
David Lo, FIEEE, FACM

Efficient and Green Code LLMs:
Happier Software Engineers, Happier Planet

APSEC 2024, Chongqing, China, Dec 2024

SMU Classification: Restricted

Self-Introduction

X

X

3,152 km

 2

SMU Classification: Restricted

Self-Introduction

 3

SMU Classification: Restricted

Self-Introduction

 4

SMU Classification: Restricted

Self-Introduction

 5

SMU Classification: Restricted

Singapore Management University

 Third university in Singapore
 Number of students:
 8000+ (UG)
 1800+ (PG)

 Schools:
 Business
 Economics
 Accountancy
 Law
 Social Science
 Computing

 6

SMU Classification: Restricted

Center for Research on Intelligent Software Engineering (RISE)
Elsevier JSS’21, Bibliometric Study

CSRankings, SE, June 2024

 7

AI for Software Engineering

 8

Execution
Traces

Dev.
NetworkGit

Mailing
ListBugzillaCode

Experience with AI4SE

 9

IEEE Computer’09

FSE’06

KDD’07

Experience with AI4SE

 10

SANER’16

KDD’09 ICSE’10

Test oracle generation Intelligent issue trackers

Intelligent program repair - Facebook
Engineers

Intelligent crowdsourced SE

MSR’13

“History-driven
program repair

influence
our work, the overall
pipeline is similar”

Our Research Agenda in AI4SE

 11

History Challenges Vision

Roadmap I Roadmap II Call4Action

AI for Software Engineering

Towards Software Engineering 2.0
ICSE’23 Future of SE Talk

“If you want to go far, go together” – African Proverb

 12

Efficient and Green Code LLMs:
Happier Software Engineers, Happier Planet

Large Language Models (LLMs)

0.1

1

10

100

1000

2018 2019 2020 2021 2022 2023 2024

GPT-2

GPT-3

CodeBERT

CodeX

ERNIE

GraphCodeBERT

CodeT5

GPT3.5

GPT-4

BERT

BART

T5

LaMDA

PaLM

mT5

Bard

Sparrow
LLaMA

M
od

el
 S

ize
(in

 B
illi

on
s

of
 P

ar
am

et
er

s) CodeLlama

Mixtral

Deepseek

PanGu-Coder2

Large Language Model Sizes Over Time

 14

LLM Can Greatly Help SE Tasks
IC

SM
E

20
20

 15

IC
SE

 2
02

4

Multi-LLM collaboration + data-centric innovation = 2x efficacy

Early work on LLM4SE, most cited paper of ICSME 2020

 16

LLMs Seem to Win for Many SE Scenarios
TO

SE
M

 2
02

4

 17

LLMs Seem to Win for Many SE Scenarios

Many Open Problems

 18

LLM4SE

Many Open Problems

 19

LLM4SE

Code LLMs are Large, Slow, …

Developers often prefer local AI4SE tools due to privacy and latency concerns
• E.g., Apple banned internal use of external AI tools
• E.g., 20% of GitHub Copilot’s issues are related to network connectivity

Deploying LLMs to IDE has issues:

 20

RealityExpectations

• “50MB model is upper bound, and 3MB is
preferred in modern IDE”

• “0.1 seconds is preferred in modern IDE or
editor design”

- VSCode Team

CodeBERT
Size: > 400MB

Latency: > 1.5s/query

Code LLMs are Large, Slow, and not Green

LLM has high energy consumption and carbon footprint

 21

• Typical laptop’s battery can
support CodeBERT for 13.2 mins

• Using CodeBERT a thousand times
produces 0.14 kg of CO2
(driving a car for 1 km)

• Much worse for larger LLMs

0.1

1

10

100

1000

2018 2019 2020 2021 2022 2023 2024

GPT-2

GPT-3

CodeBERT

CodeX

ERNIE

GraphCodeBERT

CodeT5

GPT3.5

GPT-4

BERT

BART

T5

LaMDA

PaLM

mT5

Bard

Sparrow
LLaMA

M
od

el
 S

ize
(in

 B
illi

on
s

of
 P

ar
am

et
er

s) CodeLlama

Mixtral

Deepseek

PanGu-Coder2

Large Language Model Sizes Over Time

 22

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

 23

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

Stop Unhelpful Code Completion with FrugalCoder

First work to investigate the problem of unhelpful code completions

 24

TOSEM 2024

LLM-based Code Completion Brings New Challenges

High Computation & Latency
 LLM-based code completion requires large scale

computing and causes latency

Low Acceptance Rate
 Code completion requests are complex in real world
 Only 30% of completions are accepted by the users of

Github Copilot [GitHub22]

LLM-based Code Completion is Popular
 Each user of Github Copilot receives one suggestion

roughly every 3 minutes [GitHub22]

 25

[GitHub22] Albert Ziegler (GitHub), Eirini Kalliamvakou (GitHub),
Shawn Simister, et al. Productivity Assessment of Neural Code
Completion. MAPS’22 at PLDI’22.

What Cause Unhelpful Code Completions?

(1) Requests that are beyond the capability of the LLM

(2) Requests that do not contain sufficient information, e.g., meaningless
identifiers, vague intention, etc.

 26

How to Address This Problem?

(1) Improve the performance of the LLM-Powered Solutions

(2) Prevent unhelpful completions

Better Model, Better Retrieval-Augmented Solution, …

A new task for code completion

 28

Pre-Processing: Stop the requests

Inference: Early terminations

Post-processing: Do not display
 completions

User Code Pre-
Processing LLM

Post-
Processing

Code
Completions

FrugalCoder: Identify & Reject Unpromising Code Prompts

 Using lightweight estimator to estimate the quality of the code completion
 Decide whether to proceed based on a pre-defined threshold

Challenge 1: Efficacy
The estimator should effectively
estimate code completion quality

Challenge 2: Efficiency
The cost of running the estimator should be
lower than the LLM cost

 29

FrugalCoder: Building the Estimator

def sum(nums):
 sum_num = 0
 for num in nums:
 sum_num += num
 return sum_num

def sum(nums):
 sum_num = 0
 for num in nums:

sum_num += num
 return sum_num

Code Snippet
Code Prompt

Ground Truth

sum_num += num
 return sum_num

Completion

Target
LLM

Score (e.g., BLEU)

Generate Training Data

1.00

Estimator

Train Estimator

 30

Results: Feasibility of FrugalCoder

Efficacy

 Deep Learning as Estimator
 Lightweight Transformer

 Traditional ML as Estimator
Adaboost

Reject 20% of requests
with a 95.1% Precision

Efficiency

5.1 ms for each query

Efficacy

Reject 20% of requests
with a 92.1% Precision

Efficiency

0.1 ms for each query

Improve Acceptance Rate
from 27.4% to 33.0%

Improve Acceptance Rate
from 27.4% to 32.3%

 31

Future Work

 Stop remaining unhelpful code completions
 Stop more unhelpful code completions to increase acceptance rate even more

 Explore the secondary use of FrugalCoder
 Such as its potential to identify and stop adversarial attacks, backdoor attack,

etc.

 32

 33

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

Simplify Programming Language Grammars
IS

ST
A

20
24

First work to propose a programming language grammar for AI agents

 34

Won ACM SIGSOFT Distinguished Paper Award

AI Agents: The Third Audience

Human

Machine

AI Agents

Understand

Compile

Understand

Execute

Write

Write

Active “developers” that utilize programming to accomplish various tasks
 35

Source Code

Human-Centric Programming Language: Readability Counts

 36

Good practice

def sum (nums) : if

len (nums) = = 0 :

raise Value Error sum

_ num = 0 for num in

nums : sum _ num

numreturn= num sum _+

“Looks” wordy

Bad practice

def sum (nums) : if len (nums)

= = 0 : raise Value Error sum _ num

= 0 for num in nums : sum _ num

numreturn= num sum _+

“Looks” succinct

Human-Centric Programming Language Grammar Design

Visual Coding
Include symbols like line
breaks and indentions

Explicit Delimiters
Use explicit delimiters to define
code structures despite some
delimiters not being essential
for parsing

Are there better programming language grammars for AI agents?

 37

SimPy: A proof-of-concept AI-agent oriented grammar

 38

def two_sum(nums: list[int], target: int) -> list[int]:\n
chk_map: dict[int, int] = {}\n
for index, val in enumerate(nums):\n

compl = target - val\n
if compl in chk_map:\n

return [chk_map[compl], index]\n
chk_map[val] = index\n

return []

Python

SimPy

128 tokens

80 tokens

<def_stmt>two_sum nums:list[int] target:int<arrow>list
[int]<block_start>chk_map:dict[int int]={}<for_stmt>
index,val enumerate(nums)<block_start>compl=target-val
<if_stmt>compl<in>chk_map<block_start><return>[chk_map
[compl] index]<block_end>chk_map[val]=index<block_end>
<return>[]<block_end>

Tokenized by CodeBERT

Replace notations with tokens
Replace keywords and symbols (e.g., “if”,
“for”, etc.) with specialized tokens

Restrict coding style
Streamline white spaces, line breaks,
indents, etc. preserving only essential
separators

Simplify grammar tokens
For every grammar token in every
production, we review whether it can be
removed, merged with others, or replaced
with white spaces

Same Execution
Results

Making AI Agent Understand and Write SimPy

 44

LLM first trained on Python and then on SimPy (with equivalent sample size)

Python Dataset

Converter

SimPy Dataset

Further Pre-train Further Pre-train
Base Agent

(natural language)
Python Agent SimPy Agent

 SimPy is more similar to Python than natural language

SimPy’s Possible Usage Scenarios

Natural Language

SimPy Code

Executor

Program Results

Natural Language

AI Agent

Basic usage scenario

 45

Extended usage scenario

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent

: DualCode

RQ1: Token Reduction

 46

• SimPy reduces the number
of tokens required for source
code representation.

• CodeBERT and GPT-4
benefiting from a 34.7%
and 10.4% reduction.

RQ2: Efficacy of AI Agents Trained on SimPy

 47

Model Training Strategy Pass@10

CodeGen-NL
(350M)

Python 7.32%
Python->SimPy 9.15%

TinyLlama
(1.1B)

Python 13.41%
Python->SimPy 14.02%

Pythia
(1.0B)

Python 9.76%
Python->SimPy 10.00%

RQ3: Overhead of DualCode Scenario

Overhead

Overhead

 48

Extended usage scenario: DualCode

Executor

Python Code

Converter

Natural Language

SimPy Code

Natural Language

Program Results

SimPy Code

Converter

Python Code

AI Agent Overhead of the converter
0.9ms CPU time for processing
source code within 500 tokens.
As a reference, Huggingface
tokenizer costs 0.7ms for the
same code

Future Work

 49

 Automated grammar compression
 Automated approaches to create optimal grammar rules for a prog. language
 Go beyond Phyton
 Achieve more than 8-35% savings

 AI-agent-first grammar
 Designing from scratch grammars that are created for AI agents

 Better adaptation methods
 Better ways to adapt LLMs to understand and use AI-agent-oriented grammars,

such as through contrastive learning

 50

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

Optimize Code LLMs with Compressor & Avatar

ASE 2022
Compressor

 51

ICSE 2024
Avatar

Compress code LLMs: 160x smaller, 76× faster, 184× more energy-saving,
and 157× less in carbon footprint

First work to compress code LLMs: 160× smaller and 4.23× faster

Today’s Sharing
Nominated for ACM SIGSOFT Distinguished Paper Award

Avatar’s Overall Workflow

 52

LLM
Configurations

Pruned
Configuration Space

Sampled
Configurations

SMT-based
Pruning

Efficacy
Indicator

Training

Multi-objective
Configuration Tuning

Pareto-optimal
Configurations

Code LLM Compact & Green
Code LLM

Step 1 Identify & Prune Config. Space

Step 2 Build Efficacy Indicator Step 3 Search for Optimal Configuration

Step 4 Perform Knowledge Distillation

Distillation

Step 1: Prune Massive Configuration Space

 53

Typical configuration
space of LLMs

containing 4.5 × 1019
plausible configurations

Too large & many are
infeasible!

Step 1: Prune Massive Configuration Space

 54

formulating model size
and its constraint:

C: the configuration space
𝑐𝑐: a configuration
𝑣𝑣: vocabulary size
𝑠𝑠: model’s maximum input length
𝑙𝑙: number of hidden layers
ℎ: dimension of hidden layers
𝑖𝑖: dimension of intermediate NN layers

Step 1: Prune Massive Configuration Space

 55

Large space of 4.5 × 1019
plausible configurations

Remaining space after pruning accounts for
only 28.9% of the original one

Using SMT solver
to prune

Step 3: Identify Pareto-Optimal Configurations

 56

Avatar uses a multi-objective optimization algorithm to find
Pareto-optimal configurations, i.e., configurations that achieve the

best trade-off among all objectives

Prediction accuracy on a
downstream task

(using the efficacy indicator
created in Step 2)

Step 4: Perform Knowledge Distillation

 57

Outputs of the large code LLM and
small model being trained, respectively

Softmax function’s
temperature parameter

Minimizing this loss means
making the outputs of the

large and the small code LLMs
as similar as possible

Num of
classes

Num of training
examples

Results: Effectiveness on Various LLMs

 58

model size

481 MB to 3 MB
160× smaller

inference latency

up to 76× faster

energy consumption

up to 184× less

carbon footprint

up to 157× less

efficacy

Only 1.67% loss

Avatar effectively optimizes CodeBERT & GraphCodeBERT on
Vulnerability Prediction & Clone Detection in terms of

Future Work

 59

 More experimentation
 Compressing more and larger models
 Consideration of various SE tasks

 LLM training/fine-tuning
acceleration

 Effective data reduction and selection

 Better LLM inference acceleration
 Combine multiple strategies in addition

to compression
 Dynamic model inference, static

program optimization, etc.

 60

Stop ShrinkSimplify

Efficient and Green Code LLMs: Three Strategies

Related Work on Efficient and Green Code LLMs

 61

ISSTA 2024

Improve code generation speed by up to
4.5x by terminating inference early

Stop

Related Work on Efficient and Green Code LLMs

 62

FSE 2022

40% less computational cost in fine-tuning
and testing by simplifying input programs

Simplify

Related Work on Efficient and Green Code LLMs

 63

Shrink
ESEC/FSE 2023

Reduce size by 3x and latency by 50% by
quantizing parameter into int8

Literature Review, Vision, and the Road Ahead

 64

TOSEM SE Vision 2030 @ FSE 2024
TOSEM “2030 SE Roadmap” Special Issue

First work to (1) survey the current state of efficient and green code LLMs,
(2) envision future possibilities,

and (3) present a roadmap to achieve that future.

Literature Review

 65

Grammar
Simplification

Program
Pruning

Training Data
Reduction

Model Compression

Parameter-Efficient
Fine-Tuning

Architecture
Modification

Dynamic Inference

Efficient & Green
Code LLMs

Pipeline-Centric
5 papers

Model-Centric
16 papers

Data-Centric
6 papers

Program-Centric
7 papers

This area remains far from
fully explored, with more
breakthroughs needed.

What future do we
envision, and how can

we achieve it?

Vision - I

 66

Developers

Private, Personalized, Low-Cost
Software Engineering Assistants

Imagine a 3MB-only private LLM on your laptop, fully aware of your work,
offering instant help within 100ms even without an Internet connection!

Vision - II

 67

Companies

Profitable LLM-Powered Cloud-Based
Software Engineering Services

GitHub Copilot now incurs a $20 loss per user per month. Imagine if costs
drop and it becomes profitable for GitHub and many other smaller

companies to offer LLM-powered software engineering services!

Vision - III

 68

Better Environmental Sustainability
with Software Engineering 2.0

Society

Training LLaMA consumes electricity equal to 445 Danish citizens in a year. Imagine
how sustainable if the training and inference cost can be reduced to 10%!

Imagine if SE 2.0 can “pay” for the remaining cost by rectifying inefficiencies in
software systems and enabling adaptive software that runs only what is needed,

achieving net carbon neutrality!

Vision and Road Ahead

 69

A Comprehensive Benchmark

Better Compression Techniques

More Efficient
Training Methods

Improved
Inference Acceleration

Program
Optimization

Better Environmental
Sustainability
with SE 2.0

Profitable LLM-Powered
Cloud-Based Software
Engineering Services

Private,
Personalized, Low-cost
Software Engineering

Assistant

 73

 74

Thank You!

OUB Chair Professorship Fund

 75

Interested to Join Us? Visiting Student Openings at RISE

 76

Thank you!

Questions? Comments? Advice?
davidlo@smu.edu.sg

	Slide Number 1
	Self-Introduction
	Self-Introduction
	Self-Introduction
	Self-Introduction
	Singapore Management University
	Center for Research on Intelligent Software Engineering (RISE)
	AI for Software Engineering
	Experience with AI4SE
	Experience with AI4SE
	Our Research Agenda in AI4SE
	“If you want to go far, go together” – African Proverb
	Slide Number 13
	Large Language Models (LLMs)
	LLM Can Greatly Help SE Tasks
	LLMs Seem to Win for Many SE Scenarios
	LLMs Seem to Win for Many SE Scenarios
	Many Open Problems
	Many Open Problems
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	What Cause Unhelpful Code Completions?
	How to Address This Problem?
	FrugalCoder: Identify & Reject Unpromising Code Prompts
	FrugalCoder: Building the Estimator
	Results: Feasibility of FrugalCoder
	Future Work
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Human-Centric Programming Language Grammar Design
	SimPy: A proof-of-concept AI-agent oriented grammar
	Making AI Agent Understand and Write SimPy
	SimPy’s Possible Usage Scenarios
	RQ1: Token Reduction
	RQ2: Efficacy of AI Agents Trained on SimPy
	RQ3: Overhead of DualCode Scenario
	Future Work
	Slide Number 50
	Slide Number 51
	Avatar’s Overall Workflow
	Step 1: Prune Massive Configuration Space
	Step 1: Prune Massive Configuration Space
	Step 1: Prune Massive Configuration Space
	Step 3: Identify Pareto-Optimal Configurations
	Step 4: Perform Knowledge Distillation
	Results: Effectiveness on Various LLMs
	Future Work
	Slide Number 60
	Related Work on Efficient and Green Code LLMs
	Related Work on Efficient and Green Code LLMs
	Related Work on Efficient and Green Code LLMs
	Literature Review, Vision, and the Road Ahead
	Literature Review
	Vision - I
	Vision - II
	Vision - III
	Vision and Road Ahead
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Thank You!
	Interested to Join Us? Visiting Student Openings at RISE
	Thank you!

