

Testing the Limits: What Breaks and How to Partially Fix LLM4ASE?

David Lo

School of Computing and Information Systems

Testing the Limits of LLM4ASE

Why test the limits of LLM4ASE? What can we learn from history of AI4SE?

What things break when we test the limits? How to partially fix them?

What is the road ahead? What can we achieve?

Why Test the Limits? What Can We Learn from AI4SE History?

School of Computing and Information Systems

AI for Software Engineering (AI4SE)

MSR 2004: International Workshop on Mining Software Repositories 2004.msrconf.org

IEEE Computer 2009

AI for Software Engineering (AI4SE)

Andreas Zeller @AndreasZeller · Mar 31, 2022

Machine learning rules! Machine Learning with and for Software Engineering is now the #1 topic in terms of submitted papers, before alltime favorites such as software testing and analysis.

Top 10 Topics – Submitted

Topics	# Submitted Papers	# Accepted Papers	Acceptance Rate
Machine Learning with and for SE	237	74	31,22%
Software Testing	181	47	25,97%
Program Analysis	117	35	29,91%
Evolution and maintenance	105	31	29,52%
Mining Software Repositories	105	23	21,90%
Software Security	85	25	29,41%
Human Aspects of SE	68	20	29,41%
Validation and Verification	53	15	28,30%
Tools and Environments	49	12	24,49%
Reliability and Safety	46	15	32,61%

SINGAPORE MANAGEMENT

...

Wave 1: Deep Learning

Toward Deep Learning Software Repositories

Martin White, Christopher Vendome, Mario Linares-Vásquez, and Denys Poshyvanyk Department of Computer Science College of William and Mary Williamsburg, Virginia 23187–8795 Email: {mgwhite, cvendome, mlinarev, denys}@cs.wm.edu

MSR 2015

Deep Learning for Just-In-Time Defect Prediction

Xinli Yang*, David Lo[†], Xin Xia^{*‡}, Yun Zhang*, and Jianling Sun* *College of Computer Science and Technology, Zhejiang University, Hangzhou, China [†]School of Information Systems, Singapore Management University, Singapore zdyxl@zju.edu.cn, davidlo@smu.edu.sg, {xxia, yunzhang28, sunjl}@zju.edu.cn

QRS 2015

Wave 1: Deep Learning

Key Question: How Can We Learn Better Representations of Code and Other Software Artifacts?

Deep Belief Network (DBN)

Convolutional Neural Network (CNN)

Recurrent Neural Network (RNN)

Long Short-Term Memory Network (LSTM)

Transformer

Computing and Information Systems

Wave 1: Deep Learning

2017

FSE

Despite the wave, answer is **not always positive**

wfu@ncsu.edu,tim.menzies@gmail.com

Simple methods can do better than a deep learning approach for mining SO

ISSTA 2021

Deep Just-in-Time Defect Prediction: How Far Are We?

Zhengran ZengYuqun Zhang*Southern University of
Science and Technology
ChinaSouthern University of
Science and Technology
China12032889@mail.sustech.edu.cnzhangyq@sustech.edu.cn

Haotian Zhang Kwai Inc. China zhanghaotian@kuaishou.com Lingming Zhang University of Illinois Urbana-Champaign United States lingming@illinois.edu

Simple methods can do better than DL approaches for JIT defect-prediction

Wave 1: Deep Learning

FSE

 $\mathbf{0}$

201

SEM

Finding the limits (weaknesses) can result in **new innovations**

Wei Fu, Tim Menzies Com.Sci., NC State, USA wfu@ncsu.edu,tim.menzies@gmail.com

Prediction of Relatedness in Stack Overflow: Deep Learning vs. SVM

A Reproducibility Study

Bowen Xu* Singapore Management University bowenxu.2017@smu.edu.sg Amirreza Shirani* University of Houston ashirani@uh.edu

David Lo

Mohammad Amin Alipour

Computing and Information Systems

Highly Commended Paper Award (Best Paper Runner Up)

Improve dataset, create new SOTA baseline

Wave 1: Deep Learning

Finding the limits (weaknesses) can result in **new innovations**

ISSTA 2021

Deep Just-in-Time Defect Prediction: How Far Are We?

Zhengran ZengYuqun Zhang*Southern University of
Science and Technology
ChinaSouthern University of
Science and Technology
China12032889@mail.sustech.edu.cnzhangyq@sustech.edu.cn

Haotian Zhang Kwai Inc. China zhanghaotian@kuaishou.com

Lingming Zhang University of Illinois Urbana-Champaign United States lingming@illinois.edu

ICPC 2022

Simple or Complex? Together for a More Accurate Just-In-Time Defect Predictor

Xin Zhou, DongGyun Han, and David Lo School of Computing and Information Systems, Singapore Management University Singapore

xinzhou.2020@phdcs.smu.edu.sg,{dhan,davidlo}@smu.edu.sg

Combine deep learning and simple methods to achieve SOTA

Computing and Information Systems

Invited for EMSE extension

Wave 2: Large Language Models (LLMs)

Computing and Information Systems

Language Model Potentials

On the Naturalness of Software

Computing and Information Systems

Won Most Influential Paper Award @ ICSE 2022

ICSME 2020

Sentiment Analysis for Software Engineering: How Far Can Pre-trained Transformer Models Go?

Ting Zhang, Bowen Xu^{*}, Ferdian Thung, Stefanus Agus Haryono, David Lo, Lingxiao Jiang School of Information Systems, Singapore Management University Email: {tingzhang.2019, bowenxu.2017}@phdcs.smu.edu.sg, {ferdianthung, stefanusah, davidlo, lxjiang}@smu.edu.sg

Is LLM a silver bullet or hype for software engineering?

- Consider a common task (NLP and SE): sentiment analysis
- Many specialized techniques have been proposed for SE

ICSME 2020

Sentiment Analysis for Software Engineering: How Far Can Pre-trained Transformer Models Go?

Ting Zhang, Bowen Xu*, Ferdian Thung, Stefanus Agus Haryono, David Lo, Lingxiao Jiang School of Information Systems, Singapore Management University Email: {tingzhang.2019, bowenxu.2017}@phdcs.smu.edu.sg, {ferdianthung, stefanusah, davidlo, lxjiang}@smu.edu.sg

Is LLM a silver bullet or hype for software engineering?

School of Computing and Information Systems

ICSME 2020

Sentiment Analysis for Software Engineering: How Far Can Pre-trained Transformer Models Go?

Ting Zhang, Bowen Xu*, Ferdian Thung, Stefanus Agus Haryono, David Lo, Lingxiao Jiang School of Information Systems, Singapore Management University Email: {tingzhang.2019, bowenxu.2017}@phdcs.smu.edu.sg, {ferdianthung, stefanusah, davidlo, lxjiang}@smu.edu.sg

Is LLM a silver bullet or hype for software engineering?

Metric	Group	API	SO	Арр	GitHub	Jira	CR
Macro-avg F1	Best PRIOR	0.66	0.59	0.53	0.82	0.91	0.72
	Best PTM	0.82	0.80	0.61	0.92	0.98	0.84
	Improvement	24.2%	35.6%	15.1%	12.2%	7.7%	16.7%
Micro-avg F1	Best PRIOR	0.82	0.83	0.77	0.83	0.92	0.78
	Best PTM	0.89	0.90	0.88	0.92	0.98	0.88
	Improvement	8.5%	8.4%	14.3%	10.8%	6.5%	12.8%

ICSME 2021

Assessing Generalizability of CodeBERT

Xin Zhou, DongGyun Han, and David Lo School of Computing and Information Systems, Singapore Management University xinzhou.2020@phdcs.smu.edu.sg, {dhan, davidlo}@smu.edu.sg

Is LLM a silver bullet or hype for software engineering?

- CodeBERT (EMNLP'20) was not evaluated beyond its pre-trained dataset
- Only shown effective on 2 tasks and not compared with SE SOTA
- Can it generalize to additional data, task, and baselines?
- Answer: Yes, Yes, Yes -- by 3.7% (new task) to 31% (old task, new data)
- *Tradeoff*: Much more computation resources
 - CodeBERT is 9-24x slower than NCS and UNIF (10k documents)
 - Gap is bigger for larger corpus

Most cited ICSME 2021 paper

LLMs Seem to Win for Many ASE Scenarios

ASE 2021

Finding A Needle in a Haystack: Automated Mining of Silent Vulnerability Fixes

Jiayuan Zhou^{*}, Michael Pacheco^{*}, Zhiyuan Wan[†], Xin Xia^{$\ddagger \parallel}$ </sup>, David Lo^{\$}, Yuan Wang^{*} and Ahmed E. Hassan[¶]

Finding silent vulnerability fixes

ICPC 2022

Benchmarking Library Recognition in Tweets

Ting Zhang, Divya Prabha Chandrasekaran, Ferdian Thung, David Lo School of Computing and Information Systems, Singapore Management University {tingzhang.2019,divyaprabha.2021,ferdianthung,davidlo}@smu.edu.sg

Mining social media for library review and rant

LLMs Seem to Win for Many ASE Scenarios

FSE 2022

AUTOPRUNER: Transformer-Based Call Graph Pruning

Thanh Le-Cong Hong Jin Kang Truong Giang Nguyen Stefanus Agus Haryono David Lo Xuan-Bach D. Le University of Melbourne Melbourne, Victoria, Australia Quyet Thang Huynh Hanoi University of Science and Technology Hanoi, Vietnam

Neurosymbolic analysis to deal with imprecision of static analysis

TSE 2023

Invalidator: Automated Patch Correctness Assessment via Semantic and Syntactic Reasoning

Thanh Le-Cong, Duc-Minh Luong, Xuan Bach D. Le, David Lo, Nhat-Hoa Tran, Bui Quang-Huy and Quyet-Thang Huynh

Computing and Information Systems Neurosymbolic analysis to determine patch correctness

LLMs Seem to Win for Many ASE Scenarios

Large Language Models for Software Engineering: A Systematic Literature Review

XINYI HOU^{*}, Huazhong University of Science and Technology, China YANJIE ZHAO^{*}, Monash University, Australia YUE LIU, Monash University, Australia ZHOU YANG, Singapore Management University, Singapore KAILONG WANG, Huazhong University of Science and Technology, China LI LI, Beihang University, China XIAPU LUO, The Hong Kong Polytechnic University, China DAVID LO, Singapore Management University, Singapore JOHN GRUNDY, Monash University, Australia HAOYU WANG[†], Huazhong University of Science and Technology, China

LLMs Seem to Win for Many ASE Scenarios

Have we tested the <u>limits</u> of LLM4ASE?

School of Computing and Information Systems

Testing the Limits of LLM4ASE

Why test the limits of LLM4ASE? What can we learn from history of AI4SE?

What things break when we test the limits? How to partially fix them?

What Things Break? How to Partially Fix Them?

Long-Tailed Data

Size & Latency

LLM4ASE

Data

Data Evolution

Backdoor

Hallucination

Form over Content

School of Computing and Information Systems

Model

Data

Long-Tailed Data

School of Computing and Information Systems

LLM4ASE Performs Badly on Tail Data

The Devil is in the Tails: How Long-Tailed Code Distributions Impact Large Language Models

Xin Zhou[†], Kisub Kim^{*†}, Bowen Xu^{†‡}, Jiakun Liu[†], DongGyun Han[§], David Lo[†] [†]Singapore Management University, Singapore {xinzhou.2020, bowenxu.2017}@phdcs.smu.edu.sg, {kisubkim, jkliu, davidlo}@smu.edu.sg [‡]North Carolina State University, USA bxu22@ncsu.edu [§]Royal Holloway, University of London, UK donggyun.han@rhul.ac.uk

2023

ASE

Experiment Design

How does LLM4ASE perform on long-tailed data?

Results

Mitigation

Effectiveness

Vulner. Type	Head	Tail	All
TreeVul	87.0	60.6	73.1
+ FL 30	82.8 (4.2% 🜙)	59.4 (1.2% 🗸)	70.5 (2.6% 🗸)
+ LTR 31	87.0 (0.0% –)	61.2 (0.6% 个)	73.4 (0.3% †)
CodeBERT	82.8	59.4	70.5
+ FL[30]	81.5 (1.3% 🜙)	61.7 (2.3% ↑)	71.1 (0.6% 个)
+ LTR[31]	82.8 (0.0% -)	60.3 (0.9% ^)	70.9 (0.4% †)
CodeT5	81.6	50.7	$\bar{65.3}$
+ FL 30	80.3 (1.3%)	53.4 (2.7% 1)	65.9 (0.6% 1)
+ LTR <mark>31</mark>	80.3 (1.3% ↓)	54.5 (3.8% ^)	66.7 (1.4% †)

Vulnerability Type Prediction (Accuracy)

Mitigation techniques have the potential to improve LLMs' handling of tails, although the effectiveness is is limited.

Data Evolution

LLMs are Affected by Data Evolution

FSE 2023

Martin Weyssow martin.weyssow@umontreal.ca Université de Montréal Xin Zhou xinzhou.2020@phdcs.smu.edu.sg Singapore Management University

David Lo davidlo@smu.edu.sg Singapore Management University Houari Sahraoui sahraouh@iro.umontreal.ca Université de Montréal

kisubkim@smu.edu.sg

Singapore Management University

Adapting LLMs considering rapid changes in data

- Data continues to change, creating OOD data
 - E.g., new API, new library, new programming language, etc.
- We need to continue to fine-tune LLM models on new data to catch up
- However, can this lead to "catastrophic forgetting"?
 - LLMs may forget prior seen data and do poorly on prior data.
- Can this issue be mitigated or addressed?

Computing and Information Systems

Experiment Design

Does data evolution lead to "catastrophic forgetting"?

Results

API Usage Prediction (Encoder-based LLM)

LLM forgets the data in the Security domain and results in up to 55% performance drop.

Expensive, Simplest Technique

Mitigation techniques help LLM in reducing their tendency to forget previously seen datasets.

Backdoor

Computing and Information Systems

Attack Model

Attack Model

Wan, Y., Zhang, S., Zhang, H., Sui, Y., Xu, G., Yao, D., ... & Sun, L. You see what I want you to see: poisoning vulnerabilities in neural code search. FSE 2022

<pre>1. def add(a, b): 2. return a+b</pre>	 def add(a, b): import logging for i in range(0): logging.info("Test message: aaaaa") return a+b 	1. def add(a, b): 2. <i>C~T</i> 3. return a+b	<pre>\$\mathcal{T} → I P\$ \$I → import logging\$ \$P → for i in range(C): logging.0(M)\$ \$C → - 100 99 98 0\$ \$O → debug info warning error critical\$ \$M → 'Test message: {AAAAA}'\$ \$A → a b y z\$ </pre>
(a) Original program	(b) Fixed trigger	(c) Grammar trigger	(d) The probabilistic CFG ${\cal T}$
<i>"adding the same to any given</i>	-	"add pieces of co randomly fro probabilistic g	m some

Adversarial Perturbations to Variable Names as Stealthy Backdoor

Size and Latency

School of Computing and Information Systems

LLM4ASE is Large and Slow

ASE 2022

Compressing Pre-trained Models of Code into 3 MB

Jieke Shi, Zhou Yang, Bowen Xu^{*}, Hong Jin Kang and David Lo School of Computing and Information Systems Singapore Management University

Is LLM a *practical* solution for software engineering?

Developers often prefer AI4SE tools that can be loaded into the IDE.

- Privacy: Sending data to third-party cloud services can result in leakage
- Latency: High latency due to poor network conditions degrades user experience

However, when deploying LLMs (>400MB, 1.5s/query) the following cannot be met:

- "50MB model is upper bound, and 3MB is preferred in modern IDE"
- "0.1 seconds is preferred in modern IDE or editor design"

-- VSCode team

Nominated for ACM SIGSOFT Distinguished Paper Award

Process: Compressing LLM4ASE with "Compressor"

Hyper-parameter	LLM	Search Space	1 Model Search	Hyper-parameter	Small Model
Layers	12	[1, 12]	Genetic Algorithm	Layers	12
Hidden Size	768	[16, 768]		Hidden Size	96
Attention Heads	12	1,2,4,8	Fitness = GFLOPs - /t - T/	Attention Heads	8
Hidden Size of FFN	3072	[32,2072]	<i>Maximize</i> small model's computational power (<i>GFLOPs</i>)	Hidden Size of FFN	64
Vocabulary Size	50k	[1k, 50k]	<i>Minimize</i> difference between	Vocabulary Size	1000
			its size (<i>t</i>) and the target size (<i>T</i>)		
	○○		Minimize the difference between their outputs		
LLM4ASE		2	Knowledge distillation	Small model	

Results: Effectiveness on Various LLMs

Results of employing Compressor on CodeBERT and GraphCodeBERT

Model -	Vulnerabilit	y Prediction	Clone Detection	
Model	Accuracy	Efficiency	Accuracy	Efficiency
CodeBERT (3 MB, 160×)	-3.84%	+334%	-0.80%	+328%
GraphCodeBERT (3 MB, 160×)	-2.26%	+182%	-2.48%	+448%

Takeaway: Compressor compresses LLMs from 481 MB to 3 MB (**160× smaller**) and boosts efficiency by up to 448% (**5.48× faster**), while maintaining up to **99.2% of the original performance**.

New Work

Smaller, Faster, Greener: Compressing Pre-trained Code Models via Surrogate-Assisted Optimization

Jieke Shi	Zhou Yang	Hong Jin Kang
jiekeshi@smu.edu.sg	zyang@smu.edu.sg	hjkang@cs.ucla.edu
School of Computing and Information	School of Computing and Information	Department of Computer Science,
Systems, Singapore Management	Systems, Singapore Management	University of California, Los Angeles
University	University	Los Angeles, USA
Singapore, Singapore	Singapore, Singapore	
Bowen Xu	Junda He	David Lo
bxu22@ncsu.edu	jundahe@smu.edu.sg	davidlo@smu.edu.sg
Department of Computer Science,	School of Computing and Information	School of Computing and Information
North Carolina State University	Systems, Singapore Management	Systems, Singapore Management
Raleigh, USA	University	University
	Singapore, Singapore	Singapore, Singapore

- Simultaneously optimize model size, effectiveness, efficiency, and energy consumption
- We compress LLMs 160× smaller and
 - **boost efficiency** by up to **218× faster**, -
 - reduce energy consumption by up to 173×, -
 - while maintaining up to **99.42%** of the original performance. -

Robustness

Computing and Information Systems

Robustness Issue

۲.	Adversar	al Examples for Models of Code			
URI ALON, 1		Γ, Technion, Israel chnion, Israel ′, Technion, Israel			
array) { pped = true; = 0; .length && ;	; swapped; i++){	<pre>void f2(int[] ttypes){ boolean swapped = true; for (int i = 0; i < ttypes.length && swapped; i++){</pre>	<pre>void f3(int[] array) { boolean swapped = true; for (int i = 0; i < array.length && swapped; i++) {</pre>		

code2vec, GNN of code are not robust to minor semantic-preserving perturbations *Tasks*: predict method and variable name

LLM4ASE is Not Robust

School of

Natural Attack: Fooling Both Bot and Human

Process

Results

lst		ttack succe lue indicates	e ss rate s <i>low</i> robustness)	
not robust	Task	CodeBERT		
	TASK	MHM-NS	Greedy-Attack	ALERT
	Vulnerability Detection	35.66%	49.42% (+13.76%)	53.62% (+17.96%)
-	Clone Detection	20.05%	23.20% (+3.15%)	27.79% (+7.74%)
	Authorship Attribution	19.27%	30.28% (+11.01%)	35.78% (+16.51%)
	Average	24.99%	34.30% (+9.31%)	39.06% (+14.07%)

Robustness improvement through adversarial retraining (a high value indicates larger enhancement)

Tasks	CodeBERT-Adv			
18885	MHM-NS	Greedy	ALERT	
Vulnerability Detection	80.46%	87.93%	88.11%	
Clone Detection	59.33%	91.38%	87.31%	
Authorship Attribution	63.89%	83.97%	87.36%	
Overall	67.89%	87.76%	87.59%	

LLM robustness Can be improve

LLM is

LLM4ASE Hallucinates

Hallucination: "the generation of output that is erroneous, nonsensical, or detached from reality"

Refining ChatGPT-Generated Code: Characterizing and Mitigating Code Quality Issues

YUE LIU, Monash University, Australia THANH LE-CONG, The University of Melbourne, Australia RATNADIRA WIDYASARI, Singapore Management University, Singapore CHAKKRIT TANTITHAMTHAVORN, Monash University, Australia LI LI, Beihang University, China XUAN-BACH D. LE, The University of Melbourne, Australia DAVID LO, Singapore Management University, Singapore

LLM4ASE Hallucinates

Java code generated for LeetCode Problem 1957 -Delete Characters to Make Fancy String'

Variable "j" is used outside the "for" loop

Process

Results

The performance of ChatGPT is **significantly and substantially** affected by task difficulty, time that tasks are introduced, program size

Fixing through Interactions

Form over Content

Computing and Information Systems

ChatGPT for Software Q&A

57

ChatGPT for Software Q&A

Are We Ready to Embrace Generative AI for Software Q&A?

Bowen Xu^{*†}, Thanh-Dat Nguyen[‡], Thanh Le-Cong[‡], Thong Hoang[§], Jiakun Liu[†], Kisub Kim[†], Chen Gong[¶], Changan Niu^{||}, Chenyu Wang[†], Bach Le[‡], David Lo[†] *North Carolina State University, USA

bxu22@ncsu.edu [†]Singapore Management University, Singapore {bowenxu.2017, jkliu, kisubkim, chenyuwang, davidlo}@smu.edu.sg [‡]University of Melbourne, Austrialia {thanhdatn, congthanh.le}@student.unimelb.edu.au, bach.le@unimelb.edu.au [§]CSIRO's Data61, Australia [¶]University of Virginia, USA Nanjing University, China

james.hoang@data61.csiro.au

fzv6en@virginia.edu

niu.ca@outlook.com

2023

ASE

Process

>5 upvotes

Results

Human answers are similar to ChatGPT in terms of readability and clarity, but much better in terms of **usefulness** and **overall score**.

Data

Data Evolution

What Things Break? How to Partially Fix Them?

LLM4ASE

Long-Tailed Data

Size & Latency

Robustness

Backdoor

Hallucination

Form over Content

School of Computing and Information Systems

Model

Testing the Limits of LLM4ASE

Why test the limits of LLM4ASE? What can we learn from history of AI4SE?

What things break when we test the limits? How to partially fix them?

What is the road ahead? What can we achieve?

What is The Road Ahead? What Can We Achieve?

School of Computing and Information Systems

I. Fixing Things that Break

Long-Tailed Data

Size & Latency

Data Evolution

Robustness

Backdoor

Hallucination

Form over Content

School of Computing and Information Systems

II. Finding What Else Breaks

III. Finding What We Can Still Do with "Broken" LLM4ASE

IV. Beyond One LLM + Beyond LLMs

Computing and Information Systems

V. Do More on Data Centric Innovations

"99% of the papers were modelcentric with only 1% being datacentric" – **Andrew Ng (2021)**

OpenAl's CEO Says the Age of Giant Al Models Is Already Over

Sam Altman says the research strategy that birthed ChatGPT is played out and future strides in artificial intelligence will require new ideas.

School of Computing and Information Systems

What is the Road Ahead? What Can We Achieve?

Software Engineering 2.0

Vision: Software Engineering 2.0 (SE 2.0)

Symbiotic workforce of autonomous, responsible, intelligent bots and software engineers

Trustworthy and Synergistic Al4SE: Vision and the Road Ahead

ICSE'23 Future of SE Talk

Software Engineering 2.0

Trustworthy and Synergistic Artificial Intelligence for Software Engineering: Vision and Roadmaps

David Lo School of Computing and Information Systems, Singapore Management University, Singapore Email: davidlo@smu.edu.sg

Acknowledgement and Thanks: Students, Colleagues, Collaborators, Alumni of Center for Research on Intelligent Software Engineering (RISE)

Computing and Information Systems

Acknowledgement and Thanks:

School of Computing and Information Systems

Openings: Center for Research on Intelligent Software Engineering (RISE)

History

Homepage

Ranking

Table 3Most active institutions in software engineering			
Rank	Name		
1	University of California		
2	Carnegie Mellon University		
3	Nanjing University		
4	Microsoft Research		
5	Singapore Management University		

10 faculty members,**40+** research staffs & students

10 ongoing projects with a total amount of **S\$16.2M**.

Centre

Secure Mobile

School of Computing and Information Systems NRF Investigatorship project, 2023-2028 (\$3.2M) Individual research grant, similar to ERC Advanced

"If you want to go far, go together" – African Proverb

School of Computing and Information Systems

Thank you!

Questions? Comments? Advice? davidlo@smu.edu.sg