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Code LLMs Has Helped Many SE Scenarios
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Many Open Problems
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Code LLMs are Large, Slow, ...

Developers often prefer local AI4SE tools due to privacy and latency concerns
« E.g., Apple banned internal use of external Al tools
« E.g., 20% of GitHub Copilot’s issues are related to network connectivity

Deploying LLMs to IDE has issues:

Expectations Reality

« "50MB model is upper bound, and 3MB is
preferred in modern IDE”

« "0.1 seconds is preferred in modern IDE or
editor design”

CodeBERT
Size: > 400MB
Latency: > 1.5s/query
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Code LLMs are Large, Slow, and not Green

LLM has high energy consumption and carbon footprint

- Typical laptop’s battery can

support CodeBERT for 13.2 mins
« Using CodeBERT a thousand times

produces 0.14 kg of CO2
(driving a car for 1 km)

* Much worse for larger LLMs

Battery and Power2
M3

Model Size

70-watt-hour lithium-polymer batteryz

Large Language Model Sizes Over Time
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Efficient and Green Code LLMs: Three Strategies
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Stop Unhelpful Code Completion with FrugalCoder

TOSEM 2024

Don’t Complete It! Preventing Unhelpful Code Completion
for Productive and Sustainable Neural Code Completion
Systems
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First work to investigate the problem of unhelpful code completions
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LLM-based Code Completion Brings New Challenges

LLM-based Code Completion is Popular
= Each user of Github Copilot receives one suggestion
roughly every 3 minutes [GitHub22]

blic class IsPrimeTest {

LOW Acceptance Rate public void testIsPrime() {

assertTrue(Math.isPrime(2));
gbbETtTTUE(HEth isPrime(3));
55

= Code completion requests are complex in real world
= Only 30% of completions are accepted by the users of assertTrue(Math.isPrime(5)):
Github COpIIOt [GItHUbZZ] assertTrue(Math_isPrime(7));

assertTrue(Math.isPrime(11));
ssertTrue(Math.isPrime(13));
ssertTrue(Math.isPrime(17));
assertTrue(Math.isPrime(19));
assertTrue(Math.isPrime(23));
assertTrue(Math.isPrime(29));

High Computation & Latency
= |LLM-based code completion requires large scale
computing and causes latency

|,r I_.|" I_.f' I _.f'

[GitHub22] Albert Ziegler (GitHub), Eirini Kalliamvakou (GitHub),
Shawn Simister, et al. Productivity Assessment of Neural Code B Copliot
Completion. MAPS'22 at PLDI"22.




What Cause Unhelpful Code Completions?

(1) Requests that are beyond the capability of the LLM

(2) Requests that do not contain sufficient information, e.g., meaningless
identifiers, vague intention, etc.
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FrugalCoder: Identify & Reject Unpromising Code Prompts

Code Completion

Code Prompt Large Code

def sum(nums): .
sum_num = 0 | Estimator

for num in

def sum(nums):
sum_num = 0
for num in nums:

Do Nothing

= Using lightweight estimator to estimate the quality of the code completion
= Decide whether to proceed based on a pre-defined threshold

Information Systems

Challenge 1: Efficacy Challenge 2: Efficiency
The estimator should effectively The cost of running the estimator should be
estimate code completion quality lower than the LLM cost

Comlputlng and ]XT SMU



FrugalCoder: Building the Estimator

Generate Training Data Train Estimator
S o o e 1 e ———— 1
i | =
I |
| | I
| Code Prompt Completion i i
' : _ o |
i Code Snippet def sum(num_s). Target sum_num += num | | i !
I | def sum(nums): sum_num = 0 LILM return sum_num i ! | Estimator |i
| ~ for num in nums: P !
I sum_num =0 ¢! "
| | for num in nums: » —————————— - =28 ] :
! ' ° v | I |
I sum_hum +=num sum_num += num 100 P i
E return sum_num return sum_num ' ] i :
! 1 I
E Ground Truth Score (e.g., CBLEU) i E i
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Results: Feasibility of FrugalCoder (StarCoder + CodeGen2)

= Deep Learning as Estimator = Traditional ML as Estimator
Lightweight Transformer Adaboost
Reject 20% of requests Reject 20% of requests
with a 95.1% Precision with a 92.1%b Precision
Improve Acceptance Rate Improve Acceptance Rate
from 27.4%b0 to 33.0% from 27.4%b0 to 32.3%
| 5.1 ms for each query | | 0.1 ms for each query |
E::H;:Juting and ‘4)‘; §‘ ME]NAGEMENT
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Simplify Programming Language Grammars

Al Coders Are Among Us: Rethinking Programming Language
Grammar Towards Efficient Code Generation

q
g Zhensu Sun Xiaoning Du* Zhou Yang E E
(o Singapore Management University Monash University Singapore Management University
< Singapore Australia Singapore
(IT) zssun@smu.edu.sg xiaoning.du@monash.edu zyang@smu.edu.sg E
] LiLi David Lo

Beihang University Singapore Management University

China Singapore
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Won ACM SIGSOFT Distinguished Paper Award

First work to propose a programming language grammar for Al agents
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Al Agents: The Third Audience

Understand

Human (Qj
<> ) Write |

Compile
Source Code
Execute

o d_a N _: Understand
Al Agents i Q

(0 o o .
b o e e e e Write

Active “developers” that utilize programming to accomplish various tasks




Human-Centric Programming Language: Readability Counts

def sum(nums):
if len(nums) == 0:
raise ValueError (eef) O Cun) O (s ) ) AR OO00GED O
sum num = 0 Cen) Qs )OO0 OO00O0
- ' OO0 Q) Gaise] () [vaive]) Cerrer ) ) OO A Goum]
for num in nums: O@OE0E0000E 0@ 0E
sum_num += num Oltws)E0EO0000000G6m AL
cet U Somanumn DO0EO0000EDOEDOEDO
— b /. ]
é Good practme@ J tamnz Looks” wordy ]
def sum(nums): (def) () Gsum]) (J Crums )OO @A GEHACen) A Coums J O3
if len(nums)==0:raise ValueError 000 0GEE)0)EE Eren) 00 G0 G
sum_num=0 =) (e) (= O Ger) O Cum) O GEn) O Coums ) G Gum) (O Coum
for num in nums:sum_num+=num @0 ED 00 G O G O G O)
return sum_num

é{ Bad practice ] Eﬁ;i‘looks” succinct @]




Human-Centric Programming Language Grammar Design

Visual Coding sum nums
Include symboils like line len f— \ =
breaks and indentions
LVaIue Error
o .. Explicit
Explicit Delimiters sum J|_J| num ILJLOJL Delimiters

Use explicit delimiters to define - B—
code structures despite some

delimiters not being essential sum J|_}|hum num
for parsing sum ||_|| num ||«
Visual Coding Style

Are there better programming language grammars for Al agents?




SimPy: A proof-of-concept Al-agent oriented grammar

Python Tokenized by CodeBERT 1 28 tokens

e

_sum(- list[§A€], target: i) 55 Tast[incE

ﬁ Same Execution
SimPy Results 80 tokens

Icompl]—chk-vall -HfidexX <block_end>

‘ |

[ ]<block end>

Information Systems

Replace notations with tokens
Replace keywords and symbols (e.g., “if’
“for”, etc.) with specialized tokens

Restrict coding style
Streamline white spaces, line breaks,
indents, etc. preserving only essential
separators

Simplify grammar tokens

For every grammar token in every
production, we review whether it can be
removed, merged with others, or replaced
with white spaces
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Making AI Agent Understand and Write SimPy

LLM first trained on Python and then on SimPy (with equivalent sample size)

/[ o2 Converter }\

o o) [« Python Dataset [ SimPy Dataset ) o)
— tm;
D Further Pre-train <0 Further Pre-train (e <<
Base Agent Python Agent SimPy Agent

(natural language)

v SimPy is more similar to Python than natural language
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SimPy’s Possible Usage Scenarios

?

[ & Natural Language]

SimPy Code |
v

[ Executor
v

& Natural Language]

Basic usage scenario

./‘\

[« Python Code ] [ & Natural Language]

““{'.’:5 Convlerter ]' """""""""""""""""""

T Al Agent
[ > SimPy Code ] ‘[/ [[IJ Program Results ]
& 1
E,m,," Executor ]

® s
\'[ﬂ SlmPy Code | ]

---------------------------------- {'.’35" Converter ]----------

v
[g Natural Language] [« Python Code

Extended usage scenario: DualCode



RQ1: Token Reduction

« SimPy reduces the number . Vocab | Vocab Tokens
: Tokenizer .
of tokens required for source Source | Size | python SimMPy
code representation. CodeBert | Code | 50k | 1.33B |0.87B 34.7%|
CodelLl Web 32k | 0.97B | 0.84B 13.5%]
» CodeBERT and GPT-4 oaeliama | e ;
benefiting from a 34.7% Codex Web 51k 0.93B | 0.82B 12.6%]
and 10.4%0 reduction. CodeT5 Code 32k 0.91B | 0.78B 13.8%]

StarCoder | Code 49k 0.83B | 0.76B 8.6%
GPT-3.5 Web 100k 0.71B 0.63B 10.4%]
GPT-4 Web 100k 0.71B 0.63B  10.4%|

Information Systems
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RQ2: Efficacy of Al Agents Trained on SimPy

m Training Strategy Pass@10

(350M) Python->SimPy 9.15%
(1.1B) Python->SimPy 14.02%
Pythia Python 9.76%

(1.0B) Python->SimPy 10.00%
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RQ3: Overhead of DualCode Scenario

o
- Overhead

./
[« Python %od( ][ & Natural Language]
l

¢ Al Agent | Overhead of the converter
. B SimPy Code | _U_Program Results 0.9ms CPU time for processing
- v_%f/ | Exlcutor ] source code within 500 tokens.
\[ i As a reference, Huggingface
| SimPy Code | tokenizer costs 0.7ms for the
i {"” Converter ]- i same code
___________________________________ o
— /
[ & Natural Language] [« Python Code Overhead

Extended usage scenario: DualCode
Comlp uting and “)‘(? SMU
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Efficient and Green Code LLMs: Three Strategies
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Shrink Code LLMs with Compressor & Avatar

ASE 2022 Jieke Shi, Zhou Yang, Bowen Xu*, Hong Jin Kang and David Lo
School of Computing and Information Systems
Com pressor Singapore Management University

Compressing Pre-trained Models of Code into 3 MB

{jiekeshi,zyang,bowenxu.2017,hjkang.2018,davidlo}@smu.edu.sg

First work to compress code LLMs: 160x smaller and 4.23 x faster

Nominated for ACM SIGSOFT Distinguished Paper Award
|

/

ICSE 2024 Jieke Shi®, Zhou Yang®, Hong Jin Kang*, Bowen Xu*, Junda He®, and David Lo®

Today’s Sharing | —

Greening Large Language Models of Code

°School of Computing and Information Systems, Singapore Management University, Singapore
Avatar *Department of Computer Science, University of California, Los Angeles, USA
*Department of Computer Science, North Carolina State University, Raleigh, USA
{jiekeshi, zyang, jundahe, davidlo}@smu.edu.sg, hjkang@cs.ucla.edu, bxu22@ncsu.edu

Compress code LLMs: 160x smaller, 76 x faster, 184X more energy-saving,
and 157 x less in carbon footprint
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Avatar’s Overall Workflow

Step 1 Identify & Prune Config. Space

N\ SMT-based N\

LLM Pruned
Configurations Configuration Space

Training E?

Efficacy
Configurations Indicator

Step 2 Build Efficacy Indicator

Step 4 Perform Knowledge Distillation

Distillation

Code LLM Compact & Green
Code LLM

[Fe=d]

Pareto-optimal
Configurations

Multi-objective
Configuration Tuning

Step 3 Search for Optimal Configuration




Step 1: Prune Massive Configuration Space

"tokenizer": ["Byte-Pair Encoding", "WordPiece",
— "Unigram", "Word"],

"vocab_size": range(1000, 50265),

"num_hidden_layers": range(1, 12),

"hidden_size": range(16, 768), Typical configuration

e T space o L

o LoeenETOROUE PO s 18- 0y Be2 B2y 0% 800 containing 4.5 x 1019

intermediate_size": range(16, 3072), ) ] )
plausible configurations

"num_attention_heads": range(1, 12),

"attention_probs_dropout_prob": [0.1, 0.2, 0.3, 0.4,
Too large & many are

<—0.5],
"max_sequence_length": range(256, 512), infeasible!
"position_embedding_type":["absolute", "relative_key",

— "relative_key_query"],
"learning_rate": [1e-3, 1e-4, 5e-5],
"batch_size": [16, 32, 64]




Step 1: Prune Massive Configuration Space

formulating model size
and its constraint:

size(c) <3MB st ceC

4(v+s+3)h
1024 X 1024
4(4h% + (9 + 2i)h + i)l

size(c) =

1024 X 1024
. 2h% + 4h + 2
1024 X 1024

the configuration space

a configuration

vocabulary size

model’s maximum input length
number of hidden layers

dimension of hidden layers
dimension of intermediate NN layers



Step 1: Prune Massive Configuration Space

Large space of 4.5 x 101°
plausible configurations

size(c) <3MB st. ceC

zg size(c) = 4(v+s+3)h
1024 X 1024
) 4(4h% + (9 + 2))h + i)l
Using SMT solver LB 2O 22D
2h% + 4h +2

to prune

+
1024 X 1024

Remaining space after pruning accounts for
only 28.99% of the original one
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Step 3: Identify Pareto-Optimal Configurations

Avatar uses a multi-objective optimization algorithm to find
Pareto-optimal configurations, i.e., configurations that achieve the
best trade-off among all objectives

Prediction accuracy on a
. downstream task
Model Size (using the efficacy indicator
created in Step 2)

Pruned Proxy of model’s inference

configuration space  latency, energy consumption,
and carbon footprint




Step 4: Perform Knowledge Distillation

Outputs of the large code LLM and
small model being trained, respectively

Minimizing this loss means
making the outputs of the
large and the small code LLMs
as similar as possible

Num of training  Num of Softmax function’s
examples classes temperature parameter

Information Systems

School of ]
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Results: Effectiveness on Various LLMs

Avatar effectively optimizes CodeBERT & GraphCodeBERT on
Vulnerability Prediction & Clone Detection in terms of

model size inference latency

481 MB to 3 MB up to 76x faster
160Xx smaller

energy consumption carbon footprint

up to 184 x less up to 157x less

Only 1.67% loss
E(;mputing and )X( SMU

Information Systems




Efficient and Green Code LLMs: Three Strategies

Shrink

FrugalCoder: Identify & Reject Unpromising Code Prompts‘@

2N
-

Code Completion

Code Prompt

def sum(nums):
sum_num = 0
for num in nums:

def sum(nums):
sum_num = 0
for num in

Estimator

notify user

= Using lightweight estimator to estimate the quality of the code completion
= Decide whether to proceed based on a pre-defined threshold

Challenge 1: Efficacy

The estimator should effectively
estimate code completion quality

Challenge 2: Efficiency

The cost of running the estimator should be
lower than the LLM cost

Computing 2 AN |
Information Systems

SimPy: A proof-of-concept Al-agent oriented grammar

Tokenized by CodeBERT

128 tokens

Python

[chk_map:ldict[int, int] = {}\n

' for index,[Wal in enumerate(AUms):\n

I | compl = target -fvalli
[ if compl in chk_map:\n

"N returnfifchk_mapfcompl], index]Wl
[ chklmap[valll= index\n

I return []

ﬁ Same Execution
SimPy Results 80 tokens

REEFSE S two_sum numS:1ist[int]] target:int<arrow>TisE
[int]<block_start>EHKk map:di#€E[int int]-fF<For stmt>

index,¥al enumerate (nUfs)<block startscompl=target-val
<if_stmt>compl&inschk_map <return>[chklimap
[compl]fiindex]<block chdichkimap[val]=index<block cnd>

greturn[]<block_end>

Information Systems

f A
BEF two sum(Aums: list[IA€], target: int) =5 list[intJE\A

. J

b

Replace notations with tokens
Replace keywords and symbols (e.g., “if”,
“for”, etc.) with specialized tokens

Restrict coding style
Streamline white spaces, line breaks,
indents, etc. preserving only essential
separators

Simplify grammar tokens

For every grammar token in every
production, we review whether it can be
removed, merged with others, or replaced
with white spaces

MU

Optimize Code LLMs with Compressor & Avatar ‘j =

Compressing Pre-trained Models of Code into 3 MB E| ' qEI

Jieke Shi, Zhou Yang, Bowen Xu*, Hong Jin Kang and David Lo
School of Computing and Information Systems
Singapore Management University
{jiekeshi,zyang,bowenxu.2017,hjkang.2018,davidlo}@smu.edu.sg

ASE 2022
Compressor

First work to compress code LLMs: 160x smaller and 4.23x faster
Nominated for ACM SIGSOFT Distinguished Paper Award
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Greening Large Language Models of Code
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ICSE 2024
Avatar

Compress code LLMs: 160x smaller, 76 x faster, 184 x more energy-saving,
and 157x less in carbon footprint
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Questions? Comments? Advice?
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