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Thank You Very Much!
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Personal Journey: Programming Language (PL)

POPL’02

My PhD Advisor:
Siau-Cheng Khoo
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Personal Journey: PL to Software Engineering (SE)

IEEE Computer’09

FSE’06

KDD’07
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From SE to Mining Software Repositories (MSR)

Execution
Traces

Dev. 
NetworkGit

Mailing
ListBugzillaCode

Insight! Automation!
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Contributions to MSR
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Contributions to MSR
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Contributions to MSR
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SE for Trustworthy AI (SE4TAI)

Six Sessions on SE4AIFew studies on
Trustworthy AI (TAI) 
in the SE Community

Can MSR Shed Light to Trustworthy AI?

A Decade Ago Now

3rd International 
Workshop on 

Responsible AI 
Engineering 
(RAIE 2025)
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MSR for Trustworthy AI (MSR4TAI)

ISSRE’12
First work employing MSR to gain insight into ML bugs

                        12



MSR for Trustworthy AI (MSR4TAI)

ISSRE’22 Most Influential Paper Award
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Post-Mortem Bug Analysis for Machine Learning Systems

Bug Frequency 
& Density

Bug Type

Association

Bug 
Severity

Bug 
Impact

Bug-Fix 
Duration

Bug-Fix 
Effort

14



 Collect bug reports and fixes of popular open-source ML systems

 Analyze the reports and fixes (200, 200, and 100 from Mahout, Lucene, and OpenNLP):
 Manual categorization 
 Statistics computation

Empirical Study Process

Library Size
(LOC)

Bug 
Count

Active
Dev.

175,295 314 4.28 years

554,036 1,533 10.59 years

78,224 113 1.39 years
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Algorithm/Method The implementation of an algorithm/method does not follow the expected 
behavior.

Assignment/Init. Error in assigning variable values.
Checking Missing necessary checks that lead to an error or a wrong error message.

Data Wrong use of data structure.
External Interface Error in interfacing with other systems or users, such as using deprecated 

methods from other systems, requiring updates to own external interfaces 
for ease of usage, etc.

Internal Interface Error in interfacing with another component of the same system, such as 
violating the contract of inheritance, wrong use of operations from other 
classes, etc.

Seaman et al. 
ESEM 2008

Chillarege et al. 
TSE 1992

Category Definition

Empirical Study Process
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Logic Incorrect expressions in conditional statements (e.g., if, while, etc.)

Non-functional Violations in non-functional requirements such as improper variable or method 
names, wrong documentation to the implementation of a method, etc.

Timing/Optimization Error that causes concurrency or performance issues, such as deadlock, high 
memory usage, etc.

Configuration Error in non-code (e.g., configuration files) that affects functionality
Others Other bugs that do not fall into one of the above categories.

Category Definition

Empirical Study Process

Seaman et al. 
ESEM 2008

Chillarege et al. 
TSE 1992
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All three libraries have much higher bug densities 
than various operating systems 

[Chou et al. SOSP 2001, Maji et al. ISSRE 2010, 
Palix et al. ASPLOS 2011]

Mahout 73.36 bugs/year 1.79 bugs/kLOC

Lucene 144.76 bugs/year 2.77 bugs/kLOC

OpenNLP 95.68 bugs/year 1.45 bugs/kLOC

Libraries #Bug per Year #Bugs per kLOC

I. Bug Frequency & Density
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The most common categories of bugs are: 
algorithm/method, non-functional, and 

assignment/initialization

II. Distribution of Bug Types
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Severe bugs (blocker and critical) are mostly 
categorized as algorithm/method (4/14), 

assignment/initialization (3/14), 
and checking (3/14)

Default 
severity 
label in 
Apache 
JIRA

IIIA. Bug Severity

20



Bugs related to internal interface, algorithm/method, and 
timing/optimization take the longest to be fixed

IIIB. Bug-Fixing Duration
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The number of revisions committed into 
the version control system to fix the bug to 

measure the difficulty of fixing a bug

Timing/optimization, algorithm/method, and internal interface bugs 
require more revisions to fix them

IIIC. Bug-Fixing Effort
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The number of files changed to fix 
the bug to measure the bug impact

Non-functional, external interface, and data bugs 
impact the greatest number of files that require fixing

IIID. Bug Impact

23



 Algorithm/method bugs
 Has the greatest number of bugs
 Has many severe bugs
 Has long bug-fixing durations
 Requires much effort to fix

 Timing/optimization bugs
 Has the least number of bugs, but
 Has long bug-fixing durations
 Requires the most effort to fix

 Non-functional, external interface, and data bugs
 Affect many files

 Configuration bugs (new category to Seaman et al.’s) 
 Appear many times and are non-trivial to fix 

(harder to fix than many other categories)

Take-home Messages on Bugs in ML Systems
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1. Motivate future work 
analyzing bugs in machine 

learning systems

Follow Up Work 

                        25



2. Motivate studies on 
bugs in other emerging 

domain-specific software 
systems

Follow Up Work 
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3. Motivate work on testing 
machine learning systems

Follow Up Work 

                        27



MSR Can Shed Light to New Domains (e.g., Trustworthy AI)

YES!
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ICSE 2009
MIP ICSE 2019

Automated Program Repair (APR)
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Search-Based APR

Mutate buggy program
to create repair candidates 

E.g., GenProg (ICSE 2009, TSE 2011, ICSE 2012), etc.

Test Cases

Output candidates 
passing all test cases
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Issues of Search-Based APR (in 2016)

 Overfitting, nonsensical patches

 Long computation time to produce patches
 Lack of knowledge on bug fix history

// Human fix: fa * fb > 0
if (fa * fb >= 0){ 
   throw new ConvergenceException(“..”);
}

Can MSR Help Automated Program Repair?
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MSR for Automated Program Repair (MSR4APR)

SANER’16

First work that automatically analyze hundreds of repositories 
for more effective automated program repair

Most cited SANER’16 paper
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History-Driven Program Repair

Mutate buggy 
program to create 
repair candidates 

Output candidates:
  - frequently occur in 
    the knowledge base
  - make the failed tests 
    pass

Knowledge base: Learned 
from bug fixes in dev. history

Faster

Avoid nonsensical patches

Test Cases
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Our Framework (HDRepair)

Phase I: Bug Fix History Extraction

Phase II: Bug Fix History Mining

Phase III: Bug Fix Candidate Generation

                        34



Phase I – Bug Fix History Extraction               

 Active, large and popular Java projects
 Updated until 2014, >= 5 stars, >= 100MBs 

 Likely bug-fix commits
 Commit message: fix, bug fix, fix typo, fix build, non-fix
 Submission of at least one test case
 Change no more than two source code lines

 Result: 3,000 bug fixes from 700+ projects
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Phase II – Bug Fix History Mining

Post-Fix 
AST

Pre-Fix 
AST GraphGumTreeBug Fix

Collection of Bug Fixes

Collection of Graphs

Graph Representation

Closed Graph Mining

Collection of Graph Patterns
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Phase III – Bug Fix Candidate Generation

Fix Patterns

Input 
Candidate

Mutation 
Engine

Repair 
Candidates

Selection

Validation

Candidates
Passed 

1

2

3

4

1

6

5
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Number of Bugs Correctly Fixed

HDRepair
18 bugs

GenProg
1 bug

PAR
4 bugs
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Follow Up Work 

“History driven program repair as investigated by Le et al. 
influenced our work, the overall diffing/mining pipeline
is similar.” – Facebook Engineer
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Follow Up Work 
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MSR Can Effectively Power Automation (e.g., APR)

YES!
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Reflections

• MSR can shed insights to 
new domains and power 
more automation

• As miners we want to 
expand the “world” of 
MSR 

• Find opportunities to 
demonstrate the power of 
MSR to various SE problems, 
including:
 MSR4TAI
 MSR4APR
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New Era of LLM
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“Hic sunt dracones”
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New Era of Software Engineering 2.0
Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 

Smart Tool

Smart Workmate

H-H

H-A

A-A

Organization

H-A
Tertiary

Edu.

Job 
Market

Agent 
Market

Agent 
Vendors

Economics
Law

Ethics

ICSE’23

“Hic sunt dracones”
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MSR4TAI: Are There New Gold Mines?

TOSEM’25
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LLM Ecosystem: A Rich Repository to Mine
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Findings: Relationships between Models
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Findings: Licenses of LLMs

Many more findings in the paper
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More to be Mined 

• How does the ecosystem evolve?
• How risks (like data poisoning, privacy 

leakage) propagate in the ecosystem?
- How to mitigate such risks?

• How the development of LLM4SE 
impact the society (e.g., energy 
consumption)?

• How contributors join & contribute?
• What make successful contributors?
• Many more !

                        52



MSR4APR: Are There New Gold Mines?

ICSE’24

Historical Data
Historical Fixing Data
Historical Vul-fixing Data
CWE Knowledge

Synthesized Fixing Data
from CWE Knowledge

Synthesized Data

LLMs
2x 

Fixed 
Vulnerabilities

+ + =
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MSR4APR: Are There New Gold Mines?

• VulMaster almost doubles the Exact Match 
(EM) score compared to the previous SOTA.

• VulMaster consistently outperforms the SOTA 
in diverse aspects.

Main Results

-long/short: the length of the code
-frequent/infrequent: the vulnerability 
type frequencies
-more/less risky: top 10 most dangerous 
CWE or not
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Expanding MSR: What is a “Software Repository”?

Historical vs. Synthesized

Code vs. Models & Data Ecosystem

Code History vs. Model & Data Provenance 
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MSR4<?>: Plenty of Open Explorations in the World of MSR

“Beyond every map lies a new treasure. Those 
bold enough to seek it will change the world.”

- GPT4 
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Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg

                        60



“Hic sunt dracones”

Reflection of the Past Charting the Future
                        61


	Slide Number 1
	Thank You Very Much!
	Personal Journey: Programming Language (PL)
	Personal Journey: PL to Software Engineering (SE)
	From SE to Mining Software Repositories (MSR)
	Contributions to MSR
	Contributions to MSR
	Contributions to MSR
	Slide Number 9
	Slide Number 10
	SE for Trustworthy AI (SE4TAI)
	MSR for Trustworthy AI (MSR4TAI)
	MSR for Trustworthy AI (MSR4TAI)
	Post-Mortem Bug Analysis for Machine Learning Systems
	Empirical Study Process
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	MSR Can Shed Light to New Domains (e.g., Trustworthy AI)
	Slide Number 29
	Search-Based APR
	Issues of Search-Based APR (in 2016)
	MSR for Automated Program Repair (MSR4APR)
	History-Driven Program Repair
	Our Framework (HDRepair)
	Phase I – Bug Fix History Extraction               �
	Phase II – Bug Fix History Mining
	Phase III – Bug Fix Candidate Generation
	Number of Bugs Correctly Fixed
	Follow Up Work 
	Follow Up Work 
	MSR Can Effectively Power Automation (e.g., APR)
	Reflections
	Slide Number 45
	New Era of LLM
	New Era of Software Engineering 2.0
	MSR4TAI: Are There New Gold Mines?
	LLM Ecosystem: A Rich Repository to Mine
	Findings: Relationships between Models
	Findings: Licenses of LLMs
	More to be Mined 
	MSR4APR: Are There New Gold Mines?
	MSR4APR: Are There New Gold Mines?
	Expanding MSR: What is a “Software Repository”?
	MSR4<?>: Plenty of Open Explorations in the World of MSR
	Acknowledgements
	Thank you!
	Reflection of the Past

