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Abstract—In-game actions of real-time strategy (RTS) games
are extremely useful in determining the players’ strategies,
analyzing their behaviors and recommending ways to improve
their play skills. Unfortunately, unstructured sequences of in-
game actions are hardly informative enough for these analyses.
The inconsistency we observed in human annotation of in-
game data makes the analytical task even more challenging.
In this paper, we propose an integrated system for in-game
action segmentation and semantic label assignment based on
a Conditional Random Fields (CRFs) model with essential
features extracted from the in-game actions. Our experiments
demonstrate that the accuracy of our solution can be as high
as 98.9%.

I. INTRODUCTION

Real-time strategy (RTS) game is a popular online game
genre in which players gather necessary resources to train
army units and build bases to fight against opponents. To
maximize the chance of winning in RTS games, one needs
to learn the right strategies. Hence, it is not a surprise
many players turn their attention to game commentaries that
explain the dos and don’ts of game playing using previously
recorded games for illustration. For example, Sean ‘Day9’
Plott, a famous commentator of the highly popular RTS game
StarCraft II1, has attracted over 45 millions views on his
YouTube Channel2.

From the RTS game developer perspective, to attract and
retain players, it is equally important to help their players
understand the games and learn the right strategies to play
well. Today’s RTS games, however, have only limited capac-
ity to offer such assistance to their players other than a good
help menu and user guide. The current best way for players
to learn the games is still by trial and error, a potentially
tedious and time-consuming process.

Fortunately, the recent advances in database systems and
collaborative web sites, have made it possible to record
massive amount of data generated by real RTS games (often
known as game replays), and share them at game data
repository websites. One can then apply data analytics to
discover game strategies and to evaluate their effectiveness in
improving gaming performance and experience. The knowl-
edge gained can be further used to guide individual players
to play better and help game developers design better games.
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In this paper, we analyze the in-game actions of a popular
RTS game, StarCraft II: Wings of Liberty, developed and
released by Blizzard Entertainment. StarCraft II (or SC2) is
selected because (1) the popularity of SC2 makes it easy
to find highly active players for the purpose of human
annotation; (2) SC2 replay files are publicly available for
downloading from several websites; (3) the highly com-
plicated gameplay in SC2 has given rise to a wealth of
sophisticated strategies from its players; and (4) comparing
to the original StarCraft3, SC2 is a newer game with a greater
variety of gameplay mechanics. Hence, the game is not yet
fully understood by the players and the gameplay strategies
are still evolving, which makes SC2 more interesting and
challenging for analysis. Even as this paper focused on SC2
only, the same problem and proposed techniques will be
applicable to other popular RTS games such as League of
Legends4, and DOTA25.

A replay file in SC2 records in temporal order all actions
performed by the players, including mouse movements and
keyboard inputs. These mouse and keyboard actions are
recorded as atomic actions, such as training a unit, select-
ing a building or attacking some facility. The sequence of
timestamped actions performed by one player in a game is
called an action list.

While unstructured action lists are hardly adequate to
reveal the player’s intention and strategy, it is much easier
when consecutive atomic actions are grouped into logical
segments assigned with meaningful semantic labels. Our ob-
jective is thus to partition each SC2 action list into segments
and give each segment a label which represents the collective
meaning of the actions in this segment. Knowing these action
segments and their semantic labels will give us an idea how
the player executes her strategy in the game.

Formally, given an action list L = (a1, a2, ..., am) with
m actions performed by one player, a segmentation S
of L is defined as k non-overlapping segments, denoted
as S = {s1, s2, ..., sk}, where for 1 ≤ i ≤ k, si =
(abi , abi+1..., abi+li), 1 ≤ bi < bi+1 ≤ m and

∑k
i=1 li =

m−k. Let A = {α1, α2, ..., αh} be a set of h unique labels.
Our problem is to find all the segments s1, s2, ..., sk, and
assign a label αsi ∈ A for each segment si, 1 ≤ i ≤ k. In
this problem formulation, we assume that the label set A is
given. To obtain this label set, we actually need some expert
knowledge about the SC2 game which is covered in Section

3http://sea.blizzard.com/games/sc/
4http://lol.garena.com/playnow.php/
5http://www.dota2.com/



III-B.
The task of segmentation and labeling sequential data

has been studied in many fields, including bioinformatics
[6], natural language processing [2] and speech recognition
[14]. The segmentation techniques include Hidden Markov
Models (HMMs) [15], Maximum Entropy Markov Models
(MEMMs) [11], and Conditional Random Fields (CRFs)
[9]. Since CRFs are known to outperform both HMMs and
MEMMs on a number of real-world sequence segmentation
and labeling tasks [9], [13], we use CRFs to automatically
segment and label game action lists in our framework.

Several challenges are unique in this in-game action list
segmentation and labeling task. Firstly, to the best of our
knowledge, there are no publicly available labeled action lists
to be used for training. The manual process of labeling takes
much time and effort and the labeling agreement between
annotators in our experiment has been shown to be far below
what we considered to be useable. Secondly, the noise level
in the raw in-game action lists is very high. This prevents
accurate segmentation and labeling. Our experiments show
that 80% of actions in the actions lists can be considered
as spams. The spam actions are generated in various ways,
such as accidental keypress, repeated use of trivial game
commands to inflate personal statistics, i.e. number of actions
performed per minute, etc. Finally, we need to identify the
features to be used in segmentation and labeling. None of
the above tasks has been studied for the segmentation task
in the past.

In our literature survey, we found several prior works on
RTS games focusing on discovering the build order based
strategies [20], [21] and incorporating them into the artificial
intelligence (AI) game agents [12], [22]. However, the above
works make assumption about the way the games will be
played and only focus on a small subset of in-game actions
(build order). There is relatively little work on mining game
strategies from the entire set of in-game actions, and using
the mined strategies to explain the game matches. In [5],
action list segmentation and labeling was also studied but
the work focused on fixed length segmentation approach
over the in-game actions related to build order. The work
assumes equal length segments of 30 seconds each, and
applies HMMs to learn the segment labels. Unlike our work
below, this segmentation method is not data-driven and does
not consider human annotated ground truths in training and
evaluation.
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Fig. 1. Framework for Our Approach

A. Contributions

The in-game action segmentation and labeling task is
novel. By identifying and addressing the associated chal-
lenges, we contribute to game analytics research as follows:

1) We proposed a framework (as shown in Figure 1) to
solve the action list segmentation and labeling problem.
This framework has two phases, namely model training
and model application. In model training, we collect
raw action lists, recruit annotators to segment and
label action lists so as to obtain the training data,
extract representative features from the training data,
and train a CRF model. In model application, features
are extracted from a new action list, which is then
segmented and labeled by the trained CRF model.

2) We have developed a prototype annotation tool known
as Labelr6 to collect segmentation and labeling data
from SC2 players so as to derive the ground truth data.

3) We have devised a simple heuristics to filter spurious
actions from the action lists. We show that our trained
CRF model achieves high accuracy in the segmentation
and labeling task.

B. Outline of Paper

The outline of this paper is as follows. Section II describes
the in-game data of SC2. Section III introduces the dataset
we collected. Section IV describes our proposed CRF based
segmentation and labeling method. Section V presents our
experimental results. Section VI concludes by summarizing
our work and presenting the future work.

II. OVERVIEW OF STARCRAFT II

A. StarCraft II Mechanics

SC2 is a military science fiction RTS game developed by
Blizzard Entertainment. In SC2, players observe the game
actions from a topdown perspective. They are required to
collect resources, develop technologies, build up their army
and use them to destroy the opposing player’s. Players can
choose to play as one of the three unique races, Terran,
Protoss, and Zerg when game starts. Each race is designed to
be played differently with its own sets of units and buildings.

When the game starts, players issue commands to the units
and buildings under their control in real-time through mouse
clicks and keyboard shortcuts. This is different from turn-
based games, such as chess, where players take turn to move
their pieces.
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Fig. 2. Objects in SC2
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Figure 2 shows the types of objects in SC2. There are
two kinds of resources: minerals and gas. Minerals are the
basic form of currency required in every training, build-
ing, researching and upgrading actions. Gas is the rarer
form of currency used in the training and construction of
more advanced units and buildings as well as upgrading
technology. There are three types of units: worker, combat,
and production unit. Workers are responsible for collecting
resources and constructing buildings. Although they can also
attack other units, they are much weaker than the regular
combat units. Combat units are comprised the main army
of the players. Each combat unit has its own strengths and
weaknesses against different types of units. There exists a
special type of units, called production units, such as Zerg
larva, which are static and only used to produce other units.
Buildings are mainly used as the production facilities to train
different units. Some building can also be used to upgrade
certain technology, improving the efficiency of the economy
and the effectiveness of combat units.

The mechanics in SC2 requires players to perform both
micro-management (micro) and macro-management (macro)
actions. The micro actions are those involving tactical
movement, positioning, and maneuvering of individual or
groups of units to maximize their damage on opponents
and minimize the damage received. On the other hand, the
macro actions involve improving and maintaining the overall
economic and military profile of the players. These include a
constant production of worker and combat units, upgrading
the technology levels, etc. Highly skilled players are typically
those who multitask effectively between micro-management
and macro-management.

Competitive online multiplayer mode is what makes SC2
a highly popular game. In this mode, players can find other
human players who are near their skill level to compete
against using Battle.net, an official online multiplayer plat-
form developed by Blizzard. At the end of each multiplayer
game, players’ performance will be evaluated automatically
by Battle.net and skill ratings will be awarded to the players.
Similar to chess, players’ skills are categorized into different
leagues. The leagues ranked from the lowest to the highest
include Bronze, Silver, Gold, Platinum, Diamond, Master,
and Grandmaster. Battle.net’s matchmaking system will try
to pair players of comparable skill levels to play against each
other.

In this paper, we define a game match to be an instance
of SC2 game played by at least two human players, such
that this match ends with a win or lose outcome for each
player. As shown in Figure 3, when a game is over, all
game match data can be saved as a replay. The replay file
records everything that SC2 in-game renderer needs to replay
the corresponding game. Therefore, the replay file logs rich
information about the game, such as chat, map name, players’
name, and all actions performed by each player from the time
the game starts till it ends. After collecting the replay files,
we can use the replay parsers such as phpsc2replay [19] and
sc2gears [1] to extract all the action data in them.
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Fig. 3. Collecting replays and action lists

TABLE I
A PARTIAL ACTION LIST PERFORMED BY ONE PLAYER FROM A SC2

REPLAY

Time
(mins) Player Action

0:00 Select Command Center (10288)
0:00 Train SCV
0:00 Train SCV
0:00 Train SCV

0:01 Select SCV x6 (1028c, 10290, 10294, 10298,
1029c, 102a0), Deselect all

0:02 Right click; target: Mineral Field (100b4)
. . . . . .
0:07 Select Command Center (10288), Deselect all
0:08 Right Click; target: Mineral Field (10070)

B. Action List Representation

Given a replay R, an action list L = (a1, a2, ..., am) is the
sequence of actions performed by a player p in R in temporal
order. m is the number of actions in L. Each action ai in L
has a corresponding timestamp ti, where t1 ≤ t2 ≤ ... ≤ tm.

A partial example action list is shown in Table I. Each line
in this table represents an action which includes timestamp
and the corresponding action. Each action consists of action
type and target. For example, from the first action in Table I,
‘Select Command Center (10288)’, we can identify the action
type as ‘Select’, and the target as ‘Command Center’ (which
is a type of buildings in the Terran race). In this action, the
alphanumeric string (10288) is the ID for previous object
(Command Center). In SC2, every object has a unique ID.
In addition, certain actions are automatically generated by a
game client. For example, we can see ‘Deselect all’ at the
end of 0:01 (minutes) and 0:07 select actions, which means
that if a player is selecting something at a certain time, the
game client will automatically deselect all the objects that
the player selected before.

After selecting the command center, the player trains three
SCVs (which are the workers of the Terran race) at time 0:00,
selects six SCVs at time 0:01, and right clicks a mineral field
at time 0:02. After some other actions, the player then selects
the command center at time 0:07, and right clicks a mineral
field at time 0:08.

C. Action List Segments

Consider the action list in Table I. Although we understand
the meaning of each single action, we still do not know
what does this player really want to do, such as what is
the difference between the actions at time 0:02 and time 0:08
(both are right clicking a mineral field)? Why does the player
control SCVs? What is the player’s purpose of selecting a
command center? If we group actions at time 0:01 and 0:02,



and group actions at time 0:07 and 0:08, at this point in the
game, the player tried to develop her economy by training
more workers and ordering them to harvest minerals. As
new workers are produced from the command center, they
automatically go to a specific mineral field set by the player’s
rally point. Thus, to make sense of an individual, we must
also consider the context in which the action takes place.
This is similar to natural language understanding, where the
meaning of a word can be inferred from other neighboring
words.

In the example, we may group actions at time 0:01
and 0:02 into a segment, and assign a label ‘mine’. For
the segment containing actions at time 0:07 and 0:08, the
appropriate label is ‘set rally point’.

III. DATASET AND SEGMENT LABELING

A. Data Collection

Several websites are dedicated to host SC2 replays. These
sites are used by SC2 players to share selected gameplays
with the public. We developed a web crawler to collect
replays from GameReplays.org7, a SC2 replay repository
site. A total of 866 replays of SC2 games played by one
player against another player (1 vs. 1) were downloaded,
from which we obtained 1732 action lists.

B. Manual Segmentation and Labeling

1) Human Annotation Tool: A 20-minute long SC2 game
normally contains thousands of in-game actions. This makes
labeling the action lists quite cumbersome for human anno-
tators. To facilitate the process, we have developed a web-
based human annotation tool called Labelr.

As shown in Figure 4, Labelr provides necessary web user-
interface functions for an annotator to organize, segment,
and label action lists with minimum effort. For example,
the annotator can simply assign the start and end points to
split the action sequence. Then, she can select from a default
list (training, building, mining, etc.) or create an appropriate
label for the corresponding segment. To aid the annotator in
making sense of some complex in-game sequence, Labelr
also provides a link to download the actual binary replay file
which can be played back in the game client. All annotation
data from each annotator are stored in a relational database.

2) General Players Annotation: Two business-major un-
dergraduate students who have extensive knowledge in SC2’s
gameplay mechanics and have been competing in high level
online leagues (Diamond & Platinum) for over a year were
hired to label the data using Labelr. They each labeled five
common action lists. From their feedback, we learned that
segmentation and labeling on action list is time consuming.
On average, it took an annotator three hours to label a 20-
minute game. This is because the SC2 action list is very long:
the average game length of the five labeled action lists is 23.4
minutes involving an average of 4628 actions. To segment
and label one action list, annotators have to go through all

7www.gamereplays.org/starcraft2/replays.php?game=33

Fig. 4. Part of screenshot of Labelr

TABLE II
RATERS AGREEMENT, PRESENTED BY FLEISS’ KAPPA

(a) Kappa of replay annotation
Action list id Kappa value

1 0.43
2 0.21
3 0.42
4 0.32
5 0.41

avg 0.36

(b) Kappa interpretation
Kappa value Interpretation

<0 Poor agreement
0.01 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agreement
0.61 - 0.80 Substantial agreement
0.81 - 1.00 Almost perfect agreement

the actions at least once, at the same time, and verify the
players’ actions by watching the replays in-game.

Moreover, we found that the resultant segments and labels
are also very inconsistent between annotators. We used
Fleiss’ Kappa [7] to measure the agreement between them.
Table II shows that the two annotators are only in fair
agreement with each other. The average Kappa value is 0.36.

Due to the low degree of agreement between our annota-
tors, we decided not to use this labeled data as the ground
truths. Two lessons were learned in this effort. Firstly, general
players may not be able to reliably segment and label action
lists. This leads us to later choose an expert SC2 player
who is a postdoc researcher and a Master league player with
extensive knowledge of the game to annotate action lists.
Secondly, action lists are very long and noisy. The noise
filtering rules should be introduced to preprocess the action
lists.

3) Rule Based Noise Filtering: Suggested by the expert
annotator, we filter out noises from the raw action lists before
segmenting and labeling them. Noisy actions are trivial ac-
tions that the player performs in the game either accidentally
(e.g., wrong keypress or mouse clicks) or purposely (e.g., to
inflate her personal gameplay statistics like number of actions
per minute). These actions do not affect the game and the



game will progress exactly in the same manner if the noise is
removed. We worked closely with the expert player to work
out the following noise filtering rules:

• Rule 1: Remove all the non-command actions, such as
a ‘move screen’ action. The move screen actions only
change player’s view of the battle field, but do not
directly affect the players’ strategies.

• Rule 2: If there are consecutive ‘select’ actions, keep the
last one while removing the rest. This is because the last
selection action supersedes the previous selections.

• Rule 3: If there are consecutive ‘right click’ actions,
keep the last one while removing others. Again, the last
right click supersedes the previous ones.

We call the filtered action lists the clean action lists. The
action distribution before and after filtering are shown in Fig-
ure 5. We can observe that after filtering noises, the number
of action lists with few actions increases significantly. The
average number of actions in action list is reduced to 693
from 3517, which means that on average, 80% noise actions
in action lists are noises.

0

200

400

600

800

1000
Before filtering noise

After filtering noise

#
 o

f 
a

ct
io

n
 l

is
ts

# of actions range

Fig. 5. The action distribution before and after filtering.

4) Expert Annotation: The expert labeled all the clean
action lists in our dataset (totally 1732 action lists)8. As
shown in Table III, there are 10 unique labels defined by
the expert labeler. Every segment in the 1732 action lists is
assigned one of these 10 labels.

TABLE III
LABELS GIVEN BY THE EXPERT PLAYER

Label name Description
TRAIN Training of any combat or worker units
BUILD Constructing any buildings
UPGRADE Upgrading units or buildings
RESEARCH Researching a new technology
USE ABILITY Using any special abilities or spells
HOTKEY ASSIGN Assigning hotkeys to units or buildings
MINE Gathering either minerals or gas
ATTACK Attack opponent’s units or buildings
RALLY POINT Setting the units’ rally point
MOVE Moving any units or buildings around

8http://ink.library.smu.edu.sg/data/1/

IV. CRFS BASED SEGMENTATION AND LABELING
FRAMEWORK

CRFs are a probabilistic framework which can be applied
to segmenting and labeling sequential data. A CRF is a
form of undirected graphical model that defines a conditional
probability distribution over label sequences given a par-
ticular observation sequence. CRFs relax the independence
assumptions required by HMMs, which define a joint prob-
ability distribution over label sequences given a observation
sequence, and also avoid the label bias problem, which is a
weakness of MEMMs [9]. For our action list segmentation
and labeling problem, the observation sequence is an action
list. Since the label of a segment represents the meaning of
actions within this segment, we can automatically assign the
same label to all the actions in that segment. Therefore, the
label sequence in our problem is the list of actions’ labels.

Linear-chain CRFs define the probability of a label se-
quence y given observation sequence x to be:

p(y|x,λ,µ) =
1

Z(x)
exp(

∑
i,j

λjtj(yi−1, yi,x, i) +
∑
i,k

µksk(yi,x, i)).
(1)

where Z(x) is a normalization factor that makes the
probability of all label sequences sum to one; λ and µ
are the parameters to be estimated from training data;
tj(yi−1, yi,x, i) is a transition feature function of the entire
observation sequence and the labels at positions i and i− 1,
and λj is learned parameter associated with feature tj ;
sk(yi,x, i) is a state feature function of the label at position
i and the observation sequence, and µk is learned parameter
associated with sk.

We specify feature functions when the CRF model is to be
learned. For example, one boolean transition feature function
might be true if action xi−1 contains ‘select’, action xi
contains ‘train’, label yi−1 is ‘train’, and label yi is ‘train’;
one boolean state feature function might be true if the action
xi contains ‘build’, and label yi is ‘build’.

To simplify our notation, we write

s(yi,x, i) = s(yi−1, yi,x, i) (2)

and
Fj(y,x) =

∑
i

fj(yi−1, yi,x, i) (3)

where each fj(yi−1, yi,x, i) is either a state function or a
transition function. This allows we simplify the probability
as

p(y|x,λ) = 1

Z(x)
exp(

∑
j

λjFj(y,x, i)). (4)

The most probable label sequence for an input x can be
efficiently determined using Viterbi algorithm [15].

y∗ = argmax
y

p(y|x,λ,µ). (5)



Given a training dataset {(x(t),y(t))}, the parameters λ
in Eq. 4 can be estimated by maximum log-likelihood which
is maximizing the conditional probability of {y(t)}, given
corresponding {x(t)}. For a CRF, the log-likelihood is given
by:

L(λ) =
∑
t

log(p({y(t)}|{x(t)},λ))

=
∑
t

(
∑
j

λjFj(y
(t),x(t))− logZx(t)).

(6)

The parameters can be identified by using an iterative tech-
nique such as traditional method iterative scaling [4], or
LBFGS, which is a fast method [3], [10], [16]. More details
about CRFs can be found in [9].

A. Features Extraction

This section outlines the three types of informative features
extracted from action lists. All the features are binary.

• Current Action Features (Type I): These are infor-
mation extracted from the current action, such as the
current action type (select, right click, attack, upgrade,
research, etc.), the current action’s target type (worker,
soldier, building, resource, etc.), occurrence of a special
word (e.g. flying), and player’s race (Terran, Zerg and
Protoss).

• Neighboring Action Features (Type II): These are
information extracted from the neighboring actions of
the current action. For example, the features can be the
last action’s action type, the 2nd last action’s action
type, the 3rd last action’s action type, the 4th last
action’s action type, the next action’s action type, and
so on so forth. Additionally, features in Type II can also
be the combination of information from neighboring
actions, such as the 2nd last action’s target type together
with the last action’s target type (e.g.: Last Last Target
= worker and Last Target = resource).

• Bigram Features (Type III): These are information
combined from the current action and the neighbors of
the current action, such as: combine action types of
previous and current actions (e.g.: Current = right click
and Last = select).

We extract a total of 373,163 binary features. The number
of features of the three types of features are listed in Table
IV.

TABLE IV
FEATURES USED IN OUR EXPERIMENTS

Type I II III
# of features 46 411 372,706

V. EXPERIMENTS

In this section, we describe our experiment setup and
analyze the performance results.

A. Experiment Setup

We first evaluate the action lists segmentation and label-
ing performance using CRF. The implementation of CRF
we used is CRF++ [17], which uses LBFGS to learn the
parameters. For comparison, we use Support Vector Machine
(SVM) as our baseline method. In our first experiment, we
evaluate the performance of CRF and SVM using different
number of training action lists including 1, 5, 10, 20, 50, 100,
and 200, and the remaining labeled action lists as testing data.
We also trained CRF model on 500 and 800 action lists, since
their results are very similar to the result of 200 action lists,
we will not show them in the figures. In this experiments,
we use all features in Table IV to train both CRF and SVM
model.

In the second experiment, we show the performance of
CRF model using different subsets of features and 200 action
lists as training data.

To measure the overall performance of segmentation and
labeling using CRF and SVM, we use accuracy defined
below:

accuracy =
number of actions assigned correct label

number of actions
(7)

To evaluate the performance for each label, we used F1-
score. Recall A = {α1, α2, ..., αh} represents the set of
action labels. The F1-score of label αi is defined as:

F1-scoreαi =
2× precisionαi

× recallαi

precisionαi + recallαi

(8)

where

precisionαi =
number of actions assigned αi correctly

number of actions assigned αi
(9)

recallαi =
number of actions assigned αi correctly

number of actions with label αi
(10)

For each training data size involving some number of
action lists, say x, we conducted 5 runs of experiments so as
to obtain the average accuracy for overall performance and
average F1-score for each label performance. Each run used
a different set of randomly selected x action lists for training.

B. Performance Analysis

1) Overall Performance: We now present the performance
results for CRF and SVM. Figure 6 shows the average
accuracy of action list segmentation labeling for different
number of training action lists. This figure shows that the per-
formance of CRF is much better than SVM for any training
data size. The performance of CRF improves significantly
with more training action lists. However, the performance
improvement is less significant for SVM. When we used
200 action lists as training data, the CRF model achieved
an accuracy as high as 98.9%.
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2) Performance for Each Label: We now analyze the
performance of CRF and SVM for each action label to gain
a better insight. Figure 7 shows the average F1-score of each
action label for different number of training action lists.

We observe that the performance of all action labels has
a positive correlation with the size of the training data.
The results suggest the labels ‘train’, ‘build’, ‘attack’ and
‘mine’ can be easily segmented and labeled even when few
training action lists are given. There are also action labels
(e.g. ‘upgrade’,‘use ability’, etc.) that are more difficult to
segment and label. The difficulty can be overcome by having
more training action lists. For example, F1-score increases
sharply when the number of training action lists increases
from 1 to 5. Given sufficiently large number of action lists
such as 200, we obtain an F1-score of at least 0.96 for all
action labels. Further increase in training data size does not
bring about significant improvement.

Figure 7 also shows that SVM performs much worse
than CRF for some action labels, particularly for ‘research’,
‘upgrade’ and ‘hotkey assign’ labels. This could be due to
imbalanced data in our action lists. Imbalanced data is known
to cause poor performance in classification particularly for
the minority classes [8], [18]. Figure 8 shows the number
of actions with different action labels in our dataset. The
number of actions with ‘research’, ‘upgrade’, and ‘hotkey
assign’ labels are relatively fewer compared to other labels.
It is therefore not a surprise to have SVM performs badly for
these classes. Interestingly, CRF appears to be more robust
to our imbalanced dataset.

3) Performance on Different Type of Features: Figure 9
shows the performance of CRF model using different sets
of features including (a) Type I - Current Action Features
only, (b) Type II - Neighboring Actions Features only, (c)
Type III - Bigram Features only, and (d) All features. This
figure shows that using all features gives us the best accuracy.
Type I features only gives us the worst performance as
compared to other type of features. Compared with Type I
features, the performance of using Type II features is better
by 14%. This indicates that the neighboring actions can
provide more useful information than the current action in
determining the action labels. The accuracy of using Type III
features is slightly lower than using all features. This result is
reasonable as Type III features use the information from both
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Fig. 7. Performance for different action labels. The x-axes represents
number of action lists. The y-axes represents the F1-score.
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current actions and neighboring actions. On the whole, we
conclude that contextual information of an action including
the labels of neighboring actions is important for segmenting
and labeling action lists.

VI. CONCLUSION

This paper introduces an action list segmentation and
labeling framework to interpret player’s actions in their
games. In our research, we observe that: (i)the general
players segmentation and labeling results are very incon-
sistent; (ii) on average, 80% of the actions in action lists
are noises; (iii) the segments and labels given by our expert
player on the filtered action lists are suitable for training a
segmentation and labeling model; and (iv)the performance
of CRF model for this task is generally quite good. The
accuracy of segmentation and labeling increases with training
data size, and it could be as high as 98.9%.

Our future work will focus on mining game play strategies
from in-game data using action list segments and labels. In
RTS game, player’s strategy is a plan of actions designed to
beat the opponents. It corresponds to how player organizes
resources and controls army units. Understanding player
strategy is useful for many reasons. Firstly, we can help
player understand his/her playing skills at a high level.
Secondly, we can help players study the replays of his/her
opponents. Thirdly, we can also recommend strategy to
players to help them improve their playing skills. Finally,
the strategy helps researchers analyze player characters and
behaviors.
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