Multivariate probability distributions
Outline of Topics

1. Background
2. Discrete bivariate distribution
3. Continuous bivariate distribution
Multivariate analysis

- When one measurement is made on each observation in a dataset, **univariate** analysis is used, *e.g.*, survival time of patients.

- If more than one measurement is made on each observation, a **multivariate** analysis is used, *e.g.*, survival time, age, cancer subtype, size of cancer, *etc.*

- We focus on **bivariate** analysis, where exactly two measurements are made on each observation.

- The two measurements will be called X and Y. Since X and Y are obtained for each observation, the data for one observation is the pair (X, Y).
Bivariate data can be represented as:

<table>
<thead>
<tr>
<th>Observation</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X_1</td>
<td>Y_1</td>
</tr>
<tr>
<td>2</td>
<td>X_2</td>
<td>Y_2</td>
</tr>
<tr>
<td>3</td>
<td>X_3</td>
<td>Y_3</td>
</tr>
<tr>
<td>4</td>
<td>X_4</td>
<td>Y_4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>X_n</td>
<td>Y_n</td>
</tr>
</tbody>
</table>

Each observation is a pair of values, e.g., (X_4, Y_4) is the 4-th observation.

X and Y can be both discrete, both continuous, or one discrete and one continuous. We focus on the first two cases.

Some examples:
- X (survived > 1 year) and Y (cancer subtype) of each patient in a sample
- X (length of job training) and Y (time to find a job) for each unemployed individual in a job training program
- X (income) and Y (happiness) for each individual in a survey
Bivariate distributions

- We can study X and Y separately, i.e., we can analyse X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n separately using probability distribution function, probability density function or cumulative distribution function. These are examples of univariate analyses. When X and Y are studied separately, their distribution and probability are called **marginal**.

- When X and Y are considered together, many interesting questions can be answered, e.g.,
 - Is subtype I cancer (X) associated with a higher chance of survival beyond 1 year (Y)?
 - Does longer job training (X) result in shorter time to find a job (Y)?
 - Do people with higher income (X) lead a happier life (Y)?

- The joint behavior of X and Y is summarized in a **bivariate probability distribution**. A bivariate distribution is an example of a **joint distribution**.
Review of a discrete distribution: Drawing a marble from an urn

Probability distribution tells us the long run frequency for \(\bullet \) is higher than \(\circ \).
Discrete bivariate distribution - Drawing 2 marbles with replacement

- **Draw 1 (X)**
 - 1
 - 2
 - 3
 - 4
 - 5

- **Draw 2 (Y)**
 - 1
 - 2
 - 3

Probabilities:

\[
P(X = \bullet \text{ and } Y = \bullet) = P(\bullet, \bullet) = \left(\frac{3}{5}\right) \left(\frac{3}{5}\right) = \frac{9}{25}
\]

\[
P(X = \bullet \text{ and } Y = \bullet) = P(\bullet, \bullet) = \left(\frac{2}{5}\right) \left(\frac{3}{5}\right) = \frac{6}{25}
\]

\[
P(\bullet, \bullet) + P(\bullet, \bullet) + P(\bullet, \bullet) + P(\bullet, \bullet) = \frac{9}{25} + \frac{6}{25} + \frac{6}{25} + \frac{4}{25} = 1
\]
Discrete bivariate distribution - Drawing 2 marbles without replacement

\[
P(X = \text{blue} \text{ and } Y = \text{green}) = P(\text{blue}, \text{blue}) = \left(\frac{2}{4}\right) \left(\frac{3}{5}\right) = \frac{6}{20}
\]
\[
P(X = \text{green} \text{ and } Y = \text{blue}) = P(\text{green}, \text{blue}) = \left(\frac{3}{4}\right) \left(\frac{2}{5}\right) = \frac{6}{20}
\]
\[
P(\text{blue}, \text{blue}) + P(\text{green}, \text{blue}) + P(\text{blue}, \text{green}) + P(\text{green}, \text{green}) = \frac{6}{20} + \frac{6}{20} + \frac{6}{20} + \frac{2}{20} = 1
\]
A **discrete bivariate distribution** is used to model the joint behavior of two variables, \(X \) and \(Y \), both of which are discrete.

\(X \) and \(Y \) are **discrete random variables** if there is a countable number of possible values for \(X \): \(a_1, a_2, ..., a_k \) and for \(Y \): \(b_1, b_2, ..., b_l \).

\((X, Y)\) is the unknown outcome if we randomly draw an observation from the population.

\(P(X = a_i, Y = b_j) \) is the **joint probability distribution function** of observing \(X = a_i, Y = b_j \).

A valid joint probability distribution function must satisfy the following rules:

- \(P(X = a_i, Y = b_j) \) must be between 0 and 1

- We are certain that one of the values will appear, therefore:
 \[P[(X = a_1, Y = b_1) \text{ or } (X = a_2, Y = b_1) \text{ or } ... \text{ or } (X = a_k, Y = b_l)] = P(X = a_1, Y = b_1) + P(X = a_2, Y = b_1) + ... + P(X = a_k, Y = b_l) = 1 \]
Discrete joint distribution: Example 1

\[P(X = a, Y = b) = \frac{a+b}{48}, \text{ if } a, b = 0, 1, 2, 3 \]

\[\begin{array}{cccc|c}
X & 0 & 1 & 2 & 3 & P(X = a) \\
\hline
0 & \frac{6}{48} & \frac{10}{48} & \frac{14}{48} & \frac{18}{48} & 1 \\
1 & \frac{1}{48} & \frac{2}{48} & \frac{3}{48} & \frac{4}{48} & \frac{10}{48} \\
2 & \frac{2}{48} & \frac{3}{48} & \frac{4}{48} & \frac{5}{48} & \frac{14}{48} \\
3 & \frac{3}{48} & \frac{4}{48} & \frac{5}{48} & \frac{6}{48} & \frac{18}{48} \\
\hline
Y & 0 & 1 & 2 & 3 & P(Y = b) \\
\hline
0 & \frac{48}{48} & \frac{48}{48} & \frac{48}{48} & \frac{48}{48} & 1 \\
1 & \frac{1}{48} & \frac{2}{48} & \frac{3}{48} & \frac{4}{48} & \frac{10}{48} \\
2 & \frac{2}{48} & \frac{3}{48} & \frac{4}{48} & \frac{5}{48} & \frac{14}{48} \\
3 & \frac{3}{48} & \frac{4}{48} & \frac{5}{48} & \frac{6}{48} & \frac{18}{48} \\
\end{array} \]

- \(P(X = a, Y = b) \) are the **joint probabilities**
- \(P(X = a) \), \(P(Y = b) \) are called **marginal probabilities**. \(P(X = a) \) gives us information about \(X \) ignoring \(Y \) and \(P(Y = b) \) gives us information about \(Y \) ignoring \(X \)
- We can always find marginal probabilities from joint probabilities (as in Example 1) but not the other way around unless \(X \) and \(Y \) are independent (see next slide)
Discrete joint distribution - Independence

- X and Y are **independent** if, for all $X = a, Y = b$:

\[P(X = a | Y = b) = P(X = a) \]

\[\iff P(Y = b | X = a) = P(Y = b) \]

\[\iff P(X = a, Y = b) = P(X = a)P(Y = b) \]

- $P(Y = b | X = a)$ and $P(X = a | Y = b)$ are **conditional probabilities**

- If X and Y are independent, then we can easily

 (a) calculate $P(X = a, Y = b)$ by $P(X = a)P(Y = b)$

 (b) write $P(X = a | Y = b)$ as $P(X = a)$

 (c) write $P(Y = b | X = a)$ as $P(Y = b)$
Try,

\[
P(Y = 1|X = 3) = \frac{P(Y = 1, X = 3)}{P(X = 3)} = \frac{4/48}{18/48} = \frac{4}{18} \neq P(Y = 1) = \frac{10}{48}.
\]

Alternatively, try

\[
P(X = 3, Y = 1) = \frac{4}{48} \neq P(X = 3)P(Y = 1) = \frac{18}{48} \times \frac{10}{48}
\]

Either way is sufficient to show \(X\) and \(Y\) are not independent. Furthermore, we can try any combination of \(X = a, Y = b\) to disprove independence.
Discrete joint distribution: Example 2

\[P(X = a, Y = b) = \frac{ab}{18}, \text{ if } a = 1, 2, 3; b = 1, 2 \]

\[
\begin{array}{c|cc}
\mathbf{X} & 1 & 2 \\
\hline
1 & \frac{1}{18} & \frac{2}{18} \\
2 & \frac{2}{18} & \frac{4}{18} \\
3 & \frac{3}{18} & \frac{6}{18} \\
\hline
P(Y = b) & \frac{6}{18} & \frac{12}{18} & 1
\end{array}
\]

\[P(X = a) = \frac{3}{18}, \frac{6}{18}, \frac{9}{18} \]

\[P(Y = b) = \frac{3}{18} + \frac{6}{18} \]

\[P(X = 1, Y = 1) = \frac{1}{18} = P(X = 1)P(Y = 1) = \frac{3}{18} \times \frac{6}{18} = \frac{18}{18^2} = \frac{1}{18} \]

\[\vdots \]

\[P(X = 3, Y = 2) = \frac{6}{18} = P(X = 3)P(Y = 2) = \frac{9}{18} \times \frac{12}{18} = \frac{108}{18^2} = \frac{6}{18} \]

To show independence, we must show \(P(X = a, Y = b) = P(X = a)P(Y = b) \) for all combinations of \(X = a, Y = b \)
Probability under a univariate probability density function (PDF)

- \(P(X \leq 1) \) can be found by integration:

\[
P(X \leq 1) = \int_{0}^{1} f(x) \, dx
\]

\[
= \int_{0}^{1} 1.5 e^{-1.5x} \, dx
\]

\[
= \left[-e^{-1.5x} \right]_{0}^{1}
\]

\[
= 1 - e^{-1.5}
\]

\[
\approx 0.776
\]

- It turns out, for any \(x > 0 \),

\[
P(X \leq x) = 1 - e^{-1.5x}
\]

- we often write \(P(X \leq x) \) as \(F(x) \) and call \(F(x) \) the cumulative distribution function (CDF)

- \(F(1) \) is a probability but \(f(1) \) (a point on \(f(x) \)) is not a probability
The univariate cumulative distribution function (CDF)

- $F(x)$ can be used to find $P(X \leq x)$ for any x, e.g., $F(1) = P(X \leq 1)$

- A plot of $F(x)$ is a convenient way for finding probabilities.

- Probability is found by drawing a line (-----) from the horizontal axis until it meets the CDF and then drawing a horizontal line until it meets the vertical axis.

- All CDF plots have an asymptote at 1 (-----): $F(x) \leq 1$ because it is a probability.
A **continuous bivariate distribution** is used to model the joint behavior of two variables, X and Y, both of which are continuous.

X and Y are **continuous random variables** if the possible values of X fall in a range $(a, b) \subseteq (-\infty, \infty)$ and those for Y are in a range $(c, d) \subseteq (-\infty, \infty)$.

The bivariate distribution of (X, Y) is defined by a **joint** PDF, $f(x, y)$, with the characteristics:

- $f(x, y) \geq 0$ if $(x, y) \in (a, b) \times (c, d)$, $f(x, y) = 0$ otherwise
- $f(x, y) \neq P(X = x, Y = y) = 0$ for all values of x, y
- $P(a \leq X \leq b, c \leq Y \leq d) = 1$ since X must be in (a, b) and Y must be in (c, d)
- $F(x, y) = P(X \leq x, Y \leq y)$ is the joint CDF
The joint CDF

Probabilities are often found by manipulating the joint CDF $F(x, y)$, obtained using *double integration* on the joint PDF $f(x, y)$:

$$F(x, y) = P(X \leq x, Y \leq y) = \int_{y \leq y} \int_{x \leq x} f(x, y) \, dx \, dy = \int_{x \leq x} \int_{y \leq y} f(x, y) \, dy \, dx.$$

Example 1 $f(x, y) = e^{-y-x}, \ x, y > 0$.

The red shaded figure is

$$F(a, b) = \int_{Y \leq b} \int_{X \leq a} e^{-y-x} \, dx \, dy$$

$$= \int_{0}^{b} e^{-y} \left[\int_{0}^{a} e^{-x} \, dx \right] \, dy$$

$$= \int_{0}^{b} e^{-y} \left[-e^{-x} \right]_{0}^{a} \, dy$$

$$= \int_{0}^{b} e^{-y} \left[1 - e^{-a} \right] \, dy$$

$$= [1 - e^{-a}] \int_{0}^{b} e^{-y} \, dy$$

$$= [1 - e^{-a}] \left[-e^{-y} \right]_{0}^{b}$$

$$\Rightarrow F(x, y) = [1 - e^{-x}][1 - e^{-y}], \ x, y > 0$$

Suppose we wish to find $P(X \leq 2, Y \leq 1)$:

$$P(X \leq 2, Y \leq 1) \equiv F(2, 1) = [1 - e^{-2}][1 - e^{-1}] \approx 0.547$$
Example 2 \(f(x, y) = 2, \ 0 < x < y, 0 < y < 1 \)

\[
F(a, b) = \int_{y \leq b} \int_{x \leq a} 2 \, dx \, dy
\]

\[
= \int_0^a \left[\int_x^b 2 \, dy \right] \, dx
\]

\[
= \int_0^a [2y]_x^b \, dx
\]

\[
= \int_0^a 2(b - x) \, dx
\]

\[
= [2bx - x^2]_0^a
\]

\[
= 2ba - a^2
\]

\(\Rightarrow F(x, y) = 2yx - x^2, \ 0 < x < y, 0 < y < 1 \)

Suppose we wish to find \(P(X \leq \frac{1}{2}, Y \leq \frac{3}{4}) : \)

\[
P \left(X \leq \frac{1}{2}, Y \leq \frac{3}{4} \right) \equiv F \left(\frac{1}{2}, \frac{3}{4} \right)
\]

\[
= 2 \left(\frac{3}{4} \right) \left(\frac{1}{2} \right) - \left(\frac{1}{2} \right)^2 = \frac{1}{2}
\]
Marginal PDF and CDF

- As in the discrete case (cf. slide 10), the marginal PDFs \(f(x) \) and \(f(y) \) for \(X \) and \(Y \) can be obtained from the joint PDF \(f(x, y) \)

- To find marginal probabilities of \(X \) and \(Y \), we need the marginal CDFs \(F(x) \) and \(F(y) \)

- Two ways to obtain marginal CDFs
 1. \(F(x) \) can be obtained from \(f(x) \); similarly for \(F(y) \) (cf. slide 15)
 2. Using joint CDF \(F(x, y) \):

\[
F(x) = F(x, \infty), \quad F(y) = F(\infty, y)
\]

Reason:

\[
F(x) \equiv P(X \leq x) \\
= P(X \leq x, \text{ don't care about } Y) \\
= P(X \leq x, \forall Y) \\
= P(X \leq x, Y \leq \infty) \equiv F(x, \infty)
\]

Same reasoning for \(F(y) = F(\infty, y) \)
Marginal CDF: Example 2

Given: $f(x, y) = 2, \quad F(x, y) = 2yx - x^2, \quad 0 < x < y, \quad 0 < y < 1$

1. $f(x)$

\[
f(x) = \int_{-\infty}^{\infty} f(x, y) \, dy \\
= \int_{0}^{1} 2 \, dy \\
= 2(1 - x), \quad 0 < x < 1
\]

\[
F(x) = \int_{0}^{x} 2(1 - x) \, dx \\
= 2x - x^2, \quad 0 < x < 1
\]

2. $F(x)$

\[
F(x) = F(x, \infty) \\
= F(x, 1), \quad \text{since } y < 1 \\
= 2(1)x - x^2 \\
= 2x - x^2, \quad 0 < x < 1
\]
Conditional probabilities

\[P(X \leq x|Y \leq y) = \frac{P(X \leq x, Y \leq y)}{P(Y \leq y)} = \frac{F(x, y)}{F(y)} \]

\[P(Y \leq y|X \leq x) = \frac{P(X \leq x, Y \leq y)}{P(X \leq x)} = \frac{F(x, y)}{F(x)} \]

Example 2: \(F(x, y) = 2yx - x^2, \quad F(y) = y^2, \quad 0 < x < y, \quad 0 < y < 1 \)

\[P(Y \leq 0.8) \]

\[P(X \leq x|Y \leq y) = \frac{2yx - x^2}{y^2} \]

\[P(X \leq 0.4|Y \leq 0.8) = \frac{2(0.8)(0.4) - (0.4)^2}{0.8^2} = 0.75 \]
Conditional probabilities (2)

\[P(X \leq x | Y = y) = \int_{x \leq x} f(x|y) \, dx = \int_{x \leq x} \frac{f(x, y)}{f(y)} \, dx \]

\(f(x|y) \) is called a **conditional density**. \(P(X \leq x | Y = y) \) refers to the probability of the event “\(X \leq x \)”, given the information “\(Y = y \)” and hence it is defined despite \(P(Y = y) = 0 \). We can similarly define \(P(Y \leq y | X = x) \).

Example 2 \(f(x, y) = 2, \ f(y) = 2y, \ 0 < x < y, \ 0 < y < 1 \)

\[f(x, Y = 0.8) \]

\[f(x, Y = 0.8) \]

\[P(X \leq 0.4 | Y = 0.8) \]

\[P(X \leq 0.4 | Y = 0.8) = \frac{0.4}{0.8} = 0.5 \]

\[P(X \leq a | Y = y) = \int_{x \leq a} \frac{2}{2y} \, dx \]

\[= \int_{0}^{a} \frac{1}{y} \, dx \]

\[= \left[\frac{x}{y} \right]_{0}^{a} \]

\[= \frac{x}{y} \]

\[= \frac{0.4}{0.8} = 0.5 \]
Independence

A and B are independent if and only if

\[
P(A \text{ and } B) = P(A)P(B)
\]

Analogously, if *X* and *Y* are independent, we can simplify \(P(X \leq x, Y \leq y)\) as \(P(X \leq x)P(Y \leq y)\). Two ways of proving independence

Method 1

\[
P(X \leq x, Y \leq y) = P(X \leq x)P(Y \leq y)
\]

\[
\iff
\]

\[
F(x, y) = F(x)F(y)
\]

\[
\iff
\]

\[
f(x, y) = f(x)f(y)
\]

Method 2 Method 1 requires us to know the marginal PDFs and CDFs. A simpler way to establish independence is to show that \(f(x, y)\) can be factorized as

\[
f(x, y) = g(x)h(y)
\]

for *any* positive functions \(g, h\)
Example 1

\[f(x, y) = e^{-y-x}, \quad F(x, y) = [1 - e^{-x}][1 - e^{-y}], \quad x, y > 0 \]

Method 1

\[f(x, y) = e^{-x-y} = \frac{e^{-x}}{f(x)} \cdot \frac{e^{-y}}{f(y)}; \quad F(x, y) = \left[1 - e^{-x}\right]\left[1 - e^{-y}\right] \]

where \(f(x), x > 0, f(y), y > 0 \) and \(F(x), x > 0, F(y), y > 0 \) are the marginal PDFs and CDFs.

Method 2

\(f(x, y) \) can also be factorized as \(f(x, y) = g(x)h(y) \), where

\[
\begin{align*}
 g(x) &= 2e^{-x}, \quad 0 < x < 1 \\
 h(y) &= \frac{1}{2}e^{-y}, \quad 0 < y < 1
\end{align*}
\]

Using either method, we show \(X \) and \(Y \) are independent.
Example 2

\(f(x, y) = 2, \quad F(x, y) = 2yx - x^2, \quad 0 < x < y, \quad 0 < y < 1 \)

Method 1 Let \(I \) be the indicator function such that \(I(A) = 1 \) if \(A \) is true, and 0 otherwise, then

\[
 f(x, y) = 2I(0 < x < y < 1) \neq f(x)f(y) = [2(1 - x)][2y].
\]

Similarly,

\[
 F(x, y) = [2yx - x^2]I(0 < x < y < 1) \neq F(x)F(y) = [2x - x^2][y^2].
\]

Method 2 \(I(0 < x < y < 1) \) cannot be factorized into two functions \(g(x) \) and \(h(y) \)

Using either method, \(X \) and \(Y \) are not independent