
David Lo, FACM, FIEEE

Engineering Safer AI Systems:
From Communication to Control to Code

RAIE 2025, Ottawa, Canada, April 2025
1

Self-Introduction

X

X

14,805 km

 2

Self-Introduction

 3

Self-Introduction

 5

Singapore Management University

 Third university in Singapore
 Number of students:
 8000+ (UG)
 1800+ (PG)

 Schools:
 Business
 Computing
 Economics
 Accountancy
 Law
 Social Science

 6

Center for Research on Intelligent Software Engineering (RISE)
Elsevier JSS’21, Bibliometric Study

CSRankings, SE, Feb 2025

 7

Experience in SE4AI

ISSRE’12
Early work on SE for AI system reliability

Won Test of Time Award at ISSRE’22

 8

Experience in SE4AI

23 TensorFlow CVEs
(5% of TensorFlow CVEs,

as of Dec 2024)

 9

Experience in SE4AI

• The Science of Certified AI Systems

• Trust to Train and Train to Trust: Agent Training
Programs for Safety-Critical Environments

• Uncovering Vulnerabilities in Machine Learning Frameworks
via Software Composition Analysis and Directed Grammar-
Based Fuzzing

• Testing and Verification of Artificial Intelligence Systems

• Operationalising “Responsible Artificial Intelligence”
(RAI) in Public Administration

 10

“If you want to go far, go together” – African Proverb

 11

David Lo, FACM, FIEEE

Engineering Safer AI Systems:
From Communication to Control to Code

RAIE 2025, Ottawa, Canada, April 2025
 12

Why Safer AI Systems Matter — Now More Than Ever

• AI is now:
- interpreting what we say (communication)

 13

Why Safer AI Systems Matter — Now More Than Ever

• AI is now:
- interpreting what we say (communication)
- deciding how systems act (control)

“..Industry 4.0 has the potential to create a massive
amount of value, generating up to $3.7 trillion by
2025…”

-- Microsoft Intelligent Industry Whitepaper
 14

Why Safer AI Systems Matter — Now More Than Ever

• AI is now:
- interpreting what we say (communication)
- deciding how systems act (control)
- generating what software does (code)

 15

Why Safer AI Systems Matter — Now More Than Ever

“With great power comes great responsibility”
- Voltaire

 16

AI Safety Requires More Than Just AI Research

 17

Software
Engineering

AI Cybersecurity

How Can SE Research Help Make AI Safer?

Testing & Analysis — to uncover safety
violations

Healing & Mitigation — to correct or
reduce issues dynamically, without retraining

 18

Communication Control Code
 19

Communication Control Code
 20

Bias in Communication: Testing & Healing Sentiment Models

IC
SM

E2
1

FS
E2

1
TS

E2
1

 21

Bias in Communication: Testing & Healing Sentiment Models

IC
SM

E2
1

FS
E2

1
TS

E2
1

 22

Emotion Understanding in Communicative AI
• Sentiment analysis is more than classification

- It underpins how AI systems interpret emotional tone, user
satisfaction, and intent

• Key consideration of many communicative AI systems
- Chat engines, virtual assistants, content moderators, recommender

systems, etc.

Human message → “I’m not sure this was helpful.”
 ↓
Sentiment interpretation → Negative tone
 ↓
Affects response generation → “Sorry to hear that! Let me clarify…”

 23

When AI has Biased Perception

“219 NLP systems ... 75% of the systems
tend to mark sentences involving one

gender/race with higher intensity scores ...”

*SEM@NAACL-HLT 2018
(580+ citations)

Equity Evaluation Corpus (EEC)

 24

BiasFinder: Metamorphic Testing for Fairness

How to generate test inputs from any given texts?

EEC uses fixed templates:

 25

BiasFinder: High-Level Architecture

Two inputs (xi, xj) that differ only in
protected features (gender, country of

origin, occupation, etc) should have the
same outputs f(xi) = f(xj)

Fairness Assertions

Bias Uncovering Test Cases (BTCs)

Pairs of inputs xi, xj that violates Fairness Assertion

 31

Experiment Results: Gender Bias

Finding 1: BiasFinder can find many more Bias-uncovering Test
Cases (BTCs) than prior methods: EEC, MT-NLP (AAAI’20)

 40

Experiment Results: Other Biases

Finding 2: BiasFinder can find other types of biases not
uncovered by prior methods: EEC, MT-NLP (AAAI’20)

 41

Experiment Results: Fluency

Finding 3: BiasFinder can generate more fluent mutants than
MT-NLP (AAAI’20)

Max fluency score: 3.

 42

Bias in Communication: Testing & Healing Sentiment Models

IC
SM

E2
1

FS
E2

1
TS

E2
1

 43

Bias in Communication: Testing & Healing Sentiment Models

IC
SM

E2
1

FS
E2

1
TS

E2
1

 44

Monitor Distributional Fairness at Runtime

Ratio of female mutants
predicted as positive

Ratio of male mutants
predicted as positive

Threshold,
tolerance for bias

Distributional Fairness

 45

BiasRV: On-the-fly Detection of Bias

Features: Require no access to model (support third-party services), work
on-the-fly, efficient (through semantic-aware sampling strategy)

 46

BiasRV + BiasHeal: On-the-fly Detection & Healing of Bias

• Strategy 1. Majority voting
• Strategy 2. Minority voting
• Strategy 3. Average confidence

score (ACS) of all mutants
• Strategy 4. ACS of bottom 50%

male mutants
• Strategy 5. ACS of top 50%

female mutants
• Strategy 6. ACS of mutants in

interquartile range

Features: Require no access to model (support third-party services), work
on-the-fly, efficient (through semantic-aware sampling strategy)

 47

How About ChatGPT and More Recent LLMs?
IC

ST
24

 48

How About ChatGPT and More Recent LLMs?

ASR: Attack Succes Rate

 49

Communication Control Code

Metamorphic testing can help
address ethical concerns

in communicative AI

 51

Communication Control Code
 52

Safety in Control Systems: Testing & Healing RL Controllers

TO
SE

M
25

 56

Safety in Control Systems: Testing & Healing RL Controllers

TO
SE

M
25

 57

Falsification: Uncovering Safety Issues
• With many complex systems, full verification is often impractical
• Falsification flips the mindset:

- "Can we find even one case where the system fails to meet its safety
guarantees?“

• Typical steps:
- Generate test cases (inputs or initial conditions)
- Run the AI controller
- Check if it violates a formal safety specification

• If we find a violation, we’ve falsified the safety claim — and
revealed a critical risk

 58

What are We Falsifying for AI (Reinforcement Learning) Controls?

• Self-driving cars:
- Always stay within lane
- Never exceed speed X
- Avoid obstacles
- …

• Robotic arms:
- Avoid collisions with nearby

workers or tools
- Respect joint speed and torque

limits
- …

 59

What Makes Falsification Harder for AI (RL) Controllers?

Scalability: AI controllers can be 4–50× slower vs. classical ones
 Fewer test cases explored in fixed time → Missed violations

Diversity: When testing a complex safety spec (e.g., 𝜑𝜑₁ ∧ 𝜑𝜑₂ ∧ 𝜑𝜑₃),
search tends to focus on the easiest subspec

 Other subspecs remain untested

Falsifiers must be both efficient and comprehensive

 60

How Does Our Approach (Synthify) Address the Challenges?

Synthify constructs proxy programs
• Lightweight approximations of AI (RL) controllers
• Execute more test cases within the same time

Synthify employs subspec-switching
• Breaks a spec to subspecs
• Dynamically changes subspec as falsification target

- Employ random explore-exploit strategy
• Identify violations across subspecs

Scalability

Diversity

 61

Synthify’s Overall Workflow

Control System

AI Controller
Control System

Proxy Program
Synthesis

Safety
Specification

Sub-Specification

Explore-Exploit
Subspec Switching

Falsification Check

Refinement

Spurious
Violation

Real
Violation

 62

Results: Effectiveness & Efficiency in Uncovering Violations

Efficacy

• Experiments on 8 AI control systems, e.g., Segway transporters, drones, and
autonomous driving cars, etc.

• Comparison with a strong falsification tool: award-winning PSY-TaLiRo

Synthify reveals 7.8× more
safety violations than PSY-

TaLiRo (330.2 vs. 42.2)

Subspecification Coverage

Synthify falsify 137.7%
more subspecifications than

PSY-TaLiRo

Efficiency

Synthify can find a violation
12.8× faster than PSY-TaLiRo

Proxy Program Quality
MAE of 0.19 (small). 0.042

spurious violations (used in proxy
program refinement) per

falsification trial.

 66

Safety in Control Systems: Testing & Healing RL Controllers

TO
SE

M
25

 67

Safety in Control Systems: Testing & Healing RL Controllers

TO
SE

M
25

 68

How a Programmatic Runtime Shield Works

Hardware
Components

AI ControllerPhysical
Environment Environment States

Physical Operations

Safe Command

Command

Control System

def programmatic_runtime_shield(command, states):
 if command is potentially unsafe:

 safe_command = correct(command, states)
 return safe_command
else:
 return command

1
2
3
4
5
6

• monitor & detect commands that may violate safety properties in real time
(green line 2)

• replace unsafe commands with safe alternatives, enforcing safety
properties are always maintained (red lines 3-4)

 69

How to Get Guaranteed Safe Commands?

• Approximate complex RL policy with a simple linear policy (simple program)
• Simple linear policy can be input to verification tools

- However, may not produce optimal commands
• Dynamically switch between RL output and linear policy output

- Minimize switching to only when interventions are needed

 70

Proposed Approach: Aegis

Synthesize a Safe Linear Policy (green line)1

2 Synthesize a Switching Strategy (red lines)

def programmatic_runtime_shield(c, x1, x2, ... , xn):
 κ = θ1 x1 + θ2 x2 + ... + θn xn
 if abs(c − κ) > λ:
 return κ

else:
 return c

Physical
Environment

Environment
Dynamics

Numerical Differentiation

Program Sketch

Linear-Quadratic Regulator Initialized
Policy

Counterexample-Guided
Inductive Synthesis

Bayesian Optimization λ

θn

Forming Programmatic Shield

 74

Synthesize a Safe Linear Policy

Synthesize coefficients of
the linear policy and

guarantee it can output
safe commands

Step 1A: Inferring Environment (State-Transition) Dynamics
• The environment’s behavior is often complex and unknown (black box)
• Intuition:

- We poke the environment with small perturbations and observe how it reacts
- From that, we build a simple linear approximation of its behavior

1

 75

Step 1B: Counterexample-guided Inductive Synthesis

Synthesize coefficients of
the linear policy and

guarantee it can output
safe commands

• Propose candidate coefficients
• Simulate the shielded system using the approximated environment model (1A)
• Collect counterexamples where safety is violated
• Refine the linear policy to eliminate those violations

Synthesize a Safe Linear Policy1

 76

Synthesize switching
strategy in a form of
linear inequality with
optimized threshold

• 𝜆𝜆 is learned to minimize unnecessary interventions

objective function of our Bayesian optimization

− V: the number of violations
− V∗: the number of necessary interventions
− I: the total number of interventions

Synthesize a Switching Strategy2

 77

Experiment Results

Safety Mitigation

• Experiments on AI control systems, e.g., Segway transporters, drones, and
self-driving cars, etc.

• Comparison with SOTA: VRL (PLDI’19, Distinguished Paper)

Aegis corrects all (100%)
unsafe commands, letting

systems operate without any
violations

Interventions

Aegis made 1.6× less
interventions than VRL

Overhead

Aegis incurs 5.0% time and
0.61MB memory overhead, a

2.1X and 4.4X improvement
over VRL

Scalability
Aegis requires 65s for

synthesizing a shield for a neural
policy, which reduces 77.3% of
the time cost compared to VRL

 78

Control Code

Program synthesis and verification
can help address safety issues in

AI-enabled control systems

Control
 79

Communication Control Code
 80

Safety of Code Recommenders: Analysis & Mitigation

IS
ST

A2
4

TS
E2

4

 81

Safety of Code Recommenders: Analysis & Mitigation

IS
ST

A2
4

TS
E2

4

 83

Backdoor (aka. Poisoning) Attack of Code Models

Model
Developer

Backdoored model

train

Tr
ai

ni
ng

Attacker Poisoned code Github

commit promote collect

Poisoned datasetPo
is

on
in

g

with trigger

Backdoored modelAttacker

no trigger

D
ep

lo
ym

en
t

 84

Existing Works on Backdoor Attacks for Code Models
FS

E
20

22
IC

PR
20

22

 85

Existing Triggers are not Stealthy

“adding the same piece of
dead code to any given

program x.”

“add pieces of dead code drawn
randomly from some

probabilistic grammar.”

(a) Fixed triggers distribution (b) Grammar triggers distribution

Over 99% of poisoned examples
can be detected automatically!

 86

Does It Mean There is No Real Problem?

(a) Fixed triggers distribution (b) Grammar triggers distribution

Over 99% of poisoned examples
can be detected automatically!

RQ: Could backdoors be stealthily introduced
to LLM4SE solutions via data poisoning?

 87

AFRAIDOOR: Creating Stealthy Backdoor

 Stealthy Strategy 1: Variable Renaming as Triggers

(1) Do not introduce dead code, which is unnatural;
(2) Variable locations in different programs are diverse.

Stealthy!

def save_session(self, s, data):
 return
self.session_interface.save_session(
 self, s, data)

(a) An example of variable renaming

def domain_to_fqdn(addr, event=None):
 from .generic import get_site_proto

event = event or get_site_proto()
loadtxt ='{proto}://{domain}'.format(

 proto=event, domain=addr)
 return loadtxt

(b) An example of variable renaming

 88

AFRAIDOOR: Creating Stealthy Backdoor

• Stealthy Strategy 1: Variable Renaming as Triggers
• Stealthy Strategy 2: Generate Adversarial Variable Names

 (using a simple crafting model, with no knowledge
 of victim model)

Adversarial variables are closer to
the original ones! Stealthy!

t-SNE visualization (red dots are poisoned data)

fixed grammar ours

 89

Results Analysis: Automated Detection

• Four state-of-the-art defenses: (1) spectral signature, (2) activation
clustering, (3) ONION, (4) outlier variable detection

1.16

94.47 94.96

Spectral Signature
Ours Fixed Grammar

13.22

41.58

21.33

Activation Clustering
Our Fixed Grammar

Finding 1: Our poisoned examples are much harder to be automatically
detected

Detection
success rate

 90

Results Analysis: Human Review

Finding 2: Our poisoned examples are much
harder to be manually detected

 91

Results Analysis: Human Review

Finding 3: Participants take longer time to label
examples generated by our methods

 92

Motivate Research on Defense Method

FSE25

 93

Safety of Code Recommenders: Analysis & Mitigation

IS
ST

A2
4

TS
E2

4

 94

Safety of Code Recommenders: Analysis & Mitigation

IS
ST

A2
4

TS
E2

4

 95

LLM4SE Can Generate Vulnerabilities

Fig 3. Example of GitHub Copilot generated code which contains CWE-89.

 96

Double Objectives: Security+ Correctness

How to make models generate
secure code …

while minimizing impact to
correctness?

 97

Solution: Separation of Concerns

Correctness-Optimized Model
Trained on as much code

as possible

Security-Optimized Model
Trained on limited
vetted secure code

How to make models generate
secure code …

while minimizing impact to
correctness?

 98

Step 1: Building Security-Optimized Model

Functions after
Vulnerability Fixes

Parameter-Efficient
Fine-Tuning

Code
LLM

Security-Optimized Model

 99

Step 2: Perform Supervised Co-Decoding

Prompt:

Security-Optimized Model
(Parameters: Millions)

<s> from flask … safe

from flask …

directory

safe directory file_path

Correctness-Optimized Model
(Parameters: Billions)

<s> from flask … safe

from flask …

directory

safe directory file_path

Accept ?

Next token:
“file_path”

Yes

 100

Experiment Results

Security: CoSec improves the average security ratio of six
code LLMs by 5.02-21.26%

Correctness: Average functional correctness improvement
fluctuates between -8.5% and +97.9%

 102

Control Code

Domain knowledge of code
can uncover threats in AI code

recommenders and inform defenses

Code
 104

Road Ahead

C(ommmunication): Metamorphic
testing for culture/locality-aware

ethical issues detection and mitigation
in multi-turn dialogue system

Open Research Challenges
Testing & Healing for AI Safety in 3Cs

C(ontrol): Program synthesis and
verification for safety assurance of

collaborating (competing) multi-agent
control systems

 105

Road Ahead

C(ode): Safety in SE 2.0
(beyond code recommenders)

C(ode): Expanding definition of safety,
e.g., safety of the planet (sustainability)

Open Research Challenges
Testing & Healing for 3Cs Safety

 106

Road Ahead

Specification modelling languages

Safety architectures & frameworks

Traceability

Requirement Engineering
…

for safer AI for humanity

How SE Can Help
Beyond Testing and Healing

 107

Road Ahead

Agentic AI

Heterogeneous Systems of Systems
(with AI components)

…

Beyond AI Models

 108

 110

 111

 112

Acknowledgements

OUB Chair
Professorship Fund

3rd International
Workshop on

Responsible AI
Engineering
(RAIE 2025)

 113

Thank you!

Questions? Comments? Advice?
davidlo@smu.edu.sg

 114

	Slide Number 1
	Self-Introduction
	Self-Introduction
	Self-Introduction
	Singapore Management University
	Center for Research on Intelligent Software Engineering (RISE)
	Experience in SE4AI
	Experience in SE4AI
	Experience in SE4AI
	“If you want to go far, go together” – African Proverb
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Emotion Understanding in Communicative AI
	Slide Number 24
	BiasFinder: Metamorphic Testing for Fairness
	Slide Number 31
	Experiment Results: Gender Bias
	Experiment Results: Other Biases
	Experiment Results: Fluency
	Slide Number 43
	Slide Number 44
	Monitor Distributional Fairness at Runtime
	BiasRV: On-the-fly Detection of Bias
	BiasRV + BiasHeal: On-the-fly Detection & Healing of Bias
	How About ChatGPT and More Recent LLMs?
	How About ChatGPT and More Recent LLMs?
	Metamorphic testing can help �address ethical concerns �in communicative AI
	Slide Number 52
	Slide Number 56
	Slide Number 57
	Falsification: Uncovering Safety Issues
	What are We Falsifying for AI (Reinforcement Learning) Controls?
	What Makes Falsification Harder for AI (RL) Controllers?
	How Does Our Approach (Synthify) Address the Challenges?
	Synthify’s Overall Workflow
	Results: Effectiveness & Efficiency in Uncovering Violations
	Slide Number 67
	Slide Number 68
	How a Programmatic Runtime Shield Works
	How to Get Guaranteed Safe Commands?
	Proposed Approach: Aegis
	Synthesize a Safe Linear Policy
	Synthesize a Safe Linear Policy
	Synthesize a Switching Strategy
	Experiment Results
	Program synthesis and verification can help address safety issues in AI-enabled control systems
	Slide Number 80
	Slide Number 81
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 102
	Domain knowledge of code �can uncover threats in AI code recommenders and inform defenses
	Road Ahead
	Road Ahead
	Road Ahead
	Road Ahead
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Acknowledgements
	Thank you!
	Slide Number 115
	Slide Number 116

