Instance-specific Parameter Tuning via Constraint-based
Clustering

Lindawati and Hoong Chuin LAU and Feida ZHU !

Abstract. The performance of heuristic algorithm, is highly depen- can obtain these trajectories from the target local sedggrithm

dent on its parameter configuration. To automatically abtood
parameter configurations, we prop&efTra, a novel approach for
instance-specific parameter tuning that utilizes $hefix tree data
structure to represeiitajectories of a Local Search algorithi®@uf-
Tra extracts compact features from search trajectories ugiffixS
Tree and filters these features using user specified-cantstréhen,
it clusters the problem instances and computes the paracmte
figurations. Given an arbitrary testing instance, we obtasuitable
parameter configuration by mapping it to these clusterseEmnyen-
tal evaluations of our approach on the Quadratic AssignriReoib-
lem (QAP) show that our approach offers significant improgatn
over existing parameter tuning algorithms. We also andlyselus-
ter quality, demonstrating an almost perfect match betweeiclus-
ter results with the existing natural classifications.

1 Introduction

Good parameter configurations are critically important tswre
heuristic algorithms to be efficient and effective. Exigtapproaches
for automated parameter tunin@lso calledautomated algorithm
configuratioror automated parameter optimizatipfall into two cat-
egories:model-freeandmodel-basedSomemodel-freeapproaches
can handle a large number of numerical and even categoecatye-
ters (for exampl&GA [2], F-Race [4] andParamiLS [9]). Model-
basedapproaches, on the other hand, offers statistical insiglts
the correlation of parameters with regard to algorithm qgrenfance.
A recent example of the model-based approa@MAC [8].

The challenge with parameter tuning is that different peabin-
stances require different parameter configurations [1012P One
way to enhance model-based approaches is to incorpioistence

with minimal additional computation effort.

Motivated by previous work [11] where human constraintseegiv
significant improvement to its solution, we also involve mse
specified constraints to guide the clustering process.oéitjh in
some well-known problems such as QAP, user can specify the co
straints very easily, for other problems, user-specifietstraints are
often hard to enumerate. Hence, we design our approachiti-ant
pate partial (rather small) or no user-specified conssahbte that
user-specified constraints are different from instanceifea.

It is interesting to note that our approach does not make fise o
an explicit formulation (such as linear or Gaussian regoegshat
maps instances to clusters, which may be very hard if not #sibée
to derive. Instead, we exploit thech instance-specifisearch trajec-
tories as a proxy for the fitness landscape which is cormaith
algorithm performance [15]. Instances are clustered basetiese
generic features using predictive modeling. This form oittring
preservesich featureghat represent the individual instances within
it.

Our approach improves the work of [12] that captures siritylar
using a single (and relatively short) segment through oeitetfitire
sequence, and works only on short and small number of segaenc
due to its inherent computational bottleneck. In contrast, ap-
proach is capable of retrieving similarity across multipegments
with linear-time complexity. Using a Suffix Tree data strret and
user-specified constraints, our approach can efficientty effec-
tively form better and tighter clusters and hence improeeaberall
performance of the underlying target algorithm.

We conduct experiments on the Quadratic Assignment Problem
(QAP). The experiments show that our approach offers efacing
results for both cluster quality and overall performancenpared

featuresto produce instance-specific parameter configurations. Unagainst existing approaches. For the overall runtime, ppraach is

fortunately, findinginstance featurestself is often tedious and
domain-specific, requiring a re-examination of featuresfch new
problem. The research problem is to discovegemeric instance-

specific automated parameter tuningscheme that can perform as

well as those exploiting problem-specific features.

In this work, we propose an approach to address this proble

based on data mining and machine learning concepts. We naus
attention on tuning local search algorithms. In essenceyeviorm
clustering of training instance’s search trajectoriesiciliis defined
as a path of solutions discovered by the target algorithmsasarches
through its neighborhood search space [7], and perfornm¢uom the
clusters. For this purpose, we make use of a powerful datatate,
namely suffix tree [5]. The nice characteristic of our workhiat we

1 Singapore Management University, Singapore, email: ivata2008,
hclau, fdzhu@smu.edu.sg

significantly (more than ten times) faster compared to the@gch in
[12] when the search trajectories are long and the numbeatiofrig
instances is large.

R Preliminaries

To avoid confusion, we refer the algorithm whose perforneaisc
being tuned/configured as tharget algorithmand the one that is
used to tune/configure it as tleenfigurator We measure the target
algorithm performance based on the quality of their sohgioNe
define functiorf{ as follows.

Definition 1 (Performance Metric [H]) Let ¢ be a problem in-
stance, andAx(¢) be the objective value of the corresponding so-
lution for instance obtained by a target algorithmdl when executed

under configurationx. LetOPT(i) denote the best known value for
instancei. H.(4) is formulated asH., (i) = W

Three recent approaches for instance-specific tuningydra
[19], ISAC [10] andCluPaTra [12]. Hydra works by combining au-
tomated parameter tuning and portfolio-based algorithiecsen. It

For benchmark instances with known global optimum value, weautomatically builds a set of solvers with complementargrajths

use the known global optimum value as@$7°(¢), while for new
instances, we use the target algorithm’s best solutionndJséerfor-

by iteratively configuring new algorithms to be used in itstfaio.
ISAC andCluPaTra work by dividing instances into clusters based

mance metricH, we define the instance-specific parameter tuningon feature(s) similarity and tuning the parameter confitiomafor

problem as follows.

Definition 2 (Instance-Specific Parameter Tuning [ISPT]) Given
a set of instances, a parameter configuration spaée for a target
algorithm A and a performance metri¢{, the ISPT problem is to
find a parameter configuration € © for each:i € I such that
H.(2) is minimized ove®.

Instead of finding a parameter configuration for each probfem
stance, the ISPT problem can be approximated in a clustseba
manner in which problem instances are grouped into clusteds
a parameter configuration is computed for each cluster [2], 14
this paper, we aim to solve the ISPT problem with user-spetifi
constraints on the resulting clusters. In real-world aggtions, these
user-specified constraints often represent domain kn@elexiguide
the clustering process. In particular, we consider a siraplknatu-
ral set of constraints, each of which specifies whether agialata
samples must belong to the same cluster, which are caillest-link
constraints {4;;»%), or must belong to different clusters, which are
calledcannot-linkconstraints Qi) [3, 20].

Hence, we define the problem of constrained cluster-based

instance-specific parameter tuning as follows.

Definition 3 (Constrained Cluster-based Instance-Specifia-
rameter Tuning [CC-ISPT]) Given a set ofinstancdsa parameter
configuration spac® for a target algorithm4, a performance met-
ric H, a set of user-specified constrairts the CC-ISPTproblem
is to find a clusteringr of all instances off and a parameter con-
figurationx € © for each cluster ofr such that (I)7 satisfies all
the constraints irC’; and (ll) the averagét.(:) for each cluster is
minimized ove®.

If there is no user-specified constraints, user-specifiedtcaints
is considered as an empty set. We assume that there is nadicntr
tion betweem/;n, andCiiyy.

3 Related Work

Various approaches fame-size-fits-all configuratdrave been pro-
posed in the literature which divided into two categoriesdel-free
andmodel-basedrFor model-free approachds,Race and its vari-
ants [4] work by using statistical model selection to evtdumset of
candidate configurations and discarding statistically tauafigura-
tions. Other model-free approaches that can handle lamyauof
parameters arParamiLS [9] and GGA [2]. ParamILS applies an
iterated local search that uses an adaptive capping tashticspeed
up the search procesSGA (Gender-based Genetic Algorithm) uses
a genetic algorithm which divides the parameter candidetténso
two groups and applies a different selection method for gaotp.
For model-based approach€#LIBRA [1] combines statistical ex-
perimental design with local search, and this approach leanghto
five parameters. A recent woB®MAC [8] constructs predictive per-
formance models to focus attention on promising regionsdesgn
space. One common shortcoming of the above approachestisaiia
provide aone-size-fits-allconfiguration for all instances, which may
not perform well on large and diverse instances.

each cluster. The main difference betwd8AC and CluPaTra is
that ISAC usesproblem-specific featureswhile CluPaTra uses a
generic feature For a given problemSAC uses different problem-
specific features which require in-depth understandindnefgrob-
lem. For example, in [10], 8 features are used for Set CogeRriob-
lem (SCP) and 9 features for Mixed Integer Programming Rrabl
(MIP). CluPaTra uses a generic feature derived from search trajec-
tories to perform clustering, and then tune the parametersdch
cluster.

4 Solution Approach

Our approach follows the framework @luPaTra [12] that makes
use of the search trajectories. 8&1PaTra uses sequence alignment
to calculate similarity, it suffers from the following twanlitations.

1. Scalability.
In CluPaTra, pair-wise sequence alignment is implemented using
standard dynamic programming with a complexitym?), where
m is the maximum sequence length of the sequences. Hence, the
total ime complexity for all instances 8(n* xm?), wheren is
the number of instances anais the maximum sequence length.
This poses a serious problem for instances with long sesaaeh t
jectories and when the number of instances is large.

. Flexibility.
The nature of sequence alignment is to align a pair of sequenc
segments that gives us the highest alignment score. A ntatche
symbol contributes a positive score (+1), while a gap cbutes a
negative score (-1). The sum of the scores is taken as thenmahxi
similarity score of the two sequences. However, it is pdestnat
sequences share similarity on more than one segmentsjafpec
for long sequences. Sequence alignment is not flexible dntmug
capture multiple-segment alignment with an acceptable tiom-

plexity.

To overcome these limitations and achieve better overafbpe
mance, we propose a new algorithm calfadTra that uses a com-
pact and rich data structure, namely Suffix Tree, and desigora
efficient method to calculate similarity.

SufTra addresse€luPaTra’s limitations as follows: (1) Scalabil-
ity: We propose a linear time algorithm for both Suffix Tre@stuc-
tion and traversal; and (2) Flexibility: We generate conjpetterns
from search trajectories and use it as features. The patteay oc-
cur in multiple segments along the search trajectory, sfixsnées
enable us to consider multiple-segment similarities toroue the
accuracy of the clusters.

We further improve the cluster quality by employing useresup
vision and proposing a new classification method to mapnig &ti-
stances to clusters. This method enables us to generataomrate
mapping in a shorter computation time. In the ove@illfTra runs in
linear-time, which is an order of magnitude improvement @ads-
lates to a significantly faster method, comparetaPaTra (that
runs in quadratic time). Furthermore, we show experimgntaht
the quality of clusters outperform those@fuPaTra

4.1 SufTra Framework Overview

The SufTra framework works in two phases: training and testing.
The training phase works as follows:

1. Feature Extraction. We extract a set of featufefrom search
trajectories using a suffix tree and remove insignificantuies
with respect taV/;;,., andCiing .

2. Similarity Calculation. We calculate similarity scorasing the
extracted features.

3. Clustering. We cluster the instances using AGNES (AGeglam
tive NESting).

4. Parameter Configuration. We run an existing one-sizeafitson-
figurator to obtain the best configuration for each clusteatsd.

In the testing phase, we use the knowledge from the trainirge
to return instance-specific configuration(s) for testirgamces. This
phase is usually performed online. To achieve this, we desigew
method for fast and accurate testing instance mapping. fopoged
method consists of two steps:

1. Signature Construction. We construct the signaturesdoh clus-
ter. This step is run once, and can be performed offline.

2. Cluster Mapping. For an arbitrary testing instance, wéchés
search trajectory to the cluster’s signature and returarpater
configuration from the best-matching cluster's as its patam
configuration. This step will be performed online.

Thus, our framework makes use four major components: featur

extraction, similarity calculation, clustering and sigura extraction.
The details of these components are given as follows.

4.2 Feature Extraction

To generate its featureSufTra mines patterns from search trajecto-
ries. To mine compact and important patterns, we selectpatthat
has significant length and appear in a sufficient number ¢&imtes
[6]. We also filter the patterns using user-specified comgtrdlence,
we define the features as follows.

Definition 4 (Feature [F]) LetI be a set of problem instancg be

a set of search trajectories for all instancefinminen .1 be a mini-
mum length thresholeninuppor+ be a minimum support threshold,
C be a set of user-specified constraintsis defined as a set of dis-
tinct segments frorf that: (1) has a length greater thaminiengen;
(I) occursin at leastninsuppor« NUMber of instances; and (Ill) has
high score for discriminating between all pairs of instasedgth re-
spect toC.

The steps on Feature Extraction are as follows.

4.2.1 Search Trajectory Representation

Search trajectory is defined as a path of solutions discdveyehe

e Convert the search trajectory to a sequence based on its so-
lution’s attributes. Each solution in search trajectoryrdpre-
sented as a symbol which encodes a combination of two solu-
tion attributes: (1) percentage deviation of quality franPT
(as defined in Definition 1); and (2) position type, based on
the topology of the local neighborhood as given in Table 1
[7]. These two attributes are combined; of which the first two
digits are the deviation of the solution quality and the last
digit is the position type. To handle target algorithms with
cles and (random) restarts, it adds two additional symb@ls:
and 'J’; 'C’ is used when the target algorithm returns to a
previously-visited position (cycle), while 'J’ is used whthe lo-
cal search is restarted (jump). An example of a search tmajec
sequence isl4L-14L-14L-141-141-141-14L-141-14L-14L-14L-
14L-14L-04M-J-24L-14L-141L-141L-14L-14L-14L-1Akherel4L
represent the solution that has percentage deviation 14Ppan
sition type LEDGE.

Table 1. Position Types of Solution

Position Type Label Symbol < = >
SLMIN (strict local min) S + - -
LMIN (local min) M + o+ -
IPLat (interior plateau) | -+ -
SLOPE P + - +
LEDGE L + o+ +
LMAX (local max) X -+ +
SLMAX (strict local max) A - +
'+’ = present, -’ = absent; referring to the presence of idigr
solutions with larger '), equal ('=") and smaller (>") objective
values

e Construct aHash Tableto store number of repetitions. Note that
in a search trajectory, several consecutive solutions raag &im-
ilar solution properties before the final improvement aratheng
local optimum. We therefore compress the search trajectery
guence to &Hash Stringby removing the consecutive repetition
symbols and storing the number of repetitions itHash Table
(to be used later in the similarity score calculation). Reimg
consecutive repetition symbols gives us two advantaggg: ¢t
fers greater flexibility in capturing more varieties of dianity for
symbol patterns between two instances. Two instances nag sh
similar patterns but a different number of consecutive syisib
e.g., for a particular symbdi4L, in one instance it may occur
repeatedly for 10 times, while in the other instance it maguoc
repeatedly for 5 times. And (2) it reduces computationat tmrs
constructing and traversing the suffix tree, since the tieded is
decided by its lengtiHash Stringis a more compact and shorter
representation of the original search trajectory sequehicex-
ample ofHash Strings 14L-04M-J-24L-14L

e Convert the symbol for each solution to one single charaidr
concatenate it into a stringdésh String.

4.2.2 Suffix Tree Construction

target algorithmA as it searches through the neighborhood search

space [7]. We represent a search trajectory as a directeeseg of
symbols before constructing suffix tree. The steps for cdimgea
search trajectory into a string are as follows:

e Record the instance’s search trajectory by running thetaigo-
rithm using a random parameter configuration.

The suffix tree is a data structure that exposes the intetnaitsre
of a string for a particularly fast implementation of manypiontant
string operations. Suffix trees are used to solve exact aexhat
matching problems in linear time and are widely used in sirgst
problems [5]. The construction of a suffix tree proves to ealeear
time complexity w.r.t. the input string length [5].

(a) Suffix Tree for Single String (b) Suffix Tree for a Set of String
P$ _ LM MNP$ 11
5 P$ _ LMMNP$ 1 15
M
NPH e MNP$ 1,4MMg2,5
4 3 > ,
13 2.4 1,2
Figure 1. (a) Suffix Tree Example for strin§; (LM M N P), number at a

leaf indicates the starting position of the suffix in thatrggr (b) Generalized
Suffix Tree Example for stringS;=LM M N P andS3=LM N M M , the
first number at a leaf indicates the string and the second rumdicates the
starting position of the suffix in that string.

A suffix treeT for a stringS with m length is a rooted directed tree
having exactlym leaves numbered 1 ta. Each internal node, other
that the root, has at least two children and each edge isddléth
a substring (including the empty substring $)%fNo two edges out
of a node has edge-labels beginning with the same character.

To represent suffixes of a sg$1, Sz,S, } of strings, we use a
generalized suffix tree.Generalized suffix tree is built by append-
ing a different end of string marker (which is a symbol notged in
any of the strings) to each string in the set, then concageaibthe
strings together, and build a suffix tree for the concatehsttang [5].
An example ofgeneralized suffix tree for strings.M M N P and
LMNMM is LMMNPLMN MM The time to build this suffix
tree is proportional to the total length of all the stringsieTsuffix
tree for a single string; and a set of string; and.S, is shown in
Fig. 4.2.2.

In a suffix tree structure, we can easily retrieve matchinig su

strings from a set of string by finding the branch that hasdedrom
the corresponding strings. From our suffix tree example ¢eiy2b),
branches with edge-lab&l, N, LM, M M, andM N have leaves

set to 20% of the number of instances foin;c,. 4., and 20% of the
maximum string length respectively fatinsupport-

4.2.4 Feature Selection

We use user-specified constraintsust-link and cannot-link con-
straintg to select the good' features from the frequent substrings.
As in [20], we wantto select features with the best constraieserv-
ing ability. We assume that aydod’ feature should appear more in
instances that hasust-linkconstraints rather than in instances that
hascannot-linkconstraints.

Based on that assumption, we filter the substrings usingdhe f
lowing steps:

1. Generate a set of cliquésfor instances that belong to the same
cluster based oM;nk

2. Calculate discriminative sco®Score for each substring using
the following formula:

C
_ T Sanec, (#()i)
Z(ii»ij)eczmk (z(s)is)

DScore(s) 1)

where U -
()i = 1 if sis appearin instanceand;
=1 0 otherwise

3. Selectn number of substring which has the highest score as fea-
tures. The default value for is M /2, whereM is the number of
substrings.

Note that, if the user-specified constraints is not avadlalvk use
all the extracted substrings as features.

from both stringsS; and.S,. Those edge-labels represent the same4.3 ~ Similarity Score Calculation

substring shared by, andSs.

After having the features, we calculate the instance’sestmreach

We construct the suffix tree using Ukkonen's algorithm [50. T feature and construct an instance-feature metric usinépttosving

cover every training instance, we build a singleneralized suf-

fix tree for all theHash String The length of the concatenate string

is proportional to the sum of all thdash Stringlengths. Details of
Ukkonen'’s algorithm can be found in [5]. Our implementatien
quiresO(n x 1), wheren is the number of instances ads the
maximum length of thélash String

4.2.3 Frequent Substring Extraction

After constructing the suffix tree, we extract frequent sabgs. A
substring is considered as frequent if it has a length grehs:n
minzengen @and it occurs in at leastin,ppor« NUMber of strings [6].
The values ofningengtn @ndming.ppore are different for each prob-
lem. While fixing the values would sacrifice flexibility, ité&dso com-
putationally challenging to find optimal values by exhatessearch.
We therefore apply local search, a simple yet effective oztto
provide sufficiently good values in reasonable time.
We use local search to move from the initial valuesiofyerngen

andminsuppor: t0 their neighbors by changing eitherine,g:n Or

minsypport at €ach move until the average distance among all in

stances in two different clusters is no longer improving.

To find the initial values ofninengirn @ndminsypport, We run a
competition among 5 candidates, namely: lower boundiofc,g¢x
and minsupport, UpPer bound oiminiengtrn aNd mingupport, Mid
value between lower and upper bound and two random valuesi_o
bound ofmin;engtr @NdMinguppor: IS Se€tto 2, while upper bound is

1. If the instance does not contain the feature, the score is O

2. Else the score is calculated by summing up the number of rep
etitions for each symbol in feature from previously consted
Hash TableA frequent substring may occur multiple times in one
string. We calculate the score for each occurrence and eftbes
maximum score as the score for the instance-feature metric.

With this metric, we calculate the similarity for each pafri-
stances by cosine similarity, a widely-used similarity sw@a for
comparing vectors [5]. Cosine similarity is formulated as:

o (filhh) x fi(I2))
Vo fill)? + /3, fi(l2)?

where f;(I1) and f;(I2) are the scores from the instance-feature
metric for Instance 1 and 2 respectively.

@)

stmilarity =

4.4 Clustering

Similar to [12], we cluster the instances by a well-knownstéu-
ing approach AGNES [6] witl, method [16]. AGNES or AGglom-
erative NESting is a hierarchical clustering approach waks by
creating clusters for each individual instance and thergingrtwo
closest clusters (i.e., a pair of clusters with the smatlestaince) re-
sulting in fewer clusters of larger sizes until all instasidelong to

one cluster or a termination condition is satisfied (e.g.es@tibed
number of clusters is reached). We implement theethod [16] to
automatically find the optimal number of clusters, which kgoby
using the evaluation graph where thaxis is the number of clusters
and they-axis is the value of the evaluation functionxatlusters. In
this paper, we use the average distance among all instam¢es i
different clusters as the evaluation functidnmethod fits the curve
in the evaluation graph into two lines and chooses the iatien
point between these two lines as the optimal number of afsiste

4.5 Signature Extraction

In testing phase, we use signatures to represent instagezgr'sh tra-
jectories in each cluster. We define signature as follows.

Definition 5 (Signature SZGN) Letc be a cluster of problem in-
stancei, S be a set of search trajectories for all instan¢en c,
MiNength DE @ minimum length aneins.ppor: be a minimum sup-
port. SZGN (¢) is defined as a set of distinct segments firthat
has significantlength (greater thanin;e.4:1) and appears in most
of instance in ¢ (at leastminsuppor: NUMber of instances).

The steps for signature extraction are similar to featuteaetion
(Section 4.2), but for each cluster, we need to construcftfardi
ent suffix tree and extract the features from each suffix tBéece
each cluster already satisfy user-specified constrairgsskip the
feature selection process and use all the extracted suipstis fea-
tures. Unless stated otherwiseinicngtn andminsupport are set to
MiNiength ANAMinsuppor: Value in feature extraction.

4.6 Time Complexity

The time complexity for generatingash Stringis O(n x m) with
n being the number of instances andbeing the maximum string
length, while that for constructing the suffix tree(¥n x [) with
n being the number of instances ahdeing the maximunHash
String length. Extracting features, building instance-featuegrio
and calculating similarity for each pair of instances cadbee by a
single traversal of the suffix tree structure. Hence it rexa@(n x [)
with n being the number of instances artking the maximuniash
String length. The clustering process requi@é:?) with n being
the number of instances. Hence, the overall time compldaityhe
training phase, excluding the time needed for tunin@(@s> + (n x
m) + (n x 1)) with n being the number of instances, being the
maximum string length anidbeing the maximuniash Stringength
(n <l <K m).

In the testing phase, cluster signature construction regGi(n x
1) where n is the number of training instances ardis the
maximum Hash Stringlength. For a given testing instance, we
match the signatures with the testing instance’s stringpiclntakes
O(signaturec X lsignature X m x 1) time, wheresignature. is the
total number of signatures in all clustetsgnature is the maximum
length of signaturesn is the number of testing instances, anid
the maximum string length of the testing instanke;tature < 1).

5 Empirical Evaluation

In this section, we present our experimental results to oredke ef-
ficiency and effectiveness &ufTra on a classical COPs, Quadratic

CluPaTra [12]. Note that since our aim is to measure solution qual-
ity, we do not compare our approach wiktydra [19], another
instance-specific configurator that seeks to optimize mne tper-
formance but not solution quality of the target algorithm.

As a target algorithm, we use hybrid Simulated Annealing and
Tabu Search (SA-TS) algorithm [13], which uses the Greedy-Ra
domized Adaptive Search Procedure (GRASP) to obtain aialinit
solution, and a combined Simulated Annealing (SA) and Taarch
(TS) algorithm to improve it. There are four parameters taured
as described in Table. 2.

Table 2. Parameters for SA-TS on QAP

Parameter Description Type Range

Temp Initial temperature of SA Continuous [100, 5000]
algorithm

Alpha Cooling factor Continuous [0.1, 0.9]

Length Length of tabu list Discrete [1,10]

Pct Percentage of non- Continuous [0.01,0.1]

improving iterations prior
to intensification strategy

We used two set of instances: SET A and SET B as described in
Table. 3. All experiments were performed on a 1.7GHz Pentlum
machine running Windows XP.

Table 3. Set of Instances for QAP

Set Description Nty ng m

SET A benchmarkinstances from QAPLib 40 10 4,613
with number of city 22 to 150

SET B generated instances from two gen100 400 15,536

erators as in [14] with number of fa-
cilities varied from 5 to 150

5.1 Cluster Analyses

We experimented on SET A instances and compared the clusters
created fromSufTra, CluPaTra and ISAC. SincelSAC requires
problem-specific features, we used 2 featufleay dominanceand
sparsityof flow metric [17].

We measured the cluster quality usiextrinsic method.Extrin-
sic methods compare the clusters against the known class labels
ground-truthclusters (i.e. the set of clusters which is supposed to
represent the ideal/optimal clustering) [6]. We used thstieg well-
studied classification of QAP instances based on the distand
flow metrics, due to [18] aground truthcluster.

For this experiment, we used two differeGtifTra implementa-
tion. ForSufTra, we did not include user-specified constraints infor-
mation, while forSufTra(c), we randomly derived 20 user-specified
constraints fromground truthcluster.

The cluster quality values are shown in Table. 4 (I). Notice
that SufTra(c) and SufTra has higher cluster quality compared to
CluPaTra andISAC.

5.2 Performance Comparison

To evaluateSufTra’s effectiveness for long search trajectories and
large number of instances, we ran experiment on SET B. For
SufTra(c), we randomly used 20 user-specified constraints where we
derived from the following assumption: (1) instances frdra same

Assignment Problem (QAP).We compare our approach with twogenerator are considered on the same cluster; and (2) aestéom

other instance-specific configurators in the literati®&C [10] and

different generators are considered on different clusters

Table 4. QAP Experiment Result

with minor additional computational time; and (@ufTra has over-
comeCluPaTra limitations with a new efficient method for feature
extraction and similarity computation using suffix tree.

Up to this stage of our work, th&ufTra framework can only be ap-
plied to target algorithms which are local-search-basadesour ap-
proach uses search trajectory as the generic feature. ére fwbrks,
we will investigate how to generate clusters from poputati@ased-

algorithm using generic features pertaining to populatignamics.

Training Testing
I. Clustering Analyses
CluPaTra 0.68 0.70
ISAC 0.80 0.80
SufTra 0.85 0.85
SufTra(c) 0.91 0.93
Il. Computational Time
CluPaTra 1,0561s 2,718s
SufTra 56s 146s
SufTra(c) 65s 147 s (1]
Ill. Performance Result
ParamILS 1.08 2.14
CluPaTra 089 158 2]
ISAC 0.84 1.22
SufTra 0.83 1.16
SufTra(c) 0.80 1.15
p-value** 0.061 0.042 (3]

**phased on statistical test dASAC andSufTra

4

First, we compared the time needed (in seconds)SuofTra,)
SufTra(c) andCluPaTra to form the clusters in training phase and
to map the testing instances in testing phase. Table. 4h@vs the (5]
result. From the table, we observe ti&atfTra and SufTra(c) is 18 [6]
times faster the€luPaTra.

Next, we compared the target algorithm performance using pa [7]
rameter configuration frorBufTra, SufTra(c), CluPaTra andISAC
as well as the one-size-fits-all configuraRaramILS. For the three (8]
instance-specific methods, we used the same one-sizéHitmég-
urator,ParamlLS [9]. SinceParamILS works only with discrete pa-
rameters, we first discretized the values of the paramétrsnea-
sured the performance using performance metric as defingdfin
nition 1.

We set the cutoff runtime oParamlILS to 100 second. For
CluPaTra, SufTra and SufTra(c), we allowed each configurator to [11]
execute the target algorithm for a maximum of two CPU hours fo
each cluster. To ensure fair comparison, we set the timediudg [12]
ISAC and ParamiLS to be equal to the total time needed to run
SufTra. For unbiased evaluation, we used a 5-fold cross-validatio
[6] and measured the average performance over all folds. ¥¢e a [13]
performed a statistical test-tes) on the significance of our result
where ap-valuebelow 0.05 is deemed to be statistically significant. [14]
In Table. 4 (Ill), we show the performance comparison resitom
the table, we observe th&ufTra andSufTra(c) performs better on

9]

[20]

training and testing instances compare to other approaBu¢she [15]
result for training instances is not statistically sigrafit compare to [16]
ISAC.

6 Conclusion and Future Works [17]
In this paper, we proposed a new generic instance-basedjaenfi (18]
rator via the clustering of patterns according to the instesearch
trajectories using the suffix tree data structure and usecifipd- [19]

constraints. We measured the cluster quality and perfoceani

QAP, and show thaBufTra result (with or without user-specified
constraints) is outperform the existing methods. Its elust almost 20]
similar to existing benchmark instance classificationsrghy show-

ing its effectiveness. Hence, we claim that: 81)fTra (with or with-

out user-specified constraints) is a suitable approachnfstaince-
specific configuration that significantly improves the parfance

REFERENCES

Belarmino Adenso-Diaz and Manuel Laguna, ‘Fine-tuninf algo-
rithms using fractional experimental design and local dgaOper-
ations Researcltb4(1), 99-114, (2006).

Carlos Ansobtegui, Meinolf Sellmann, and Kevin Tiern&y gender-
based genetic algorithm for the automatic configuratiorigdrithms’,
in 15th international Conference on Principles and PractideCon-
straint Programmingpp. 142-157, (2009).

Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney, ialpabilis-
tic framework for semi-supervised clustering’,Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Daiaiy
(KDD-2004) pp. 59-68, (2004).

M. Birattari, Z. Yuan, P. Balaprakash, and T. StutzRytomated algo-
rithm tuning using f-races: Recent development8th Metaheuristics
International Conferencg2009).

Dan Gusfield Algorithms on Strings, Trees and SequenGasnbridge
University Press, 1997.

J. Han and M. KambemData Mining: Concept and Techniques, 2nd
Edition, Morgan Kaufman, San Francisco, 2006.

H.H. Hoos and T. StutzleStochastic Local Search: Foundation and
Application Morgan Kaufman, San Francisco, 2004.

F. Hutter, H.H. Hoos, and K. Leyton-Brown, ‘Sequentiabdel-based
optimization for general algorithm configuration’ iNCS: 5nd Learn-
ing and Intelligent OptimizatioN Conferend@011).

F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stutzl®gramils: An
automatic algorithm configuration frameworBburnal of Artificial In-
telligence Researci36, 267—306, (2009).

S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tiernelsac:instance-
specific algorithm configuration’, ii9th European Conference on Ar-
tificial Intelligence (2010).

G.Klau, N. Lesh, J. Marks, and M. Mitzenmacher, ‘Hunguieed tabu
search’, inIn: National Conference on Atrtificial Intelligence (AAAI)
(2002).

Lindawati, Hoong Chuin Lau, and David Lo, ‘Instanceskd param-
eter tuning via search trajectory similarity clusteringi,LNCS: 5nd
Learning and Intelligent OptimizatioN Conferen¢2011).

K.M. Ng, A. Gunawan, and K.L. Poh, ‘A hybrid algorithm rfahe
quadratic assignment problem’, international Conf. on Scientific
Computingpp. 14-17, (2008).

Gabriela Ochoa, Sebastien Verel, Fabio Daolio, anddd@omassini,
‘Clustering of local optima in combinatorial fitness landpe’, in
LNCS: 5nd Learning and Intelligent OptimizatioN Conferer{2011).
C.R. Reeves, ‘Landscapes, operators and heuristictsednnals of
Operations Resear¢B6(1), 473-490, (1999).

S. Salvador and P. Chan, ‘Determining the number oftehsgssegments
in hierarchical clustering/segmentation algorithms’1éth IEEE Inter-
national Conference on Tools with Artificial Intelligengp. 576-584,
(2004).

T. Stutzle and S. Fernandes, ‘New benchmark instafoecele qap and
the experimental analysis of algorithms’ LiNCS: Evolutionary Com-
putation In Combinatorial Optimizatiqr{2004).

E.D. Taillard, ‘Comparison of iterative searches for theduatic as-
signment problem’L.ocation Science3(2), 87-105, (1995).

L. Xu, H.H. Hoos, and K. Leyton-Brown, ‘Hydra: Automa#lly con-
figuring algorithms for portfolio-based selection’,@onference of the
Association for the Advancement of Atrtificial Intelliger{@AI-10)
(2010).

Daogiang Zhang, Songcan Chen, and Zhi-Hua Zhou, ‘Gaimiscore:
A new filter method for feature selection with pairwise coastts’,
Pattern Recognitiord1(5), 1440-1451, (2008).

