
David Lo, FACM, FIEEE

Code, Critique, Cure: Advancing LLM Reasoning
for AI-Augmented Software Maintenance

ICSME 2025, Auckland, New Zealand, September 2025

Self-Introduction

X

X

8,411 km

 2

Self-Introduction

 3

Self-Introduction

 4

Self-Introduction

 5

Singapore Management University

 Third university in Singapore
 Number of students:
 8000+ (UG)
 1800+ (PG)

 Schools:
 Business
 Computing
 Economics
 Accountancy
 Law
 Social Science

 6

Center for Research on Intelligent Software Engineering (RISE)
Elsevier JSS’21, Bibliometric Study

CSRankings, SE, Aug 2025

 7

AI for Software Engineering

Execution
Traces

Dev.
NetworkGit

Mailing
ListBugzillaCode

 8

Experience with AI4SE

IEEE Computer’09

FSE’06

KDD’07

 9

Experience with AI4SE

SANER’16

KDD’09 ICSE’10

Test oracle generation Intelligent issue trackers

Intelligent program repair - Facebook
Engineers

Intelligent crowdsourced SE

MSR’13

“History-driven
program repair

influence
our work, the overall
pipeline is similar”

 10

Our Research Agenda in AI4SE

History Challenges Vision

Roadmap I Roadmap II Call4Action

AI for Software Engineering

Towards Software Engineering 2.0
ICSE’23 Future of SE Talk

 11

“If you want to go far, go together” – African Proverb

 12

Code, Critique, Cure: Advancing LLM Reasoning
for AI-Augmented Software Maintenance

Large Language Models (LLMs)

0.1

1

10

100

1000

2018 2019 2020 2021 2022 2023 2024

GPT-2

GPT-3

CodeBERT

CodeX

ERNIE

GraphCodeBERT

CodeT5

GPT3.5

GPT-4

BERT

BART

T5

LaMDA

PaLM

mT5

Bard

Sparrow
LLaMA

M
od

el
 S

ize
(in

 B
illi

on
s

of
 P

ar
am

et
er

s) CodeLlama

Mixtral

Deepseek

PanGu-Coder2

Large Language Model Sizes Over Time

 14

LLM Can Greatly Help SE Tasks
IC

SM
E

20
20

Early work on LLM4SE, among most cited papers of ICSME 2020

IC
SM

E
20

21

Early work on benchmarking code LLM, among most cited papers of ICSME 2021

 15

LLMs Seem to Win for Many SE Scenarios

 17

TO
SE

M
 2

02
4

Despite Successes, Much Work Remains

 19

Despite Successes, Much Work Remains

LLM has limited reasoning capabilities
for software maintenance tasks

 21

How Can We
Improve It?

Too Much Focus on Models

– Andrew Ng
Google Brain Co-Founder

0.1

1

10

100

1000

2018 2019 2020 2021 2022 2023 2024

GPT-2

GPT-3

CodeBERT

CodeX

ERNIE

GraphCodeBERT

CodeT5

GPT3.5

GPT-4

BERT

BART

T5

LaMDA

PaLM

mT5

Bard

Sparrow
LLaMA

M
od

el
 S

ize
(in

 B
illi

on
s

of
 P

ar
am

et
er

s) CodeLlama

Mixtral

Deepseek

PanGu-Coder2

Large Language Model Sizes Over Time

 25

“99% of the papers were
model-centric with only 1%

being data-centric”

Data-Centric LLM4SE

 Use SE domain knowledge for
software artifact engineering

 to guide LLM reasoning
 for specific SE tasks

 26

Better
Reasoning
Capabilities

Data-Centric LLM4SE: Artifact Engineering

 Construct LLM-reasoning friendly
datasets by
- selecting the right artefacts
- linking related pieces of information,
- providing examples,
- transforming them appropriately, etc.
leveraging domain knowledge.

 Scale up with LLM4(LLM4SE):
LLMs themselves can assist this SE
artifact engineering (crafting) step

“How Can We
Systematically Engineer

Software Artifacts to Build
Better LLM4SE Bots?”

Synthesized
Artifacts

Existing
Artifacts

Better
Reasoning
Capabilities

 29

Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully

 30

Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully

 31

Structured Data Can Be Helpful for AI4SE

First work that leverages structural information in code AST for better code
comment generation; most cited paper of ICPC

IC
PC

 2
01

8

 32

Distilling Structured Reasoning Traces from Com. Knowledge
IC

SE
 2

02
6

Engineers high-quality structured reasoning traces from community knowledge
for better LLM-powered code generation

 33

Community Knowledge as Code Reasoning Training Resources

Community discussions offer
peer-reviewed insights into
developers’ problem-solving
strategies

“How Can We Leverage
Community Knowledge to
Help LLM Reason Better?”

 34

RT-Distiller: From Com. Posts to Structured Reasoning Traces

• Distilling high-quality reasoning
traces (RTs) for code generation
from evolving community
knowledge.

 Mixed Quality Posts

 35

RT-Distiller: From Com. Posts to Structured Reasoning Traces

• Distilling high-quality reasoning
traces (RTs) for code generation
from evolving community
knowledge.

 Artificial
 Site-Specific
 Code Structure

 Mixed Quality Posts

 36

RT-Distiller: From Com. Posts to Structured Reasoning Traces

• Distilling high-quality reasoning
traces (RTs) for code generation
from evolving community
knowledge.

 Artificial
 Site-Specific
 Code Structure

 Mixed Quality Posts

 Loosely Structured
 Reasoning

 37

Step I: Addressing Mixed Quality Posts

 Identify rating mechanisms
 Select highly-rated posts

+

 Identify typical information pieces
 Detect missing pieces
 Synthesize missing pieces using LLM

 Identify High Quality Posts Improve Post Quality

 38

Step II: Dealing with Artificial Site-Specific Code Structure

Structure Perturbation

Input Perturbation

Output Perturbation

Input
Code

 Diversify Solution Code
 While Preserving Semantics

 39

Problem
Understanding

Step III: Enriching Loosely Structured Reasoning Traces

 Rewrite a post into a structured trace inspired by SDLC

Planning Design Implementation=

 40

Step III: Enriching Loosely Structured Reasoning Traces

 41

Problem
Understanding

Step III: Enriching Loosely Structured Reasoning Traces

 Rewrite a post into a structured trace inspired by SDLC

Planning Design Implementation

+ Edge Case
Reasoning

Common Mistake
Reasoning

+

 Add iterative refinement considerations

=

+ Simple Input
Reasoning

 42

Step III: Enriching Loosely Structured Reasoning Traces

 43

Experiment Settings

 45

2,105 LeetCode
Problems

< January 1, 2024

RT-Distiller

12,444 Reasoning
Traces

Fine-tune

Qwen2.5 32B

CodeThinker

> January 1, 2024
Evaluation on LiveCodeBench

Qwen2.5 32B

DeepSeekCoder 32B

CodeLlama 34B
….

Experiment Results – Comparison with LLMs of Similar Sizes

 46

Experiment Results – Generalizability Beyond LeetCode

CodeThinker shows strong generalization ability to problems
from non-LeetCode platforms, achieving significant improvements

78%

 47

Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

I R S1 S2 S3a A
 48

Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

I R S1 S2 S3a A
 49

Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

I R S1 S2 S3a A
 50

Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

I R S1 S2 S3a A
 51

Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

I R S1 S2 S3a A
 52

Experiment Results – Ablation Study
*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;

S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

I R S1 S2 S3a A
 53

Experiment Results – Ablation Study

I vs. R: Training with raw LeetCode
discussion posts results in performance drop

*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;
S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

I R S1 S2 S3a A
 54

Experiment Results – Ablation Study

I vs. R: Training with raw LeetCode
discussion posts results in performance drop

R vs. S1: Synthesizing missing information in
LeetCode discussion posts helps

S1 vs. S2: Applying code perturbation
improves generalization to non-LeetCode

S2 vs. S3a: Introducing SDLC-inspired
structure to reasoning traces helps

*I: Initial checkpoint; R: Fine tune using raw LeetCode discussion posts;
S1: Step 1 only; S2: Step 1+2 only; S3a: Step 1+2+3a only; A: All steps of RT-Distiller

S3a vs. A: Adding iterative refinement
considerations helps

I R S1 S2 S3a A
 58

Code

Engineering structured reasoning
traces help LLM reasoning

for code generation

 59

Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully

 60

Contrastive Patterns Can Help AI Reasoning
KD

D
 2

00
9

Distills rich discriminative (contrastive) patterns for AI-powered failure detection
(aka. test oracle generation); early SE paper in a top AI venue

 61

Distilling Contrastive Reasoning Trace Pairs

Engineers contrastive reasoning trace pairs
to help LLM reason about vulnerabilities

 62

Vulnerability Detection with LLMs
 Vulnerability detection demands a binary judgement:
 Is the input code safe or vulnerable?

TO
SE

M
 2

02
5

 63

Vulnerability Detection with LLMs
 Limited efficacy

 From a developer viewpoint, a binary judgement is also not sufficient:

Why is this input code vulnerable or safe?
What is the mechanism of a vulnerability and its impact?

IC
SE

 2
02

4

 64

R2Vul: Beyond Binary Judgement
Fine-tune an LLM to better detect vulnerabilities and generate
structured reasoning.

 The LLM outputs a structured reasoning covering key aspects of code
safety and vulnerability.

Vulnerable Code
1. Discuss specific code constructs responsible

for the vulnerability
2. Explain the mechanism of the vulnerability
3. Discuss its potential impact
4. Relate the vulnerability to a relevant CWE

Safe Code
1. Discuss key aspects contributing to code

safety
2. Discuss the absence of key vulnerabilities
3. Provide evidence-based justification why a

code is safe

 66

Step 1: Generate Contrastive Reasoning Trace Pairs
 Given a labeled dataset 𝒟𝒟 = { 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 }𝑖𝑖=1𝑁𝑁

- (𝑥𝑥𝑖𝑖: function, 𝑦𝑦𝑖𝑖 ∈ {𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆})
 Prompt a base LLM to generate:

- A valid reasoning 𝒓𝒓𝒊𝒊+conditioned on the true sample label 𝑦𝑦𝑖𝑖
- A flawed reasoning 𝒓𝒓𝒊𝒊−conditioned on the flipped sample label −𝑦𝑦𝑖𝑖
 𝒟𝒟 = { 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑟𝑟𝑖𝑖+, 𝑟𝑟𝑖𝑖− }𝑖𝑖=1𝑁𝑁 = preference dataset

 67

Step 1: Generate Contrastive Reasoning Trace Pairs

 68

Step 2: Use Contrastive Reasoning Trace Pairs
 Combines supervised fine-tuning (SFT) and odds-ratio (OR) losses
  SFT: trains the model to generate high-quality structured reasoning
  OR: distinguish valid vs. flawed reasoning

 Additional feature: Distill smaller models
  constraints from deployment environment

 69

Experiment Details
 Step 1:

- Base LLM: Qwen2.5-Coder-Instruct with 32B parameters
- About 18,000 pairs of contrastive traces
- Five programming languages: C#, JavaScript, Java, Python, and C

 Step 2:
- Target LLMs: Qwen2.5-Coder-Instruct with 0.5B, 1.5B, and 7B parameters

 70

Main Results: Detection Performance

Mean F1 = Average F1 across 5 languages
R2Vul-1.5B wins
over Base (32B)

 71

Main Results: Detection Performance

R2Vul-1.5B wins
over commercial
LLMs

 72

Mean F1 = Average F1 across 5 languages

R2Vul vs. SFT: Impact of Contrastive Reasoning Trace Pairs

 73

Reasoning Quality Assessment
Baselines: Qwen2.5-1.5B-Coder-Instruct and MSIVD (CodeLlama-13B): reasoning-based LLM [1]
Evaluators: GPT-4o, Claude-3.5-Sonnet, and two human experts

[1] Yang, Aidan ZH, et al. "Security vulnerability detection with multitask self-instructed fine-tuning of large
language models." arXiv preprint arXiv:2406.05892 (2024).

 74

Critique

Engineering contrastive reasoning
trace pairs help LLM reasoning

for vulnerability detection

 75

Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully

 76

SA
N

ER
 2

01
6

Integrating Diverse Inputs from Diverse Sources Can Help AI

First MSR-powered APR work: mines hundreds of GitHub repositories for repair patterns
serving as augmented inputs to test cases for search-based automated program repair (APR);

most-cited SANER 2016 paper that inspired Facebook

 77

IC
SE

 2
02

4
Integrating Diverse Inputs for LLM-Powered Vulnerability Repair

First LLM-powered automated program repair work that (i) links vulnerable code to
LLM-enriched CWE know ledge and (ii) leverages AST contents

to double the efficacy of prior work

 78

Previous solutions:

LLM

+
Tokens in

Vulnerable Function Fixed Function

Many other inputs have not been leveraged:

Vulnerability
Type

CWE Description
Simple Vulnerable
Code Examples

AST
Parser

LLM
AST

• Abstract Syntax
Tree

• CWE Knowledge

Vulnerability
Type

Detailed Analyses

Integrating Diverse Inputs for LLM-Powered Vulnerability Repair

 79

Incorporate AST

Incorporate
CWE knowledge

Address
lengthy inputs

CodeT5GPT-3.5

Data-Centric
Innovations

Multi-LLM
Collaboration

2x Fixed
Vulnerabilities

+

=

VulMaster’s Design

 80

Overall Framework

Simple Vulnerable
Code Examples

AST

partition
Code

Segments

Vulnerable Function

Vulnerability
Type CWE Description

Step 1: Collect Diverse Inputs

Step 2: Fill in Missing Data with GPT-3.5

Fixed Examples

LLM (CodeT5)
+ Data Fusion

Fixed
Function

Step 3: Fuse Diverse Inputs

Detailed Analyses
Model Adaptation for AST

Multi-Task Learning

Additional Model Innovations

CWE Tree Exploration

 81

• Note: Real vulnerability fixes are not simple or come with detailed analysis

Step 2: Fill In Missing Data with GPT-3.5

CWE Type

Prompt

Fixes for examples

generate

Vulnerable Examples
CWE Description

Detailed Analyses The code {Example} contains a
vulnerability of type {Description}.
The analysis of this vulnerable code
is {Analysis}. Please generate the
repaired code to address the
vulnerability.

Prompt:

• General-purpose LLMs are effective for
- Fixing simple (toy) vulnerable examples when detailed analysis is given.

• Thus, we use GPT-3.5 to generate the fixed CWE examples:

 82

Step 3: Fusing Diverse Input Data Components

Input Code

ASTs

Vulnerable-Fix
Pairs from CWE

CWE Description
Concat CodeT5

Decoder

Contextual Embedding
and Concatenation

Diverse Inputs Repair Generation

CodeT5
Encoder

Fixed Code

Fixed Code

Vulnerable Code
Other Diverse

Inputs

 83

Results: Comparisons with SOTA

• VulMaster doubles the Exact Match (EM)
score

• VulMaster consistently outperforms for
vulnerabilities of different characteristics

Main Results

- long/short: the length of the code
- frequent/infrequent: the
 vulnerability type frequencies
- top/less risky: top 10 most
 dangerous CWEs or not

 84

Latest Extension

Please stay tuned: Paper will be
released on arXiv soon

Incorporate AST

Incorporate
CWE knowledge

Incorporate
Data Flow

Qwen-2.5 7B Instruct

More Diverse Data Reinforcement
Learning

+

Reasoning
steps for repair

= +34.96%
Performance Gain

GPT-4o

 85

Engineering holistic representation
from diverse inputs and sources

help LLM reasoning for repair

Cure

AI-Assisted Patch

Fix Applied Successfully

 86

Code Critique Cure

AI-Assisted Patch

Fix Applied Successfully

 87

Data-Centric LLM4SE: Summary

 We want to elevate the data:
- enriching it, restructuring it, contrasting

it, and linking it in ways that promote
deeper reasoning

 And utilizing them effectively to train
LLMs to reason and do better for specific
SE tasks

“How Can We
Systematically Engineer

Software Artifacts to Build
Better LLM4SE Bots?”

 88

Beyond
Prompt

Engineering

Data-Centric LLM4SE: Summary

“Because in software engineering,
how we craft the data

is how we shape the intelligence”

 89

Road Ahead

Road Ahead

Multi-Agent LLM4SE

TOSEM 2025

Real-world problems demand "synergistic
collaboration”. Multi-agent LLM4SE

transforms isolated agents into
a coordinated group of experts.

 91

Multi-Agent LLM4SE: Vulnerability Detection

 92

Multi-Agent LLM4SE: VulTrial

 93

VulTrial’s Design

Example of Vulnerable Code
CWE-125 (Out-of-bounds Read)

 94

Evaluation Settings
 Evaluation on PrimeVul Pair [1] data.

Benign code Vulnerable code

Pair codes
Pair-Correct

 95

[1] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun
Chen, Basel Alomair, David A. Wagner, Baishakhi Ray, Yizheng Chen:
Vulnerability Detection with Code Language Models: How Far are We? ICSE
2025: 1729-1741

Evaluation Results

Multi-agent methods outperform the
single-agent methods

Each agent in VulTrial is necessary
to achieve the best performance

 97

Pa
ir-

Co
rre

ct

CoT
(GPT-4o)

GPTLens
(GPT-4o)

VulTrial
(GPT-4o)

VulTrial w/o
Moderator

VulTrial w/o
Code Author

VulTrial in the Wild

 98

Related Paper @ ICSME 2025

 99

Session 12 - Security 1
Thu 11 Sep 2025 15:45 - 16:00

Case Room 260-057

Towards Full Multi-Agent Solution: Humans (H) and Bots (B)

N:M??

 100

Road Ahead

Greening LLM4SE

LLM4SE solutions are large, slow, and
not green, introducing much cost,

latency, and carbon footprint

TOSEM 2025

 102

Stop ShrinkSimplify

Greening LLM4SE: Three Strategies

 103

Greening LLM4SE

ISSTA 2024

Improve code generation speed by up to
4.5x by terminating inference early

Stop

 104

Greening LLM4SE

Simplify

IS
ST

A
20

24

First work to propose a programming language grammar for AI agents

Won ACM SIGSOFT Distinguished Paper Award

 105

ShrinkESEC/FSE 2023

Reduce size by 3x and latency by 50% by
quantizing parameter into int8

Greening LLM4SE

 106

Related Paper @ ICSME 2025

 107

Session 2 - Quality Assurance 1
Wed 10 Sep 2025 10:45 - 11:00

Case Room 260-057

Many Open Problems wrt. Non-Functional Properties
LLM4SE

 108

 111

Acknowledgements

OUB Chair
Professorship Fund

 112

Thank you!

Questions? Comments? Advice?
davidlo@smu.edu.sg

	Slide Number 1
	Self-Introduction
	Self-Introduction
	Self-Introduction
	Self-Introduction
	Singapore Management University
	Center for Research on Intelligent Software Engineering (RISE)
	AI for Software Engineering
	Experience with AI4SE
	Experience with AI4SE
	Our Research Agenda in AI4SE
	“If you want to go far, go together” – African Proverb
	Slide Number 13
	Large Language Models (LLMs)
	LLM Can Greatly Help SE Tasks
	LLMs Seem to Win for Many SE Scenarios
	Despite Successes, Much Work Remains
	Despite Successes, Much Work Remains
	Too Much Focus on Models
	Data-Centric LLM4SE
	Data-Centric LLM4SE: Artifact Engineering
	Slide Number 30
	Slide Number 31
	Structured Data Can Be Helpful for AI4SE
	Distilling Structured Reasoning Traces from Com. Knowledge
	Community Knowledge as Code Reasoning Training Resources
	RT-Distiller: From Com. Posts to Structured Reasoning Traces
	RT-Distiller: From Com. Posts to Structured Reasoning Traces
	RT-Distiller: From Com. Posts to Structured Reasoning Traces
	Step I: Addressing Mixed Quality Posts
	Step II: Dealing with Artificial Site-Specific Code Structure
	Step III: Enriching Loosely Structured Reasoning Traces
	Step III: Enriching Loosely Structured Reasoning Traces
	Step III: Enriching Loosely Structured Reasoning Traces
	Step III: Enriching Loosely Structured Reasoning Traces
	Experiment Settings
	Experiment Results – Comparison with LLMs of Similar Sizes
	Experiment Results – Generalizability Beyond LeetCode
	Experiment Results – Ablation Study
	Experiment Results – Ablation Study
	Experiment Results – Ablation Study
	Experiment Results – Ablation Study
	Experiment Results – Ablation Study
	Experiment Results – Ablation Study
	Experiment Results – Ablation Study
	Experiment Results – Ablation Study
	Engineering structured reasoning traces help LLM reasoning �for code generation
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Vulnerability Detection with LLMs
	Vulnerability Detection with LLMs
	R2Vul: Beyond Binary Judgement
	Step 1: Generate Contrastive Reasoning Trace Pairs
	Step 1: Generate Contrastive Reasoning Trace Pairs
	Step 2: Use Contrastive Reasoning Trace Pairs
	Experiment Details
	Main Results: Detection Performance
	Main Results: Detection Performance
	R2Vul vs. SFT: Impact of Contrastive Reasoning Trace Pairs
	Reasoning Quality Assessment
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Results: Comparisons with SOTA
	Latest Extension
	Engineering holistic representation from diverse inputs and sources help LLM reasoning for repair
	Slide Number 87
	Data-Centric LLM4SE: Summary
	Data-Centric LLM4SE: Summary
	Slide Number 90
	Road Ahead
	Multi-Agent LLM4SE: Vulnerability Detection
	Multi-Agent LLM4SE: VulTrial
	VulTrial’s Design
	Evaluation Settings
	Evaluation Results
	VulTrial in the Wild
	Related Paper @ ICSME 2025
	Towards Full Multi-Agent Solution: Humans (H) and Bots (B)
	Road Ahead
	Slide Number 103
	Greening LLM4SE
	Greening LLM4SE
	Slide Number 106
	Related Paper @ ICSME 2025
	Many Open Problems wrt. Non-Functional Properties
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Acknowledgements
	Thank you!
	Slide Number 114
	Slide Number 115

