
Instance-specific Parameter Tuning via Constraint-based
Clustering

Lindawati and Hoong Chuin LAU and Feida ZHU 1

Abstract. The performance of heuristic algorithm, is highly depen-
dent on its parameter configuration. To automatically obtain good
parameter configurations, we proposeSufTra, a novel approach for
instance-specific parameter tuning that utilizes theSuffix tree data
structure to representTrajectories of a Local Search algorithm.Suf-
Tra extracts compact features from search trajectories using Suffix
Tree and filters these features using user specified-constraints. Then,
it clusters the problem instances and computes the parameter con-
figurations. Given an arbitrary testing instance, we obtaina suitable
parameter configuration by mapping it to these clusters. Experimen-
tal evaluations of our approach on the Quadratic AssignmentProb-
lem (QAP) show that our approach offers significant improvement
over existing parameter tuning algorithms. We also analysethe clus-
ter quality, demonstrating an almost perfect match betweenour clus-
ter results with the existing natural classifications.

1 Introduction

Good parameter configurations are critically important to ensure
heuristic algorithms to be efficient and effective. Existing approaches
for automated parameter tuning(also calledautomated algorithm
configurationor automated parameter optimization) fall into two cat-
egories:model-freeandmodel-based. Somemodel-freeapproaches
can handle a large number of numerical and even categorical parame-
ters (for exampleGGA [2], F-Race [4] andParamILS [9]). Model-
basedapproaches, on the other hand, offers statistical insightsinto
the correlation of parameters with regard to algorithm performance.
A recent example of the model-based approach isSMAC [8].

The challenge with parameter tuning is that different problem in-
stances require different parameter configurations [10, 12, 19]. One
way to enhance model-based approaches is to incorporateinstance
featuresto produce instance-specific parameter configurations. Un-
fortunately, finding instance featuresitself is often tedious and
domain-specific, requiring a re-examination of features for each new
problem. The research problem is to discover ageneric instance-
specific automated parameter tuningscheme that can perform as
well as those exploiting problem-specific features.

In this work, we propose an approach to address this problem
based on data mining and machine learning concepts. We focusour
attention on tuning local search algorithms. In essence, weperform
clustering of training instance’s search trajectories, which is defined
as a path of solutions discovered by the target algorithm as it searches
through its neighborhood search space [7], and perform tuning on the
clusters. For this purpose, we make use of a powerful data structure,
namely suffix tree [5]. The nice characteristic of our work isthat we

1 Singapore Management University, Singapore, email: lindawati.2008,
hclau, fdzhu@smu.edu.sg

can obtain these trajectories from the target local search algorithm
with minimal additional computation effort.

Motivated by previous work [11] where human constraints give
significant improvement to its solution, we also involve user-
specified constraints to guide the clustering process. Although in
some well-known problems such as QAP, user can specify the con-
straints very easily, for other problems, user-specified constraints are
often hard to enumerate. Hence, we design our approach to antici-
pate partial (rather small) or no user-specified constraints. Note that
user-specified constraints are different from instance features.

It is interesting to note that our approach does not make use of
an explicit formulation (such as linear or Gaussian regression) that
maps instances to clusters, which may be very hard if not impossible
to derive. Instead, we exploit therich instance-specificsearch trajec-
tories as a proxy for the fitness landscape which is correlated with
algorithm performance [15]. Instances are clustered basedon these
generic features using predictive modeling. This form of clustering
preservesrich featuresthat represent the individual instances within
it.

Our approach improves the work of [12] that captures similarity
using a single (and relatively short) segment through out the entire
sequence, and works only on short and small number of sequences
due to its inherent computational bottleneck. In contrast,our ap-
proach is capable of retrieving similarity across multiplesegments
with linear-time complexity. Using a Suffix Tree data structure and
user-specified constraints, our approach can efficiently and effec-
tively form better and tighter clusters and hence improve the overall
performance of the underlying target algorithm.

We conduct experiments on the Quadratic Assignment Problem
(QAP). The experiments show that our approach offers encouraging
results for both cluster quality and overall performance compared
against existing approaches. For the overall runtime, our approach is
significantly (more than ten times) faster compared to the approach in
[12] when the search trajectories are long and the number of training
instances is large.

2 Preliminaries

To avoid confusion, we refer the algorithm whose performance is
being tuned/configured as thetarget algorithmand the one that is
used to tune/configure it as theconfigurator. We measure the target
algorithm performance based on the quality of their solutions. We
define functionH as follows.

Definition 1 (Performance Metric [H]) Let i be a problem in-
stance, andAx(i) be the objective value of the corresponding so-
lution for instancei obtained by a target algorithmA when executed

under configurationx. LetOPT (i) denote the best known value for
instancei. Hx(i) is formulated as:Hx(i) = |OPT (i)−Ax (i)|

OPT (i)

For benchmark instances with known global optimum value, we
use the known global optimum value as itsOPT (i), while for new
instances, we use the target algorithm’s best solution. Using perfor-
mance metricH, we define the instance-specific parameter tuning
problem as follows.

Definition 2 (Instance-Specific Parameter Tuning [ISPT]) Given
a set of instancesI , a parameter configuration spaceΘ for a target
algorithmA and a performance metricH, the ISPT problem is to
find a parameter configurationx ∈ Θ for eachi ∈ I such that
Hx(i) is minimized overΘ.

Instead of finding a parameter configuration for each problemin-
stance, the ISPT problem can be approximated in a cluster-based
manner in which problem instances are grouped into clustersand
a parameter configuration is computed for each cluster [10, 12]. In
this paper, we aim to solve the ISPT problem with user-specified
constraints on the resulting clusters. In real-world applications, these
user-specified constraints often represent domain knowledge to guide
the clustering process. In particular, we consider a simpleand natu-
ral set of constraints, each of which specifies whether a pairof data
samples must belong to the same cluster, which are calledmust-link
constraints (Mlink), or must belong to different clusters, which are
calledcannot-linkconstraints (Clink) [3, 20].

Hence, we define the problem of constrained cluster-based
instance-specific parameter tuning as follows.

Definition 3 (Constrained Cluster-based Instance-SpecificPa-
rameter Tuning [CC-ISPT]) Given a set of instancesI , a parameter
configuration spaceΘ for a target algorithmA, a performance met-
ric H, a set of user-specified constraintsC, the CC-ISPTproblem
is to find a clusteringπ of all instances ofI and a parameter con-
figuration x ∈ Θ for each cluster ofπ such that (I)π satisfies all
the constraints inC; and (II) the averageHx(i) for each cluster is
minimized overΘ.

If there is no user-specified constraints, user-specified constraints
is considered as an empty set. We assume that there is no contradic-
tion betweenMlink andClink .

3 Related Work

Various approaches forone-size-fits-all configuratorhave been pro-
posed in the literature which divided into two categories:model-free
andmodel-based. For model-free approaches,F-Race and its vari-
ants [4] work by using statistical model selection to evaluate a set of
candidate configurations and discarding statistically badconfigura-
tions. Other model-free approaches that can handle large number of
parameters areParamILS [9] andGGA [2]. ParamILS applies an
iterated local search that uses an adaptive capping technique to speed
up the search process.GGA (Gender-based Genetic Algorithm) uses
a genetic algorithm which divides the parameter candidate set into
two groups and applies a different selection method for eachgroup.
For model-based approaches,CALIBRA [1] combines statistical ex-
perimental design with local search, and this approach handles upto
five parameters. A recent workSMAC [8] constructs predictive per-
formance models to focus attention on promising regions of adesign
space. One common shortcoming of the above approaches is that they
provide aone-size-fits-allconfiguration for all instances, which may
not perform well on large and diverse instances.

Three recent approaches for instance-specific tuning isHydra
[19], ISAC [10] andCluPaTra [12]. Hydra works by combining au-
tomated parameter tuning and portfolio-based algorithm selection. It
automatically builds a set of solvers with complementary strengths
by iteratively configuring new algorithms to be used in its portfolio.
ISAC andCluPaTra work by dividing instances into clusters based
on feature(s) similarity and tuning the parameter configuration for
each cluster. The main difference betweenISAC andCluPaTra is
that ISAC usesproblem-specific featureswhile CluPaTra uses a
generic feature. For a given problem,ISAC uses different problem-
specific features which require in-depth understanding of the prob-
lem. For example, in [10], 8 features are used for Set Covering Prob-
lem (SCP) and 9 features for Mixed Integer Programming Problem
(MIP). CluPaTra uses a generic feature derived from search trajec-
tories to perform clustering, and then tune the parameters for each
cluster.

4 Solution Approach

Our approach follows the framework ofCluPaTra [12] that makes
use of the search trajectories. AsCluPaTra uses sequence alignment
to calculate similarity, it suffers from the following two limitations.

1. Scalability.
In CluPaTra, pair-wise sequence alignment is implemented using
standard dynamic programming with a complexityO(m2), where
m is the maximum sequence length of the sequences. Hence, the
total time complexity for all instances isO(n2×m2), wheren is
the number of instances andm is the maximum sequence length.
This poses a serious problem for instances with long search tra-
jectories and when the number of instances is large.

2. Flexibility.
The nature of sequence alignment is to align a pair of sequence
segments that gives us the highest alignment score. A matched
symbol contributes a positive score (+1), while a gap contributes a
negative score (-1). The sum of the scores is taken as the maximal
similarity score of the two sequences. However, it is possible that
sequences share similarity on more than one segments, especially
for long sequences. Sequence alignment is not flexible enough to
capture multiple-segment alignment with an acceptable time com-
plexity.

To overcome these limitations and achieve better overall perfor-
mance, we propose a new algorithm calledSufTra that uses a com-
pact and rich data structure, namely Suffix Tree, and design amore
efficient method to calculate similarity.

SufTra addressesCluPaTra’s limitations as follows: (1) Scalabil-
ity: We propose a linear time algorithm for both Suffix Tree construc-
tion and traversal; and (2) Flexibility: We generate compact patterns
from search trajectories and use it as features. The patterns may oc-
cur in multiple segments along the search trajectory, so suffix trees
enable us to consider multiple-segment similarities to improve the
accuracy of the clusters.

We further improve the cluster quality by employing user super-
vision and proposing a new classification method to map testing in-
stances to clusters. This method enables us to generate moreaccurate
mapping in a shorter computation time. In the overall,SufTra runs in
linear-time, which is an order of magnitude improvement andtrans-
lates to a significantly faster method, compared toCluPaTra (that
runs in quadratic time). Furthermore, we show experimentally that
the quality of clusters outperform those ofCluPaTra

4.1 SufTra Framework Overview

The SufTra framework works in two phases: training and testing.
The training phase works as follows:

1. Feature Extraction. We extract a set of featuresF from search
trajectories using a suffix tree and remove insignificant features
with respect toMlink andClink .

2. Similarity Calculation. We calculate similarity scoresusing the
extracted features.

3. Clustering. We cluster the instances using AGNES (AGglomera-
tive NESting).

4. Parameter Configuration. We run an existing one-size-fits-all con-
figurator to obtain the best configuration for each cluster created.

In the testing phase, we use the knowledge from the training phase
to return instance-specific configuration(s) for testing instances. This
phase is usually performed online. To achieve this, we design a new
method for fast and accurate testing instance mapping. Our proposed
method consists of two steps:

1. Signature Construction. We construct the signatures foreach clus-
ter. This step is run once, and can be performed offline.

2. Cluster Mapping. For an arbitrary testing instance, we match its
search trajectory to the cluster’s signature and return parameter
configuration from the best-matching cluster’s as its parameter
configuration. This step will be performed online.

Thus, our framework makes use four major components: feature
extraction, similarity calculation, clustering and signature extraction.
The details of these components are given as follows.

4.2 Feature Extraction

To generate its features,SufTra mines patterns from search trajecto-
ries. To mine compact and important patterns, we select pattern that
has significant length and appear in a sufficient number of instances
[6]. We also filter the patterns using user-specified constraints.Hence,
we define the features as follows.

Definition 4 (Feature [F]) LetI be a set of problem instance,S be
a set of search trajectories for all instance inI , minlength be a mini-
mum length threshold,minsupport be a minimum support threshold,
C be a set of user-specified constraints.F is defined as a set of dis-
tinct segments fromS that: (I) has a length greater thanminlength;
(II) occurs in at leastminsupport number of instances; and (III) has
high score for discriminating between all pairs of instances with re-
spect toC.

The steps on Feature Extraction are as follows.

4.2.1 Search Trajectory Representation

Search trajectory is defined as a path of solutions discovered by the
target algorithmA as it searches through the neighborhood search
space [7]. We represent a search trajectory as a directed sequence of
symbols before constructing suffix tree. The steps for converting a
search trajectory into a string are as follows:

• Record the instance’s search trajectory by running the target algo-
rithm using a random parameter configuration.

• Convert the search trajectory to a sequence based on its so-
lution’s attributes. Each solution in search trajectory isrepre-
sented as a symbol which encodes a combination of two solu-
tion attributes: (1) percentage deviation of quality fromOPT
(as defined in Definition 1); and (2) position type, based on
the topology of the local neighborhood as given in Table 1
[7]. These two attributes are combined; of which the first two
digits are the deviation of the solution quality and the last
digit is the position type. To handle target algorithms withcy-
cles and (random) restarts, it adds two additional symbols:’C’
and ’J’; ’C’ is used when the target algorithm returns to a
previously-visited position (cycle), while ’J’ is used when the lo-
cal search is restarted (jump). An example of a search trajectory
sequence is14L-14L-14L-14L-14L-14L-14L-14L-14L-14L-14L-
14L-14L-04M-J-24L-14L-14L-14L-14L-14L-14L-14L, where14L
represent the solution that has percentage deviation 14% and po-
sition type LEDGE.

Table 1. Position Types of Solution

Position Type Label Symbol < = >

SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

’+’ = present, ’-’ = absent; referring to the presence of neighbor
solutions with larger (’<’), equal (’=’) and smaller (’>’) objective
values

• Construct aHash Tableto store number of repetitions. Note that
in a search trajectory, several consecutive solutions may have sim-
ilar solution properties before the final improvement and reaching
local optimum. We therefore compress the search trajectoryse-
quence to aHash Stringby removing the consecutive repetition
symbols and storing the number of repetitions in aHash Table
(to be used later in the similarity score calculation). Removing
consecutive repetition symbols gives us two advantages: (1) it of-
fers greater flexibility in capturing more varieties of similarity for
symbol patterns between two instances. Two instances may share
similar patterns but a different number of consecutive symbols,
e.g., for a particular symbol14L, in one instance it may occur
repeatedly for 10 times, while in the other instance it may occur
repeatedly for 5 times. And (2) it reduces computational cost for
constructing and traversing the suffix tree, since the time needed is
decided by its length.Hash Stringis a more compact and shorter
representation of the original search trajectory sequence. An ex-
ample ofHash Stringis 14L-04M-J-24L-14L.

• Convert the symbol for each solution to one single characterand
concatenate it into a string (Hash String).

4.2.2 Suffix Tree Construction

The suffix tree is a data structure that exposes the internal structure
of a string for a particularly fast implementation of many important
string operations. Suffix trees are used to solve exact and inexact
matching problems in linear time and are widely used in substring
problems [5]. The construction of a suffix tree proves to havea linear
time complexity w.r.t. the input string length [5].

(a) Suffix Tree for Single String

5
P$ LMMNP$

3 2

1

MNP$
M

NP$
NP$

4

(b) Suffix Tree for a Set of String

1,5
P$ MNP$ 1,1

N M

NP$

LM

2,1
NMM$

1,21,3

M

2,4

2,2

2,5
2,3

1,4
$

$
N

MM$

P$

P$
MM$

Figure 1. (a) Suffix Tree Example for stringS1 (LMMNP), number at a
leaf indicates the starting position of the suffix in that string; (b) Generalized
Suffix Tree Example for stringsS1=LMMNP andS2=LMNMM , the

first number at a leaf indicates the string and the second number indicates the
starting position of the suffix in that string.

A suffix treeT for a stringS with m length is a rooted directed tree
having exactlym leaves numbered 1 tom. Each internal node, other
that the root, has at least two children and each edge is labeled with
a substring (including the empty substring $) ofS. No two edges out
of a node has edge-labels beginning with the same character.

To represent suffixes of a set{S1, S2,Sn } of strings, we use a
generalized suffix tree.Generalized suffix tree is built by append-
ing a different end of string marker (which is a symbol not in used in
any of the strings) to each string in the set, then concatenate all the
strings together, and build a suffix tree for the concatenatedstring [5].
An example ofgeneralized suffix tree for stringsLMMNP and
LMNMM is LMMNPLMNMM The time to build this suffix
tree is proportional to the total length of all the strings. The suffix
tree for a single stringS1 and a set of stringS1 andS2 is shown in
Fig. 4.2.2.

In a suffix tree structure, we can easily retrieve matching sub-
strings from a set of string by finding the branch that has leaves from
the corresponding strings. From our suffix tree example (Fig. 4.2.2b),
branches with edge-labelM , N , LM , MM , andMN have leaves
from both stringsS1 andS2. Those edge-labels represent the same
substring shared byS1 andS2.

We construct the suffix tree using Ukkonen’s algorithm [5]. To
cover every training instance, we build a singlegeneralized suf-
fix tree for all theHash String. The length of the concatenate string
is proportional to the sum of all theHash Stringlengths. Details of
Ukkonen’s algorithm can be found in [5]. Our implementationre-
quiresO(n × l), wheren is the number of instances andl is the
maximum length of theHash String.

4.2.3 Frequent Substring Extraction

After constructing the suffix tree, we extract frequent substrings. A
substring is considered as frequent if it has a length greater than
minlength and it occurs in at leastminsupport number of strings [6].
The values ofminlength andminsupport are different for each prob-
lem. While fixing the values would sacrifice flexibility, it isalso com-
putationally challenging to find optimal values by exhaustive search.
We therefore apply local search, a simple yet effective method to
provide sufficiently good values in reasonable time.

We use local search to move from the initial values ofminlength

andminsupport to their neighbors by changing eitherminlength or
minsupport at each move until the average distance among all in-
stances in two different clusters is no longer improving.

To find the initial values ofminlength andminsupport, we run a
competition among 5 candidates, namely: lower bound ofminlength

and minsupport, upper bound ofminlength and minsupport , mid
value between lower and upper bound and two random values. Lower
bound ofminlength andminsupport is set to 2, while upper bound is

set to 20% of the number of instances forminlength and 20% of the
maximum string length respectively forminsupport.

4.2.4 Feature Selection

We use user-specified constraints (must-link and cannot-link con-
straints) to select the ”good” features from the frequent substrings.
As in [20], we want to select features with the best constraint preserv-
ing ability. We assume that a ”good” feature should appear more in
instances that hasmust-linkconstraints rather than in instances that
hascannot-linkconstraints.

Based on that assumption, we filter the substrings using the fol-
lowing steps:

1. Generate a set of cliquesC for instances that belong to the same
cluster based onMlink

2. Calculate discriminative scoreDScore for each substring using
the following formula:

DScore(s) =

P|C|
k=0

P

(i,j)∈Ck
(x(s)ij)

P

(ii,ij)∈Clink
(x(s)ij)

(1)

where
x(s)ij =



1 if s is appear in instancei andj
0 otherwise

3. Selectn number of substring which has the highest score as fea-
tures. The default value forn is M/2, whereM is the number of
substrings.

Note that, if the user-specified constraints is not available, we use
all the extracted substrings as features.

4.3 Similarity Score Calculation

After having the features, we calculate the instance’s score for each
feature and construct an instance-feature metric using thefollowing
rules:

1. If the instance does not contain the feature, the score is 0.
2. Else the score is calculated by summing up the number of rep-

etitions for each symbol in feature from previously constructed
Hash Table. A frequent substring may occur multiple times in one
string. We calculate the score for each occurrence and choose the
maximum score as the score for the instance-feature metric.

With this metric, we calculate the similarity for each pair of in-
stances by cosine similarity, a widely-used similarity measure for
comparing vectors [5]. Cosine similarity is formulated as:

similarity =

Pn

i=0(fi(I1) × fi(I2))
p

Pn

i=0 fi(I1)2 +
p

Pn

i=0 fi(I2)2
(2)

wherefi(I1) andfi(I2) are the scores from the instance-feature
metric for Instance 1 and 2 respectively.

4.4 Clustering

Similar to [12], we cluster the instances by a well-known cluster-
ing approach AGNES [6] withL method [16]. AGNES or AGglom-
erative NESting is a hierarchical clustering approach thatworks by
creating clusters for each individual instance and then merging two
closest clusters (i.e., a pair of clusters with the smallestdistance) re-
sulting in fewer clusters of larger sizes until all instances belong to

one cluster or a termination condition is satisfied (e.g. a prescribed
number of clusters is reached). We implement theL method [16] to
automatically find the optimal number of clusters, which works by
using the evaluation graph where thex-axis is the number of clusters
and they-axis is the value of the evaluation function atx clusters. In
this paper, we use the average distance among all instances in two
different clusters as the evaluation function.L method fits the curve
in the evaluation graph into two lines and chooses the intersection
point between these two lines as the optimal number of clusters.

4.5 Signature Extraction

In testing phase, we use signatures to represent instance’ssearch tra-
jectories in each cluster. We define signature as follows.

Definition 5 (SignatureSIGN) Let c be a cluster of problem in-
stancei, S be a set of search trajectories for all instancei in c,
minlength be a minimum length andminsupport be a minimum sup-
port. SIGN (c) is defined as a set of distinct segments fromS that
has significant length (greater thanminlength) and appears in most
of instancei in c (at leastminsupport number of instances).

The steps for signature extraction are similar to feature extraction
(Section 4.2), but for each cluster, we need to construct a differ-
ent suffix tree and extract the features from each suffix tree.Since
each cluster already satisfy user-specified constraints, we skip the
feature selection process and use all the extracted substrings as fea-
tures. Unless stated otherwise,minlength andminsupport are set to
minlength andminsupport value in feature extraction.

4.6 Time Complexity

The time complexity for generatingHash Stringis O(n × m) with
n being the number of instances andm being the maximum string
length, while that for constructing the suffix tree isO(n × l) with
n being the number of instances andl being the maximumHash
String length. Extracting features, building instance-feature metric
and calculating similarity for each pair of instances can bedone by a
single traversal of the suffix tree structure. Hence it requiresO(n× l)
with n being the number of instances andl being the maximumHash
String length. The clustering process requiresO(n2) with n being
the number of instances. Hence, the overall time complexityfor the
training phase, excluding the time needed for tuning, isO(n2 +(n×
m) + (n × l)) with n being the number of instances,m being the
maximum string length andl being the maximumHash Stringlength
(n ≪ l ≪ m).

In the testing phase, cluster signature construction requiresO(n×
l) where n is the number of training instances andl is the
maximum Hash String length. For a given testing instance, we
match the signatures with the testing instance’s strings, which takes
O(signaturec × lsignature ×m× l) time, wheresignaturec is the
total number of signatures in all clusters,lsignature is the maximum
length of signatures,m is the number of testing instances, andl is
the maximum string length of the testing instance (lsignature ≪ l).

5 Empirical Evaluation

In this section, we present our experimental results to measure the ef-
ficiency and effectiveness ofSufTra on a classical COPs, Quadratic
Assignment Problem (QAP).We compare our approach with two
other instance-specific configurators in the literature:ISAC [10] and

CluPaTra [12]. Note that since our aim is to measure solution qual-
ity, we do not compare our approach withHydra [19], another
instance-specific configurator that seeks to optimize run time per-
formance but not solution quality of the target algorithm.

As a target algorithm, we use hybrid Simulated Annealing and
Tabu Search (SA-TS) algorithm [13], which uses the Greedy Ran-
domized Adaptive Search Procedure (GRASP) to obtain an initial
solution, and a combined Simulated Annealing (SA) and Tabu Search
(TS) algorithm to improve it. There are four parameters to betuned
as described in Table. 2.

Table 2. Parameters for SA-TS on QAP

Parameter Description Type Range
Temp Initial temperature of SA

algorithm
Continuous [100, 5000]

Alpha Cooling factor Continuous [0.1, 0.9]
Length Length of tabu list Discrete [1, 10]
Pct Percentage of non-

improving iterations prior
to intensification strategy

Continuous [0.01, 0.1]

We used two set of instances: SET A and SET B as described in
Table. 3. All experiments were performed on a 1.7GHz Pentium-4
machine running Windows XP.

Table 3. Set of Instances for QAP

Set Description ntr nt m

SET A benchmark instances from QAPLib
with number of city 22 to 150

40 10 4,613

SET B generated instances from two gen-
erators as in [14] with number of fa-
cilities varied from 5 to 150

100 400 15,536

5.1 Cluster Analyses

We experimented on SET A instances and compared the clusters
created fromSufTra, CluPaTra and ISAC. Since ISAC requires
problem-specific features, we used 2 features:flow dominanceand
sparsityof flow metric [17].

We measured the cluster quality usingextrinsicmethod.Extrin-
sic methods compare the clusters against the known class labelsor
ground-truthclusters (i.e. the set of clusters which is supposed to
represent the ideal/optimal clustering) [6]. We used the existing well-
studied classification of QAP instances based on the distance and
flow metrics, due to [18] asground truthcluster.

For this experiment, we used two differentSufTra implementa-
tion. ForSufTra, we did not include user-specified constraints infor-
mation, while forSufTra(c), we randomly derived 20 user-specified
constraints fromground truthcluster.

The cluster quality values are shown in Table. 4 (I). Notice
that SufTra(c) andSufTra has higher cluster quality compared to
CluPaTra andISAC.

5.2 Performance Comparison

To evaluateSufTra’s effectiveness for long search trajectories and
large number of instances, we ran experiment on SET B. For
SufTra(c), we randomly used 20 user-specified constraints where we
derived from the following assumption: (1) instances from the same
generator are considered on the same cluster; and (2) instances from
different generators are considered on different clusters.

Table 4. QAP Experiment Result

Training Testing
I. Clustering Analyses
CluPaTra 0.68 0.70
ISAC 0.80 0.80
SufTra 0.85 0.85
SufTra(c) 0.91 0.93

II. Computational Time
CluPaTra 1,051 s 2,718 s
SufTra 56 s 146 s
SufTra(c) 65 s 147 s

III. Performance Result
ParamILS 1.08 2.14
CluPaTra 0.89 1.58
ISAC 0.84 1.22
SufTra 0.83 1.16
SufTra(c) 0.80 1.15
p-value** 0.061 0.042
**based on statistical test onISAC andSufTra

First, we compared the time needed (in seconds) forSufTra,
SufTra(c) andCluPaTra to form the clusters in training phase and
to map the testing instances in testing phase. Table. 4 (II) shows the
result. From the table, we observe thatSufTra andSufTra(c) is 18
times faster thenCluPaTra.

Next, we compared the target algorithm performance using pa-
rameter configuration fromSufTra, SufTra(c), CluPaTra andISAC
as well as the one-size-fits-all configuratorParamILS. For the three
instance-specific methods, we used the same one-size-fits-all config-
urator,ParamILS [9]. SinceParamILS works only with discrete pa-
rameters, we first discretized the values of the parameters.We mea-
sured the performance using performance metric as defined inDefi-
nition 1.

We set the cutoff runtime ofParamILS to 100 second. For
CluPaTra, SufTra andSufTra(c), we allowed each configurator to
execute the target algorithm for a maximum of two CPU hours for
each cluster. To ensure fair comparison, we set the time budget for
ISAC and ParamILS to be equal to the total time needed to run
SufTra. For unbiased evaluation, we used a 5-fold cross-validation
[6] and measured the average performance over all folds. We also
performed a statistical test (t-test) on the significance of our result
where ap-valuebelow 0.05 is deemed to be statistically significant.
In Table. 4 (III), we show the performance comparison results. From
the table, we observe thatSufTra andSufTra(c) performs better on
training and testing instances compare to other approaches. But the
result for training instances is not statistically significant compare to
ISAC.

6 Conclusion and Future Works

In this paper, we proposed a new generic instance-based configu-
rator via the clustering of patterns according to the instance search
trajectories using the suffix tree data structure and user specified-
constraints. We measured the cluster quality and performance of
QAP, and show thatSufTra result (with or without user-specified
constraints) is outperform the existing methods. Its cluster is almost
similar to existing benchmark instance classifications, thereby show-
ing its effectiveness. Hence, we claim that: (1)SufTra (with or with-
out user-specified constraints) is a suitable approach for instance-
specific configuration that significantly improves the performance

with minor additional computational time; and (2)SufTra has over-
comeCluPaTra limitations with a new efficient method for feature
extraction and similarity computation using suffix tree.

Up to this stage of our work, theSufTra framework can only be ap-
plied to target algorithms which are local-search-based, since our ap-
proach uses search trajectory as the generic feature. As future works,
we will investigate how to generate clusters from population-based-
algorithm using generic features pertaining to populationdynamics.

REFERENCES
[1] Belarmino Adenso-Dı́az and Manuel Laguna, ‘Fine-tuning of algo-

rithms using fractional experimental design and local search’, Oper-
ations Research, 54(1), 99–114, (2006).

[2] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney, ‘A gender-
based genetic algorithm for the automatic configuration of algorithms’,
in 15th international Conference on Principles and Practice of Con-
straint Programming, pp. 142–157, (2009).

[3] Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney, ‘A probabilis-
tic framework for semi-supervised clustering’, inTenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD-2004), pp. 59–68, (2004).

[4] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, ‘Automated algo-
rithm tuning using f-races: Recent development’, in8th Metaheuristics
International Conference, (2009).

[5] Dan Gusfield,Algorithms on Strings, Trees and Sequences, Cambridge
University Press, 1997.

[6] J. Han and M. Kamber,Data Mining: Concept and Techniques, 2nd
Edition, Morgan Kaufman, San Francisco, 2006.

[7] H.H. Hoos and T. Stützle,Stochastic Local Search: Foundation and
Application, Morgan Kaufman, San Francisco, 2004.

[8] F. Hutter, H.H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, inLNCS: 5nd Learn-
ing and Intelligent OptimizatioN Conference, (2011).

[9] F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stützle, ‘Paramils: An
automatic algorithm configuration framework’,Journal of Artificial In-
telligence Research, 36, 267–306, (2009).

[10] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ‘Isac:instance-
specific algorithm configuration’, in19th European Conference on Ar-
tificial Intelligence, (2010).

[11] G. Klau, N. Lesh, J. Marks, and M. Mitzenmacher, ‘Human-guided tabu
search’, inIn: National Conference on Artificial Intelligence (AAAI),
(2002).

[12] Lindawati, Hoong Chuin Lau, and David Lo, ‘Instance-based param-
eter tuning via search trajectory similarity clustering’,in LNCS: 5nd
Learning and Intelligent OptimizatioN Conference, (2011).

[13] K.M. Ng, A. Gunawan, and K.L. Poh, ‘A hybrid algorithm for the
quadratic assignment problem’, inInternational Conf. on Scientific
Computing, pp. 14–17, (2008).

[14] Gabriela Ochoa, Sebastien Verel, Fabio Daolio, and Marco Tomassini,
‘Clustering of local optima in combinatorial fitness landscape’, in
LNCS: 5nd Learning and Intelligent OptimizatioN Conference, (2011).

[15] C.R. Reeves, ‘Landscapes, operators and heuristic search’, Annals of
Operations Research, 86(1), 473–490, (1999).

[16] S. Salvador and P. Chan, ‘Determining the number of clusters/segments
in hierarchical clustering/segmentationalgorithms’, in16th IEEE Inter-
national Conference on Tools with Artificial Intelligence, pp. 576–584,
(2004).

[17] T. Stützle and S. Fernandes, ‘New benchmark instancesfor the qap and
the experimental analysis of algorithms’, inLNCS: Evolutionary Com-
putation In Combinatorial Optimization, (2004).

[18] É.D. Taillard, ‘Comparison of iterative searches for the quadratic as-
signment problem’,Location Science, 3(2), 87–105, (1995).

[19] L. Xu, H.H. Hoos, and K. Leyton-Brown, ‘Hydra: Automatically con-
figuring algorithms for portfolio-based selection’, inConference of the
Association for the Advancement of Artificial Intelligence(AAAI-10),
(2010).

[20] Daoqiang Zhang, Songcan Chen, and Zhi-Hua Zhou, ‘Constraint score:
A new filter method for feature selection with pairwise constraints’,
Pattern Recognition, 41(5), 1440–1451, (2008).

