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 Third university in Singapore
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 8000+ (UG)
 1800+ (PG)

 Schools:
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 Accountancy
 Law
 Social Science
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AI for Software Engineering
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Experience with AI4SE
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IEEE Computer’09

FSE’06

KDD’07



Experience with AI4SE
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SANER’16

KDD’09 ICSE’10

Test oracle generation Intelligent issue trackers

Intelligent program repair - Facebook 
Engineers

Intelligent crowdsourced SE 

MSR’13

“History-driven 
program repair 

influence
our work, the overall 
pipeline is similar”



Our Research Agenda in AI4SE
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History Challenges Vision

Roadmap I Roadmap II Call4Action

AI for Software Engineering

Towards Software Engineering 2.0
ICSE’23 Future of SE Talk



“If you want to go far, go together” – African Proverb 
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Efficient and Green Code LLMs: 
Happier Software Engineers, Happier Planet



Large Language Models (LLMs)
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LLM Can Greatly Help SE Tasks
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Multi-LLM collaboration + data-centric innovation = 2x efficacy

Early work on LLM4SE, most cited paper of ICSME 2020
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LLMs Seem to Win for Many SE Scenarios
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LLMs Seem to Win for Many SE Scenarios



Many Open Problems
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LLM4SE



Many Open Problems
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LLM4SE



Code LLMs are Large, Slow, …

Developers often prefer local AI4SE tools due to privacy and latency concerns
• E.g., Apple banned internal use of external AI tools
• E.g., 20% of GitHub Copilot’s issues are related to network connectivity

Deploying LLMs to IDE has issues:

                        20

RealityExpectations

• “50MB model is upper bound, and 3MB is 
preferred in modern IDE” 

• “0.1 seconds is preferred in modern IDE or 
editor design”

- VSCode Team

CodeBERT 
Size: > 400MB

Latency: > 1.5s/query



Code LLMs are Large, Slow, and not Green

LLM has high energy consumption and carbon footprint

                        21

• Typical laptop’s battery can 
support CodeBERT for 13.2 mins

• Using CodeBERT a thousand times 
produces 0.14 kg of CO2  
(driving a car for 1 km)

• Much worse for larger LLMs
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies
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Efficient and Green Code LLMs: Three Strategies



Stop Unhelpful Code Completion with FrugalCoder

First work to investigate the problem of unhelpful code completions
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TOSEM 2024



LLM-based Code Completion Brings New Challenges

High Computation & Latency
 LLM-based code completion requires large scale

computing and causes latency

Low Acceptance Rate
 Code completion requests are complex in real world
 Only 30% of completions are accepted by the users of

Github Copilot [GitHub22]

LLM-based Code Completion is Popular
 Each user of Github Copilot receives one suggestion

roughly every 3 minutes [GitHub22]
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[GitHub22] Albert Ziegler (GitHub), Eirini Kalliamvakou (GitHub), 
Shawn Simister, et al. Productivity Assessment of Neural Code 
Completion. MAPS’22 at PLDI’22.



What Cause Unhelpful Code Completions?

(1) Requests that are beyond the capability of the LLM

(2) Requests that do not contain sufficient information, e.g., meaningless 
identifiers, vague intention, etc.
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How to Address This Problem?

(1) Improve the performance of the LLM-Powered Solutions

(2) Prevent unhelpful completions

Better Model, Better Retrieval-Augmented Solution, …

A new task for code completion
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Pre-Processing: Stop the requests

Inference: Early terminations

Post-processing: Do not display
                        completions

User Code Pre-
Processing LLM

Post-
Processing

Code
Completions



FrugalCoder: Identify & Reject Unpromising Code Prompts

 Using lightweight estimator to estimate the quality of the code completion
 Decide whether to proceed based on a pre-defined threshold

Challenge 1: Efficacy
The estimator should effectively
estimate code completion quality

Challenge 2: Efficiency
The cost of running the estimator should be 
lower than the LLM cost
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FrugalCoder: Building the Estimator

def sum(nums):
    sum_num = 0
    for num in nums:
        sum_num += num
    return sum_num

def sum(nums):
    sum_num = 0
    for num in nums:

sum_num += num
    return sum_num

Code Snippet
Code Prompt

Ground Truth

sum_num += num
    return sum_num

Completion

Target 
LLM

Score (e.g., BLEU)

Generate Training Data

1.00

Estimator

Train Estimator
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Results: Feasibility of FrugalCoder

Efficacy

 Deep Learning as Estimator
 Lightweight Transformer

 Traditional ML as Estimator
Adaboost

Reject 20% of requests
with a 95.1% Precision

Efficiency

5.1 ms for each query

Efficacy

Reject 20% of requests
with a 92.1% Precision

Efficiency

0.1 ms for each query

Improve Acceptance Rate
from 27.4% to 33.0%

Improve Acceptance Rate
from 27.4% to 32.3%
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Future Work

 Stop remaining unhelpful code completions
 Stop more unhelpful code completions to increase acceptance rate even more

 Explore the secondary use of FrugalCoder
 Such as its potential to identify and stop adversarial attacks, backdoor attack, 

etc.

                        32
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies



Simplify Programming Language Grammars
IS

ST
A

20
24

First work to propose a programming language grammar for AI agents
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Won ACM SIGSOFT Distinguished Paper Award



AI Agents: The Third Audience

Human

Machine

AI Agents

Understand

Compile

Understand

Execute

Write

Write

Active “developers” that utilize programming to accomplish various tasks
                        35

Source Code



Human-Centric Programming Language: Readability Counts 
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Good practice

def sum ( nums ) : if

len ( nums ) = = 0 :

raise Value Error sum

_ num = 0 for num in

nums : sum _ num

numreturn= num sum _+

“Looks” wordy

Bad practice

def sum ( nums ) : if len ( nums )

= = 0 : raise Value Error sum _ num

= 0 for num in nums : sum _ num

numreturn= num sum _+

“Looks” succinct



Human-Centric Programming Language Grammar Design

Visual Coding
Include symbols like line 
breaks and indentions

Explicit Delimiters 
Use explicit delimiters to define 
code structures despite some
delimiters not being essential 
for parsing

Are there better programming language grammars for AI agents?
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SimPy: A proof-of-concept AI-agent oriented grammar 
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def two_sum(nums: list[int], target: int) -> list[int]:\n
chk_map: dict[int, int] = {}\n
for index, val in enumerate(nums):\n

compl = target - val\n
if compl in chk_map:\n

return [chk_map[compl], index]\n
chk_map[val] = index\n

return []

Python

SimPy

128 tokens

80 tokens

<def_stmt>two_sum nums:list[int] target:int<arrow>list
[int]<block_start>chk_map:dict[int int]={}<for_stmt>
index,val enumerate(nums)<block_start>compl=target-val
<if_stmt>compl<in>chk_map<block_start><return>[chk_map
[compl] index]<block_end>chk_map[val]=index<block_end>
<return>[]<block_end>

Tokenized by CodeBERT

Replace notations with tokens
Replace keywords and symbols (e.g., “if”, 
“for”, etc.) with specialized tokens

Restrict coding style
Streamline white spaces, line breaks,
indents, etc. preserving only essential 
separators

Simplify grammar tokens
For every grammar token in every
production, we review whether it can be 
removed, merged with others, or replaced 
with white spaces

Same Execution
Results



Making AI Agent Understand and Write SimPy
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LLM first trained on Python and then on SimPy (with equivalent sample size)

Python Dataset

Converter

SimPy Dataset

Further Pre-train Further Pre-train
Base Agent

(natural language)
Python Agent SimPy Agent

 SimPy is more similar to Python than natural language



SimPy’s Possible Usage Scenarios

Natural Language

SimPy Code

Executor

Program Results

Natural Language

AI Agent

Basic usage scenario
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Extended usage scenario

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent

: DualCode



RQ1: Token Reduction
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• SimPy reduces the number 
of tokens required for source 
code representation.

• CodeBERT and GPT-4 
benefiting from a 34.7% 
and 10.4% reduction. 



RQ2: Efficacy of AI Agents Trained on SimPy
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Model Training Strategy Pass@10

CodeGen-NL
(350M)

Python 7.32%
Python->SimPy 9.15%

TinyLlama
(1.1B)

Python 13.41%
Python->SimPy 14.02%

Pythia
(1.0B)

Python 9.76%
Python->SimPy 10.00%



RQ3: Overhead of DualCode Scenario

Overhead

Overhead
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Extended usage scenario: DualCode

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent Overhead of the converter
0.9ms CPU time for processing
source code within 500 tokens.
As a reference, Huggingface
tokenizer costs 0.7ms for the
same code



Future Work
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 Automated grammar compression
 Automated approaches to create optimal grammar rules for a prog. language
 Go beyond Phyton
 Achieve more than 8-35% savings

 AI-agent-first grammar
 Designing from scratch grammars that are created for AI agents 

 Better adaptation methods
 Better ways to adapt LLMs to understand and use AI-agent-oriented grammars,

such as through contrastive learning
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies



Optimize Code LLMs with Compressor & Avatar

ASE 2022
Compressor
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ICSE 2024
Avatar

Compress code LLMs: 160x smaller, 76× faster, 184× more energy-saving, 
and 157× less in carbon footprint

First work to compress code LLMs: 160× smaller and 4.23× faster

Today’s Sharing
Nominated for ACM SIGSOFT Distinguished Paper Award



Avatar’s Overall Workflow
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LLM 
Configurations

Pruned
Configuration Space

Sampled
Configurations

SMT-based 
Pruning

Efficacy
Indicator

Training

Multi-objective 
Configuration Tuning

Pareto-optimal 
Configurations

Code LLM Compact & Green
Code LLM

Step 1 Identify & Prune Config. Space 

Step 2 Build Efficacy Indicator Step 3 Search for Optimal Configuration  

Step 4 Perform Knowledge Distillation

Distillation



Step 1: Prune Massive Configuration Space
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Typical configuration 
space of LLMs

containing 4.5 × 1019 
plausible configurations

Too large & many are 
infeasible!



Step 1: Prune Massive Configuration Space
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formulating model size 
and its constraint:

C: the configuration space
𝑐𝑐: a configuration
𝑣𝑣: vocabulary size
𝑠𝑠: model’s maximum input length
𝑙𝑙: number of hidden layers
ℎ: dimension of hidden layers 
𝑖𝑖: dimension of intermediate NN layers



Step 1: Prune Massive Configuration Space
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Large space of 4.5 × 1019 
plausible configurations

Remaining space after pruning accounts for 
only 28.9% of the original one

Using SMT solver 
to prune



Step 3: Identify Pareto-Optimal Configurations
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Avatar uses a multi-objective optimization algorithm to find 
Pareto-optimal configurations, i.e., configurations that achieve the 

best trade-off among all objectives

Prediction accuracy on a 
downstream task 

(using the efficacy indicator 
created in Step 2)



Step 4: Perform Knowledge Distillation

                        57

Outputs of the large code LLM and 
small model being trained, respectively

Softmax function’s 
temperature parameter

Minimizing this loss means 
making the outputs of the 

large and the small code LLMs 
as similar as possible

Num of 
classes

Num of training 
examples



Results: Effectiveness on Various LLMs
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model size

481 MB to 3 MB
160× smaller

inference latency

up to 76× faster

energy consumption

up to 184× less

carbon footprint

up to 157× less

efficacy

Only 1.67% loss 

Avatar effectively optimizes CodeBERT & GraphCodeBERT on 
Vulnerability Prediction & Clone Detection in terms of



Future Work
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 More experimentation
 Compressing more and larger models
 Consideration of various SE tasks

 LLM training/fine-tuning 
acceleration

 Effective data reduction and selection

 Better LLM inference acceleration 
 Combine multiple strategies in addition 

to compression
 Dynamic model inference, static 

program optimization, etc.
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Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies



Related Work on Efficient and Green Code LLMs 
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ISSTA 2024

Improve code generation speed by up to 
4.5x by terminating inference early

Stop



Related Work on Efficient and Green Code LLMs 
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FSE 2022

40% less computational cost in fine-tuning 
and testing by simplifying input programs

Simplify



Related Work on Efficient and Green Code LLMs 
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Shrink
ESEC/FSE 2023

Reduce size by 3x and latency by 50% by 
quantizing parameter into int8



Literature Review, Vision, and the Road Ahead
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TOSEM SE Vision 2030 @ FSE 2024
TOSEM “2030 SE Roadmap” Special Issue

First work to (1) survey the current state of efficient and green code LLMs, 
(2) envision future possibilities, 

and (3) present a roadmap to achieve that future.



Literature Review
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Grammar
Simplification

Program
Pruning

Training Data
Reduction

Model Compression

Parameter-Efficient 
Fine-Tuning

Architecture 
Modification 

Dynamic Inference

Efficient & Green 
Code LLMs

Pipeline-Centric
5 papers

Model-Centric
16 papers

Data-Centric
6 papers

Program-Centric
7 papers

This area remains far from 
fully explored, with more 
breakthroughs needed.

What future do we 
envision, and how can 

we achieve it?



Vision - I
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Developers

Private, Personalized, Low-Cost 
Software Engineering Assistants

Imagine a 3MB-only private LLM on your laptop, fully aware of your work, 
offering instant help within 100ms even without an Internet connection!



Vision - II
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Companies

Profitable LLM-Powered Cloud-Based 
Software Engineering Services

GitHub Copilot now incurs a $20 loss per user per month. Imagine if costs 
drop and it becomes profitable for GitHub and many other smaller 

companies to offer LLM-powered software engineering services!



Vision - III
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Better Environmental Sustainability 
with Software Engineering 2.0

Society

Training LLaMA consumes electricity equal to 445 Danish citizens in a year. Imagine 
how sustainable if the training and inference cost can be reduced to 10%!

Imagine if SE 2.0 can “pay” for the remaining cost by rectifying inefficiencies in 
software systems and enabling adaptive software that runs only what is needed, 

achieving net carbon neutrality!



Vision and Road Ahead
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A Comprehensive Benchmark

Better Compression Techniques

More Efficient 
Training Methods

Improved 
Inference Acceleration 

Program 
Optimization

Better Environmental 
Sustainability 
with SE 2.0

Profitable LLM-Powered 
Cloud-Based Software 
Engineering Services

Private, 
Personalized, Low-cost 
Software Engineering 

Assistant
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Thank You!

OUB Chair Professorship Fund
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Interested to Join Us? Visiting Student Openings at RISE
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Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg
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