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Singapore Management University

 Third university in Singapore
 Number of students:
 8000+ (UG)
 1800+ (PG)

 Schools:
 Business
 Computing
 Economics
 Accountancy
 Law
 Social Science
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Center for Research on Intelligent Software Engineering (RISE)
Elsevier JSS’21, Bibliometric Study

CSRankings, SE, Feb 2025
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Experience in SE4AI

ISSRE’12
Early work on SE for AI system reliability

Won Test of Time Award at ISSRE’22

                        8



Experience in SE4AI

23 TensorFlow CVEs
(5% of TensorFlow CVEs, 

as of Dec 2024)
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Experience in SE4AI

• The Science of Certified AI Systems

• Trust to Train and Train to Trust: Agent Training 
Programs for Safety-Critical Environments

• Uncovering Vulnerabilities in Machine Learning Frameworks 
via Software Composition Analysis and Directed Grammar-
Based Fuzzing

• Testing and Verification of Artificial Intelligence Systems

• Operationalising “Responsible Artificial Intelligence” 
(RAI) in Public Administration
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“If you want to go far, go together” – African Proverb 
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Why Safer AI Systems Matter — Now More Than Ever

• AI is now:
-  interpreting what we say (communication)
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Why Safer AI Systems Matter — Now More Than Ever

• AI is now:
-  interpreting what we say (communication)
-  deciding how systems act (control)

“..Industry 4.0 has the potential to create a massive 
amount of value, generating up to $3.7 trillion by 
2025…”

-- Microsoft Intelligent Industry Whitepaper
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Why Safer AI Systems Matter — Now More Than Ever

• AI is now:
- interpreting what we say (communication)
- deciding how systems act (control)
- generating what software does (code)
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Why Safer AI Systems Matter — Now More Than Ever

“With great power comes great responsibility”
- Voltaire
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AI Safety Requires More Than Just AI Research
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How Can SE Research Help Make AI Safer?

Testing & Analysis — to uncover safety 
violations

Healing & Mitigation — to correct or 
reduce issues dynamically, without retraining
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Communication Control Code
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Communication Control Code
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Bias in Communication: Testing & Healing Sentiment Models
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Emotion Understanding in Communicative AI
• Sentiment analysis is more than classification

- It underpins how AI systems interpret emotional tone, user 
satisfaction, and intent

• Key consideration of many communicative AI systems
- Chat engines, virtual assistants, content moderators, recommender 

systems, etc.

Human message → “I’m not sure this was helpful.”
     ↓
Sentiment interpretation → Negative tone
     ↓
Affects response generation → “Sorry to hear that! Let me clarify…”
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When AI has Biased Perception

“219 NLP systems ... 75% of the systems 
tend to mark sentences involving one 

gender/race with higher intensity scores ...”

*SEM@NAACL-HLT 2018
(580+ citations)

Equity Evaluation Corpus (EEC)
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BiasFinder: Metamorphic Testing for Fairness

How to generate test inputs from any given texts?

EEC uses fixed templates:
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BiasFinder: High-Level Architecture

Two inputs (xi, xj) that differ only in 
protected features (gender, country of 

origin, occupation, etc) should have the 
same outputs f(xi) = f(xj)

Fairness Assertions

Bias Uncovering Test Cases (BTCs)

Pairs of inputs xi, xj that violates Fairness Assertion
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Experiment Results: Gender Bias

Finding 1: BiasFinder can find many more Bias-uncovering Test 
Cases (BTCs) than prior methods: EEC, MT-NLP (AAAI’20)
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Experiment Results: Other Biases

Finding 2: BiasFinder can find other types of biases not 
uncovered by prior methods: EEC, MT-NLP (AAAI’20)
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Experiment Results: Fluency

Finding 3: BiasFinder can generate more fluent mutants than 
MT-NLP (AAAI’20)

Max fluency score: 3.
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Bias in Communication: Testing & Healing Sentiment Models
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Bias in Communication: Testing & Healing Sentiment Models
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Monitor Distributional Fairness at Runtime

Ratio of female mutants 
predicted as positive

Ratio of male mutants 
predicted as positive

Threshold, 
tolerance for bias

Distributional Fairness

                        45



BiasRV: On-the-fly Detection of Bias

Features: Require no access to model (support third-party services), work 
on-the-fly, efficient (through semantic-aware sampling strategy)

                        46



BiasRV + BiasHeal: On-the-fly Detection & Healing of Bias

• Strategy 1. Majority voting
• Strategy 2. Minority voting
• Strategy 3. Average confidence 

score (ACS) of all mutants
• Strategy 4. ACS of bottom 50% 

male mutants
• Strategy 5. ACS of top 50% 

female mutants
• Strategy 6. ACS of mutants in 

interquartile range

Features: Require no access to model (support third-party services), work 
on-the-fly, efficient (through semantic-aware sampling strategy)
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How About ChatGPT and More Recent LLMs?
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How About ChatGPT and More Recent LLMs?

ASR: Attack Succes Rate
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Communication Control Code

Metamorphic testing can help 
address ethical concerns 

in communicative AI
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Communication Control Code
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Safety in Control Systems: Testing & Healing RL Controllers
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Falsification: Uncovering Safety Issues
• With many complex systems, full verification is often impractical
• Falsification flips the mindset:

- "Can we find even one case where the system fails to meet its safety 
guarantees?“

• Typical steps:
- Generate test cases (inputs or initial conditions)
- Run the AI controller
- Check if it violates a formal safety specification

•  If we find a violation, we’ve falsified the safety claim — and 
revealed a critical risk
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What are We Falsifying for AI (Reinforcement Learning) Controls?

• Self-driving cars:
- Always stay within lane
- Never exceed speed X
- Avoid obstacles
- …

• Robotic arms:
- Avoid collisions with nearby 

workers or tools
- Respect joint speed and torque 

limits
- …
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What Makes Falsification Harder for AI (RL) Controllers?

Scalability: AI controllers can be 4–50× slower vs. classical ones
 Fewer test cases explored in fixed time → Missed violations

 
Diversity: When testing a complex safety spec (e.g., 𝜑𝜑₁ ∧ 𝜑𝜑₂ ∧ 𝜑𝜑₃), 
search tends to focus on the easiest subspec

 Other subspecs remain untested

Falsifiers must be both efficient and comprehensive
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How Does Our Approach (Synthify) Address the Challenges?

Synthify constructs proxy programs
• Lightweight approximations of AI (RL) controllers
• Execute more test cases within the same time

Synthify employs subspec-switching
• Breaks a spec to subspecs
• Dynamically changes subspec as falsification target 

- Employ random explore-exploit strategy
• Identify violations across subspecs

Scalability

Diversity
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Synthify’s Overall Workflow

Control System

AI Controller
Control System

Proxy Program
Synthesis

Safety
Specification

Sub-Specification

Explore-Exploit
Subspec Switching 

Falsification Check

Refinement 

Spurious
Violation

Real
Violation
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Results: Effectiveness & Efficiency in Uncovering Violations

Efficacy

• Experiments on 8 AI control systems, e.g., Segway transporters, drones, and 
autonomous driving cars, etc.

• Comparison with a strong falsification tool: award-winning PSY-TaLiRo

Synthify reveals 7.8× more 
safety violations than PSY-

TaLiRo (330.2 vs. 42.2)

Subspecification Coverage

Synthify falsify 137.7% 
more subspecifications than 

PSY-TaLiRo 

Efficiency

Synthify can find a violation 
12.8× faster than PSY-TaLiRo

Proxy Program Quality
MAE of 0.19 (small). 0.042 

spurious violations (used in proxy 
program refinement) per 

falsification trial.
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Safety in Control Systems: Testing & Healing RL Controllers
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How a Programmatic Runtime Shield Works

Hardware
Components

AI ControllerPhysical 
Environment Environment States

Physical Operations

Safe Command

Command 

Control System

def programmatic_runtime_shield(command, states):
 if command is potentially unsafe:

 safe_command = correct(command, states)
 return safe_command
else:
 return command

1
2
3
4
5
6

• monitor & detect commands that may violate safety properties in real time 
(green line 2)

• replace unsafe commands with safe alternatives, enforcing safety 
properties are always maintained (red lines 3-4)
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How to Get Guaranteed Safe Commands?

•  Approximate complex RL policy with a simple linear policy (simple program) 
•  Simple linear policy can be input to verification tools

- However, may not produce optimal commands
•  Dynamically switch between RL output and linear policy output

- Minimize switching to only when interventions are needed

                        70



Proposed Approach: Aegis

Synthesize a Safe Linear Policy (green line)1

2 Synthesize a Switching Strategy (red lines)

def programmatic_runtime_shield(c, x1, x2, ... , xn):
 κ = θ1 x1 + θ2 x2 + ... + θn xn 
 if  abs(c − κ) > λ:
  return κ

else:
 return c

Physical 
Environment

Environment 
Dynamics

Numerical Differentiation

Program Sketch

Linear-Quadratic Regulator Initialized
Policy

Counterexample-Guided 
Inductive Synthesis

Bayesian Optimization λ

θn

Forming Programmatic Shield
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Synthesize a Safe Linear Policy

Synthesize coefficients of 
the linear policy and 

guarantee it can output 
safe commands

Step 1A: Inferring Environment (State-Transition) Dynamics
• The environment’s behavior is often complex and unknown (black box)
• Intuition: 

- We poke the environment with small perturbations and observe how it reacts 
- From that, we build a simple linear approximation of its behavior

1
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Step 1B: Counterexample-guided Inductive Synthesis

Synthesize coefficients of 
the linear policy and 

guarantee it can output 
safe commands

• Propose candidate coefficients
• Simulate the shielded system using the approximated environment model (1A)
• Collect counterexamples where safety is violated
• Refine the linear policy to eliminate those violations

Synthesize a Safe Linear Policy1
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Synthesize switching 
strategy in a form of 
linear inequality with 
optimized threshold 

• 𝜆𝜆 is learned to minimize unnecessary interventions

objective function of our Bayesian optimization

− V: the number of violations
− V∗: the number of necessary interventions
− I: the total number of interventions 

Synthesize a Switching Strategy2
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Experiment Results

Safety Mitigation

• Experiments on AI control systems, e.g., Segway transporters, drones, and 
self-driving cars, etc.

• Comparison with SOTA: VRL (PLDI’19, Distinguished Paper)

Aegis corrects all (100%) 
unsafe commands, letting 

systems operate without any 
violations

# Interventions

Aegis made 1.6× less 
interventions than VRL

Overhead

Aegis incurs 5.0% time and 
0.61MB memory overhead, a 

2.1X and 4.4X improvement 
over VRL

Scalability
Aegis requires 65s for 

synthesizing a shield for a neural 
policy, which reduces 77.3% of 
the time cost compared to VRL
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Control Code

Program synthesis and verification 
can help address safety issues in 

AI-enabled control systems

Control
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Communication Control Code
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Safety of Code Recommenders: Analysis & Mitigation
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Backdoor (aka. Poisoning) Attack of Code Models
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Existing Works on Backdoor Attacks for Code Models
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Existing Triggers are not Stealthy

“adding the same piece of 
dead code to any given 

program x.”

“add pieces of dead code drawn
randomly from some 

probabilistic grammar.”

(a) Fixed triggers distribution (b) Grammar triggers distribution

Over 99% of poisoned examples 
can be detected automatically!
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Does It Mean There is No Real Problem?

(a) Fixed triggers distribution (b) Grammar triggers distribution

Over 99% of poisoned examples 
can be detected automatically!

RQ: Could backdoors be stealthily introduced 
to LLM4SE solutions via data poisoning?
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AFRAIDOOR: Creating Stealthy Backdoor

 Stealthy Strategy 1: Variable Renaming as Triggers

(1) Do not introduce dead code, which is unnatural; 
(2) Variable locations in different programs are diverse. 

Stealthy!

def save_session(self, s, data):
   return 
self.session_interface.save_session(
          self, s, data)

(a) An example of variable renaming

def domain_to_fqdn(addr, event=None):
   from .generic import get_site_proto

event = event or get_site_proto()
loadtxt ='{proto}://{domain}'.format(

          proto=event, domain=addr)
   return loadtxt

(b) An example of variable renaming
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AFRAIDOOR: Creating Stealthy Backdoor

• Stealthy Strategy 1: Variable Renaming as Triggers
• Stealthy Strategy 2: Generate Adversarial Variable Names 

                           (using a simple crafting model, with no knowledge 
                               of victim model)

Adversarial variables are closer to 
the original ones! Stealthy!

t-SNE visualization (red dots are poisoned data)

fixed grammar ours
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Results Analysis: Automated Detection

• Four state-of-the-art defenses: (1) spectral signature, (2) activation 
clustering, (3) ONION, (4) outlier variable detection

1.16

94.47 94.96

Spectral Signature
Ours Fixed Grammar

13.22

41.58

21.33

Activation Clustering
Our Fixed Grammar

Finding 1: Our poisoned examples are much harder to be automatically 
detected

Detection 
success rate
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Results Analysis: Human Review

Finding 2: Our poisoned examples are much 
harder to be manually detected
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Results Analysis: Human Review

Finding 3: Participants take longer time to label 
examples generated by our methods
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Motivate Research on Defense Method

FSE25
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Safety of Code Recommenders: Analysis & Mitigation
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Safety of Code Recommenders: Analysis & Mitigation
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LLM4SE Can Generate Vulnerabilities

Fig 3. Example of GitHub Copilot generated code which contains CWE-89.
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Double Objectives: Security+ Correctness

How to make models generate 
secure code …

while minimizing impact to 
correctness?
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Solution: Separation of Concerns

Correctness-Optimized Model
Trained on as much code 

as possible

Security-Optimized Model
Trained on limited 
vetted secure code

How to make models generate 
secure code …

while minimizing impact to 
correctness?
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Step 1: Building Security-Optimized Model

Functions after 
Vulnerability Fixes

Parameter-Efficient 
Fine-Tuning

Code
LLM

Security-Optimized Model
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Step 2: Perform Supervised Co-Decoding

Prompt:

Security-Optimized Model
(Parameters: Millions)

<s> from flask … safe

from flask …

directory

safe directory file_path

Correctness-Optimized Model
(Parameters: Billions)

<s> from flask … safe

from flask …

directory

safe directory file_path

Accept ?

Next token:
“file_path”

Yes
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Experiment Results

Security: CoSec improves the average security ratio of six 
code LLMs by 5.02-21.26%

Correctness: Average functional correctness improvement 
fluctuates between -8.5% and +97.9%
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Control Code

Domain knowledge of code 
can uncover threats in AI code 

recommenders and inform defenses

Code
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Road Ahead

C(ommmunication): Metamorphic 
testing for culture/locality-aware 

ethical issues detection and mitigation 
in multi-turn dialogue system

Open Research Challenges 
Testing & Healing for AI Safety in 3Cs

C(ontrol): Program synthesis and 
verification for safety assurance of 

collaborating (competing) multi-agent 
control systems
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Road Ahead

C(ode): Safety in SE 2.0 
(beyond code recommenders) 

C(ode): Expanding definition of safety, 
e.g., safety of the planet (sustainability)

Open Research Challenges 
Testing & Healing for 3Cs Safety
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Road Ahead

Specification modelling languages

Safety architectures & frameworks

Traceability 

Requirement Engineering 
…

for safer AI for humanity

How SE Can Help 
Beyond Testing and Healing
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Road Ahead

Agentic AI

Heterogeneous Systems of Systems 
(with AI components)

…

Beyond AI Models
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Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg
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