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Code LLMs Has Helped Many SE Scenarios

TOSEM 2024



Many Open Problems
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LLM4SE



Code LLMs are Large, Slow, …

Developers often prefer local AI4SE tools due to privacy and latency concerns
• E.g., Apple banned internal use of external AI tools
• E.g., 20% of GitHub Copilot’s issues are related to network connectivity

Deploying LLMs to IDE has issues:
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RealityExpectations

• “50MB model is upper bound, and 3MB is 
preferred in modern IDE” 

• “0.1 seconds is preferred in modern IDE or 
editor design”

- VSCode Team

CodeBERT 
Size: > 400MB

Latency: > 1.5s/query



Code LLMs are Large, Slow, and not Green

LLM has high energy consumption and carbon footprint
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• Typical laptop’s battery can 
support CodeBERT for 13.2 mins

• Using CodeBERT a thousand times 
produces 0.14 kg of CO2  
(driving a car for 1 km)

• Much worse for larger LLMs
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies



Stop Unhelpful Code Completion with FrugalCoder

First work to investigate the problem of unhelpful code completions
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TOSEM 2024



LLM-based Code Completion Brings New Challenges

High Computation & Latency
 LLM-based code completion requires large scale

computing and causes latency

Low Acceptance Rate
 Code completion requests are complex in real world
 Only 30% of completions are accepted by the users of

Github Copilot [GitHub22]

LLM-based Code Completion is Popular
 Each user of Github Copilot receives one suggestion

roughly every 3 minutes [GitHub22]
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[GitHub22] Albert Ziegler (GitHub), Eirini Kalliamvakou (GitHub), 
Shawn Simister, et al. Productivity Assessment of Neural Code 
Completion. MAPS’22 at PLDI’22.



What Cause Unhelpful Code Completions?

(1) Requests that are beyond the capability of the LLM

(2) Requests that do not contain sufficient information, e.g., meaningless 
identifiers, vague intention, etc.
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FrugalCoder: Identify & Reject Unpromising Code Prompts

 Using lightweight estimator to estimate the quality of the code completion
 Decide whether to proceed based on a pre-defined threshold

Challenge 1: Efficacy
The estimator should effectively
estimate code completion quality

Challenge 2: Efficiency
The cost of running the estimator should be 
lower than the LLM cost
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Do Nothing



FrugalCoder: Building the Estimator

def sum(nums):
    sum_num = 0
    for num in nums:
        sum_num += num
    return sum_num

def sum(nums):
    sum_num = 0
    for num in nums:

sum_num += num
    return sum_num

Code Snippet
Code Prompt

Ground Truth

sum_num += num
    return sum_num

Completion

Target 
LLM

Score (e.g., CBLEU)

Generate Training Data

1.00

Estimator

Train Estimator
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Results: Feasibility of FrugalCoder (StarCoder + CodeGen2)

Efficacy

 Deep Learning as Estimator
 Lightweight Transformer

 Traditional ML as Estimator
Adaboost

Reject 20% of requests
with a 95.1% Precision

Efficiency

5.1 ms for each query

Efficacy

Reject 20% of requests
with a 92.1% Precision

Efficiency

0.1 ms for each query

Improve Acceptance Rate
from 27.4% to 33.0%

Improve Acceptance Rate
from 27.4% to 32.3%
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies



Simplify Programming Language Grammars
IS

ST
A

20
24

First work to propose a programming language grammar for AI agents
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Won ACM SIGSOFT Distinguished Paper Award



AI Agents: The Third Audience

Human

Machine

AI Agents

Understand

Compile

Understand

Execute

Write

Write

Active “developers” that utilize programming to accomplish various tasks
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Source Code



Human-Centric Programming Language: Readability Counts 
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Good practice

def sum ( nums ) : if

len ( nums ) = = 0 :

raise Value Error sum

_ num = 0 for num in

nums : sum _ num

numreturn= num sum _+

“Looks” wordy

Bad practice

def sum ( nums ) : if len ( nums )

= = 0 : raise Value Error sum _ num

= 0 for num in nums : sum _ num

numreturn= num sum _+

“Looks” succinct



Human-Centric Programming Language Grammar Design

Visual Coding
Include symbols like line 
breaks and indentions

Explicit Delimiters 
Use explicit delimiters to define 
code structures despite some
delimiters not being essential 
for parsing

Are there better programming language grammars for AI agents?
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SimPy: A proof-of-concept AI-agent oriented grammar 
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def two_sum(nums: list[int], target: int) -> list[int]:\n
chk_map: dict[int, int] = {}\n
for index, val in enumerate(nums):\n

compl = target - val\n
if compl in chk_map:\n

return [chk_map[compl], index]\n
chk_map[val] = index\n

return []

Python

SimPy

128 tokens

80 tokens

<def_stmt>two_sum nums:list[int] target:int<arrow>list
[int]<block_start>chk_map:dict[int int]={}<for_stmt>
index,val enumerate(nums)<block_start>compl=target-val
<if_stmt>compl<in>chk_map<block_start><return>[chk_map
[compl] index]<block_end>chk_map[val]=index<block_end>
<return>[]<block_end>

Tokenized by CodeBERT

Replace notations with tokens
Replace keywords and symbols (e.g., “if”, 
“for”, etc.) with specialized tokens

Restrict coding style
Streamline white spaces, line breaks,
indents, etc. preserving only essential 
separators

Simplify grammar tokens
For every grammar token in every
production, we review whether it can be 
removed, merged with others, or replaced 
with white spaces

Same Execution
Results



Making AI Agent Understand and Write SimPy
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LLM first trained on Python and then on SimPy (with equivalent sample size)

Python Dataset

Converter

SimPy Dataset

Further Pre-train Further Pre-train
Base Agent

(natural language)
Python Agent SimPy Agent

 SimPy is more similar to Python than natural language



SimPy’s Possible Usage Scenarios

Natural Language

SimPy Code

Executor

Program Results

Natural Language

AI Agent

Basic usage scenario
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Extended usage scenario

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent

: DualCode



RQ1: Token Reduction
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• SimPy reduces the number 
of tokens required for source 
code representation.

• CodeBERT and GPT-4 
benefiting from a 34.7% 
and 10.4% reduction. 



RQ2: Efficacy of AI Agents Trained on SimPy
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Model Training Strategy Pass@10

CodeGen-NL
(350M)

Python 7.32%
Python->SimPy 9.15%

TinyLlama
(1.1B)

Python 13.41%
Python->SimPy 14.02%

Pythia
(1.0B)

Python 9.76%
Python->SimPy 10.00%



RQ3: Overhead of DualCode Scenario

Overhead

Overhead
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Extended usage scenario: DualCode

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent Overhead of the converter
0.9ms CPU time for processing
source code within 500 tokens.
As a reference, Huggingface
tokenizer costs 0.7ms for the
same code
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies



Shrink Code LLMs with Compressor & Avatar

ASE 2022
Compressor
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ICSE 2024
Avatar

Compress code LLMs: 160x smaller, 76× faster, 184× more energy-saving, 
and 157× less in carbon footprint

First work to compress code LLMs: 160× smaller and 4.23× faster

Today’s Sharing
Nominated for ACM SIGSOFT Distinguished Paper Award



Avatar’s Overall Workflow
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LLM 
Configurations

Pruned
Configuration Space

Sampled
Configurations

SMT-based 
Pruning

Efficacy
Indicator

Training

Multi-objective 
Configuration Tuning

Pareto-optimal 
Configurations

Code LLM Compact & Green
Code LLM

Step 1 Identify & Prune Config. Space 

Step 2 Build Efficacy Indicator Step 3 Search for Optimal Configuration  

Step 4 Perform Knowledge Distillation

Distillation



Step 1: Prune Massive Configuration Space
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Typical configuration 
space of LLMs

containing 4.5 × 1019 
plausible configurations

Too large & many are 
infeasible!



Step 1: Prune Massive Configuration Space

                        38

formulating model size 
and its constraint:

C: the configuration space
𝑐𝑐: a configuration
𝑣𝑣: vocabulary size
𝑠𝑠: model’s maximum input length
𝑙𝑙: number of hidden layers
ℎ: dimension of hidden layers 
𝑖𝑖: dimension of intermediate NN layers



Step 1: Prune Massive Configuration Space
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Large space of 4.5 × 1019 
plausible configurations

Remaining space after pruning accounts for 
only 28.9% of the original one

Using SMT solver 
to prune



Step 3: Identify Pareto-Optimal Configurations
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Avatar uses a multi-objective optimization algorithm to find 
Pareto-optimal configurations, i.e., configurations that achieve the 

best trade-off among all objectives

Prediction accuracy on a 
downstream task 

(using the efficacy indicator 
created in Step 2)



Step 4: Perform Knowledge Distillation

                        41

Outputs of the large code LLM and 
small model being trained, respectively

Softmax function’s 
temperature parameter

Minimizing this loss means 
making the outputs of the 

large and the small code LLMs 
as similar as possible

Num of 
classes

Num of training 
examples



Results: Effectiveness on Various LLMs
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model size

481 MB to 3 MB
160× smaller

inference latency

up to 76× faster

energy consumption

up to 184× less

carbon footprint

up to 157× less

efficacy

Only 1.67% loss 

Avatar effectively optimizes CodeBERT & GraphCodeBERT on 
Vulnerability Prediction & Clone Detection in terms of





Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg
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