Data 000000000 andomness and Probability

Probability axioms and rules

Data, Randomness and Probability

September 11, 2022

Class 1 Slide 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Probability axioms and rules

Instructor and TA's (by appointments only)

Denis HY LEUNG SOE 5047

denisleung@smu.edu.sg office hours: Tuesday 2 - 5pm

TA's SOE/SCIS2 GSR 3-16

Bhavika <u>Agrawal</u> (G1) bhavikaa.2021@economics.smu.edu.sg Thursday 3:30 - 6:30pm

<u>Lim</u> Fang Qi (G2) fangqi.lim.2021@economics.smu.edu.sg Thursday 12 - 3pm

Bharat <u>Gangwani</u> (G3) bharatg.2020@economics.smu.edu.sg Wednesday 4 - 7pm

Introduction to STAT1203 ○●○○○	Data 00000000	Randomness and Probability	Probability axioms and rules

- Course webpage: http://economics.smu.edu.sg/faculty/ profile/9699/Denis%20LEUNG (NOT eLearn!)
- Understanding of basic Calculus and Algebra Appendix in course notes
- Readings *before* each class
- Projects vs Homework
- If you missed a class, it is **your** responsibility to find out what you have missed from your classmates or course webpage
- Do not copy down/memorise formulae blindly. Discard as many formulae as possible as you progress

Projects

- (1) There will be 2 group projects
- (2) For project administration (submission of reports, *etc.*), each class is assigned a TA, shown previously. However, any TA may be approached for general consultation
- (3) You will work with the same group of fellow students on both projects
- (4) Those who wish to be in the same group should submit ONE email with their names to the TA before the end of Week 4
- (5) Each group submits a schedule of their project meetings (online or in person) to the TA by Week 7
- (6) A group member may miss 1 meeting for each project. If any group member misses more than 1 meeting, his/her project grade as well as class participation grade will be pro-rated by # meetings attended/total # meetings
- (7) Anyone not contactable by email/phone/etc after 3 attempts from their group members will be considered to have agreed on dates/times of meetings; subsequent absence of such individual from meetings follow the same grading guidelines as (6)
- (8) Project reports must be type written in google doc with time stamp indicating each group member's contribution
- (9) Each group receives one grade, notwithstanding (6)-(8) above. I reserve the right to ask any individual(s) to submit separate report(s)

Introduction to STAT1203 ○○○●○	Data 00000000	Randomness and Probability	Probability axioms and rules
Assessments			

- Class Participation (10%)
- Projects (40%)
 - 2 projects with presentation 20% each
 - Each project's grade includes 8% individual assessment (quizzes)
- Exam (50%)
 - Closed book but one 2-sided A-4 "cheat sheet" is allowed

Class 1 Slide 6

Data ______

Data (Women's wage data)

University of Michigan Panel Study of Income Dynamics on 753 white married women in the US (1975-76):

Woman	Workforce status (1=Yes, 0=No)	Hrs worked	#kids < 6 yrs	Age	Education (yrs)	Hourly wage rate	Husband's wage rate	Experience (yrs)
1	1	1610	1	32	12	3.3540	4.0288	14
2	1	1656	0	30	12	1.3889	8.4416	5
2	1		0					
3	1	1980	1	35	12	4.5455	3.5807	15
4	1	456	0	34	12	1.0965	3.5417	6
5	1	1568	1	31	14	4.5918	10.0000	7
6	1	2032	0	54	12	4.7421	6.7106	33
7	1	1440	0	37	16	8.3333	3.4277	11
8	1	1020	0	54	12	7.8431	2.5485	35
:	·	:	:			:	:	:
				•	•	•		•
750	0	0	2	31	12	0.0000	4.8638	14
751	0	0	0	43	12	0.0000	1.0898	4
752	0	0	0	60	12	0.0000	12.4400	15
753	0	0	0	39	9	0.0000	6.0897	12

Sample vs. Population

(a) Data are a **sample** (subset) from a **population** that we want to study

e.g., 753 women (sample) out of all white married women in 1975-1976 (population)

(b) We are interested in some characteristics of the population

e.g., average wage or percentage of women who earned more than minimum wage in the population

- (c) We use a sample to answer questions about the population
- (d) Data = Sample

Data 000000000

Data structure and terminologies

- Sample size n: number of units (observations) in the sample
- Variables characteristics of the units
 - e.g., Workforce status, hrs worked, age, wage rate, etc.
 - Often represented by symbols, X, Y, Z, etc.
 - Quantitative: numeric eg., Age, wage rate, hrs worked
 - **Qualitative (Categorical)**: Not quantitative (no natural ordering) *eg.*, Gender, colour, race
 - **Discrete**: countable number of values *eg.*, Gender, # kids, # days
 - **Continuous**: uncountably many in a range (*a*, *b*) *eg.*, Wage rate, age (real, not rounded), temperature
- A sample is *n* observations, $X_1, ..., X_n$, of X

Summarising qualitative (categorical) or quantitative data with a few values

Variable	Levels	n	%
in workforce	0	325	43.2
	1	428	56.8
	all	753	100.0
# kids < 6	0	606	80.5
	1	118	15.7
	2	26	3.4
	3	3	0.4
	all	753	100.0
education	5	4	0.5
	6	6	0.8
	7	8	1.1
	8	30	4.0
	9	25	3.3
	10	44	5.8
	11	43	5.7
	12	381	50.6
	13	44	5.8
	14	51	6.8
	15	14	1.9
	16	57	7.6
	17	46	6.1
	all	753	100.0

frequency distribution

- tells us <u>everything</u> about a categorical variable
- gives # observations within each category/level
- Most easily displayed using a table
- Proportions or percentage in each category or level, *eg.*,

$$\begin{array}{rcl} \frac{325}{753} &=& \frac{325}{753} \times 100 \text{ percent} \\ &\approx& 43.2 \text{ percent} \end{array}$$

Class 1 Slide 10

Introduction to STAT1203

Data 000000000 andomness and Probability

Probability axioms and rules

Summarising quantitative data (continuous or discrete with many values

- Histogram is a useful graphical summary for quantitative data
- Groups observations into bins
- Bin width defines grouping
- Height (area) of bin proportional to group size
- Most women earned < \$2 an hour; few earned > \$10

Summarising quantitative data – average

Numerical summaries

 Sample mean, median – measure "typical" or "average" value of the data

eg.,
$$X_1, ..., X_{10} = 1, 1, 4, 2, 5, 2, 2, 3, 3, 4$$

(a) Sample mean

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i = \frac{1 + 1 + 4 + \dots + 3 + 4}{10} = 2.7$$

(b) Sample median - "middle" observation when data are ranked from lowest to highest. If n = odd, sample median= middle value. If n = even, sample median = the average of the two middle values 1,1,2,2, 2,3,3,4,4,5

$$\frac{2+3}{2} = 2.5$$

Summarising quantitative data – average (2)

Add an observation $X_1, ..., X_{11} = 1, 1, 4, 2, 5, 2, 2, 3, 3, 4, 50$

(a) Sample mean

$$\bar{X} = \frac{1+1+4+\ldots+3+4+50}{11} = 7.7$$

(b) Sample median = 3

1,1,2,2,2, 3 ,3,4,4,5,50

(c) Mean is sensitive to the change but median is not

Mean uses 1,1,4,2,5,2,2,3,3,4,50

- Median uses 3
- Mean uses information from every observation
- Mean not representative of the average when there are extremes
- Mean better represents the average when there are no extremes

Introduction to STAT1203

Data 0000000

Summarising quantitative data – spread

- Spread describes how the value of a variable changes over n observations
- Sample range, variance (s^2) , interquartile range (IQR)

eg.
$$X_1, ..., X_{10} = 1, 1, 4, 2, 5, 2, 2, 3, 3, 4$$

- (a) Sample range = largest smallest = 5 1 = 4
- (b) Sample variance = average "distance" between observations and $ar{X}$

$$s^{2} = \frac{\sum (X_{i} - \bar{X})^{2}}{n - 1^{a}} = \frac{(1 - 2.7)^{2} + ... + (4 - 2.7)^{2}}{10 - 1} \approx 1.79$$

Taking square root gives standard deviation (s)

(c)
$$IQR = upper quartile (75-th percentile) - bottom 25\% (25-th percentile) 1,1, 22,2,2,3,3, 4,4,5 $IQR = \frac{3+4}{2} - \frac{1+2}{2} = 3.5 - 1.5 = 2$$$

^a Alternatively use n

(日)

	Data ○○○○○○○○		
Summarising quanti		spread (2)	
Range uses	1	5	
s ² and s use	1,1,4,2,5,2,2	2,3,3,4	
IQR uses	1,2	3,4	

- $s^2(s)$ uses information from every observation
- Range uses only the extreme observations
- $s^2(s)$ and range not representative of the spread when there are extremes
- s² (s) is better than range to represent the spread when there are no extremes since s² (s) uses more information
- When there are extremes, IQR is the best because it ignores the extremes

		Randomness and Probability ●○○○	
	and $0 =$ "not red		
	1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0	$1 0 0 1 0 1 0 1 0 1 1 1 1 1 \\1 1 1 1 0 1 1 0 0 1 1 1 0 \\0 1 1 1 1$	
• Outcome n	0 1 40 60		
	me patients recov to predict – ran e	ered and others not? patt dom	ern of 1 and
Probability	helps explain ran	domness	

Definition of probability - Tossing a fair coin

A fair coin has a $\frac{1}{2}$ "probability" of observing heads, what does it mean?

Randomness and Probability

The long run proportion (frequency) of heads is the probability of heads

- Probability is the long run frequency of an outcome
- Probability cannot predict individual outcomes
- However, it can be used to predict long run trends
- Probability always lies between 0 and 1, with a value closer to 1 meaning a higher frequency of occurrence
- Probability is numeric in value so we can use it to:
 - compare the relative chance between different outcomes (events)
 - carry out calculations

Randomnes	
0000	

Proportion and probability

• Toss of fair coin: H, T, H, T, T, H, T, H, T

Outcome	Н	Т
Sample Proportion	4/9	5/9
Probability	1/2	1/2

Treatment outcome

Outcome	0	1
Sample Proportion	40/100	60/100
Probability	P(0)	P(1)

• Probabilities are *population* proportions

 Introduction to STAT1203
 Data
 Randomness and Probability
 Probability axioms and rules

 Probability Axioms - Urn model (1)- drawing marbles from an urn

Introduction to STAT1203	Data 000000000	Randomness and Probability	Probability axioms and rules ○●○○○○○○○○○○○○○
Urn model (2)			

- Five possible **Outcomes**: **1 2 3 4 5**
- Interested in **Event** A:
- A={ **1 4 5**}; hence an event is a collection of outcomes

•
$$P(A) = \frac{3}{5} = 0.6(60\%) = \frac{\text{Number of marbles in } A}{\text{Total number of marbles}}$$

		Probability axioms and rules
Complementary eve		

- Marbles in urn: 1 2 3 4 5
- Interested in \overline{A} : (Not A)
- Ā={ **2 3**}
- \bar{A} , sometimes written as A^C , is called the **complementary** event of A
- Chance of $\bigcirc = 1 \text{chance of } \bigcirc$

$$\Rightarrow \mathrm{P}(\bar{A}) = 1 - \mathrm{P}(A) = 1 - \frac{3}{5} = \frac{2}{5}$$

- Joint probability and disjoint events
 - A **joint probability** between two events *A* and *B* is one of the following:

 $P(A \text{ and } B) \quad P(A \cap B) \quad P(AB)$

 The simplest form of joint probability between A and B is when they are **disjoint** (also called **mutually exclusive**).
 Disjoint events cannot occur simultaneously: P(A and B)=0

Example

 $A = \{ \bigcirc \text{ in 1st draw} \}$ $B = \{ \bigcirc \text{ in 1st draw} \}$

$$P(A \text{ and } B) = 0$$

Introduction to STAT1203	Data 000000000	Randomness and Probability	Probability axioms and rules
Partition rule			

• For any *A*, a partition is any collection of disjoint subsets of *A* that together make up *A*, *eg*.,

If $A = \{a \| white women\}$, a partition of A is $A_1 = \{a \| white women with wage < 3\}$ and $A_2 = \{a \| white women with wage \ge 3\}$

• For any A, P(A) can be written as the sum of the probabilities of its disjoint subsets, *eg.*,

$$P(\bigcirc) = P(\bigcirc \text{ and odd}) + P(\bigcirc \text{ and even})$$

= P({1 5}) + P({4})
= $\frac{2}{5} + \frac{1}{5}$
= $\frac{3}{5}$

Conditional probability

Conditional probability is a useful quantification of how the assessment of chance changed due to new information: "If A happened, what is the chance of B?"

The conditional probability of "B given A" is written as P(B|A)

Example Drawing marbles WITHOUT replacement

Joint probability and the multiplication rule

• The most general way of calculating joint probability is the **Multiplication Rule**

$$P(AB) = P(B|A)P(A) = P(A|B)P(B)$$

Example Marbles in urn: 1 2 3 4 5 $P(\bigcirc \text{ and even}) = P(\text{even}|\bigcirc)P(\bigcirc) = \left(\frac{1}{3}\right)\left(\frac{3}{5}\right) = \frac{1}{5}$ $= P(\bigcirc|\text{even})P(\text{even}) = \left(\frac{1}{2}\right)\left(\frac{2}{5}\right) = \frac{1}{5}$

• Rearranging the multiplication rule:

$$P(A|B) = \frac{P(AB)}{P(B)}$$
 and $P(B|A) = \frac{P(AB)}{P(A)}$

Introduction to STAT1203	Data 00000000	Randomness and Probability	Probability axioms and rules

- A and B are **independent** means they don't offer information about one another
- If A and B are independent, conditional probability becomes unconditional:

(i) P(A|B) = P(A) "B says nothing about A"

(ii) P(B|A) = P(B) "A says nothing about B"

 Independence is NOT the same as mutually exclusive (disjoint), which is P(A and B) = 0. In fact when A and B are disjoint, they are very dependent Introduction to STAT1203 00000

Data

Randomness and Probability

Probability axioms and rules

Joint probability of independence events

When A and B are independent, using the multiplication rule and, (i) or (ii) from previous slide:

(iii) $P(AB) = \overbrace{P(A|B)}^{=P(A)} P(B) = P(A)P(B)$

We can use (i), (ii) or (iii) for any two independent events A and B

Example Drawing marbles WITH replacement

Data 00000000 Randomness and Probability

Probability axioms and rules

Union of events (1)

Union of events can sometimes be best visualized using a **Venn diagram** (John Venn, 1834-1923) Example What is the probability of drawing a or an odd number ?

Introduction to STAT1203	Data 000000000	Randomness and Probability	Probability axioms and rules

P(or odd) = P() + P(Odd) - P(and odd)
=
$$\frac{2}{5} + \frac{3}{5} - \frac{1}{5}$$

= $\frac{4}{5}$

In general, if A and B are:

- disjoint, then P(A or B) = P(A) + P(B)
- not disjoint, then P(A or B) = P(A) + P(B) P(AB)

Probability tree

Probability tree is useful for studying combinations of events. Branches of a tree are *conditional* probabilities.

Introduction to STAT1203

Data

Randomness and Probability

Probability axioms and rules

Bayes Theorem (Thomas Bayes, 1701-1761)

Trees are useful for visualizing P(B|A) when B follows from A in a natural (time) order. Many problems require P(A|B), **Bayes Theorem** provides an answer.

Example

Testing for an infectious disease.

What is P(D|T) or $P(\overline{D}|\overline{T})$?

Class 1 Slide 32

		Probability axioms and rules
Baves Theorem (2)		

$$P(D|T) = \frac{P(D \cap T)}{P(T)} = \frac{P(T|D)P(D)}{P(T)}$$

$$= \frac{P(T|D)P(D)}{P(T \cap D) + P(T \cap \overline{D})}$$
Partition rule
$$= \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|\overline{D})P(\overline{D})}$$
Multiplication rule
$$= \frac{\frac{9}{10} \cdot \frac{1}{100}}{\frac{9}{10} \cdot \frac{1}{100} + \frac{1}{10} \cdot \frac{99}{100}} = \frac{9}{108}$$
In general,
$$P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Class 1 Slide 33

Introduction to STAT1203	Data 00000000	Randomness and Probability	Probability axioms and rules
	Test	$T P(D \cap T) = \frac{1}{100} \cdot \frac{9}{10} = P(T D)$ \overline{T}	$\frac{9}{10} = \frac{9}{1000}$

