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Thank You Very Much!
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® Follow up. Completed on Friday, March 14, 2025.
You forwarded this message on 3/14/2025 8:11 PM.

Dear David,

We are pleased to inform you that, after careful consideration by the MSR Award commit-
tee, you have been selected as the recipient of the MSR 2025 Foundational Contribution

Award.

You are recognized for your pioneering, influential, extensive, and lasting contributions to
transforming bug and test data into insights and automation that improve software quality
and productivity. Please accept our heartfelt congratulations, and we hope to see you at
MSR to celebrate this well-deserved recognition.




Personal Journey: Programming Language (PL)

PROGRAMMING LANGUAGES AND SYSTEMS

My PhD Advisor:
Siau-Cheng Khoo

School of Computing
National University of Singapore

Mining Specifications

Glenn Ammons Rastislav Bodik James R. Larus MSR
Dept. of Computer Sciences Dept. of Computer Sciences Microsoft Research
University of Wisconsin University of Wisconsin One Microsoft Way
Madison, Wisconsin, USA Madison, Wisconsin, USA Redmond, Washington, USA
ammons@cs.wisc.edu bodik@cs.wisc.edu larus@microsoft.com
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Personal Journey: PL to Software Engineering (SE)

SMAIrTIC: Towards Building an Accurate, Robust and
Scalable Specification Miner

FSE'06

David Lo and Siau-Cheng Khoo
Department of Computer Science,National University of Singapore

{dlo,khoosc} @comp.nus.edu.sg
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Efficient Mining of Iterative Patterns for Software
Specification Discovery
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From SE to Mining Software Repositories (MSR)
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Contributions to MSR

MSR 2012 June 2-3. Zurich, Switzerland J/ '

&

Mining Challenge Program Venue History

The 9th Working Conference on Mining Software Repositories

What Does Software Engineering Community Microblog About?

Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, Ee-Peng Lim
Singapore Management University, Singapore
yuan.tian.2011 @exchange.smu.edu.sg, palakorna@smu.edu.sg, lubisnelman@smu.edu.sg,
davidlo @smu.edu.sg, eplim@smu.edu.sg

Are Faults Localizable?

Lucia, Ferdian Thung, David Lo, and Lingxiao Jiang
School of Information Systems, Singapore Management University
{lucia.2009,ferdianthung,davidlo,lxjiang } @ smu.edu.sg




Contributions to MSR

MSR Week 2022
Virtual + PittsburghL%A




Contributions to MSR

Dear David,

We are pleased to inform you that, after careful consideration by the MSR Award commit-
tee, you have been selected as the recipient of the MSR 2025 Foundational Contribution
Award.

You are recognized for your pioneering, influential, extensive, and lasting contributions to
transforming bugland test data into[insights|and[automation]that improve software quality
and productivity. Please accept our heartfelt congratulations, and we hope to see you at
MSR to celebrate this well-deserved recognition.
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Reflection of the Past Charting the Future
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SE for Trustworthy AI (SE4TAI)

Now

" Yuriy Brun
Area Co-Chair for Software Engineering = =
ﬁ for Al Six Sessions on SE4AI

University of Massachusetts

United States I WELENPED) SE for Al with Quality 1

A Decade Ago

Few studies on
Trustworthy AI (TAI)
in the SE Community

Chair(s): Jun Sun Singapore |
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Can MSR Shed Light to Trustworthy AI?
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MSR for Trustworthy AI (MSR4TAI)

An Empirical Study of Bugs in Machine Learning Systems

Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang
School of Information Systems
Singapore Management University, Singapore
{ferdianthung,shaoweiwang.2010,davidlo,lxjiang } @ smu.edu.sg

ISSRE'12
First work employing MSR to gain insight into ML bugs
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MSR for Trustworthy AI (MSR4TAI)

O Fabrizio Pastore @FabrizioPastore - Nov 2, 2022 (& oo

David Lo receiving the Test of Time award @ISSREConf "An empirical Study

of Bugs in Machine Learning System". A pioneering work that influenced
many follow-on papers.

School of
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Information Systems

ISSRE’22 Most Influential Paper Award

Aitor Arrieta g
@aitorarrieta

Test of time award for the paper “An empirical study of bugs in machine
learning systems”, presented by @davidlo2015 at @ISSREConf.

Interesting nowadays, but really visionary one of these kind of studies 10
years ago where ML wasn’t that important...
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Post-Mortem Bug Analysis for Machine Learning Systems
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Empirical Study Process

= Collect bug reports and fixes of popular open-source ML systems

Library Size Bug Active
(LOC) Count Dev.
@ MAHOUT | 175,295 314 4.28 years
<SLUCENE 554,036 1,533 10.59 years
@ENLP 78,224 113 1.39 years

= Analyze the reports and fixes (200, 200, and 100 from Mahout, Lucene, and OpenNLP):
= Manual categorization
= Statistics computation

Information Systems
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Empirical Study Process

Seaman et al. Chillarege et al.
ESEM 2008 TSE 1992

Category Definition
Algorithm/Method | The implementation of an algorithm/method does not follow the expected
behavior.
Assignment/Init. Error in assigning variable values.
Checking Missing necessary checks that lead to an error or a wrong error message.
Data Wrong use of data structure.

External Interface | Error in interfacing with other systems or users, such as using deprecated
methods from other systems, requiring updates to own external interfaces
for ease of usage, etc.

Internal Interface | Error in interfacing with another component of the same system, such as
violating the contract of inheritance, wrong use of operations from other
classes, etc.

16



Empirical Study Process

Seaman et al. Chillarege et al.
ESEM 2008 TSE 1992

Category Definition

Logic Incorrect expressions in conditional statements (e.q., if, while, etc.)

Non-functional | Violations in non-functional requirements such as improper variable or method
names, wrong documentation to the implementation of a method, etc.

Timing/Optimization | Error that causes concurrency or performance issues, such as deadlock, high
memory usage, etc.

Configuration Error in non-code (e.qg., configuration files) that affects functionality
Others Other bugs that do not fall into one of the above categories.
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I. Bug Frequency & Density

Libraries #Bug per Year | #Bugs per kLOC

ﬂ H Mahout 73.36 bugs/year 1.79 bugs/kLOC
A Scverity ‘
‘ Lucene 144.76 bugs/year 2.77 bugs/kLOC

Bug Frequency
& Density

Bug-Fix

OpenNLP 95.68 bugs/year 1.45 bugs/kLOC

: Association
Duration

All three libraries have much higher bug densities

than various operating systems
[Chou et al. SOSP 2001, Maji et al. ISSRE 2010,

Palix et al. ASPLOS 2011]
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II. Distribution of Bug Types

Type Count | Percentage
algorithm/method 113 22.60%
non-functional 78 15.60%
y sz W assignment/initialization 65 13.00%
T G checking 57 11.40%
external interface 38 7.60%
: - : internal interface 38 7.60%
Bug-Fix Association Bug-Fix data 28 5.60%
Skt Akl logic 27 5.40%
configuration 27 5.40%
timing/optimization 24 4.80%
others 5 1%

The most common categories of bugs are:

algorithm/method, non-functional, and

assignment/initialization

Information Systems
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IITIA. Bug Severity
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Severity Count Proportion

Blocker 7 1.4%
Critical 7 1.4%
Major 288 57.6%
Minor 157 31.4%
Trivial 41 8.2%

Severe bugs (blocker and critical) are mostly

categorized as algorithm/method (4/14),

assignment/initialization (3/14),

and checking (3/14)

Default
severity

label in
Apache
JIRA
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IIIB. Bug-Fixing Duration

Type Min Max Mean | Median
algorithm/method 0.0022 [ 2433.7033 [ [91.7238 3.8740
assignment/initialization | 0.0003 160.9271 9.9160 0.5000
checking 0.0017 195.7766 | 17.1335 1.1175
configuration 0.0016 1959011 | 22.3583 2.8032
data 0.0014 676.3825 | 40.8279 2.2666
external interface 0.0006 | 1700.5871 | 69.2463 0.4275
internal interface 0.0029 | 1688.5275 | 93.3543 2.4852
logic 0.0016 59.8305 6.8892 1.2537
non-functional 0.0006 | 1330.4142 | 47.8057 0.6949
timing/optimization 0.0017 569.7309 | |71.6649 3.3596
others 0.0005 1.3128 0.3344 0.0594

Scwol of
Computing and
Information Systems

Bugs related to internal interface, algorithm/method, and

timing/optimization take the longest to be fixed
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I1IC. Bug-Fixing Effort

The number of revisions committed into
the version control system to fix the bug to

measure the difficulty of fixing a bug

Type Min | Max Mean | Median
algorithm/method 1 9 || 1.9646 1
assignment/initialization 1 4 | 1.2923 1
checking 1 11 | 1.7544 1
configuation 1 5 | 1.7037 1
data 1 5 | 1.6429 1
external interface 1 6 | 1.7368 1
internal interface 1 8 || 1.8947 1
logic 1 4 | 1.2593 1
non-functional 1 6 | 1.5641 1
timing/optimization | 7 | 2.4167 2
others 1 1 | 1.0000 1

Timing/optimization, algorithm/method, and internal interface bugs

Scwol of
Computing and
Information Systems

require more revisions to fix them < OMU L,




II1ID. Bug Impact

X of
Computing and
Information Systems

the bug to measure the bug impact

The number of files changed to fix

Type Min | Max Mean | Median
algorithm/method 1 117 | 11.7434 3
assignment/initialization 1 74 5.2459 2
checking 1 115 7.2982 2
configuration 1 40 5.2692 1
data 1 124 || 12.3571 3
external interface 1 92 || 13.3514 3
internal interface 1 52 7.6842 4.5
logic 1 15 2.7778 2
non-functional 1 676 |L16.7143 2
others 1 47 10.2000 |
timing/optimization 1 69 | 11.5833 5

Non-functional, external interface, and data bugs

impact the greatest number of files that require fixing
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Take-home Messages on Bugs in ML Systems

= Algorithm/method bugs
= Has the greatest number of bugs
= Has many severe bugs
= Has long bug-fixing durations
= Requires much effort to fix

= Timing/optimization bugs
= Has the least number of bugs, but
= Has long bug-fixing durations
= Requires the most effort to fix

= Non-functional, external interface, and data bugs
= Affect many files

= Configuration bugs (new category to Seaman et al.’s)
= Appear many times and are non-trivial to fix
(harder to fix than many other categories) y



Follow Up Work

An empirical study on TensorFlow program bugs 1. Motivate future work
Y Zhang, Y Chen, SC Cheung, Y Xiong... - Proceedings of the 27th ..., 2018 - dl.acm.org

_ - _ _ o _ analyzing bugs in machine
Deep learning applications become increasingly popular in important domains such as self- Iearning systems
driving¢ A comprehensive study on deep learning bug characteristics

MJ Islam, G Nguyen, R Pan, H Rajan - ... of the 2019 27th ACM Joint ..., 2019 - dl.acm.org

Deep learning has gained substantial popularity in recent years. Developers mainly rely on
librar Taxonomy of real faults in deep learning systems
N Humbatova, G Jahangirova, G Bavota... - Proceedings of the ..., 2020 - dl.acm.org

The growing application of deep neural networks in safety-critical domains makes the
analys An empirical study on program failures of deep learning jobs
R Zhang, W Xiao, H Zhang, Y Liu... - 2020 IEEE/ACM 42nd ..., 2020 - ieeexplore.ieee.org

Deep learning has made significant achievements in many application areas. To train and
An empirical study on real bugs for machine learning programs :
X Sun, T Zhou, G Li, J Hu, H Yang... - 2017 24th Asia-Pacific ..., 2017 - ieeexplore.ieee.org
Due to the availability of various open source Machine Learning (ML) tools and libraries,
An empirical study on bugs inside tensorflow e...
L Jia, H Zhong, X Wang, L Huang, X Lu - International Conference on ..., 2020 - Springer

In recent years, deep learning has become a hot research topic. Although it achieves
incredible positive results in some scenarios, bugs inside deep learning software can ...




Follow Up Work

An exploratory characterization of bugs in covid-19 software projects 2. Motivate studies on
A Rahman, E Farhana - arXiv preprint arXiv:2006.00586, 2020 - arxiv.org bugs in other emerging

Context: The dire consequences of the COVID-19 pandemic has influenced development of dom ain-specifi c software

CO\ Toward understanding compiler bugs in GCC and LLVM systems
C Sun, V Le, Q Zhang, Z Su - ... of the 25th International Symposium on ..., 2016 - dl.acm.org

Compilers are critical, widely-used complex software. Bugs in them have significant impact,

and ¢ Bug characteristics in blockchain systems: a large-scale empirical study
ZWan, D Lo, X Xia, L Cai - 2017 IEEE/ACM 14th International ..., 2017 - ieeexplore.ieee.org
Bugs severely hurt blockchain system dependability. A thorough understanding of

blockct An empirical study of bugs in industrial financial systems

X Xuan, X Zhao, Y Wang, S Li - IEICE TRANSACTIONS on ..., 2015 - search.ieice.org

Bugs in industrial financial systems have not been extensively studied. To address this gap,
A comprehensive study of deep learning compiler bugs rPro
Q Shen, H Ma, J Chen, Y Tian, SC Cheung... - Proceedings of the 29th ..., 2021 - dl.acm.org o
There are increasing uses of deep learning (DL) compilers to generate optimized code,
Gang of eight: A defect taxonomy for infrastructure as code scripts nal ...
A Rahman, E Farhana, C Parnin... - 2020 IEEE/ACM 42nd ..., 2020 - ieeexplore.ieee.org

Defects in infrastructure as code (laC) scripts can have serious consequences, for example,
creating large-scale system outages. A taxonomy of |aC defects can be useful for ...




Follow Up Work

Multiple-implementation testing of supervised learning software 3. Motivate work on testing
O Alebiosu - 2017 - ideals.illinois.edu machine Iearning systems

Mac Testing machine learning code using polyhedral region
mMan pms Ahmed, F Ishikawa, M Sugiyama - ... of the 28th ACM Joint Meeting on ..., 2020 -

dl.acm.org

To da Deriving and evaluating a fault model for testing data science applications
genél A Aftab Jilani, S Sherin, S ljaz... - Journal of Software ..., 2022 - Wiley Online Library

Data science (DS) applications not only suffer from traditional software faults but may also

suffe Testing of Autonomous Driving Systems: where are we and where
should we go?
G Lou, Y Deng, X Zheng, T Zhang, M Zhang - arXiv preprint arXiv ..., 2021 - arxiv.org

Autonomniis drivinn shows areat nntential tn reform modern transnartatinon However, jts

Test-Case Generation for Finding Neural Network Bugs itional ..
M Rezaalipour, CA Furia - arXiv preprint arXiv:2112.05567, 2021 - arxiv.org

As neural networks are increasingly included as core components of safety-critical systems,

ArvsAalAanminea Affantivim bantime~ banalhnminiian anAanialisad Fav thama hAanmmaan Aviiaial ThaA ol AF

Deep Learning Framework Fuzzing Based on Model Mutation -
X Shen, J Zhang, X Wang, H Yu... - 2021 IEEE Sixth ..., 2021 - ieeexplore.ieee.org

Deep learning (DL) frameworks are widely used for neural network model training and
prediction in a lot of areas such as computer vision, natural language processing, medical ...




MSR Can Shed Light to New Domains (e.g., Trustworthy AI)

SE for Trustworthy AI (SE4TAI)

A Decade Ago Now
" Yuriy Brun
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Can MSR Shed Light to Trustworthy AI?
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Automated Program Repair (APR)

Automatically Finding Patches Using Genetic Programming *

Westley Weimer ThanhVu Nguyen Claire Le Goues Stephanie Forrest
University of Virginia University of New Mexico University of Virginia University of New Mexico
weimer@virginia.edu tnguyenlcs.unm. edu legouesBvirginia.edu forrest@cs.unm.edu
Abstract To alleviate this burden, we propose an automatic tech-
nique for repairing program defects. Our approach does
Automatic program repair has been a longstanding goal not require difficult formal specifications, program anno-
in SOffWﬂFE engfneerfng’ vet debugging FEMAINS ¢ fa}ge[y tations or specia] CDdiI’lg pl‘&CtiCﬁS. Instead, it works on
manual process. We introduce a fully automated method off-the-shelf legacy applications and readily-available test-
for locating and repairing bugs in software. The approach cases. We use genetic programming to evolve program vari-
works on off-the-shelf legacy applications and does not re- ants until one is found that both retains required function-
qufre fgma! ,qpec;_'ﬁcaﬁons, program annotations or specfaf alit}’ and also avoids the defect in question. Our tE:ChIliqllC

ICSE 2009
MIP ICSE 2019
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Search-Based APR

Mutate buggy program Output candidates
to create repair candidates passing all test cases

/"\\

) XD
\ |
\\__//

E.g., GenProg (ICSE 2009, TSE 2011, ICSE 2012), etc.

public void processpata()

do
{ il

int data ta();
if(data <

perfor onl(data);
else

s
performoperation2(data);

\

[ Test Cases

J

Information Systems
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Issues of Search-Based APR (in 2016)

» Overfitting, nonsensical patches

: // Human fix: fa * fo > 0
if (fa * fb >= O\

» Long computation time to produce patches
- Lack of knowledge on bug fix history

Can MSR Help Automated Program Repair?

School of —
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MSR for Automated Program Repair (MSR4APR)

History Driven Program Repair

Xuan-Bach D. Le, David Lo Claire Le Goues
School of Information Systems School of Computer Science
Singapore Management University Carnegie Mellon University
{dxb.le.2013.davidlo} @smu.edu.sg clegoues @cs.cmu.edu
SANER’16

First work that automatically analyze hundreds of repositories
for more effective automated program repair

Most cited SANER16 paper

Information Systems
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History-Driven Program Repair

public void processbata()
o - Mutate buggy Output candidates:

I:nt data = Qs i
mﬂt() program to create - frequently occur in
__performoperation2(data); repair candidates the knowled_ge base

- make the failed tests
Test Cases P N pass

G \ l
@ 7
'é,) Faster

Knowledge base: Learned
'é) Avoid nonsensical patches

from bug fixes in dev. history
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Our Framework (HDRepair)

Phase I: Bug Fix History Extraction
Phase II: Bug Fix History Mining
Phase III: Bug Fix Candidate Generation

School of ]
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UNIVERSITY
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Phase I — Bug Fix History Extraction

. Active, large and popular Java projects
« Updated until 2014, >= 5 stars, >= 100MBs

« Likely bug-fix commits
« Commit message: fix, bug fix, fx-8p6, Fx-bBtHe R
« Submission of at least one test case
« Change no more than two source code lines

» Result: 3,000 bug fixes from 700+ projects
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Phase II — Bug Fix History Mining

Collection of Bug Fixes

‘ Graph Representation

/ Pre-Fix /
Bug F|x/ =1 ,—> GumTree |—7/ Graph/

‘ Closed Graph Mining ‘
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Phase III — Bug Fix Candidate Generation

Input Selection

Candidate

o
1 !

Mutation - Validation =
Engine Fix Patterns
! -1 !
e Repair Candidates JJ
Candidates Passed
\_/_ \_/—
Eér:'ﬁ.lputi_ng and ]);E SMU
Information Systems SINGAPORE MANAGEMENT




Number of Bugs Correctly Fixed

HDRepair

18 bugs /\
PAR
4 bugs
GenProg
1 bug

School of o
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Follow Up Work

Getafix
Learning to fix bugs automatically
Andrew Scott Johannes Bader Satish Chandra
Facebook Facebook Facebook
andrewscott@fb.edu jobader@fb.com satch@fb.com

“History driven program repair as investigated by Le et al.
influenced our work, the overall diffing/mining pipeline
is similar.” — Facebook Engineer
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Follow Up Work

History driven program repair
XBD Le, D Lo, C Le Goues - 2016 IEEE 23r«

... 1) We propose a generic and efficient his

that uses information stored in revision contr
¢ Save YU Cite Cited by 457 Related ¢

School of
Computing and
Information Systems

Agentless: Demystifying lim-based software engineering agents

CS Xia, Y Deng, S Dunn, L Zhang - arXiv preprint arXiv:2407.01489, 2024 - arxiv.org
Recent advancements in large language models (LLMs) have significantly advanced the
automation of software development tasks, including code synthesis, program repair, and ...
Y% Save P9 Cite Cited by 86 Related articles All 3 versions 99

Repairagent: An autonomous, lIm-based agent for program repair

| Bouzenia, P Devanbu, M Pradel - arXiv preprint arXiv:2403.17134, 2024 - arxiv.org
Automated program repair has emerged as a powerful technique to mitigate the impact of
software bugs on system reliability and user experience. This paper introduces RepairAgent ...

Y5 Save Y9 Cite Cited by 74 Related articles All 5 versions 99

Automated program repair via conversation: Fixing 162 out of 337 bugs for
$0.42 each using ChatGPT

CS Xia, L Zhang - Proceedings of the 33rd ACM SIGSOFT International ..., 2024 - dl.acm.org
Automated Program Repair (APR) aims to automatically generate patches for buggy

programs. Traditional APR techniques suffer from a lack of patch variety as they rely heavily ...
Y% Save Y9 Cite Cited by 25 Related articles All 2 versions

< SMU
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MSR Can Effectively Power Automation (e.g., APR)

Issues of Search-Based Repair Tools (in 2016)

Overﬁttlng, nonsen5|cal patches

l/ Human fix:fa*fb >0
|f (fa * fb >=0)

.............................................................................................................

- Long computation time to produce patches YES'
- Lack of knowledge on bug fix history

Can MSR Help Automated Program Repair?
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Reflections

 MSR can shed insights to
new domains and power
more automation

« As miners we want to
expand the “"world” of
MSR

* Find opportunities to
demonstrate the power of
MSR to various SE problems,
including:

v’ MSR4TAI

v' MSR4APR




Charting the Future




New Era of LLM

Large Language Model Sizes Over Time
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New Era of Software Engineering 2.0

Symbiotic workforce of autonomous, responsible, intelligent agents & engineers

Tertiary
Edu.

Organization
N \9 S

\.—/

Smart Workmate

Economics
Law

Ethics




MSR4TAI: Are There New Gold Mines?

Ecosystem of Large Language Models for Code

ZHOU YANG, Singapore Management University, Singapore
JIEKE SHI, Singapore Management University, Singapore
PREMKUMAR DEVANBU, Department of Computer Science, UC Davis, USA

DAVID LO, Singapore Management University, Singapore

TOSEM'25
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e O
% codeparrot/codeparrot-small oXo 0 ]
S >§ -codetos — 1 S f codeparrot/codeparrot-small

1
| CodeParrot ¥ is a GPT-2 model (110M parameters) ...

I The model was trained on the cleaned CodeParrot ‘

I This model is CodeParrot-small (from branch megatron)
; fine-tuned on github-jupyter-code-to-text ...

0

o ><‘é loubnabnl/santacoder-code-to-text
-~ ___.-.-/

Y
Egj: codeparrot/github-jupyter-code-to-text - codeparrot/github-jupyter-text-code-

o - pairs

I
l ... It was constructed by concatenating code and text pairs | This is a parsed version of github-jupyter-parsed, with

| from this dataset that were originally ... | markdown and code pairs. ...




Findings: Relationships between Models

Fine-tune - Total MOdels: 401 205 (51.1%)

Architecture -

Quantize-- 32 (8.0%)
Unclear-- 16 (4.0%)
Continue-- 15 (3.7%)

Model Conversion - 14 (3.5%)

Distillation -. 13 (3.2%)

Adapter-EI 9 (2.2%)

84 (20.9%)

Reuse Type

Instruction-tune-I 7 (1.7%)

Adversarial -I 6 (1.5%)

0 25 50 75 100 125 150 175 200
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Findings: Licenses of LLMs

Others: 6,7%
Ope
MIT:

Total: 150

Apache-2.0: 33.3%
Llama2:

Apache-2.0: 37.7%

Apache-2.0
0 BSD-3-Clause
bigcode—openrail-m
B MIT
© OpenRAIL
© Llama2
0 Others

Total: 2902

bigcode-openrail-m: 16%

MIT: 1

BSD- ause: 5.6%

BSD-3-Clause: 30% bigcode-openrail-m: 13.2%
(a) License in August 2023 (b) License in September 2024
. Many more findings in the paper
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i
More to be Mined .2

« How does the ecosystem evolve?

« How risks (like data poisoning, privacy
eakage) propagate in the ecosystem?

- How to mitigate such risks?

« How the development of LLM4SE
impact the society (e.g., energy

4
erta-base
a‘i‘fﬂ.‘iu //

_ B EleutherAl/gptn
Al

consumption)? U\ R N e e
» How contributors join & contribute?
» What make successful contributors? \ i

micr&soft/graphcodebert-base

\ Y
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i, . /‘ l/
T ¥/
2% i
// Q==

« Many more !
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MSR4APR: Are There New Gold Mines?

Out of Sight, Out of Mind: Better Automatic Vulnerability Repair

ICSE'24 by Broadening Input Ranges and Sources
Xin Zhou Kisub Kim" Bowen Xu
Singapore Management University Singapore Management University North Carolina State University
Singapore Singapore USA
xinzhou.2020@phdcs.smu.edu.sg kisubkim@smu.edu.sg bxu22@ncsu.edu
DongGyun Han David Lo
Royal Holloway, University of London  Singapore Management University
United Kingdom Singapore
donggyun.han@rhul.ac.uk davidlo@smu.edu.sg
Historical Data Synthesized Data
Historical Fixing Data Synthesized Fixing Data 2Xx
~ Historical Vul-fixing Data == < from CWE Knowledge =+ LLMs = Fixed
CWE Knowledge | Vulnerabilities

7
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MSR4APR: Are There New Gold Mines?

Main ReSUItS Infrequent —— \WulMaster
—— WulRepair

Type Approach EM BLEU
LLM GPT-3.5 [55] 3.6 8.8 =tio uent
GPT-4 [56] 5.3 9.7
task-specific _VRepair [9] 8.9 11.3
VulRepair [19] (SOTA) 10.2 21.3
Ours VulMaster 20.0 29.3
Long Top Risky

« VulMaster almost doubles the Exact Match
(EM) score compared to the previous SOTA.

Less Risky

-long/short: the length of the code
-frequent/infrequent: the vulnerability

« VulMaster consistently outperforms the SOTA
type frequencies

in diverse aspects. _
-more/less risky: top 10 most dangerous

CWE or not B
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Expanding MSR: What is a “"Software Repository”?

Code vs. Models & Data Ecosystem

Code History vs. Model & Data Provenance

Historical vs. Synthesized
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MSR4<?>: Plenty of Open Exploratlons in the World of MSR

!

5.

g “Beyond every map lies a new treasure. Those
~+ bold enough to seek it will change the world.” | A
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MSR for Trustworthy Al (MSR4TAI)

An Empirical Study of Bugs in Machine Learning Systems

Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang
School of Information Systems
Singapore Management University, Singapore
{ferdianthung, shaoweiwang.2010,davidlo,Ixjiang } @ smu.edu.sg

ISSRE'12
First work employing MSR to gain insight into ML bugs
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MSR for Automated Program Repair (MSR4APR)

History Driven Program Repair

Xuan-Bach D. Le, David Lo Claire Le Goues
School of Information Systems School of Computer Science
Singapore Management University Carnegie Mellon University
{dxb.le.2013.davidlo } @smu.edu.sg clegoues @cs.cmu.edu

SANER'16

First work that automatically analyze hundreds of repositories
for more effective automated program repair

Most cited SANER'16 paper
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Reflection of the Past

Expanding MSR: What is a “Software Repository”?

Code vs. Models & Data Ecosystem

Code History vs. Model & Data Provenance

Historical vs. Synthesized

Computing and
Information Systems

“Beyond every map lies a new treasure. Those
bold enough to seek it will change the world.” |
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Charting the Future
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