =
∑

x∈N−u(v)∩N−v(u)(S(v, x) ∗

S(u, x)) for short.
Since0 ≤ S(u, v), S′(v, x) ≤ 1 for any nodesu andv, we have for any nodex,

S(v, x)− S
′(v, x) + S(u, x)− S

′(u, x)

≥ (S(v, x)− S
′(v, x)) ∗ S(u, x) + (S(u, x)− S

′(u, x)) ∗ S
′(v, x)

= S(v, x) ∗ S(u, x)− S
′(u, x) ∗ S

′(v, x)

If we sum up byx for the above inequality, sinceS(v, x) = 0 for x /∈ N(v) (resp.
for S(u, x)), andS(v, x) ∗ S(u, x) = 0 for x /∈ (N(v)

⋂

N(u)), we have

C(v)− C
′(v) + C(u)− C

′(u) ≥ S − S
′ +

∑

x∈A

S(u, x) ∗ S(v, x)−
∑

x∈B

S
′(u, x) ∗ S

′(v, x)



Input: Sub-networkG′ andK

Output: A setT of K nodes with top diversity
1: Q← Queue ofV (G′), sorted byC′(v)
2: l bound← 0; T ← ∅;
3: Pop out the top nodev in Q

4: if C′(v) < l boundQ return T;
5: for eachu ∈ N ′(v)
6: ComputeUpper(u, v);
7: UP (v)← UP (v) + min{1, Upper(u, v)}
8: if UP (v) < l bound continue;
9: for eachu ∈ N ′(v)
10: ComputeF ′(u, v);
11: D′(v)← D′(v) + F ′(u, v);
12: if D′(v) > l bound insertv into T

13: if |T | > K

14: remove the last node inT ;
15: l bound← smallest diversity inT ;
16: return T ;

Algorithm 1: Top-K Diversity Ranking

whereA = N(u)∩N(v)−N−v(u)∩N−u(v). B = N ′(u)∩N ′(v)−N ′

−v(u)∩N ′

−u(v).
As B ⊆ A, S(u, x) ≥ S′(u, x),

∑

x∈A
S(u, x)∗S(v, x)−

∑

x∈B
S′(u, x)∗S′(v, x) ≥

0. Therefore,

C(v)− C
′(v) + C(u)− C

′(u) ≥ S − S
′

So

F
′(u, v) = 1− α ∗

S′

∑

x∈N−v
(u) S′(u, x)

≤ 1− α ∗
(S − (C(u)− C′(u) + C(v)− C′(v)))

∑

x∈N−v
(u) S′(u, x)

≤ 1− α ∗
(S − (C(u)− C′(u) + C(v)− C′(v)))

C′(u)

= Upper(u, v)

We thus derived another upper-boundUpper(u, v) for F ′(u, v). ThusF ′(u, v) ≤
min{1, Upper(u, v)}.

To use this upper-bound, we computeS for each pair(u, v) which are each other’s
r-neighbors in the original network and store these values inthe pre-computation stage.
Likewise, we also compute and storeC(v). When the user inputs a query, we just need
to computeC′(u) andC′(v) for the sub-network, which is simply a local neighbor
checking, to getUpper(u, v).

The top-k diversity ranking algorithm is as shown in Algorithm 1.



(a) Diversity when r = 1 (b) Diversity when r = 2 (c) Betweenness Centrality (d) Degree Centrality

Fig. 2. Synthetic network results

(a) Surajit Chaudhuri (b) Guy M. Lohman (c) Philip Yu (d) Jiawei Han

Fig. 3. Neighborhood of four authors

(a) Diversity when r = 1 (b) Diversity when r = 2 (c) Betweenness Centrality

Fig. 4. Network of American football games



5 Experimental Results

In this section, we did extensive experiments on both synthetic and real data and gen-
erated some interesting results. The most diverse nodes on different types of networks
are highlighted to illustrate an intuition of diversity. Wecompare the results of diversity
with two classical centrality measures – degree and betweenness centrality and show
both the difference and the correlation between them. At last, we implemented our top-
k ranking algorithm on dynamic network and demonstrate its efficiency.

5.1 Results on Synthetic Network

We first applied the algorithm to a synthetic network consisting of 92 nodes and 526
edges shown in Fig.2. The network was generated as following: first, we generated three
clusters of nodes; in each cluster the nodes only connect with the nodes in the same
cluster randomly; then we generated other 10 nodes connecting to any node arbitrarily.

Fig.2 shows the top 20 nodes ranked by degree, betweenness centrality and diversity
respectively. The top 10 nodes are highlighted with red color and the sizes of nodes are
linear with the ranking (The higher the rank, the larger the size). The second top 10
nodes are highlighted with blue color [1].

This figure demonstrates that the nodes which connect more nodes from different
clusters tend to be more diverse. Whenr increases from 1 to 2, the diverse nodes will
further move to the connection points of clusters. It seems that diversity is highly cor-
related with betweenness centrality on this network. Theircorrelation coefficients are
shown in Table 52. This large correlation is caused by the characteristic of this network
structure. As the network consists of three clusters and some other nodes connecting
the clusters, the nodes with high betweenness centrality values also tend to locate on
the connection points of clusters. However, diversity is different from betweenness cen-
trality as we analyzed above. And we will show that they are lowly correlated on some
networks with different structures.

5.2 Results on DBLP Network

We extracted the network of co-authorship on conference SIGMOD, VLDB and ICDE
from DBLP data3, which means that if two authors cooperated a paper published on
these conferences, an edge was generated to link them. Table3 compares the top 20
author ranked by diversity and betweenness centrality. We set α = 0.8, δ = 0.5. As it
is proved that on an undirected network degree is consistentto authority (eigenvector
centrality) obtained by PageRank [4], we can also treat degree as an authority value and
compare it with diversity. Thus Table 3 demonstrates that diversity ranking is different
from betweenness centrality ranking as well as authority (degree).

Table 3 demonstrates some interesting results. For example, although the difference
between the degrees of R. Agrawal and D. DeWitt is as large as 20, their diversities
are nearly the same. The reason should be that R. Agrawal is from industry area and

2 SN denotes synthetic network for short.
3 This network is called as ”DB” for short in the remainder of the paper.



Table 3.Author Ranking Results on DB

Diversity when r = 1 Diversity when r = 2 Betweenness Centrality
Author DC ValueAuthor Value Author Value
Rakesh Agrawal 98 50.94Rakesh Agrawal 450.84Rakesh Agrawal 971048.8
David J. DeWitt 118 50.60David J. DeWitt 434.77Michael J. Carey 785089.9
Hector Garcia-Molina98 48.20Surajit Chaudhuri 402.93Christos Faloutsos 747502.4
Divesh Srivastava 89 46.75Michael J. Carey 386.85David J. DeWitt 746523.0
Surajit Chaudhuri 73 45.53Divesh Srivastava 373.34Umeshwar Dayal 737304.2
Raghu Ramakrishnan90 44.95Jennifer Widom 367.29Michael Stonebraker705067.8
H. V. Jagadish 82 41.53Hector Garcia-Molina364.51Hector Garcia-Molina685955.0
Hamid Pirahesh 83 41.45Raghu Ramakrishnan360.98Surajit Chaudhuri 631760.8
Michael J. Carey 115 41.05Michael J. Franklin 360.09Philip A. Bernstein 628037.5
Michael Stonebraker113 40.93Jeffrey F. Naughton 349.62H. V. Jagadish 604977.7
Jennifer Widom 84 40.29Hamid Pirahesh 343.99Divesh Srivastava 562573.6
Christos Faloutsos 94 39.21H. V. Jagadish 339.80Raghu Ramakrishnan555216.0
Jeffrey F. Naughton 95 38.86Gerhard Weikum 333.76Gerhard Weikum 540029.5
Guy M. Lohman 73 37.98Umeshwar Dayal 330.88Elisa Bertino 533129.3
Michael J. Franklin 76 37.42Philip A. Bernstein 327.75Dennis Shasha 526097.3
Nick Koudas 69 37.32Michael Stonebraker326.91Jiawei Han 520527.3
C. Mohan 66 36.19Abraham Silberschatz326.70Michael J. Franklin 518074.6
Gerhard Weikum 80 34.11C. Mohan 322.23Gio Wiederhold 517573.1
Philip A. Bernstein 61 33.45Guy M. Lohman 320.67Kian-Lee Tan 513349.0
Rajeev Rastogi 75 33.36Bruce G. Lindsay 312.36C. Mohan 509267.1

has worked in many companies, e.g., Microsoft, IBM Almaden Research Center, Bell
Laboratories, etc. Therefore, Agrawal’s cooperators are very diverse. We also compare
the diversity of two authors, Surajit Chaudhuri and Guy M. Lohman, who have the
same degree. Their neighborhoods as shown in Fig.3(a) and Fig.3(b) demonstrate that
Lohman’s cooperators connect with each other more closely than Chaudhuri’s. There-
fore the diversity of Chaudhuri is larger than Lohman as obtained in Table 3.

We can also get similar results on the co-author network of conference KDD and
ICDM from DBLP data4 as shown in Table 4. For example, although Philip S. Yu
and Jiawei Han’s degrees are roughly the same, their diversities differ a lot, which can
also be demonstrated from their neighborhoods as shown in Fig.3(c) and Fig.3(d). The
reason should be that Philip S. Yu had worked in industry areaand has cooperated with
many different persons who have no close relationship. Thushis diversity value is much
larger than Jiawei Han.

5.3 Results on Network of American Football Games

We obtained another social network of American football games between Division IA
colleges during regular season Fall 2000 [6]. In this data, nodes represent teams and
edges denote that two teams had a game. Fig.4 shows the top 10 nodes with largest

4 The network is called as ”DM” for short in the remainder of thepaper.



Table 4.Author Ranking Results on DM

Diversity when r = 1 Diversity when r = 2 Betweenness Centrality
Author DC ValueAuthor Value Author Value
Philip S. Yu 76 39.72Philip S. Yu 160.82Philip S. Yu 544203.3
Jiawei Han 73 26.25Haixun Wang 107.15Christos Faloutsos 335598.8
Christos Faloutsos 60 24.77Jiawei Han 96.85 Heikki Mannila 179383.3
Jian Pei 51 20.37Christos Faloutsos 93.26 Mohammed Javeed Zaki158551.1
Haixun Wang 32 19.21Ke Wang 92.37 Jiawei Han 132043.5
Ke Wang 36 17.30Jian Pei 91.13 Eamonn J. Keogh 123389.1
Heikki Mannila 39 16.54Ada Wai-Chee Fu 82.14 Padhraic Smyth 116926.1
Bing Liu 32 15.15Jianyong Wang 75.56 Jian Pei 112538.7
Mohammed Javeed Zaki30 14.50Charu C. Aggarwal 74.11 Charu C. Aggarwal 107042.4
Eamonn J. Keogh 37 14.32Wei Fan 73.63 Bing Liu 103081.9
Wei Fan 29 14.26Wei Wang 71.52 Gregory Piatetsky-Shapiro101267.2
Padhraic Smyth 32 13.89Bing Liu 70.26 Srinivasan Parthasarathy95692.4
Wei-Ying Ma 34 13.73Spiros Papadimitriou69.17 Ada Wai-Chee Fu 91889.1
Ada Wai-Chee Fu 25 13.70Hong Cheng 69.14 Ke Wang 90909.1
Qiang Yang 41 13.68Eamonn J. Keogh 67.69 Haixun Wang 88484.7
Vipin Kumar 29 13.21Alexander Tuzhilin 64.71 Vipin Kumar 82333.2
Wei Wang 39 13.13Jiong Yang 63.58 Rakesh Agrawal 80409.2
Hui Xiong 27 13.02Hongjun Lu 62.50 Huan Liu 79472.5
Huan Liu 28 12.92David W. Cheung 60.45 Spiros Papadimitriou 78784.6
Alexander Tuzhilin 17 12.16Michail Vlachos 60.28 Prabhakar Raghavan 77359.7

diversity and betweenness centrality, which are highlighted by the larger sizes of nodes.
The degrees of all the nodes are roughly the same, with the range from 8 to 12. Thus
we do not show the degree ranking results. The data also contain the node labels which
indicate the conference that each team belongs to. We use different colors to distinguish
the labels in the figure. Therefore the results illustrate that the diversity calculated based
on network topology is consistent to the diversity based on node labels, which means
that the nodes whose neighbors are from more clusters tend tobe more diverse. Table
55 demonstrates that on this network the diversity is lowly correlated with degree and
betweenness centrality.

5.4 Performance Comparison

Fig.5(a) compares the running time of Top-K algorithm with the time of ranking all the
nodes on DB and DM networks. It demonstrates that Top-K algorithm is much more
efficient and can meet online query needs. We also implemented an efficient between-
ness algorithm [3] and compared it with diversity. Fig.5(b)demonstrates that diversity
calculation is much faster than betweenness calculation. The reason is that to some ex-
tent betweenness centrality is a global measure based on theshortest path calculation
between all the pair-nodes which is very time consuming while the diversity measure
only needs to count the local neighborhood.

5 FN denotes the social network of American football games forshort.



Table 5.Correlation Coefficients of Metrics

Network #node#edge
DC vs.DC vs. DiversityBC vs. Diversity

BC r = 1 r = 2 r = 1 r = 2
SN 92 526 0.470 0.874 0.399 0.709 0.828
FN 115 616 0.151 0.345 0.224 0.413 0.463
DB 7640 22309 0.810 0.881 0.819 0.829 0.716
DM 3405 6496 0.665 0.908 0.683 0.701 0.576

6 Discussion

As diversity is a highly subjective concept, we do not think there exists one optimal def-
inition which is applicable for all scenarios. Rather than narrowing ourselves down to
one specific definition, we are fully aware of other possible definitions that may be bet-
ter geared for other applications. For example, a highly intuitive definition can be based
on clustering, where nodes are first assigned labels by certain clustering algorithm and
then diversity is computed by calculating the information entropy of the cluster distri-
bution of neighbors. This kind of definition needs to at leastsolve the following issues:
(i) The choice of the clustering algorithm dictates the resulting clusters, which in turn
determines the diversity computation. The decision on clustering parameters becomes
critical and difficult. (ii) The internal cohesion of clusters, which reflects the topology
of network, is also an important component for diversity. The diversity of a node con-
nected with a compact cluster should be different from the diversity of a node connected
with a loose cluster. Therefore in general still lots of aspects and factors should be ex-
ploited for the clustering-based definition. In this paper,we propose a straightforward
diversity definition based on the similarity between neighbors instead of solving these
problems of clustering.
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7 Conclusion

In this paper, we investigated the problem of mining diversity on networks. We gave
two criteria to characterize the semantic meaning of diversity and to provide the ba-



sis of proposing a reasonable measure definition. Then we studied diversity measure
based on network topology and picked a concrete definition toembed the idea. We
developed an efficient algorithm to find top-k diverse nodes on dynamic networks. Ex-
tensive experiment studies were conducted on synthetic andreal data sets. The results
are interesting, where individual nodes identified with high diversities are intuitive.
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