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Singapore Management University

 Third university in Singapore
 Number of students:
 8000+ (UG)
 1800+ (PG)

 Schools:
 Business
 Economics
 Accountancy
 Law
 Social Science
 Computing
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Center for Research on Intelligent Software Engineering (RISE)
Elsevier JSS’21, Bibliometric Study

CSRankings, SE, June 2024
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Experience with AI4SE

IEEE Computer’09
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Experience with AI4SE

SANER’16

KDD’09 ICSE’10

Test oracle generation Intelligent issue trackers

Intelligent program repair - Facebook 
Engineers

Intelligent crowdsourced SE 

MSR’13

“History-driven 
program repair 

influence
our work, the overall 
pipeline is similar”
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Current Interest in AI4SE
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History Challenges Vision

Roadmap I Roadmap II Call4Action

AI for Software Engineering

Towards Software Engineering 2.0
ICSE’23 Future of SE 

Post-Proceedings & Talk



SMU Classification: Restricted

“If you want to go far, go together” – African Proverb 
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Charting New Frontiers: Limits, Threats, and Ecosystems of
 LLMs in Software Engineering

ESEM 2024, Barcelona, Spain
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Large Language Models (LLMs)
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LLM Can Greatly Help SE Tasks
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Multi-LLM collaboration + data-centric innovation = 2x efficacy

Early work on LLM4SE, most cited paper of ICSME 2020
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LLMs Seem to Win for Many SE Scenarios

TOSEM 2024
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LLMs Seem to Win for Many SE Scenarios
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Is It a Silver Bullet? Or Just a Hype? 

“I have not failed. I've just 
found 10,000 ways that 

won't work.”
– Thomas Edison, inventor
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Limits

Threats

Ecosystems

20



SMU Classification: Restricted

Limits

Threats

Ecosystems

21



SMU Classification: Restricted

Limit 1: LLM4SE Performs Badly on Tail Data
AS

E 
20

23
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3. Evaluation on 
Head and Tail

1. Long Tailed Data 2. Fine-tuning

Experiment Design
How does LLM4SE perform on long-tailed data?

API Sequence Recommendation
Code Revision Recommendation

Vulnerability Type Prediction

Sorted Label IDs
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Top 5% vulnerability 
types occupy half of 

the data samples.
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Results

                        28

30-200% Difference 
in Tail vs. Head
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Mitigation

Effectiveness

Vulnerability Type Prediction (Accuracy)

Fine-tuning

Task 
Dataset LLMs

Assigning more weight to tail samples 
during parameter updates

FL (ICCV17) LTR (CVPR22)
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Mitigation techniques have the potential to 
improve LLMs' handling of tails, although 

the effectiveness is limited.
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Limit 2: LLM4SE Hallucinates
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Hallucination: the generation of output that is 
erroneous, nonsensical, or detached from reality
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Motivation

Variable “j” is 
used outside 
the “for” loop

Java code generated 
for LeetCode 

Problem 1957 - 
Delete Characters to 
Make Fancy String

Bugs? Code smell? Vulnerability?

No formal studies exist on the reliability 
and quality of ChatGPT-generated code.
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Experiment Design

                        33

Data Collection 2,033 code 
tasks

ChatGPT

4,066 generated code (Python & Java)Test Suites from LeetCode 

Performance & 
Quality Issues

Runtime information Static Analysis Information

Open Card Sort 
Discussion Code Quality Issues

Prompts
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Results

The performance of ChatGPT is significantly and substantially 
affected by time that tasks are introduced and task difficulty.
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Results

Issues in ChatGPT-generated Code

Compilation and Runtime Errors
177 (14%)

                        35

Code Style and Maintainability
687 (52%)

Wrong Outputs
1082 (83%)

Performance and Efficiency
51 (4%)
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Mitigation – Self-Repair

Fixed Rate

Code Style and Maintainability

Performance and Efficiency

Solution and Inaccuracies

Execution Errors
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Fixing Prompts with Feedback from 
Static & Dynamic Analysis 

Code Quality Issues

ChatGPT Fixed Code

4,066 generated code 
(Python & Java)
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Mitigation – Iterative Repair

Iterative repairing is effective 
however after the first few 

iteration the result stabilizes.

                        37
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Related Studies on Limits of LLM4SE @ ESEM 2024
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Related Studies on Limits of LLM4SE @ ESEM 2024
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Limits

Threats

Ecosystems
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Threat 1: LLM4SE Can Have Backdoors

                        53

TSE 2024
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Backdoor (aka. Poisoning) Attack of Code Models
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Existing Works on Backdoor Attacks for Code Models
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Existing Triggers are not Stealthy

“adding the same piece of 
dead code to any given 

program x.”

“add pieces of dead code drawn
randomly from some 

probabilistic grammar.”

(a) Fixed triggers distribution (b) Grammar triggers distribution

Over 99% of poisoned examples 
can be detected automatically!
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Does It Mean There is No Real Problem?

(a) Fixed triggers distribution (b) Grammar triggers distribution

Over 99% of poisoned examples 
can be detected automatically!

RQ: Could backdoors be stealthily introduced 
to LLM4SE solutions via data poisoning?

                        57
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AFRAIDOOR: Creating Stealthy Backdoor

 Stealthy Strategy 1: Variable Renaming as Triggers

(1) Do not introduce dead code, which is unnatural; 
(2) Variable locations in different programs are diverse. 

Stealthy!

def save_session(self, s, data):
   return 
self.session_interface.save_session(
          self, s, data)

(a) An example of variable renaming

def domain_to_fqdn(addr, event=None):
   from .generic import get_site_proto

event = event or get_site_proto()
loadtxt ='{proto}://{domain}'.format(

          proto=event, domain=addr)
   return loadtxt

(b) An example of variable renaming
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AFRAIDOOR: Creating Stealthy Backdoor

 Stealthy Strategy 1: Variable Renaming as Triggers
 Stealthy Strategy 2: Generate Adversarial Variable Names 

                           (using a simple crafting model, with no knowledge 
                               of victim model)

Adversarial variables are closer to 
the original ones! Stealthy!

t-SNE visualization (red dots are poisoned data)

fixed grammar ours
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Results Analysis: Automated Detection

 Four state-of-the-art defenses: (1) spectral signature, (2) activation 
clustering, (3) ONION, (4) outlier variable detection

1.16

94.47 94.96

Spectral Signature
Ours Fixed Grammar

13.22

41.58

21.33

Activation Clustering
Our Fixed Grammar

Finding 1: Our poisoned examples are much harder to be automatically 
detected

Detection 
success rate
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Results Analysis: Human Review

Finding 2: Our poisoned examples are much 
harder to be manually detected
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Results Analysis: Human Review

Finding 3: Participants take longer time to label 
examples generated by our methods
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Threat 2: LLM4SE Can Cause Privacy/Legal Risks

ICSE 2024
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Threat 2: LLM4SE Can Cause Privacy/Legal Risks

LLM4SE memorizes and outputs vulnerable code, strongly 
licensed code, and software secrets from its training data!

                        65
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Methodology Overview

Training Data
Model 

outputs

Memorization

Identify 
Type 1 clones

More than
6 lines Keywords No. Models

CodeParrot 588
StarCoder 309
CodeT5 301

CodeGen 291
SantaCoder 110

1. Non-Prompt Generation
2. Temperature-Decaying Generation
3. Prompt-Conditioned Generation
4. Two-Step Generation

Hugging Face Statistics
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Analysis of Memorization in LLM4SE

Privacy Information 
Types

No. Occurrences 
(out of 20,000)

Public IP addresses 25
Email Addresses 914
API Keys 25

Finding 1: Approximately 57% of 
outputs from CodeParrot contain 
memorization (ranging 6-53 lines)

Finding 2: LLM4SE can leak many 
software secrets, even not intentionally 

prompted to.

Finding 3: Duplicates in training data 
are more likely to be memorized!

More insights 
in the paper!
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Multiple Threats
IC
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Security

Privacy
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Related Studies
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Recently shared on arxiv
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Many Open Problems

                        73

LLM4SE
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Limits

Threats

Ecosystems
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Ecosystem of LLM4SE

“Everything connects to 
everything else.” – 
Leonardo da Vinci, 
polymath

                        75



SMU Classification: Restricted

Ecosystem of LLM4SE
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Recently shared on arxiv
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Complex Dependencies in LLM4SE Ecosystem

codesearchnet

Code-to-Text
dataset

CodeXGLUE

VS Code
Plugin

CodeBERT-base

Fine-tuned
Model

include pre-train

fine-tune

fine-tune

support

use

include

                        83

Licensing     Relationship     Documentation     Authorship     Provenance     …
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Licensing

Finding 2: For the remaining 42%, they tend to adopt less-restrictive license

                        84

Finding 1: Over 58% models do not specify license 
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Relationships Among Models

                        86

Need for efficient training and 
inferences
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Relationships Among Models

Need for efficient training and 
inferences
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Need for cross-platform 
compatibility
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Relationships Among Models

Need for efficient training and 
inferences

Need for security
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Check our paper to see 
more insights!

Need for cross-platform 
compatibility



SMU Classification: Restricted

Limits
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Limits, Threats and Ecosystem

                        91

LLMs struggle to perform well 
on “tails”

Limits Threats Ecosystem

ChatGPT performance is affected by 
task difficulty and time that tasks are 

introduced

Poisoning Attack

Private Data Leakage Authorship

Relationship

Provenance

Documentation

Licensing

…
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Charting New Frontiers: Limits, 
Threats, and Ecosystems of 

LLMs in Software Engineering
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Vision/Dream

Future of Software Engineering Track, ICSE 2023

“Anything one person can imagine, 
other people can make real.”

- Jules Verne
                        93
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Vision/Dream

Future of Software Engineering, ICSE 2023
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Vision/Dream

Future of Software Engineering Track, 
ICSE 2023

: Software Engineering 2.0
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Software Engineering 2.0
Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 
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Software Engineering 2.0

Smart Tool

Smart Workmate

Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 
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Software Engineering 2.0

Manager

Peer

Assistant

Smart Tool

Smart Workmate

Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 
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Software Engineering 2.0
Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 

Smart Tool

Smart Workmate

H-H

H-A

A-A

Organization
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Software Engineering 2.0
Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 

Smart Tool

Smart Workmate

H-H

H-A

A-A

Organization

H-A
Tertiary

Edu.

Job 
Market
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Market

Agent 
Vendors
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Software Engineering 2.0
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Software Engineering 2.0

History Challenges Vision

Roadmap I Roadmap II Call4Action

AI for Software Engineering

Towards Software Engineering 2.0

ICSE 2023 Future of Software Engineering
Post Proceedings, 17 pages

                        102



SMU Classification: Restricted

Software Engineering 2.0: One Year after ICSE 2023
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Software Engineering 2.0: One Year after ICSE 2023
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Agent 
Market

Software Engineering 2.0
Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 

Smart Tool

Smart Workmate
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Organization
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Many Unknowns: Much Empirical Research Needed
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Many Unknowns: Much Empirical Research Needed

• Benchmarking
 Different LLM agents
 Different SE tasks
 Different dataset 

characteristics
 Different ways to 

collaborate
 More annotated 

datasets
                        110
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Many Unknowns: Much Empirical Research Needed

ICSME 2020

TOSEM 2024

• Benchmarking
 Different LLM agents
 Different SE tasks
 Different dataset 

characteristics
 Different ways to 

collaborate
 More annotated 

datasets
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Many Unknowns: Much Empirical Research Needed

• Benchmarking
 Different LLM agents
 Different SE tasks
 Different dataset 
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 Different ways to 
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 More annotated 
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Many Unknowns: Much Empirical Research Needed
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Many Unknowns: Much Empirical Research Needed

VS.

Better Productivity? Better Quality? Tradeoff?
What are the Successful/Failed Scenarios? 
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Many Unknowns: Much Empirical Research Needed
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Many Unknowns: Much Empirical Research Needed

“It seems that there could be potentially disastrous 
results if the automation does not [do things] 
correctly..”

How Practitioners Perceive the Relevance of Software 
Engineering Research
 

ESEC/FSE 2015

What requirements should be 
met for effective human-AI agent 

teamwork?

                        124



SMU Classification: Restricted

Many Unknowns: Much Empirical Research Needed

Agent
Market

Smart Tool

Smart Workmate

H-H

H-A

A-A

Organization

H-A
Tertiary

Edu.

Job 
Market

Economics
Law

Ethics

Agent
Vendors

Symbiotic workforce of autonomous, responsible, intelligent agents & engineers 

Which tasks should be delegated 
to AI agents, and which one 
should be kept by humans?

Should nature of jobs for 
engineers change?
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Many Unknowns: Much Empirical Research Needed
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Thank You!

OUB Chair Professorship Fund
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Interested to Join Us? Visiting Student Openings at RISE
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New ACM Conference on AI Foundation Models & SE

FORGE’24
 ~100 registrants
 23 countries from 6 continents
 Industry (~25%), academia & 

government
 Including: Microsoft, Google Brain, 

JetBrains, Volvo, VW, Hitachi, etc.
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New ACM Conference on AI Foundation Models & SE

                        133

Main 
+ Benchmarking

+ Industry
+ Tutorial

Tracks

Co-Located with ICSE 2025
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Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg
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