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Singapore Management University

 Third university in Singapore
 Number of students:
 8000+ (UG)
 1800+ (PG)

 Schools:
 Business
 Computing
 Economics
 Accountancy
 Law
 Social Science
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Center for Research on Intelligent Software Engineering (RISE)
Elsevier JSS’21, Bibliometric Study

CSRankings, SE, Aug 2025
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AI for Software Engineering
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Experience with AI4SE

IEEE Computer’09

FSE’06

KDD’07
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Experience with AI4SE

SANER’16

KDD’09 ICSE’10

Test oracle generation Intelligent issue trackers

Intelligent program repair - Facebook 
Engineers

Intelligent crowdsourced SE 

MSR’13

“History-driven 
program repair 

influence
our work, the overall 
pipeline is similar”
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Our Research Agenda in AI4SE

History Challenges Vision

Roadmap I Roadmap II Call4Action

AI for Software Engineering

Towards Software Engineering 2.0
ICSE’23 Future of SE Talk
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“If you want to go far, go together” – African Proverb 
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Code, Critique, Cure: Advancing LLM Reasoning
for AI-Augmented Software Maintenance



Large Language Models (LLMs)
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LLM Can Greatly Help SE Tasks
IC

SM
E 

20
20

Early work on LLM4SE, among most cited papers of ICSME 2020
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Early work on benchmarking code LLM, among most cited papers of ICSME 2021
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LLMs Seem to Win for Many SE Scenarios
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Despite Successes, Much Work Remains
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Despite Successes, Much Work Remains

LLM has limited reasoning capabilities 
for software maintenance tasks

                        21

How Can We 
Improve It?



Too Much Focus on Models

– Andrew Ng
Google Brain Co-Founder
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“99% of the papers were 
model-centric with only 1% 

being data-centric” 



Data-Centric LLM4SE

 Use SE domain knowledge for 
software artifact engineering 

 to guide LLM reasoning
 for specific SE tasks

                        26

Better 
Reasoning 
Capabilities



Data-Centric LLM4SE: Artifact Engineering

 Construct LLM-reasoning friendly 
datasets by 
- selecting the right artefacts 
- linking related pieces of information, 
- providing examples,
- transforming them appropriately, etc.
leveraging domain knowledge.

 Scale up with LLM4(LLM4SE): 
LLMs themselves can assist this SE 
artifact engineering (crafting) step

“How Can We 
Systematically Engineer 

Software Artifacts to Build 
Better LLM4SE Bots?” 

Synthesized 
Artifacts

Existing 
Artifacts

Better 
Reasoning 
Capabilities
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Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully
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Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully
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Structured Data Can Be Helpful for AI4SE

First work that leverages structural information in code AST for better code 
comment generation; most cited paper of ICPC

IC
PC
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8
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Distilling Structured Reasoning Traces from Com. Knowledge
IC

SE
 2

02
6

Engineers high-quality structured reasoning traces from community knowledge 
for better LLM-powered code generation
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Community Knowledge as Code Reasoning Training Resources

Community discussions offer 
peer-reviewed insights into 
developers’ problem-solving 
strategies

“How Can We Leverage 
Community Knowledge to 
Help LLM Reason Better?” 
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RT-Distiller: From Com. Posts to Structured Reasoning Traces

• Distilling high-quality reasoning 
traces (RTs) for code generation 
from evolving community 
knowledge.

 Mixed Quality Posts
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RT-Distiller: From Com. Posts to Structured Reasoning Traces

• Distilling high-quality reasoning 
traces (RTs) for code generation 
from evolving community 
knowledge.

 Artificial 
     Site-Specific 
     Code Structure

 Mixed Quality Posts
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RT-Distiller: From Com. Posts to Structured Reasoning Traces

• Distilling high-quality reasoning 
traces (RTs) for code generation 
from evolving community 
knowledge.

 Artificial 
     Site-Specific 
     Code Structure

 Mixed Quality Posts

 Loosely Structured 
  Reasoning
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Step I: Addressing Mixed Quality Posts

 Identify rating mechanisms
 Select highly-rated posts

+

 Identify typical information pieces
 Detect missing pieces
 Synthesize missing pieces using LLM

 Identify High Quality Posts  Improve Post Quality
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Step II: Dealing with Artificial Site-Specific Code Structure 

Structure Perturbation

Input Perturbation

Output Perturbation

Input
Code

 Diversify Solution Code 
     While Preserving Semantics
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Problem 
Understanding

Step III: Enriching Loosely Structured Reasoning Traces

 Rewrite a post into a structured trace inspired by SDLC   

Planning Design Implementation=
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Step III: Enriching Loosely Structured Reasoning Traces
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Problem 
Understanding

Step III: Enriching Loosely Structured Reasoning Traces

 Rewrite a post into a structured trace inspired by SDLC   

Planning Design Implementation

+ Edge Case 
Reasoning

Common Mistake 
Reasoning

+

 Add iterative refinement considerations

=

+ Simple Input 
Reasoning
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Step III: Enriching Loosely Structured Reasoning Traces

                        43



Experiment Settings

                        45

2,105 LeetCode 
Problems 

< January 1, 2024

RT-Distiller

12,444 Reasoning 
Traces

Fine-tune

Qwen2.5 32B

CodeThinker

> January 1, 2024
Evaluation on LiveCodeBench

Qwen2.5 32B

DeepSeekCoder 32B

CodeLlama 34B
….



Experiment Results – Comparison with LLMs of Similar Sizes
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Experiment Results – Generalizability Beyond LeetCode

CodeThinker shows strong generalization ability to problems 
from non-LeetCode platforms, achieving significant improvements

78%
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Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts; 

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller 

I R S1 S2 S3a A
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Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts; 

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller 

I R S1 S2 S3a A
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Experiment Results – Ablation Study

I vs. R: Training with raw LeetCode 
discussion posts results in performance drop 

*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts; 
S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller 

I R S1 S2 S3a A
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Experiment Results – Ablation Study

I vs. R: Training with raw LeetCode 
discussion posts results in performance drop 

R vs. S1: Synthesizing missing information in 
LeetCode discussion posts helps

S1 vs. S2: Applying code perturbation 
improves generalization to non-LeetCode

S2 vs. S3a: Introducing SDLC-inspired 
structure to reasoning traces helps

*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts; 
S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller 

S3a vs. A: Adding iterative refinement 
considerations helps

I R S1 S2 S3a A
                        58



Code

Engineering structured reasoning 
traces help LLM reasoning 

for code generation
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Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully
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Contrastive Patterns Can Help AI Reasoning 
KD

D
 2

00
9

Distills rich discriminative (contrastive) patterns for AI-powered failure detection 
(aka. test oracle generation); early SE paper in a top AI venue
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Distilling Contrastive Reasoning Trace Pairs

Engineers contrastive reasoning trace pairs 
to help LLM reason about vulnerabilities

                        62



Vulnerability Detection with LLMs
 Vulnerability detection demands a binary judgement:
 Is the input code safe or vulnerable?

TO
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M
 2
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5

                        63



Vulnerability Detection with LLMs
 Limited efficacy

 From a developer viewpoint, a binary judgement is also not sufficient:

Why is this input code vulnerable or safe?
What is the mechanism of a vulnerability and its impact?

IC
SE

  2
02

4
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R2Vul: Beyond Binary Judgement
Fine-tune an LLM to better detect vulnerabilities and generate 
structured reasoning.

 The LLM outputs a structured reasoning covering key aspects of code 
safety and vulnerability.

Vulnerable Code
1. Discuss specific code constructs responsible 

for the vulnerability
2. Explain the mechanism of the vulnerability
3. Discuss its potential impact
4. Relate the vulnerability to a relevant CWE

Safe Code
1. Discuss key aspects contributing to code 

safety
2. Discuss the absence of key vulnerabilities
3. Provide evidence-based justification why a 

code is safe
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Step 1: Generate Contrastive Reasoning Trace Pairs
 Given a labeled dataset 𝒟𝒟 = { 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 }𝑖𝑖=1𝑁𝑁  

- ( 𝑥𝑥𝑖𝑖: function, 𝑦𝑦𝑖𝑖 ∈ {𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆} )
 Prompt a base LLM to generate: 

- A valid reasoning 𝒓𝒓𝒊𝒊+conditioned on the true sample label 𝑦𝑦𝑖𝑖
- A flawed reasoning 𝒓𝒓𝒊𝒊−conditioned on the flipped sample label −𝑦𝑦𝑖𝑖 
 𝒟𝒟 = { 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑟𝑟𝑖𝑖+, 𝑟𝑟𝑖𝑖− }𝑖𝑖=1𝑁𝑁  = preference dataset
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Step 1: Generate Contrastive Reasoning Trace Pairs
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Step 2: Use Contrastive Reasoning Trace Pairs
 Combines supervised fine-tuning (SFT) and odds-ratio (OR) losses
   SFT: trains the model to generate high-quality structured reasoning
   OR: distinguish valid vs. flawed reasoning

 Additional feature: Distill smaller models 
  constraints from deployment environment
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Experiment Details
 Step 1: 

- Base LLM: Qwen2.5-Coder-Instruct with 32B parameters
- About 18,000 pairs of contrastive traces
- Five programming languages: C#, JavaScript, Java, Python, and C

 Step 2: 
- Target LLMs: Qwen2.5-Coder-Instruct with 0.5B, 1.5B, and 7B parameters
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Main Results: Detection Performance

Mean F1 = Average F1 across 5 languages
R2Vul-1.5B wins 
over Base (32B)
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Main Results: Detection Performance

R2Vul-1.5B wins 
over commercial 
LLMs

                        72

Mean F1 = Average F1 across 5 languages



R2Vul vs. SFT: Impact of Contrastive Reasoning Trace Pairs
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Reasoning Quality Assessment
Baselines: Qwen2.5-1.5B-Coder-Instruct and MSIVD (CodeLlama-13B): reasoning-based LLM [1]
Evaluators: GPT-4o, Claude-3.5-Sonnet, and two human experts

[1] Yang, Aidan ZH, et al. "Security vulnerability detection with multitask self-instructed fine-tuning of large 
language models." arXiv preprint arXiv:2406.05892 (2024).
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Critique

Engineering contrastive reasoning 
trace pairs help LLM reasoning 

for vulnerability detection
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Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully
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Integrating Diverse Inputs from Diverse Sources Can Help AI

First MSR-powered APR work: mines hundreds of GitHub repositories for repair patterns 
serving as augmented inputs to test cases for search-based automated program repair (APR); 

most-cited SANER 2016 paper that inspired Facebook

                        77



IC
SE

 2
02

4
Integrating Diverse Inputs for LLM-Powered Vulnerability Repair

First LLM-powered automated program repair work that (i) links vulnerable code to
LLM-enriched CWE know ledge and (ii) leverages AST contents

to double the efficacy of prior work
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Previous solutions:

LLM

+
Tokens in 

Vulnerable Function Fixed Function

Many other inputs have not been leveraged:

Vulnerability 
Type

CWE Description
Simple Vulnerable 
Code Examples

AST 
Parser

LLM
AST

• Abstract Syntax 
Tree

• CWE Knowledge

Vulnerability
Type

Detailed Analyses

Integrating Diverse Inputs for LLM-Powered Vulnerability Repair
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Incorporate AST

Incorporate
CWE knowledge

Address
lengthy inputs

CodeT5GPT-3.5

Data-Centric 
Innovations

Multi-LLM 
Collaboration

2x Fixed 
Vulnerabilities

+

=

VulMaster’s Design
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Overall Framework

Simple Vulnerable 
Code Examples

AST

partition
Code

Segments

Vulnerable Function

Vulnerability 
Type CWE Description

Step 1: Collect Diverse Inputs

Step 2: Fill in Missing Data with GPT-3.5

Fixed Examples

LLM (CodeT5) 
+ Data Fusion

Fixed 
Function

Step 3: Fuse Diverse Inputs

Detailed Analyses
Model Adaptation for AST

Multi-Task Learning

Additional Model Innovations

CWE Tree Exploration
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• Note: Real vulnerability fixes are not simple or come with detailed analysis

Step 2: Fill In Missing Data with GPT-3.5

CWE Type

Prompt

Fixes for examples

generate

Vulnerable Examples
CWE Description

Detailed Analyses The code {Example} contains a 
vulnerability of type {Description}. 
The analysis of this vulnerable code 
is {Analysis}. Please generate the 
repaired code to address the 
vulnerability.

Prompt:

• General-purpose LLMs are effective for 
- Fixing simple (toy) vulnerable examples when detailed analysis is given.

• Thus, we use GPT-3.5 to generate the fixed CWE examples: 
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Step 3: Fusing Diverse Input Data Components

Input Code

ASTs

Vulnerable-Fix 
Pairs from CWE

CWE Description
Concat CodeT5 

Decoder

Contextual Embedding 
and Concatenation  

Diverse Inputs Repair Generation

CodeT5 
Encoder

Fixed Code

Fixed Code

Vulnerable Code
Other Diverse 

Inputs
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Results: Comparisons with SOTA

• VulMaster doubles the Exact Match (EM) 
score

• VulMaster consistently outperforms for 
vulnerabilities of different characteristics

Main Results

- long/short: the length of the code
- frequent/infrequent: the 
   vulnerability type frequencies
- top/less risky: top 10 most    
   dangerous CWEs or not
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Latest Extension

Please stay tuned: Paper will be 
released on arXiv soon

Incorporate AST

Incorporate
CWE knowledge

Incorporate
Data Flow

Qwen-2.5 7B Instruct

More Diverse Data Reinforcement 
Learning 

+

Reasoning
steps for repair

= +34.96% 
Performance Gain

GPT-4o

                        85



Engineering holistic representation 
from diverse inputs and sources 

help LLM reasoning for repair

Cure

AI-Assisted Patch

Fix Applied Successfully
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Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully
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Data-Centric LLM4SE: Summary

 We want to elevate the data: 
- enriching it, restructuring it, contrasting 

it, and linking it in ways that promote 
deeper reasoning

 And utilizing them effectively to train 
LLMs to reason and do better for specific 
SE tasks

“How Can We 
Systematically Engineer 

Software Artifacts to Build 
Better LLM4SE Bots?” 
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Beyond
Prompt

Engineering



Data-Centric LLM4SE: Summary

“Because in software engineering, 
how we craft the data 

is how we shape the intelligence”

                        89



Road Ahead



Road Ahead

Multi-Agent LLM4SE 

TOSEM 2025

Real-world problems demand "synergistic 
collaboration”. Multi-agent LLM4SE 

transforms isolated agents into 
a coordinated group of experts.
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Multi-Agent LLM4SE: Vulnerability Detection
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Multi-Agent LLM4SE: VulTrial
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VulTrial’s Design

Example of Vulnerable Code
CWE-125 (Out-of-bounds Read)
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Evaluation Settings
 Evaluation on PrimeVul Pair [1] data.

Benign code Vulnerable code

Pair codes
Pair-Correct

                        95

[1] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun 
Chen, Basel Alomair, David A. Wagner, Baishakhi Ray, Yizheng Chen: 
Vulnerability Detection with Code Language Models: How Far are We? ICSE 
2025: 1729-1741



Evaluation Results

Multi-agent methods outperform the 
single-agent methods

Each agent in VulTrial is necessary 
to achieve the best performance
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(GPT-4o)

GPTLens
(GPT-4o)

VulTrial
(GPT-4o)

VulTrial w/o 
Moderator

VulTrial w/o 
Code Author



VulTrial in the Wild
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Related Paper @ ICSME 2025

                        99

Session 12 - Security 1 
Thu 11 Sep 2025 15:45 - 16:00 

Case Room 260-057



Towards Full Multi-Agent Solution: Humans (H) and Bots (B)

N:M??
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Road Ahead

Greening LLM4SE 

LLM4SE solutions are large, slow, and 
not green, introducing much cost, 

latency, and carbon footprint

TOSEM 2025
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Stop ShrinkSimplify

Greening LLM4SE: Three Strategies
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Greening LLM4SE

ISSTA 2024

Improve code generation speed by up to 
4.5x by terminating inference early

Stop
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Greening LLM4SE

Simplify

IS
ST

A
20

24

First work to propose a programming language grammar for AI agents

Won ACM SIGSOFT Distinguished Paper Award
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ShrinkESEC/FSE 2023

Reduce size by 3x and latency by 50% by 
quantizing parameter into int8

Greening LLM4SE
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Related Paper @ ICSME 2025

                        107

Session 2 - Quality Assurance 1
Wed 10 Sep 2025 10:45 - 11:00 

Case Room 260-057



Many Open Problems wrt. Non-Functional Properties 
LLM4SE
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Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg
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