
David Lo

Efficient and Green Code LLMs:
Happier Software Engineers, Happier Planet

IFIP WG 2.4 Meeting, Singapore

 2

Code LLMs Has Helped Many SE Scenarios

TOSEM 2024

Many Open Problems

 3

LLM4SE

Code LLMs are Large, Slow, …

Developers often prefer local AI4SE tools due to privacy and latency concerns
• E.g., Apple banned internal use of external AI tools
• E.g., 20% of GitHub Copilot’s issues are related to network connectivity

Deploying LLMs to IDE has issues:

 4

RealityExpectations

• “50MB model is upper bound, and 3MB is
preferred in modern IDE”

• “0.1 seconds is preferred in modern IDE or
editor design”

- VSCode Team

CodeBERT
Size: > 400MB

Latency: > 1.5s/query

Code LLMs are Large, Slow, and not Green

LLM has high energy consumption and carbon footprint

 5

• Typical laptop’s battery can
support CodeBERT for 13.2 mins

• Using CodeBERT a thousand times
produces 0.14 kg of CO2
(driving a car for 1 km)

• Much worse for larger LLMs

0.1

1

10

100

1000

2018 2019 2020 2021 2022 2023 2024

GPT-2

GPT-3

CodeBERT

CodeX

ERNIE

GraphCodeBERT

CodeT5

GPT3.5

GPT-4

BERT

BART

T5

LaMDA

PaLM

mT5

Bard

Sparrow
LLaMA

M
od

el
 S

ize
(in

 B
illi

on
s

of
 P

ar
am

et
er

s) CodeLlama

Mixtral

Deepseek

PanGu-Coder2

Large Language Model Sizes Over Time

 6

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

 7

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

Stop Unhelpful Code Completion with FrugalCoder

First work to investigate the problem of unhelpful code completions

 8

TOSEM 2024

LLM-based Code Completion Brings New Challenges

High Computation & Latency
 LLM-based code completion requires large scale

computing and causes latency

Low Acceptance Rate
 Code completion requests are complex in real world
 Only 30% of completions are accepted by the users of

Github Copilot [GitHub22]

LLM-based Code Completion is Popular
 Each user of Github Copilot receives one suggestion

roughly every 3 minutes [GitHub22]

 9

[GitHub22] Albert Ziegler (GitHub), Eirini Kalliamvakou (GitHub),
Shawn Simister, et al. Productivity Assessment of Neural Code
Completion. MAPS’22 at PLDI’22.

What Cause Unhelpful Code Completions?

(1) Requests that are beyond the capability of the LLM

(2) Requests that do not contain sufficient information, e.g., meaningless
identifiers, vague intention, etc.

 10

FrugalCoder: Identify & Reject Unpromising Code Prompts

 Using lightweight estimator to estimate the quality of the code completion
 Decide whether to proceed based on a pre-defined threshold

Challenge 1: Efficacy
The estimator should effectively
estimate code completion quality

Challenge 2: Efficiency
The cost of running the estimator should be
lower than the LLM cost

 13

Do Nothing

FrugalCoder: Building the Estimator

def sum(nums):
 sum_num = 0
 for num in nums:
 sum_num += num
 return sum_num

def sum(nums):
 sum_num = 0
 for num in nums:

sum_num += num
 return sum_num

Code Snippet
Code Prompt

Ground Truth

sum_num += num
 return sum_num

Completion

Target
LLM

Score (e.g., CBLEU)

Generate Training Data

1.00

Estimator

Train Estimator

 14

Results: Feasibility of FrugalCoder (StarCoder + CodeGen2)

Efficacy

 Deep Learning as Estimator
 Lightweight Transformer

 Traditional ML as Estimator
Adaboost

Reject 20% of requests
with a 95.1% Precision

Efficiency

5.1 ms for each query

Efficacy

Reject 20% of requests
with a 92.1% Precision

Efficiency

0.1 ms for each query

Improve Acceptance Rate
from 27.4% to 33.0%

Improve Acceptance Rate
from 27.4% to 32.3%

 15

 17

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

Simplify Programming Language Grammars
IS

ST
A

20
24

First work to propose a programming language grammar for AI agents

 18

Won ACM SIGSOFT Distinguished Paper Award

AI Agents: The Third Audience

Human

Machine

AI Agents

Understand

Compile

Understand

Execute

Write

Write

Active “developers” that utilize programming to accomplish various tasks
 19

Source Code

Human-Centric Programming Language: Readability Counts

 20

Good practice

def sum (nums) : if

len (nums) = = 0 :

raise Value Error sum

_ num = 0 for num in

nums : sum _ num

numreturn= num sum _+

“Looks” wordy

Bad practice

def sum (nums) : if len (nums)

= = 0 : raise Value Error sum _ num

= 0 for num in nums : sum _ num

numreturn= num sum _+

“Looks” succinct

Human-Centric Programming Language Grammar Design

Visual Coding
Include symbols like line
breaks and indentions

Explicit Delimiters
Use explicit delimiters to define
code structures despite some
delimiters not being essential
for parsing

Are there better programming language grammars for AI agents?

 21

SimPy: A proof-of-concept AI-agent oriented grammar

 22

def two_sum(nums: list[int], target: int) -> list[int]:\n
chk_map: dict[int, int] = {}\n
for index, val in enumerate(nums):\n

compl = target - val\n
if compl in chk_map:\n

return [chk_map[compl], index]\n
chk_map[val] = index\n

return []

Python

SimPy

128 tokens

80 tokens

<def_stmt>two_sum nums:list[int] target:int<arrow>list
[int]<block_start>chk_map:dict[int int]={}<for_stmt>
index,val enumerate(nums)<block_start>compl=target-val
<if_stmt>compl<in>chk_map<block_start><return>[chk_map
[compl] index]<block_end>chk_map[val]=index<block_end>
<return>[]<block_end>

Tokenized by CodeBERT

Replace notations with tokens
Replace keywords and symbols (e.g., “if”,
“for”, etc.) with specialized tokens

Restrict coding style
Streamline white spaces, line breaks,
indents, etc. preserving only essential
separators

Simplify grammar tokens
For every grammar token in every
production, we review whether it can be
removed, merged with others, or replaced
with white spaces

Same Execution
Results

Making AI Agent Understand and Write SimPy

 28

LLM first trained on Python and then on SimPy (with equivalent sample size)

Python Dataset

Converter

SimPy Dataset

Further Pre-train Further Pre-train
Base Agent

(natural language)
Python Agent SimPy Agent

 SimPy is more similar to Python than natural language

SimPy’s Possible Usage Scenarios

Natural Language

SimPy Code

Executor

Program Results

Natural Language

AI Agent

Basic usage scenario

 29

Extended usage scenario

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent

: DualCode

RQ1: Token Reduction

 30

• SimPy reduces the number
of tokens required for source
code representation.

• CodeBERT and GPT-4
benefiting from a 34.7%
and 10.4% reduction.

RQ2: Efficacy of AI Agents Trained on SimPy

 31

Model Training Strategy Pass@10

CodeGen-NL
(350M)

Python 7.32%
Python->SimPy 9.15%

TinyLlama
(1.1B)

Python 13.41%
Python->SimPy 14.02%

Pythia
(1.0B)

Python 9.76%
Python->SimPy 10.00%

RQ3: Overhead of DualCode Scenario

Overhead

Overhead

 32

Extended usage scenario: DualCode

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent Overhead of the converter
0.9ms CPU time for processing
source code within 500 tokens.
As a reference, Huggingface
tokenizer costs 0.7ms for the
same code

 34

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

Shrink Code LLMs with Compressor & Avatar

ASE 2022
Compressor

 35

ICSE 2024
Avatar

Compress code LLMs: 160x smaller, 76× faster, 184× more energy-saving,
and 157× less in carbon footprint

First work to compress code LLMs: 160× smaller and 4.23× faster

Today’s Sharing
Nominated for ACM SIGSOFT Distinguished Paper Award

Avatar’s Overall Workflow

 36

LLM
Configurations

Pruned
Configuration Space

Sampled
Configurations

SMT-based
Pruning

Efficacy
Indicator

Training

Multi-objective
Configuration Tuning

Pareto-optimal
Configurations

Code LLM Compact & Green
Code LLM

Step 1 Identify & Prune Config. Space

Step 2 Build Efficacy Indicator Step 3 Search for Optimal Configuration

Step 4 Perform Knowledge Distillation

Distillation

Step 1: Prune Massive Configuration Space

 37

Typical configuration
space of LLMs

containing 4.5 × 1019
plausible configurations

Too large & many are
infeasible!

Step 1: Prune Massive Configuration Space

 38

formulating model size
and its constraint:

C: the configuration space
𝑐𝑐: a configuration
𝑣𝑣: vocabulary size
𝑠𝑠: model’s maximum input length
𝑙𝑙: number of hidden layers
ℎ: dimension of hidden layers
𝑖𝑖: dimension of intermediate NN layers

Step 1: Prune Massive Configuration Space

 39

Large space of 4.5 × 1019
plausible configurations

Remaining space after pruning accounts for
only 28.9% of the original one

Using SMT solver
to prune

Step 3: Identify Pareto-Optimal Configurations

 40

Avatar uses a multi-objective optimization algorithm to find
Pareto-optimal configurations, i.e., configurations that achieve the

best trade-off among all objectives

Prediction accuracy on a
downstream task

(using the efficacy indicator
created in Step 2)

Step 4: Perform Knowledge Distillation

 41

Outputs of the large code LLM and
small model being trained, respectively

Softmax function’s
temperature parameter

Minimizing this loss means
making the outputs of the

large and the small code LLMs
as similar as possible

Num of
classes

Num of training
examples

Results: Effectiveness on Various LLMs

 42

model size

481 MB to 3 MB
160× smaller

inference latency

up to 76× faster

energy consumption

up to 184× less

carbon footprint

up to 157× less

efficacy

Only 1.67% loss

Avatar effectively optimizes CodeBERT & GraphCodeBERT on
Vulnerability Prediction & Clone Detection in terms of

Thank you!

Questions? Comments? Advice?
davidlo@smu.edu.sg

	Slide Number 1
	Code LLMs Has Helped Many SE Scenarios
	Many Open Problems
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	What Cause Unhelpful Code Completions?
	FrugalCoder: Identify & Reject Unpromising Code Prompts
	FrugalCoder: Building the Estimator
	Results: Feasibility of FrugalCoder (StarCoder + CodeGen2)
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Human-Centric Programming Language Grammar Design
	SimPy: A proof-of-concept AI-agent oriented grammar
	Making AI Agent Understand and Write SimPy
	SimPy’s Possible Usage Scenarios
	RQ1: Token Reduction
	RQ2: Efficacy of AI Agents Trained on SimPy
	RQ3: Overhead of DualCode Scenario
	Slide Number 34
	Slide Number 35
	Avatar’s Overall Workflow
	Step 1: Prune Massive Configuration Space
	Step 1: Prune Massive Configuration Space
	Step 1: Prune Massive Configuration Space
	Step 3: Identify Pareto-Optimal Configurations
	Step 4: Perform Knowledge Distillation
	Results: Effectiveness on Various LLMs
	Slide Number 56
	Thank you!

