
David Lo, FACM, FIEEE

Charting New Gold Mines:
Expanding the World of MSR

MSR 2025, Ottawa, Canada, April 2025

“Hic sunt dracones”

1

Thank You Very Much!

 2

Personal Journey: Programming Language (PL)

POPL’02

My PhD Advisor:
Siau-Cheng Khoo

 3

MSR

Personal Journey: PL to Software Engineering (SE)

IEEE Computer’09

FSE’06

KDD’07

 4

MSR

From SE to Mining Software Repositories (MSR)

Execution
Traces

Dev.
NetworkGit

Mailing
ListBugzillaCode

Insight! Automation!

 5

MSR

Contributions to MSR

 6

Contributions to MSR

 7

Contributions to MSR

 8

“Hic sunt dracones”

 9

Reflection of the Past Charting the Future

“Hic sunt dracones”

 10

Reflection of the Past Charting the Future

SE for Trustworthy AI (SE4TAI)

Six Sessions on SE4AIFew studies on
Trustworthy AI (TAI)
in the SE Community

Can MSR Shed Light to Trustworthy AI?

A Decade Ago Now

3rd International
Workshop on

Responsible AI
Engineering
(RAIE 2025)

 11

MSR for Trustworthy AI (MSR4TAI)

ISSRE’12
First work employing MSR to gain insight into ML bugs

 12

MSR for Trustworthy AI (MSR4TAI)

ISSRE’22 Most Influential Paper Award
 13

Post-Mortem Bug Analysis for Machine Learning Systems

Bug Frequency
& Density

Bug Type

Association

Bug
Severity

Bug
Impact

Bug-Fix
Duration

Bug-Fix
Effort

14

 Collect bug reports and fixes of popular open-source ML systems

 Analyze the reports and fixes (200, 200, and 100 from Mahout, Lucene, and OpenNLP):
 Manual categorization
 Statistics computation

Empirical Study Process

Library Size
(LOC)

Bug
Count

Active
Dev.

175,295 314 4.28 years

554,036 1,533 10.59 years

78,224 113 1.39 years

15

Algorithm/Method The implementation of an algorithm/method does not follow the expected
behavior.

Assignment/Init. Error in assigning variable values.
Checking Missing necessary checks that lead to an error or a wrong error message.

Data Wrong use of data structure.
External Interface Error in interfacing with other systems or users, such as using deprecated

methods from other systems, requiring updates to own external interfaces
for ease of usage, etc.

Internal Interface Error in interfacing with another component of the same system, such as
violating the contract of inheritance, wrong use of operations from other
classes, etc.

Seaman et al.
ESEM 2008

Chillarege et al.
TSE 1992

Category Definition

Empirical Study Process

16

Logic Incorrect expressions in conditional statements (e.g., if, while, etc.)

Non-functional Violations in non-functional requirements such as improper variable or method
names, wrong documentation to the implementation of a method, etc.

Timing/Optimization Error that causes concurrency or performance issues, such as deadlock, high
memory usage, etc.

Configuration Error in non-code (e.g., configuration files) that affects functionality
Others Other bugs that do not fall into one of the above categories.

Category Definition

Empirical Study Process

Seaman et al.
ESEM 2008

Chillarege et al.
TSE 1992

17

All three libraries have much higher bug densities
than various operating systems

[Chou et al. SOSP 2001, Maji et al. ISSRE 2010,
Palix et al. ASPLOS 2011]

Mahout 73.36 bugs/year 1.79 bugs/kLOC

Lucene 144.76 bugs/year 2.77 bugs/kLOC

OpenNLP 95.68 bugs/year 1.45 bugs/kLOC

Libraries #Bug per Year #Bugs per kLOC

I. Bug Frequency & Density

18

The most common categories of bugs are:
algorithm/method, non-functional, and

assignment/initialization

II. Distribution of Bug Types

19

Severe bugs (blocker and critical) are mostly
categorized as algorithm/method (4/14),

assignment/initialization (3/14),
and checking (3/14)

Default
severity
label in
Apache
JIRA

IIIA. Bug Severity

20

Bugs related to internal interface, algorithm/method, and
timing/optimization take the longest to be fixed

IIIB. Bug-Fixing Duration

21

The number of revisions committed into
the version control system to fix the bug to

measure the difficulty of fixing a bug

Timing/optimization, algorithm/method, and internal interface bugs
require more revisions to fix them

IIIC. Bug-Fixing Effort

22

The number of files changed to fix
the bug to measure the bug impact

Non-functional, external interface, and data bugs
impact the greatest number of files that require fixing

IIID. Bug Impact

23

 Algorithm/method bugs
 Has the greatest number of bugs
 Has many severe bugs
 Has long bug-fixing durations
 Requires much effort to fix

 Timing/optimization bugs
 Has the least number of bugs, but
 Has long bug-fixing durations
 Requires the most effort to fix

 Non-functional, external interface, and data bugs
 Affect many files

 Configuration bugs (new category to Seaman et al.’s)
 Appear many times and are non-trivial to fix

(harder to fix than many other categories)

Take-home Messages on Bugs in ML Systems

24

1. Motivate future work
analyzing bugs in machine

learning systems

Follow Up Work

 25

2. Motivate studies on
bugs in other emerging

domain-specific software
systems

Follow Up Work

 26

3. Motivate work on testing
machine learning systems

Follow Up Work

 27

MSR Can Shed Light to New Domains (e.g., Trustworthy AI)

YES!

 28

ICSE 2009
MIP ICSE 2019

Automated Program Repair (APR)

 29

Search-Based APR

Mutate buggy program
to create repair candidates

E.g., GenProg (ICSE 2009, TSE 2011, ICSE 2012), etc.

Test Cases

Output candidates
passing all test cases

 30

Issues of Search-Based APR (in 2016)

 Overfitting, nonsensical patches

 Long computation time to produce patches
 Lack of knowledge on bug fix history

// Human fix: fa * fb > 0
if (fa * fb >= 0){
 throw new ConvergenceException(“..”);
}

Can MSR Help Automated Program Repair?

 31

MSR for Automated Program Repair (MSR4APR)

SANER’16

First work that automatically analyze hundreds of repositories
for more effective automated program repair

Most cited SANER’16 paper

 32

History-Driven Program Repair

Mutate buggy
program to create
repair candidates

Output candidates:
 - frequently occur in
 the knowledge base
 - make the failed tests
 pass

Knowledge base: Learned
from bug fixes in dev. history

Faster

Avoid nonsensical patches

Test Cases

 33

Our Framework (HDRepair)

Phase I: Bug Fix History Extraction

Phase II: Bug Fix History Mining

Phase III: Bug Fix Candidate Generation

 34

Phase I – Bug Fix History Extraction

 Active, large and popular Java projects
 Updated until 2014, >= 5 stars, >= 100MBs

 Likely bug-fix commits
 Commit message: fix, bug fix, fix typo, fix build, non-fix
 Submission of at least one test case
 Change no more than two source code lines

 Result: 3,000 bug fixes from 700+ projects

 35

Phase II – Bug Fix History Mining

Post-Fix
AST

Pre-Fix
AST GraphGumTreeBug Fix

Collection of Bug Fixes

Collection of Graphs

Graph Representation

Closed Graph Mining

Collection of Graph Patterns
 36

Phase III – Bug Fix Candidate Generation

Fix Patterns

Input
Candidate

Mutation
Engine

Repair
Candidates

Selection

Validation

Candidates
Passed

1

2

3

4

1

6

5

 37

Number of Bugs Correctly Fixed

HDRepair
18 bugs

GenProg
1 bug

PAR
4 bugs

 38

Follow Up Work

“History driven program repair as investigated by Le et al.
influenced our work, the overall diffing/mining pipeline
is similar.” – Facebook Engineer

 41

Follow Up Work

 42

MSR Can Effectively Power Automation (e.g., APR)

YES!

 43

Reflections

• MSR can shed insights to
new domains and power
more automation

• As miners we want to
expand the “world” of
MSR

• Find opportunities to
demonstrate the power of
MSR to various SE problems,
including:
 MSR4TAI
 MSR4APR

 44

“Hic sunt dracones”

 45

Reflection of the Past Charting the Future

New Era of LLM

0.1

1

10

100

1000

2018 2019 2020 2021 2022 2023 2024

GPT-2

GPT-3

CodeBERT

CodeX

ERNIE

GraphCodeBERT

CodeT5

GPT3.5

GPT-4

BERT

BART

T5

LaMDA

PaLM

mT5

Bard

Sparrow
LLaMA

M
od

el
 S

ize
(in

 B
illi

on
s

of
 P

ar
am

et
er

s) CodeLlama

Mixtral

Deepseek

PanGu-Coder2

Large Language Model Sizes Over Time

“Hic sunt dracones”

 46

New Era of Software Engineering 2.0
Symbiotic workforce of autonomous, responsible, intelligent agents & engineers

Smart Tool

Smart Workmate

H-H

H-A

A-A

Organization

H-A
Tertiary

Edu.

Job
Market

Agent
Market

Agent
Vendors

Economics
Law

Ethics

ICSE’23

“Hic sunt dracones”

 47

MSR4TAI: Are There New Gold Mines?

TOSEM’25

 48

LLM Ecosystem: A Rich Repository to Mine

 49

Findings: Relationships between Models

 50

Findings: Licenses of LLMs

Many more findings in the paper
 51

More to be Mined

• How does the ecosystem evolve?
• How risks (like data poisoning, privacy

leakage) propagate in the ecosystem?
- How to mitigate such risks?

• How the development of LLM4SE
impact the society (e.g., energy
consumption)?

• How contributors join & contribute?
• What make successful contributors?
• Many more !

 52

MSR4APR: Are There New Gold Mines?

ICSE’24

Historical Data
Historical Fixing Data
Historical Vul-fixing Data
CWE Knowledge

Synthesized Fixing Data
from CWE Knowledge

Synthesized Data

LLMs
2x

Fixed
Vulnerabilities

+ + =

 54

MSR4APR: Are There New Gold Mines?

• VulMaster almost doubles the Exact Match
(EM) score compared to the previous SOTA.

• VulMaster consistently outperforms the SOTA
in diverse aspects.

Main Results

-long/short: the length of the code
-frequent/infrequent: the vulnerability
type frequencies
-more/less risky: top 10 most dangerous
CWE or not

 56

Expanding MSR: What is a “Software Repository”?

Historical vs. Synthesized

Code vs. Models & Data Ecosystem

Code History vs. Model & Data Provenance

 57

MSR4<?>: Plenty of Open Explorations in the World of MSR

“Beyond every map lies a new treasure. Those
bold enough to seek it will change the world.”

- GPT4
 58

Acknowledgements

OUB Chair
Professorship Fund

 59

Thank you!

Questions? Comments? Advice?
davidlo@smu.edu.sg

 60

“Hic sunt dracones”

Reflection of the Past Charting the Future
 61

	Slide Number 1
	Thank You Very Much!
	Personal Journey: Programming Language (PL)
	Personal Journey: PL to Software Engineering (SE)
	From SE to Mining Software Repositories (MSR)
	Contributions to MSR
	Contributions to MSR
	Contributions to MSR
	Slide Number 9
	Slide Number 10
	SE for Trustworthy AI (SE4TAI)
	MSR for Trustworthy AI (MSR4TAI)
	MSR for Trustworthy AI (MSR4TAI)
	Post-Mortem Bug Analysis for Machine Learning Systems
	Empirical Study Process
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	MSR Can Shed Light to New Domains (e.g., Trustworthy AI)
	Slide Number 29
	Search-Based APR
	Issues of Search-Based APR (in 2016)
	MSR for Automated Program Repair (MSR4APR)
	History-Driven Program Repair
	Our Framework (HDRepair)
	Phase I – Bug Fix History Extraction �
	Phase II – Bug Fix History Mining
	Phase III – Bug Fix Candidate Generation
	Number of Bugs Correctly Fixed
	Follow Up Work
	Follow Up Work
	MSR Can Effectively Power Automation (e.g., APR)
	Reflections
	Slide Number 45
	New Era of LLM
	New Era of Software Engineering 2.0
	MSR4TAI: Are There New Gold Mines?
	LLM Ecosystem: A Rich Repository to Mine
	Findings: Relationships between Models
	Findings: Licenses of LLMs
	More to be Mined
	MSR4APR: Are There New Gold Mines?
	MSR4APR: Are There New Gold Mines?
	Expanding MSR: What is a “Software Repository”?
	MSR4<?>: Plenty of Open Explorations in the World of MSR
	Acknowledgements
	Thank you!
	Reflection of the Past

