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Singapore Management University

 Third university in Singapore
 Number of students:
 8000+ (UG)
 1800+ (PG)

 Schools:
 Business
 Economics
 Accountancy
 Law
 Social Science
 Computing
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Center for Research on Intelligent Software Engineering (RISE)
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Elsevier JSS’21, Bibliometric Study

CSRankings, SE, June 2024
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AI for Software Engineering
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Experience with AI4SE
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Experience with AI4SE
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SANER’16

KDD’09 ICSE’10

Test oracle generation Intelligent issue trackers

Intelligent program repair - Facebook 
Engineers

Intelligent crowdsourced SE 

MSR’13

“History-driven 
program repair 

influence
our work, the overall 
pipeline is similar”
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Future Direction in AI4SE
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History Challenges Vision

Roadmap I Roadmap II Call4Action

AI for Software Engineering

Towards Software Engineering 2.0
ICSE’23 Future of SE Talk
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“If you want to go far, go together” – African Proverb 
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Large Language Models (LLMs)
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LLM Can Greatly Help ASE Tasks
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E 

20
20

                        15

IC
SE

 2
02

4

Multi-LLM collaboration + data-centric innovation = 2x efficacy

Early work on LLM4SE, most cited paper of ICSME 2020
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LLMs Seem to Win for Many ASE Scenarios
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LLMs Seem to Win for Many ASE Scenarios
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Many Open Problems
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Efficacy SecurityEfficiency
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Efficacy SecurityEfficiency
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46th IEEE/ACM International Conference on 
Software Engineering 

(ICSE 2024)
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Additional Inputs for Efficacy Boost
Previous solutions:
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LLM

+
Tokens in 

Vulnerable Function
Fixed Function

Many other inputs have not been leveraged:

Vulnerability 
Type

CWE Description
Simple Vulnerable 
Code Examples

AST 
Parser

LLM
AST

• Abstract Syntax 
Tree

• CWE Knowledge

Vulnerability
Type

Detailed Analyses
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Research Questions

 How can we effectively leverage these 
additional inputs?

 How can we boost performance 
through multi-LLM collaboration?
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VulMaster: A State-of-the-Art Vulnerability Repair Method
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Incorporate AST

Incorporate
CWE knowledge

Address
lengthy inputs

CodeT5GPT-3.5

Data-Centric 
Innovations

Multi-LLM 
Collaboration

2x Fixed 
Vulnerabilities

+

=
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VulMaster’s Overall Framework

Simple Vulnerable 
Code Examples

AST

partition
Code

Segments

Vulnerable Function

Vulnerability 
Type CWE Description

Step 1: Leverage Diverse Inputs

Step 2: Fill in Missing Data with Multi-LLM Collaboration

Fixed Examples

LLM (CodeT5) 
+ Data Fusion

Fixed 
Function

Step 3: Fuse Diverse Inputs

Detailed Analyses
Model Adaptation for AST

Multi-Task Learning

Additional Innovations

CWE Tree Exploration
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Results: Comparisons with SOTA
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• VulMaster doubles the Exact Match (EM) 
score

• VulMaster consistently outperforms for 
vulnerabilities of different characteristics

Main Results

- long/short: the length of the code
- frequent/infrequent: the 
   vulnerability type frequencies
- top/less risky: top 10 most    
   dangerous CWEs or not
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Open Challenges and Future Work
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TOSEM SE Vision 2030 @ FSE 2024

• Dealing with complex vulnerabilities, e.g., inter-procedural vulnerabilities
• Considering larger code contexts, e.g., repository-level
• Establishing trust and synergy with developers, e.g., evidence and rationales
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Efficacy Efficiency Security
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Code LLMs are Large, Slow, …

Developers often prefer local AI4SE tools due to privacy and latency concerns
• E.g., Apple banned internal use of external AI tools
• E.g., 20% of GitHub Copilot’s issues are related to network connectivity

Deploying LLMs to IDE has issues:

                        32

RealityExpectations

• “50MB model is upper bound, and 3MB is 
preferred in modern IDE” 

• “0.1 seconds is preferred in modern IDE or 
editor design”

- VSCode Team

CodeBERT 
Size: > 400MB

Latency: > 1.5s/query
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Code LLMs are Large, Slow, and not Green

LLM has high energy consumption and carbon footprint

                        33

• Typical laptop’s battery can 
support CodeBERT for 13.2 mins

• Using CodeBERT a thousand times 
produces 0.14 kg of CO2  
(driving a car for 1 km)

• Much worse for larger LLMs
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Optimize Code LLMs with Compressor & Avatar

ASE 2022
Compressor
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ICSE 2024
Avatar

Optimize code LLMs: 160x smaller, 76× faster, 184× more energy-saving, 
and 157× less in carbon footprint

First work to optimize code LLMs: 160× smaller and 4.23× faster

Today’s Sharing

Nominated for ACM SIGSOFT Distinguished Paper Award
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Avatar’s Overall Workflow
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LLM 
Configurations

Pruned
Configuration Space

Sampled
Configurations

SMT-based 
Pruning

Efficacy
Indicator

Training

Multi-objective 
Configuration Tuning

Pareto-optimal 
Configurations

Code LLM Compact & Green
Code LLM

Step 1 Identify & Prune Config. Space 

Step 2 Build Efficacy Indicator Step 3 Search for Optimal Configuration  

Step 4 Perform Knowledge Distillation

Distillation
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Step 1: Prune Massive Configuration Space
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Typical configuration 
space of LLMs

containing 4.5 × 1019 
plausible configurations

Too large & some are 
infeasible!
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Step 1: Prune Massive Configuration Space

                        37

formulating model size 
and its constraint:

C: the configuration space
𝑐𝑐: a configuration
𝑣𝑣: vocabulary size
𝑠𝑠: model’s maximum input length
𝑙𝑙: number of hidden layers
ℎ: dimension of hidden layers 
𝑖𝑖: dimension of intermediate NN layers
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Step 1: Prune Massive Configuration Space
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Large space of 4.5 × 1019 
plausible configurations

Remaining space after pruning accounts for 
only 28.9% of the original one

Using SMT solver 
to prune



SMU Classification: Restricted

Step 3: Identify Pareto-Optimal Configurations

                        39

Avatar uses a multi-objective optimization algorithm to find 
Pareto-optimal configurations, i.e., configurations that achieve the 

best trade-off among all objectives

Prediction accuracy on a 
downstream task 

(using the efficacy indicator 
created in Step 2)
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Step 4: Perform Knowledge Distillation
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Outputs of the large code LLM and 
small model being trained, respectively

Softmax function’s 
temperature parameter

Minimizing this loss means 
making the outputs of the 

large and the small code LLMs 
as similar as possible

Num of 
classes

Num of training 
examples
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Results: Effectiveness on Various LLMs
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model size

481 MB to 3 MB
160× smaller

inference latency

up to 76× faster

energy consumption

up to 184× less

carbon footprint

up to 157× less

efficacy

Only 1.67% loss 

Avatar effectively optimizes CodeBERT & GraphCodeBERT on Vulnerability 
Prediction & Clone Detection in terms of

throughput 

9.7x
more queries
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Open Challenges & Future Work

                        42

TOSEM SE Vision 2030 @ FSE 2024

• More experimentation and adaptation: 
- Compressing more and larger models
- Consideration of various SE tasks

• More LLM inference acceleration methods in combination with compression:
• Dynamic model inference, static program optimization, etc.

• LLM training acceleration, e.g., training data reduction
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Efficacy SecurityEfficiency
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IEEE Transactions on Software Engineering 
(TSE 2024)
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Backdoor (aka. Poisoning) Attack of Code Models

Model 
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Existing Works on Backdoor Attacks for Code Models
FS

E
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Existing Triggers are not Stealthy

“adding the same piece of dead 
code to any given program x.”

“add pieces of dead code drawn
randomly from some probabilistic 

grammar.”

(a) Fixed triggers distribution (b) Grammar triggers distribution

Over 99% of poisoned examples 
can be detected automatically!
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AFRAIDOOR: Creating Stealthy Backdoor

 Stealthy Design 1: Variable Renaming as Triggers
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(1) Do not introduce dead code, which is unnatural; 
(2) Variable locations in different programs are diverse. 

Stealthy!

def save_session(self, s, data):
   return self.session_interface.save_session(
          self, s, data)

(a) An example of variable renaming

def domain_to_fqdn(addr, event=None):
   from .generic import get_site_proto

event = event or get_site_proto()
loadtxt ='{proto}://{domain}'.format(

          proto=event, domain=addr)
   return loadtxt

(b) An example of variable renaming
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AFRAIDOOR: Creating Stealthy Backdoor

 Stealthy Design 1: Variable Renaming as Triggers
 Stealthy Design 2: Generate Adversarial Variable Names 

                           (using a simple crafting model, with no knowledge 
                               of victim model)

                        49

Adversarial variables are closer to 
the original ones! Stealthy!

t-SNE visualization (red dots are poisoned data)

fixed grammar ours
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Results Analysis: Automated Detection

 Four state-of-the-art defenses: (1) spectral signature, (2) activation 
clustering, (3) ONION, (4) outlier variable detection

1.16

94.47 94.96

Spectral Signature
Ours Fixed Grammar

13.22

41.58

21.33

Activation Clustering
Our Fixed Grammar

Our poisoned examples are much harder to be automatically detected

Detection 
success rate
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Results Analysis: Human Review

Finding 1: Our poisoned examples are 
much harder to be manually 

detected

Finding 2: Participants take longer 
time to label examples generated by 

our methods
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Open Challenges & Future Work

                        52

• Need to investigate novel attack vectors
- beyond adversarial attack, data poisoning attack, etc.

• Need more effective data auditing tools 
- identify and sanitize poisoned data examples

• Need for trustworthy LLM4Code ecosystem 
- trusted datasets and models that developers can reuse and build upon
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Interested to Join Us? PhD & Visiting Student Openings at RISE
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Thank you!

Questions? Comments? Advice? 
davidlo@smu.edu.sg
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