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Abstract

A frequently encountered problem in decision making is the

following review problem: review a large number of objects

and select a small number of the best ones. An example is

selecting conference papers from a large number of submis-

sions. This problem involves two sub-problems: assigning

reviewers to each object, and summarizing reviewers’ scores

into an overall score that supposedly reflects the quality of

an object. In this paper, we address the score summariza-

tion sub-problem for the scenario where a small number of

reviewers evaluate each object. Simply averaging the scores

may not work as even a single reviewer could influence the

average significantly. We recognize that reviewers are not

necessarily on an equal ground and propose the notion of “le-

niency” to model this difference of reviewers. Two insights

underpin our approach: (1) the “leniency” of a reviewer de-

pends on how s/he evaluates objects as well as on how other

reviewers evaluate the same set of objects, (2) the “leniency”

of a reviewer and the “quality” of objects evaluated exhibit a

mutual dependency relationship. These insights motivate us

to develop a model that solves both “leniency” and “quality”

simultaneously. We study the effectiveness of this model on

a real-life dataset.
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1 Introduction

Evaluation is a fundamental activity in our life. Con-
ferences evaluate submissions, grant agencies evaluate
grant proposals, referees rate athletes, customers rate
products, and so on. The importance of evaluation can
be highlighted by the wrong call in the figure-skating
event of the 2002 Winter Olympics (TIME, Feb. 16,
2002). According to the report, a French referee ad-
mitted to having been “pressured” into voting for the
Russian team for the Gold Medal award. The damage
was partially fixed by giving out a second Gold Medal
to the Canadian team.

Designing a good evaluation requires solving two
sub-problems: assigning a (usually small) number of
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reviewers to each object, and summarizing reviewers’
scores into an overall score for each object. In this pa-
per, we consider the second sub-problem of summarizing
the scores of reviewers. We assume that the raw scores
from reviewers are available and that reviewers may give
different scores on the same object they evaluate. The
goal is to determine the overall score for each object to
reflect the ground truth quality of the object.

It is important to acknowledge that reviewers are
not necessarily on an “equal ground” when deriving
their scores, due to the difference in background, per-
spective, and standard. Simply averaging the scores of
reviewers amounts to treating them as “equal”, when in
fact they are not. One quick fix is taking some weighted
average as the overall score, but the weight of reviewers
often is determined in a subjective manner. A modera-
tion step may help sometimes, but only if reviewers are
willing to change their scores.

If an object is evaluated by a large number of
reviewers, the average score serves as an unbiased
indicator of quality [9], as known from the law of large
numbers [6]. We do not consider such evaluations.
Rather, we consider evaluations where each object is
assigned a “small” number of reviewers (say 3 to 7), but
there could be a large number of objects to be evaluated
(say hundreds or even thousands). This is typically the
case if a certain expertise is required of a reviewer, such
as reviewing conference submissions or grant proposals.
Each reviewer gets to evaluate a small number of objects
and each object gets a small and likely different set of
reviewers. In this case, the simple average can be easily
“manipulated” by a single reviewer.

1.1 Approach We are interested in a “data-centric
approach” where an overall score is derived solely from
reviewers’ scores without requiring further information
about reviewers (such as weighting of reviewers). Our
basic assumption is that review scores can be “trusted”
in that most reviewers are “honest” and exercise their
best judgments, as in most practical cases. Note that
“honest” reviewers may have different “biases”, thus
giving different scores to an object. A key idea in our
approach is modeling such “biases” by the notion of
“leniency”, which captures the tendency of a reviewer to
give a higher or lower score. Various reasons may cause
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Figure 1: Score Data 1

a different degree of leniency. It is not our intention to
identify these reasons. Instead, we focus on the impact
of leniency on the reviewers’ scores. Two insights about
leniency underlie our approach.

Insight I: Networked Approach to Leniency.

To determine the leniency of a reviewer, it is important
to consider all the objects evaluated by the reviewer and
how other reviewers evaluate those objects. A reviewer
is lenient if some trend of giving a higher or lower score
is observed across the evaluation of all such objects. The
following example illustrates this point.

Example 1. Figures 1 and 2 show two sets of scores
under the same reviewer/object assignment. Each entry
eij ∈ [0, 1] denotes the score by a reviewer ri on an
object oj, with a dash “-” denoting that the reviewer has
not evaluated the object. In both datasets, o1 gets exactly
the same scores from the same reviewers, i.e., 0.6, 0.3
and 0.3 by r1, r2 and r3. Therefore, with the averaging
approach, o1 will receive the same overall score in the
two evaluations. We claim, however, that it is more
reasonable that o1 receives a lower overall score in the
first evaluation than in the second evaluation.

Consider Figure 1 first. r1 gives 0.6 and r2 and
r3 give 0.3 on o1. We want to know whether this
difference is because r1’s score is too high or because
r2 and r3’s scores are too low. Instead of considering
only o1, we consider how these reviewers evaluate other
objects. r2 and r3 tend to agree with their co-reviewers
on most objects evaluated (i.e., o4 and o5), whereas r1

tends to give a higher score than her co-reviewers (i.e.,
on o1, o2, o3). While it may be possible that r1 is
right and all her co-reviewers are wrong, this possibility
diminishes if these tendencies are observed on a larger
scale. It makes more sense to trust r2 and r3 more
because they have shown more consistency with their co-
reviewers. Therefore, we believe that r1 is probably too
lenient on o1.

In Figure 2, r1 agrees with most co-reviewers, but
r2 and r3 give a lower score than their co-reviewers.
In this case, it makes more sense to trust r1 more and
believe that r2 and r3’s scores on o1 are probably too
low. Interestingly, this time we trust the minority (i.e.,
r1) instead of the majority (i.e., r2 and r3)!
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Figure 2: Score Data 2

Insight II: Mutual Dependency of Quality

and Leniency. The quality of an object, as represented
by the overall score, and the leniency of a reviewer are
mutually dependent on each other. On one hand, in
order to determine the quality of an object, we need
to know the leniency of the object’s reviewers, so that
this leniency can be taken into account. On the other
hand, in order to determine the leniency of a reviewer,
we need to know the quality of the objects evaluated by
the reviewer as the baseline of measuring the leniency.

Our approach associates leniency with a reviewer
and quality with an object. It is true that a reviewer
could be more lenient on one object and less lenient on
another. The leniency considered here is the overall
leniency of a reviewer after considering all objects
reviewed. Such overall leniency makes as much sense as
the overall score of an object where different reviewers
may give different scores to the same object.

The rest of the paper will be organized as follows.
In Section 2, we give an overview of the related work.
In Section 3, we describe a framework called the Dif-
ferential Model to solve leniency and quality based on
the above insights. This is followed in Section 4 by a
brief outline of two types of solutions. Section 5 reports
the experimental results on a real-life dataset. Section 6
concludes this paper.

2 Related Work

Another approach to remove the bias of evaluation is
to standardize reviewers’ evaluation. The idea is to
normalize all the scores given by a reviewer and deter-
mine the “range” used by this reviewer. The normalized
scores could then be re-calibrated to a common standard
[2]. To apply this approach, however, each object must
be evaluated by every reviewer because the “ranges” of
reviewers are comparable only if they have been derived
from the same set of objects. This condition is not sat-
isfied by the type of evaluations considered in our work.

The score summarization problem is related but
orthogonal to the reviewer assignment problem [3, 4, 7].
The latter problem focuses on the selection of reviewers,
which takes place before evaluation, and thus does not
consider review scores. Our work recognizes the fact
that the reviewer/object assignment is hardly perfect,



especially for a large-scale evaluation, and seeks to
improve the evaluation by considering the difference of
reviewers at the stage of summarizing reviewers’ scores.

In an earlier work [8], we investigate how deviation
in review scores may reveal the bias on the part of
reviewers and the controversy on the part of objects.
While reviewers may demonstrate bias due to their
leniency, the approach of explicitly modeling leniency
is first introduced in this paper. The controversy of
an object is an orthogonal concept to the quality of an
object in that a controversial object can be of either high
quality or low quality, and therefore cannot be used to
measure the quality of an object.

3 Differential Model

Score data is the collection of raw scores eij ∈ [0, 1] that
reviewer ri assigns to object oj . It is represented as an
adjacency matrix as shown in Figures 1 and 2.

Given a score data, we seek to determine the
leniency li of each reviewer ri and the quality qj of
each object oj . Their values are interpreted as follows.
Higher qj implies higher quality. A reviewer with li > 0
tends to inflate her score. A reviewer with li < 0 tends
to deflate her score. li = 0 implies an unbiased reviewer.
Here, we describe our approach to determine li and qj .

Suppose that we know the quality qj , we determine
the leniency li as in Equation 3.1. For each object
oj evaluated by ri,

eij−qj

eij
tells the degree to which

the given score eij has been inflated (or deflated)
with respect to the object’s quality qj , normalized
by eij . The case of eij = 0 can be avoided by
replacing such eij with an appropriately small non-

zero value. To determine li, we aggregate
eij−qj

eij
over

the set of objects that ri has evaluated. Here, we
use the average aggregation function, which takes into
account the reviewer’s “behavior” across all objects
evaluated. Consequently, reviewers who tend to assign
higher scores would have li > 0, while those who tend
to assign lower scores would have li < 0.

li = Avg
j

(

eij − qj

eij

)

(3.1)

On the other hand, suppose that we know the
leniency li, we can compute qj as in Equation 3.2. For
each reviewer ri of oj , we determine eij ·(1−α·li), which
is the score eij adjusted to compensate for the leniency
li. The adjustment is proportional to the base score
eij . The user-determined compensation scaling factor
α ∈ [0, 1] controls the extent to which the scores may be
adjusted to compensate for leniency. In general, a larger
α would lead to a larger compensation. The score of a
reviewer with li > 0 is adjusted downwards, whereas if

Quality Leniency
Naive Differential Differential

q1 0.40 0.38 l1 0.36
q2 0.40 0.38 l2 −0.18
q3 0.40 0.38 l3 −0.18
q4 0.40 0.44 l4 −0.18
q5 0.40 0.44 l5 −0.18

Table 1: Quality and Leniency for Score Data 1

li < 0 the score is adjusted upwards. By compensating,
we attempt to estimate the score that would have been
assigned by a lenient reviewer had s/he been unbiased.
We aggregate the adjusted scores over all reviewers of
oj . Again, the average function is assumed.

qj = Avg
i

[eij · (1 − α · li)](3.2)

Since knowing li requires knowing qj and vice versa,
the mutually-dependent variables li and qj must be
determined simultaneously. Furthermore, due to the
inter-connectivity of reviewers and objects, we also have
to consider the leniency of all reviewers and the quality
of all objects together. The pair of Equations 3.1 and 3.2
are called Differential Model, to emphasize our modeling
of unequal reviewers.

The averaging approach, or the Naive approach, ig-
nores leniency and equates an object’s quality to the
average of its review scores. Naive is a special case of
the Differential Model. When α = 0, no adjustment
for leniency is done. This reduces Differential ’s Equa-
tion 3.2 (to determine quality) to Naive’s Equation 3.3.

qj = Avg
i

eij(3.3)

Example 2. Table 1 and Table 2 display the quality
computed using Naive, as well as the quality and le-
niency computed using Differential, for Figure 1 and
Figure 2 respectively. For this example, Differential uses
α = 0.5. Naive ignores leniency and gives all the objects
the same quality of 0.40. We claim that the different
rankings of objects by Differential are more intuitive.

Consider Table 1 (for Figure 1) first. While Naive
considers all objects to have the same quality, Differen-
tial considers o4 and o5 to have higher quality than o1,
o2, and o3. This is because r1 — who has given higher
raw scores than her co-reviewers on o1, o2, and o3 — has
highly positive leniency (0.36). r1’s co-reviewers (r2,
r3 on o1 and r4, r5 on o2, o3) have negative leniency
(−0.18), which are smaller in magnitude than r1’s le-
niency. Differential adjusts the scores for leniency, with
greater adjustment applied on r1’s scores, resulting in
the net lower quality of o1, o2, and o3 (0.38 by Differen-
tial). Since the reviewers of o4 (r2, r4, r5) and o5 (r3,



Quality Leniency
Naive Differential Differential

q1 0.40 0.47 l1 0.11
q2 0.40 0.38 l2 −0.79
q3 0.40 0.38 l3 −0.79
q4 0.40 0.41 l4 0.12
q5 0.40 0.41 l5 0.12

Table 2: Quality and Leniency for Score Data 2

r4, r5) all have negative leniency, after adjustment, o4

and o5 have higher quality (0.44 by Differential).
In Table 2 (for Figure 2), it is r2 and r3 that are

given highly negative leniency (−0.79). The upward
adjustment of r2 and r3’s scores by Differential due to
negative leniency pulls up the quality of objects evaluated
by r2 or r3 (q1 = 0.47, q4 = 0.41, q5 = 0.41 by
Differential). Since the reviewers of o2 and o3 (r1, r4,
r5) have positive leniency, after adjustment, o2 and o3

have lower quality (0.38 by Differential).

4 Exact and Ranked Solutions

We present two solutions to the Differential Model of
leniency and quality. The Exact solution, treats the
model as a linear system of equations to be solved
for exact values of leniency and quality. The Ranked
solution, treats the model as a ranking problem to
be solved for rankings by leniency and quality. Each
solution gives rise to an independent outcome, which
may not be identical. Ranked solution is valuable
as sometimes no Exact solution exists, but a unique
ranking still exists and knowing the ranking suffices for
the application. For instance, the evaluation objective
may be to identify the highest quality objects (e.g., a
PC chair interested in accepting the best papers).

By substituting Equation 3.1 of various ri’s into
Equation 3.2 of various oj ’s, and then representing the
resulting equations in terms of qj ’s as matrices, we get a
recursive matrix equation in the general form of Equa-
tion 4.4. Q is a vector whose elements are the vari-
ous qj ’s, while X and Y are constants. Subsequently,
we distinguish between the Exact solution, which solves
Equation 4.4 as a linear system of equations, and the
Ranked solution, which derives a unique ranking from
an eigenvector equation modified from Equation 4.4.

Q = X + Y Q(4.4)

4.1 Exact Solution The Exact solution is the
unique value of Q satisfying Equation 4.4. The matrix
Equation 4.4 stands for a system of linear equations in
terms of various qj ’s. From linear algebra [1], we know
that such a system may be in one of three situations:

Case 1: consistent and uniquely determined,
there is one unique solution, which is the intersec-
tion point of the linear equations

Case 2: consistent and underdetermined, there
are infinitely many solutions, which lie on the line
or plane where the linear equations meet

Case 3: inconsistent, there is no solution as the linear
equations do not meet

Exact solution exists only under Case 1, which pro-
duces a unique Q. This solution is given in Equation 4.5,
where I is the identity matrix. For the solution to be
unique, (I − Y ) must be invertible, which is true if and
only if det(I − Y ) 6= 0. Once Q is solved, the respective
qj ’s are used to solve li using Equation 3.1.

Q = (I − Y )−1X(4.5)

Failing the test det(I − Y ) 6= 0, Equation 4.4 falls
under Case 2 or Case 3. Exact solution does not exist
for either Case 2 or Case 3.

4.2 Ranked Solution For the Ranked solution, we
are only interested in the ranking by quality (and by
leniency). Thus the value of each qj matters less than
the relative ranking among the various qj ’s. We could
derive such a ranking from Equation 4.6, which is
modified from Equation 4.4 by adding a non-zero, real-
valued scalar variable λ. Intuitively, Equation 4.6 says
that any qj (in left-hand side Q) could be expressed in
terms of the quality of other objects (in right-hand side
Q), after rescaling by λ. In other words, the Q that
satisfies Equation 4.6 would preserve the relative ratio
among qj elements (and the ranking by quality).

λ Q = X + Y Q(4.6)

Equation 4.6 can be further modified into an eigen-
vector equation in terms of Q, which can be solved by
iterative methods [1]. Subject to convergence conditions
[5], Q will converge almost independently of its initial
value. A similar formulation and convergence have been
previously attempted in the work on PageRank [10].

In summary, we have introduced two independent
solution methods derived from similar, but slightly
different matrix equations. Exact solution produces
exact values of quality/leniency, which can also be used
for ranking, while Ranked solution produces only the
rankings by quality/leniency.

5 Experiments

The objective of experiments is to verify the effective-
ness of the proposed model. The dataset used is a



real-life dataset obtained from the product review site
Epinions (www.epinions.com). We analyze the qual-
ity rankings to see how Naive and Differential (Ex-
act and Ranked solutions) differ from one another. We
also showcase how the results of Differential are more
intuitive than Naive’s by showing a specific example.
As there are no pre-determined quality and leniency,
a model’s “effectiveness” can only be judged based on
intuition as illustrated in the early examples.

As the focus of experiments is on the effectiveness of
the proposed model, we will not examine computational
complexity further. For the data sizes used in these ex-
periments, computations are generally very fast, involv-
ing a small number of iterations spanning seconds.

On this dataset, we apply Naive and Differential
models. For Differential, we derive both Exact and
Ranked solutions, setting α = 0.5. For this α setting,
both Exact and Ranked solutions exist. Hence, the three
comparative solutions are Naive, Exact, and Ranked.

5.1 Epinions Dataset The Epinions dataset was ac-
quired by crawling pages from the site for two days
(Nov. 28–29, 2005), starting from a seed page1. The
crawled pages represented a subset of products (ob-
jects), reviewers, and scores available from Epinions.
Reviewers gave scores on the scale of 1 to 5 stars. These
scores were rescaled to the range from 0.2 to 1 by di-
vision by 5 (e.g., 1 star is 0.2). We pruned the data
such that each object had at least 3 reviewers and each
reviewer evaluated at least 3 objects. This removed
the occasional reviewers/objects and gave greater sup-
port when inferring the “behavior” of reviewers/objects.
Epinions assigned each product a category. We retained
only the videos category, which was among the most
popular categories and was still of significant size after
pruning. The final dataset has 172 reviewers, 165 ob-
jects, and 1157 scores. This dataset has relatively few
reviewers evaluating each object (3 to 14 reviewers, with
an average of 7 reviewers), which makes it suitable for
the problem being considered (see Section 1).

5.1.1 Rank Comparison The objects and reviewers
are ranked in descending order of quality and leniency
respectively. Same values share the same rank. For
example, if the three highest values are the same, they
share rank 1, and the next highest is of rank 4. Here,
we study how differently our model is from Naive at
ranking by quality. We also look at whether Exact or
Ranked solutions make a difference for this dataset.

1http://www.epinions.com/member/community lists.html/

show ∼6/display list ∼true/vert ∼3321654/year ∼1900/

sec ∼community member list/pp ∼1/pa ∼1
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Figure 3: Quality Rank Scatterplot (Exact vs. Ranked)
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Figure 4: Quality Rank Scatterplot (Exact vs. Naive)

Exact vs. Ranked For this experiment, the Exact
and Ranked solutions produce very similar rankings.
Figure 3 shows a scatterplot of quality ranks. Each
point on the scatterplot represents an object. Values on
the x-axis are ranks given by Exact and values on the
y-axis are ranks given by Ranked. If most objects are
given very similar ranks, the points would line up along
the diagonal, as in this figure. As leniency is mutually
dependent on quality, it follows that the rankings by
leniency would also be similar. Due to the similarity
between Exact and Ranked here, we subsequently use
only the Exact solution to compare against Naive.

Exact vs. Naive Next, we look at how Exact
and Naive rank objects differently. Figure 4 gives the
scatterplot of quality ranks for Exact vs. Naive. From
this figure, we make these observations:

• There are significant variances around the diagonal,
which means Exact and Naive give quite different
ranks to several objects. For instance, there are
29 (17.6%) objects sharing rank 1 by Naive, which



object Quality (Rank)
Naive Exact

mu1016864 0.97 (35) 1.09 (1)

reviewers eij Leniency (Rank)
Exact

cripper 1.0 -0.05 (97)
edmaidel 1.0 -0.88 (170)
george chabot 1.0 -0.19 (137)
icariusrex 1.0 -0.05 (95)
janesbit1 1.0 -0.11 (115)
matthewn 1.0 -0.10 (110)
munkus 1.0 -0.04 (94)
ninput 0.8 -0.61 (167)

Table 3: Profile of Object mu1016864

are given ranks ranging from 2 to 64 by Exact.
This shows that our model can differentiate the
quality of objects which are highly competitive,
e.g., selecting the best papers at conferences or
selecting the top proposals for funding.

• There are greater rank differences at higher ranks
than at lower ranks. For this dataset, there is a
lower density of objects at the lower end of the
quality spectrum, which makes it harder for a low
quality object to displace a higher- or lower-ranked
object even after adjustment for leniency.

5.1.2 Case Example The previous comparison has
focused on the overall difference in rankings. Here, with
the help of a specific example, we showcase how our
model is more intuitive than Naive.

Table 3 shows the profile of the object mu1016864.
It shows the quality (and rank) given by Naive and Ex-
act. To understand how the object is ranked, the table
lists the object’s reviewers, the scores they give (eij),
and for Exact also their leniency (and ranks). We claim
that intuitively the higher quality rank given by Exact
(rank 1) is more justified than the rank given by Naive
(rank 35). Exact shows that all the reviewers are neg-
atively lenient. Particularly, edmaidel (rank 170) and
ninput (rank 167) are among the least lenient (out of
172 reviewers). Naive does not take leniency into ac-
count, while Exact does. Exact adjusts these negatively
lenient reviewers’ scores upwards, which leads to the
higher quality (and rank) given to this object.

To summarize, these experiments have shown that
our model produces results that are different from and
more intuitive than Naive.

6 Conclusion

In this paper, we propose the Differential Model to ad-
dress the score summarization problem, for the scenario

where each object is evaluated by relatively few review-
ers. The main idea is to model the leniency of reviewers
to compensate for the under- or over-estimation of qual-
ity by reviewers. Through experiments with a real-life
dataset, we verify that this model is indeed more effec-
tive than the averaging approach (Naive).

Several avenues exist for future work. Since there
are no pre-determined quality and leniency, the “perfor-
mance” measurement in this paper mostly rely on intu-
ition. Conducting a user evaluation of the results might
further verify the effectiveness of the proposed model.
The problem addressed here also touches aspects be-
yond the scope of computer science. For instance, it
would be interesting to verify if the compensation mode
adopted in this paper is consistent with the psychology
of reviewers as studied in the social sciences.
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