
Succinctness in Scenario-Based Specification Mining

David Lo
School of Information Systems

Singapore Management University

davidlo@smu.edu.sg

Shahar Maoz
Dept. of Computer Science 3 (Software Engineering)

RWTH-Aachen University, Aachen, Germany

maoz@se.rwth-aachen.de

ABSTRACT
Specification mining methods are used to extract candidate
specifications from system execution traces. A major chal-
lenge for specification mining is succinctness. That is, in
addition to the soundness, completeness, and scalable per-
formance of the specification mining method, one is inter-
ested in producing a succinct result, which conveys a lot of
information about the system under investigation but uses
a short, machine and human-readable representation.

In this paper we address the succinctness challenge in the
context of scenario-based specification mining, whose target
formalism is live sequence charts (LSC), an expressive exten-
sion of classical sequence diagrams. We do this by adapting
three classical notions: a definition of an equivalence rela-
tion over LSCs, a definition of a redundancy and inclusion
relation based on isomorphic embeddings among LSCs, and
a delta-discriminative measure based on an information gain
metric on a sorted set of LSCs. These are used on top of
the commonly used statistical metrics of support and confi-
dence.

A number of case studies show the utility of our approach
towards succinct mined specifications.

1. INTRODUCTION
Specification mining, the dynamic analysis process of ex-

tracting models from software execution traces, in order to
aid in program comprehension, testing, and formal verifica-
tion tasks in the absence of complete and up-to-date doc-
umented specifications, has attracted many and diverse re-
search efforts in recent years (see, e.g., [2, 3, 5, 10, 29]).
The underlying common goal of these work is to extract a
set of invariants and present them to the user. In the lit-
erature, extracted invariants vary from boolean expressions
capturing a relationship between two variables in a particu-
lar program point, to frequent patterns of usage behavior, to
various automata and temporal rules. The extracted candi-
date invariants are used to support comprehension, testing,
and formal verification tasks (see, e.g., [3, 8, 33, 35, 39]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

In addition to the soundness, completeness, and scalable
performance of the specification mining method, one is inter-
ested in producing a succinct result, which conveys a lot of
information about the system under investigation but uses
a short, machine and human-readable representation. Thus,
an important challenge of specification mining in general is
the definition of what constitutes a likely invariant and, in
particular, the selection and presentation of the extracted in-
variants. Obviously, a specification mining framework that
returns ‘too many’ likely invariants is not useful. The need
arises to produce succinct mined specifications.

In this work we address the succinctness challenge by
adapting three classical notions: equivalence relation, statis-
tical redundancy, and delta-discriminative information gain.
We do this in the context of scenario-based specification min-
ing [25, 26, 27, 28].

In scenario-based specification mining, data mining meth-
ods are employed to extract statistically significant inter-
object scenario-based specifications in the form of Damm
and Harel’s live sequence charts (LSC) [6], a visual formal-
ism that extends classical sequence diagrams with modal-
ities. An LSC is composed of a pre-chart and a main-
chart both consisting an ordered sequence of events. An
LSC specifies a temporal invariant: whenever the pre-chart
events happen in the specified order, eventually the main-
chart events must happen in the specified order. LSC has a
formal semantics [6], a UML2-compliant variant [14], and a
translation into various temporal logics [18].

The popularity and intuitive nature of sequence diagrams
as a specification language in general, together with the ad-
ditional unique features of LSC, motivated our choice of tar-
get formalism. The choice is supported by previous work on
LSC (e.g., [17, 19, 31]), which can be used to visualize, ana-
lyze, manipulate, test, and verify the specifications we mine.

The statistical significance of an LSC in a set of traces is
measured using support and confidence – two metrics com-
monly used in data mining [12]. The main inputs are a
set of traces and thresholds for minimum support and con-
fidence: the first tells the number of times an LSC need
to be observed in the traces, the second dictates the likeli-
hood that the pre-chart of the LSC is indeed followed by the
main-chart. Only LSCs obeying the minimum support and
confidence are deemed significant (see [28]).

Most importantly, to achieve succinctness we introduce
the following three main features:

1. A single representative of each equivalence class.
We define an equivalence relation between scenarios
based on the notion of symbolic lifelines. The sym-
bolic LSC corresponding to all concrete LSCs in an

1

equivalence class is considered a representative of this
class. Statistical significance is computed at the level
of the symbolic representative LSC.

2. Statistical redundancy via isomorphic embed-
dings. We define an inclusion relation between LSCs
based on a variant of subgraph isomorphism. When
two LSCs have the same statistical significance but one
is embedded in the other, the smaller one is considered
redundant and is removed from the result.

3. Delta-discriminative summarization via infor-
mation gain. We rank the mined scenarios and then
filter out the ones that are not at least delta-discrimi-
native relative to higher ranked scenarios.

The formal definitions and algorithms we use for the above
features are given in Sec. 3 and 4. Overall, the result is a
succinct set of statistically significant LSCs.

It is important to note that setting higher support and
confidence thresholds may have the effect of reducing the
number of significant LSCs mined. However, this would have
removed some informative LSCs while keeping others whose
contribution to the complete specification mined is minor.
Thus, summarization methods such as the ones we introduce
and evaluate are indeed necessary.

The examples throughout the paper are taken from Cross-
FTPServer [4], a commercial open source FTP server built
on top of Apache FTP server, and from Jeti [1], a full fea-
tured open-source instance messaging application. The ex-
amples show the utility of our approach in mining summa-
rized non-redundant symbolic scenarios from a set of execu-
tion traces. Experimental results appear in Sec. 5.

Finally, the challenge of succinctness in specification min-
ing is not limited to the scenario-based approach. Some
work present mining of rules and patterns (e.g., [8, 35, 39,
34]) where the number of rules and patterns could be very
large and make it hard for users to investigate the results.
In Daikon [9], the number of reported invariants could be
too large, and in mining finite-state machines (e.g., [3, 21,
33, 29]), at times the size of the automaton could be too
large to be useful. We further discuss these related works
and their succinctness challenges in Sec. 6.

Paper organization: Sec. 2 provides background on LSC
and on statistical significance in scenario-based specification
mining. Sec. 3 formally defines the three main succinctness
features used in our work. The mining framework and al-
gorithms appear in Sec. 4. Experimental results appear in
Sec. 5. Related work is discussed in Sec. 6 and Sec. 7 con-
cludes with a discussion and future work directions.

2. BACKGROUND
In this section we give background on LSC, describe basic

notations, outline basic definitions of significance of LSC in
a set of traces, and state some important properties.

2.1 Live Sequence Charts
The language of live sequence charts (LSC) [6, 14] is a

formal expressive variant of classical sequence diagrams. In
this study we use a restricted subset of LSC. A chart includes
a set of instance lifelines, representing system’s objects, and
is divided into two parts, the pre-chart (‘cold’ fragment) and
the main-chart (‘hot’ fragment), each specifying an ordered
set of method calls between the objects represented by the
instance lifelines. A universal LSC specifies a universal live-
ness requirement : for all runs of the system, and for every

LSC DELETE

onDeleteStart()

onDeleteEnd()

setDelete()

FSIFCDELE

Figure 1: [CrossFTP] Mined LSC: Delete

point during such a run, whenever the sequence of events
defined by the pre-chart occurs in the specified order, even-
tually the sequence of events defined by the main-chart must
occur in the specified order. Events not explicitly mentioned
in the chart are not restricted in any way to appear or not to
appear during the run (including between the events that are
mentioned in the chart). For a thorough description of the
language and its semantics see [6, 15]. A UML2-compliant
variant of LSC using the modal profile is defined in [14]. A
translation of LSC into temporal logics appears in [18].

Syntactically, instance lifelines are drawn as vertical lines,
pre-chart (main-chart) events are colored in blue (red) and
drawn using horizontal dashed (solid) lines.

An important feature of LSC is its semantics of symbolic
instances [32]. Rather than referring to concrete objects,
lifelines may be labeled with a class name and marked sym-
bolic, formally representing any object of this class. This al-
lows a designer to take advantage of object-orientation and
create more expressive and succinct specifications.

Fig. 1 shows an example LSC. Roughly, the semantics of
this LSC is: “Whenever an object of type DELE calls the
method onDeleteStart() of an object of the type FtpletCon-
tainer, eventually the DELE object must call the method set-
Delete() of an object of type FtpStatisticsImpl and call the
method onDeleteEnd() of the FtpletContainer”. Note that
this is a temporal invariant. Also note the symbolic inter-
pretation of the lifelines.

We denote an LSC by L(pre, full), where pre is the pre-
chart and full is the complete chart containing pre followed
by the main chart. For concrete LSC, the pre and full
correspond to concrete charts, and for symbolic LSC, the
pre and full correspond to symbolic charts.

2.2 Basic Notations
Let C be the set of concrete events in the traces. A con-

crete event is a triplet (caller,callee,signature) correspond-
ing to caller unique object identifier (obtained in Java using
identityHashCode()), callee object identifier, and the signa-
ture of the method being called, respectively. A trace is a
series of concrete events. The input under consideration is
a multi-set of traces.

We consider the input multi-set of traces as a trace database
TDB. The ith member of the trace database is denoted
TDB[i]. A contiguous sub-trace within a trace t is denoted
t[i..j], where i and j refer to the starting and ending posi-
tions of the sub-trace in the trace t respectively.

A concrete event could be abstracted to form a symbolic
event. A symbolic event is a triplet (caller,callee,signature)
corresponding to caller class, callee class, and method signa-
ture. While a symbolic event may have one or more corre-
sponding concrete events, a concrete event maps to a single

2

symbolic event. A simple map from a concrete event to its
symbolic event is defined as a projection: given a concrete
event e, proj(e) returns the symbolic event of e, where the
caller and callee objects identifiers are replaced by the names
of their classes.

2.3 Statistical Significance
To mine all significant LSCs, we first describe a simpler

problem of computing the statistical values of a given chart.
The definitions provided in this sub-section apply to both
concrete and symbolic LSCs. Given a concrete or a sym-
bolic LSC M and a trace T , we are interested in finding
statistics denoting the significance of M in T . To do so,
we introduce the concepts of positive and negative witness.
We further categorize a negative witness as either strong- or
weak-negative witness.

A positive witness of a concrete or symbolic LSC M =
L(pre,full), is a trace segment satisfying the full chart –
by extension the pre chart as well, since pre is a prefix of
full. A negative witness of M is a positive witness of pre
which cannot be extended to a positive witness of M (or
full). Satisfaction of a chart follows the semantics of LSC
described in [6, 32]. A trace segment satisfying a chart would
have all events prescribed in the chart appearing in the cor-
rect order, a correct number of times as defined by the chart
(recall that the chart does not restrict events not appearing
in it to appear or not to appear in the trace, including in
between the events that appear in the chart). Also, the
trace need to have correct bindings of respective objects ap-
pearing in the trace to corresponding lifelines in the chart.
A more operational semantics for instances of concrete and
symbolic charts is provided in [26].

The semantics of LSC (like most formal specification lan-
guages used for reactive systems, e.g., LTL) is originally
defined over infinite paths. The traces we consider, how-
ever, are, of course, finite, and we do not want the arbitrary
truncation of the trace to affect our confidence of the sug-
gested universal liveness requirement specified by the LSC.
We therefore adapt the semantics of LSC, and in particu-
lar, the definition of negative-witnesses, to finite (so called
‘truncated’) paths using a notion of strong-negative-witness.
Roughly, a strong-negative-witness is negative because it ex-
plicitly violates the order specified by the main part of the
LSC and not because it reaches the end of the trace.

Hence, a negative witness of M corresponding to a positive
witness pos of pre may appear in two cases:

1. End of trace being reached when one tries to extend
pos to a positive witness of M .

2. The positive instance pos of pre can not be extended
to a positive witness of M due to violation of instance
order constraint.

We refer to the two cases as strong- and weak- negative
witness of M respectively. We denote positive, negative,
strong-negative and weak-negative witnesses of an LSC M
by pos(M), neg(M), strong neg(M) and weak neg(M) re-
spectively.

The above notions of witnesses are used to define the sup-
port and confidence metrics for an LSC, two statistical met-
rics commonly used in data mining. Given a trace T , the
support of an LSC M= L(pre, full), denoted by sup(M),
is simply defined as the number of positive witnesses of

M found in T . The confidence of an LSC M , denoted by
conf (M), measures the likelihood of a sub-trace in T sat-
isfying M’s pre-chart to be extended such that M’s main-
chart is satisfied or the end of the trace is reached. Hence,
confidence is expressed as the ratio between the number of
positive witnesses and weak-negative witnesses of the LSC
and the number of positive witnesses of the LSC’s pre-chart.
Formally:

sup(L, T) ≡def |pos(L, T)|
conf (L, T) ≡def

|pos(L,T)|+|weak neg(L,T)|
|pos(pre,T)|

Notation-wise, when T is understood from the context, it
can be omitted.

Thus, the support of the chart corresponds to the num-
ber of times instances of the pre- and main-chart appear in
the trace, and the confidence of the chart corresponds to
the likelihood of the pre-chart instance to be followed by
a main-chart instance in the trace. The support metric is
used to limit the extraction to commonly observed interac-
tions, while the confidence metric restricts mining to such
pre-charts that are followed by a particular main-chart with
high likelihood.1 We refer to charts satisfying the minimum
support threshold (min sup) as being frequent. Similarly, we
refer to charts satisfying the minimum confidence threshold
(min conf) as being confident. A chart that satisfies both
thresholds is referred to as being significant.

2.4 Monotonicity, Soundness & Completeness
The following monotonicity property for symbolic LSCs is

used in our mining algorithm [26].

Property 1 (Monotonicity). Given a symbolic LSC
M = (pre, full) and M ′ = (pre′, full′). If full is a prefix
(or suffix) of full′, every positive witness of M ′ is a positive
witness of M . Hence, sup(M ′) ≤ sup(M).

The monotonicity property can be effectively used to prune
the search space. For example, after ascertaining that the
support of an symbolic chart A is less than the minimum
support threshold, one can prune the search space of all
charts having A as a prefix.

Following data mining algorithms in general, and frequent
pattern mining algorithms in particular (see, [12, 20]), our
goal is to achieve statistical soundness and completeness de-
scribed in Definition 2.1. Our algorithms are sound and
complete modulo the given traces and user-defined thresh-
olds (our notion of soundness and completeness is thus inde-
pendent of the quality of the traces used in terms of coverage
etc., that is, in contrast to, e.g., [16, 40]).

Definition 2.1 (Stat. Sound. & Completeness).
A mining algorithm is statistically sound with respect to an
input dataset and given user thresholds iff every mined re-
sult obeys the thresholds based on the dataset. A mining
algorithm is statistically complete with respect to an input
dataset iff every potential result that obeys the thresholds
based on the dataset are output.

1Note that LSCs with high but imperfect confidence, i.e.,
less than 100%, may be interesting to mine too (see, e.g.,
the notion of imperfect traces [39]), since, in general, these
may reveal errors in the program or in the trace generation
process (see, e.g., [3, 21, 39]).

3

CHART DEL-A

setDelete()

onDeleteStart()

onDeleteEnd()

FSIFCDELE

CHART DEL-C1

setDelete()

onDeleteStart()

onDeleteEnd()

fs1:FSIfc1:FCd1:DELE

CHART DEL-C2

setDelete()

onDeleteStart()

onDeleteEnd()

fs2:FSIfc2:FCd2:DELE

Figure 2: Charts: Symbolic and Concrete

3. TOWARDS SUCCINCTNESS
To mine for succinct specifications, we introduce three

concepts: equivalence class of LSCs and symbolic LSCs, iso-
morphic embeddings of statistically non-redundant LSCs,
and summary via extraction of delta- discriminative LSCs.

3.1 Symbolic LSCs as Equivalence Classes
The first succinctness feature builds on the mapping from

concrete to symbolic LSCs. A symbolic LSC corresponds
to a set of concrete LSCs having the same structure, life-
lines and methods among the lifelines. The only differences
among members of the equivalence class are the actual ob-
jects that are bound to the lifelines.

An illustration of concrete and symbolic full-charts is shown
in Fig. 2. The one on the left is the symbolic LSC and the
others are some examples of corresponding concrete LSCs.
This is the full-chart of the LSC shown in Fig. 1. We for-
malize concrete and symbolic charts and the mapping be-
tween them via the definition of binding preserving abstrac-
tion (BPA).

A chart (concrete or symbolic) is composed of a list of
(concrete or symbolic) events 〈e1, e2, . . . , en〉, a set of (con-
crete or symbolic) lifelines {l1, l2, . . . , lk} (for simplicity, we
draw the lifelines ordered from left to right although the
order of lifelines has no semantic meaning), and a binding
function bdg mapping each event identified by its position
in the chart to a pair of lifelines (we omit obvious syntac-
tic well-formedness rules, e.g., that bdg binds an object to
a lifeline only if the two are of the same class, etc.). More
formally:

Definition 3.1 (Concrete (Symbolic) Chart). A
concrete (symbolic) chart C is a triplet 〈E, L, bdg〉 where E
is a list of concrete (symbolic) events, L is a set of con-
crete/symbolic lifelines, and bdg is a binding map bdg : I →
L × L, where I = {i|1≤ i≤ |E|} (i.e., the set of indices of
events in E). Notation-wise, we refer to the pair of lifelines
corresponding to the ith element of E as bdg[i].

Given a list of concrete events, a single set of concrete
lifelines is determined by the names of concrete objects in-
volved in the events. Thus, the binding map bdg of a con-
crete chart containing a list of concrete events (and a set of
concrete lifelines, each corresponding to a unique concrete
object) is trivial.

While a list of concrete events uniquely determines a set
of lifelines (up to lifelines order, which has no meaning),
a trivial binding function, and thus, a concrete chart, this
is not the case for symbolic events. Rather, given a list
of symbolic events, one may possibly define more than one
(non-isomorphic) sets of symbolic lifelines with correspond-
ing bindings. This is so because a class corresponding to a
symbolic caller or callee does not uniquely identify a sym-

A A A

m1

Chart A3

m2

m3

A A

m1

Chart A1

m2

m3

12:A 15:A 28:A

m1

Chart C

m2

m3

A A A

m1

Chart A2

m2

m3

A A A

m1

Chart A3

m2

m3

A A

m1

Chart A1

m2

m3

12:A 15:A 28:A

m1

Chart C

m2

m3

A A A

m1

Chart A2

m2

m3

Figure 3: A Concrete Chart C and its Binding Preserv-

ing Abstraction (BPA) A3. Other charts (i.e., A1 and

A2) are not BPA of C.

bolic lifeline in the set, as it may include a number of sym-
bolic lifelines corresponding to the same class.

As an example, the binding of a concrete event e = (oid1,
oid2, m()) in a concrete chart C, may be represented by a
pair 〈li, lj〉 corresponding to the ith and jth lifelines of C.
bdg(e,C) is the mapping returning the binding of a concrete
event e from a concrete chart C. For example, in Fig. 3,
bdg((12 : A, 28 : A, m1())) = 〈1, 2〉.

To relate concrete and symbolic charts, we propose the
notion of binding preserving abstraction, essentially an iso-
morphic mapping between the two.

Definition 3.2 (Binding Preserving Abstraction).
Consider a concrete chart CC=〈〈e1, . . . , en〉, {l1, . . . , lk}, bdg〉
and a symbolic chart AC = 〈〈E1, . . . , En〉, {L1, . . . , Lk}, BDG〉.
AC is a binding preserving abstraction of CC iff there ex-
ists a one-to-one mapping abs from the lifelines of CC to the
lifelines of AC s.t. ∀1≤i,j≤k and ∀1≤v≤k, bdg(v) = 〈li, lj〉 iff
proj(ev)=Ev and BDG(v) = 〈abs(li), abs(lj)〉.

We denote the binding preserving abstraction of CC by
abs(CC), representing the symbolic chart that is ‘isomor-
phic’ to CC.

To illustrate the concept of binding preserving abstraction
consider Fig. 3. In the figure there are a concrete chart
(extreme left, each lifeline corresponds to a separate object
instance of class A identifiable via the object hash code) and
several symbolic charts. Two of the symbolic charts are not
isomorphic to the concrete chart, and thus do not consist of
a binding preserving abstraction.

The above concept is important as there can be more than
one symbolic lifeline corresponding to a particular class C
in a symbolic LSC L. When this is the case, more than one
object instance of the class C participates in L.

We use the binding preserving abstraction abs to define
an equivalence relation over concrete LSCs:

Definition 3.3 (Equivalence Relation). Consider
two concrete LSCs l1 = L(pre1,full1) and l2= L(pre2,full2).
l1 ≡abs l2 iff abs(pre1)=abs(pre2), and abs(full1)=abs(full2).

It is easy to see that ≡abs is indeed reflexive, symmetric, and
transitive, and thus partitions any set of concrete LSCs into
equivalence classes. We use the symbolic LSC corresponding
to all concrete LSCs in a class as a representative of the
class. To extract a succinct set of LSCs from an input trace
database, we look for representative symbolic LSCs.

3.2 Isomorphic Embeddings & Redundancy
Following the concept of BPA, two charts are said to be

isomorphic if the series of events are the same, and there is

4

CHART SUB-A

onDeleteStart()

onDeleteEnd()

FCDELE

CHART SUB-A

onDeleteStart()

onDeleteEnd()

FCDELE

CHART SUB-B

onDeleteStart()

onDeleteEnd()

FCDELE

CHART SUB-B

onDeleteStart()

onDeleteEnd()

FCDELE

Figure 4: Iso. & Non-Iso. Charts

a one-to-one mapping between their lifelines that preserves
the bindings. The formal definition is in Defn. 3.4. It could
easily be seen a concrete chart having a chart C as a BPA
will also have any isomorphic chart of C as a BPA.

Definition 3.4 (Isomorphic Charts). Two charts f1
= 〈E1, L1, bdg1〉 and f2 = 〈E2, L2, bdg2〉 are isomorphic
if ∃ a one-to-one mapping map from L1 to L2 such that
∀i, bdg1[i] = (kx, ky) iff E1[i] = E2[i] ∧ bdg2[i] = (map(kx),
map(ky)).

To illustrate isomorphic embeddings, consider the exam-
ple chart in Fig. 4(left). This chart is an isomorphic em-
bedding (i.e., it could be embedded isomorphically) of the
chart shown in Fig. 2(left). On the other hand, the chart
in Fig. 4(right) has no isomorphic embedding in the chart
shown in Fig. 2(left). We formally define isomorphic embed-
dings below.

Definition 3.5 (Isomorphic Embeddings). Consi-
der charts CA=〈〈a1, . . . , an〉, {la1 , . . . , lal}, bdga〉 and CB =
〈〈b1, . . . , bm〉, {lb1 , . . . , lbk}, bdgb〉. CA has an isomorphic
embeddings within CB iff there exists a mapping iso from the
lifelines of CA to the lifelines of CB s.t. ∀1≤v≤n, bdga(av) =
〈li, lj〉 iff ∃1≤w≤m. av = bw ∧ bdgb(bw) = 〈iso(li), iso(lj)〉.
We refer to CB as a super-chart of CA, denoted CB w CA.

We use the above definition of isomorphic embeddings to
define statistically redundant charts:

Definition 3.6 (Statistically Redundant). Consi-
der two LSCs l1 = L(pre1,full1) and l2 = L(pre2,full2).
The first LSC l1 is rendered redundant by the second LSC l2
iff sup(l1)=sup(l2), conf(l1)=conf(l2) and full2 w full1.

In our mining, we would like to eliminate statistically re-
dundant charts. A chart is considered redundant if a super-
chart of it with the same statistics appears in the mined set.
Note that a significant LSC is likely to have many signifi-
cant sub-LSCs having the same support and confidence. By
eliminating statistically redundant charts, many uninterest-
ing charts are removed.2

3.3 Delta-Discriminative Summarization
The third summarization feature concerns the information

gained by adding each LSC to the mined set, with regard to
other LSCs that were already selected.

We start by sorting the mined LSCs in an ascending or-
der based on number of lifelines, followed by total length
(i.e., number of events in the LSC), followed by the inverse
length of the pre-chart, followed by their confidence and

2Note though, that statistical redundancy does not imply
logical redundancy. In LSC semantics, a sub-chart and a
super-chart are incomparable; one does not logically imply
the other.

LSC DELETE

onDeleteStart()

onDeleteEnd()

setDelete()

FSIFCDELE

LSC Non-Disc

setDelete()

setDelete()

onDeleteEnd()

FSIFCDELE

LSC LOG

release()

addLog()

FCIFLFLP

LSC LOG

release()

addLog()

FCIFLFLP

Figure 5: Non-Disc. & Disc. Charts

their support. The sorted list of LSCs is then summarized
by removing those LSCs which do not contribute enough
additional information – in terms of new event signatures –
relative to the ones ranked above them. As a result, similar
LSCs with minor variations are removed from the final set
of mined LSCs which is presented to the user.

Definition 3.7 (InfoGain(l1,l2)). Consider two LSCs
l1 = L(pre1,full1) and l2 = L(pre2,full2). Let MSet1 and
MSet2 be the set of signatures contained in full1 and full2
respectively. The information gain of l1 with respect to l2 is
defined as |MSet1 \MSet2|/|MSet1|.

We use the above to define delta-discriminative LSC.

Definition 3.8 (Delta-Discriminative). Consider an
ordered set of LSCs ORD = 〈l1, . . . , ln〉. Given a minimum
delta-discrimination threshold δ, an LSC lj ∈ ORD is delta
discriminative iff @i < j. InfoGain(li, lj) < δ. An ordered
set of LSCs is delta-discriminative if all its LSCs are delta-
discriminative.

Thus, to produce a succinct set of LSCs which covers
many different method signatures, only a set of delta-discrimi-
native LSCs would be mined.

As an example, consider the LSCs shown in Fig. 5 ordered
from left to right. With delta-discriminative threshold set at
10%, the second LSC would not be reported while the third
LSC would. For every selected representative LSC, other
similar LSCs with minor variations would be removed.

3.4 Additional Considerations
In addition to the above three features, we provide fil-

ters that could optionally be applied to restrict the format
of mined LSCs to ones commonly used in the literature.
We find that often methods are not repeated in an LSC,
hence we introduce a filter to remove LSCs with repeated
method. An example of such LSC is shown in Fig. 5(left)
where method setDelete() is repeated twice. In addition, we
remove LSCs which are not monotonically connected. An
LSC L is monotonically connected if for every prefix of L,
each lifeline in the prefix is connected, either directly or indi-
rectly, to another lifeline. An example of non-monotonically
connected chart is shown in Fig. 6. Note that if there is a
third method from the 2nd to 3rd lifeline, this chart would
be connected but not monotonically connected. We denote
that an LSC L is monotonically connected by MCONN(L).

4. MINING FRAMEWORK & ALGORITHM
This section describes our technique to mine a succinct set

of LSCs from a set of traces, starting with the framework
overview and continuing with the algorithm in detail.

5

CHART Non-Connected

onDeleteStart()

FCDELE

onDeleteEnd()

FCDELE

Figure 6: Non-Monotonically Connected Chart

 Traces Start
Trace

Generation
Program

Frequent Symbolic
Chart Miner

Support
Threshold

Confidence
Threshold

LSC
Composer

LSCs
Summarizer

Frequent Symbolic
Charts

Non-Redundant
Significant LSCs

User
Input

Process Intermediate
Result Legend

P
A

R
T

 1

P
A

R
T

 2

P
A

R
T

 3

P
A

R
T

 4

Succinct
LSCs

Redundant
LSC Detector

Delta-discrimination
Threshold

Visualization, Verification,
Runtime Tests, etc

Figure 7: Mining Framework

4.1 Mining Framework
The mining framework starts with a program and ends

with a succinct set of mined LSCs. The program under in-
vestigation is instrumented with ‘print’ statements at the
entries of selected method calls; different instrumentation
techniques could be used ranging from binary instrumenta-
tion, to byte code injection to aspect oriented programming.
When executed, the instrumented program produces a set of
traces. If a set of test cases is present, these test cases could
be run to produce a set of traces. Otherwise, typical user
interaction with the user interface component of the system
could be performed and a corresponding set of traces could
be collected.

The set of traces is fed to the miner (Part 2,3 and 4).
The miner finds every LSC L(pre, full) that satisfies the fol-
lowing criteria: (1) The full chart full is observed at least
min sup number of times in the set of traces; (2) when the
pre-chart pre occurs, the main-chart would eventually oc-
cur with at least min conf likelihood in the input traces;
(3) the set is non redundant; and (4) all LSCs are delta-
discriminative with regard to higher ranked mined LSCs.

The mined LSCs could be visualized to help program un-
derstanding, fed to runtime monitoring tools [28, 31], used
for software verification, etc.

4.2 Mining Algorithm

pos caller callee signature
Trace 1

1 d1:DELE fc1:FC onDeleteStart(..)
2 d1:DELE fs1:FSI setDelete(..)
3 m1:MKD fc1:FC onMkdirStart(..)
4 m1:MKD fs1:FSI setMkdir(..)
5 d1:DELE fc1:FC onDeleteEnd(..)
6 m1:MKD fc1:FC onMkdirEnd(..)

Trace 2
1 d2:DELE fc2:FC onDeleteStart(..)
2 d2:DELE fs2:FSI setDelete(..)
3 m2:MKD fc2:FC onMkdirStart(..)
4 d2:DELE fc2:FC onDeleteEnd(..)
5 m2:MKD fs2:FSI setMkdir(..)
6 m2:MKD fc2:FC onMkdirEnd(..)

Table 1: Sample Trace Database - TDB

This section starts by describing the basic operation used
during the mining process. It then follows with the algo-
rithm to mine frequent symbolic charts. These charts are
later composed to form significant LSCs. Redundant LSCs
are removed on-the-fly during the composition process. As
a final process, the mined significant non-redundant charts
are further ranked and summarized.

Basic Operations. Before we describe the algorithm in
detail we need to describe the projected-database operation
to incrementally compute the instances of charts considered
during the mining process.

Definition 4.1 (Projected Database). Given a trace
database (i.e. a multi-set of traces) TDB and a chart C, the
projection of TDB on C is the set of locations within the set
of traces where instances of chart C ended. Formally:

TDBC = {(id, e)|t = TDB[id] ∧ (∃(s<e). t[s..e] is an
instance of C)}

The first element of the pairs corresponds to the trace id,
the second element corresponds to the ending index, in the
corresponding trace, which points to the end of an instance
of chart C. Thus, TDBC contains locations within a trace
database that serve as contexts where instances of C could
be extended to form instances of its super-chart. The size of
TDBC is equal to the number of positive witnesses of C in
TDB (when TDBC is computed, one could automatically
infer the end-of-trace instances of a chart C as well; these
would correspond to locations in the projected database of
C’s immediate prefix that could not be extended to form an
instance of C).

The instances of a length-1 chart 〈e1〉 are simply the oc-
currences of event e1 throughout the sequences in TDB.
After the projected database is computed, the instances of
a length-k 〈e1, . . . , ek〉 chart can be found from instances of
length-(k-1) 〈e1, . . . , ek−1〉 chart.

The support of a symbolic chart is the sum of instances of
different concrete charts isomorphically obeying the bind-
ings of the symbolic chart. In the actual implementation,
we grow each corresponding concrete chart separately, as
each of them has different object bindings that need to be
checked. The support values of the corresponding set of
concrete charts are then collated to be the support of their
representative symbolic chart.

As an example, consider the trace database consisting of
two traces shown in Table 1.

Given the symbolic chart CA shown in Fig. 2(left) and the
above trace database TDB, the projected database of CA

6

Chart Abs

A B

m1()

Chart Abs

A B

m1()

Chart AbsExt-1

A B

m1()

Chart AbsExt-1

A B

m1()

m2()

Chart AbsExt-2

A B

m1()

Chart AbsExt-2

A B

m1()

m2()

A

Chart AbsExt-3

A B

m1()

Chart AbsExt-3

A B

m1()

m2()

B

Chart AbsExt-4

A B

m1()

Chart AbsExt-4

A B

m1()

m2()

A B

Figure 8: PBDG Examples

in TDB, denoted TDBCA is the set {(1,4),(2,3)}. The first
chart instance refers to the trace segment located in the first
trace, at position 0 to 4. The second chart instance refers
to the trace segment located in the second trace, at position
0 to 3. To obtain the projected database of the symbolic
chart, the algorithm computes the projected database for
each of the corresponding concrete charts (shown in Fig. 2
(center,right)) and collate the results together.

Another basic operation computes possible bindings:

Definition 4.2 (Possible Bindings). Given a sym-
bolic chart AC and a symbolic event AE, concatenating AE
to AC results in a set of (non-isomorphic) possible symbolic
charts. Each of the charts in the set corresponds to a differ-
ent valid pair of symbolic lifelines assigned as the bindings
of AE. We denote the set of possible resultant charts from
AC and AE by PBDG(AC,AE).

To illustrate the set PBDG(·,·), consider the left-most
chart Abs in Fig. 8. Computing PBDG(Abs, (B, A, m2()))
returns four possible charts as shown by charts AbsExt-1,2,3
and 4 in Fig. 8.

Mining Frequent Symbolic Charts. Our mining algo-
rithm works in a depth first manner. First, chart of length 1
is considered. Consecutively, we incrementally increase the
length of the chart by appending events to the previously
considered charts. At each step of the mining process, we
use the projected database to find instances of a particular
chart. Following Property 1, when a chart under consider-
ation is infrequent, all its extensions (i.e., all charts having
this chart as a prefix) would be infrequent too. Hence, we
safely stop growing the chart further when we find that a
chart is infrequent. With this we prune a large search space
containing infrequent charts. Furthermore, all additional fil-
ters, e.g., monotonic connectedness, etc., are applied at this
phase when LSCs are composed from frequent charts. The
algorithm to mine all symbolic charts is shown in Fig. 9.

It could be noted that the every time the recursive pro-
cedure MineWthPrefix is called, the parameter CurC is a
frequent symbolic chart. Also, every invocation of MineWth-
Prefix would be made with different CurC. Hence, he com-
plexity of the procedure MineFreqCharts is then linear to
the number of frequent symbolic charts. Representing the
number of frequent symbolic chart as fsc, the complexity of
the process of finding frequent symbolic charts is O(fsc) – it
is linear to the size of the output charts.

Extraction of Non-Redundant Significant LSCs.
Given a set of symbolic charts, significant LSCs are formed

Procedure MineFreqCharts
Inputs:

TDB : Input Trace Database
min sup: Min. Sup. Thresh.

Output:
A set of frequent charts

Method:
1: Let AEV = Single-event charts satisfying min sup
2: For each f aev in AEV
3: Call MineWthPrefix(TDBf aev,min sup,AEV ,f aev)

Procedure MineWthPrefix
Inputs:

PDB : Projected database TDBCurC

min sup: Min. Sup. Thresh.
AEV : Frequent single events
CurC: Current chart considered

Method:
4: Output CurC
5: For each f aev in AEV
6: Let nxCSet = PBDG(C,f aev)
7: Compute next projected databases from PDB
8: For each nxC in nxCSet
9: If (|TDBnxC | ≥ min sup ∧ MCONN(nxC))
10: Call MineWthPrefix(TDBnxC ,min sup,AEV ,nxC)

Figure 9: Mine Frequent Charts

by composing symbolic charts. Two charts pre and full,
where pre is an isomorphic prefix of full, could be composed
to form LSC L(pre, full) with support sup(full) and confi-
dence sup(full)/sup(pre). We are interested only in LSCs
whose confidence is above the minimum confidence thresh-
old. During composition we detect redundant LSCs on the
fly. As defined in Defn. 3.6, an LSC L is redundant if there
exists another LSC L′ where there is an isomorphic embed-
ding of L in L′ and both LSCs have the same statistics (i.e.,
equal support and confidence).

A straightforward approach to extract non-redundant LSCs
would be to compare each LSC with all other LSCs. How-
ever, this would be expensive – O(n2). Since n could be
large, we would like to have a more efficient approach. First,
since we would like to check only the LSCs having the same
support and confidence, we hash the LSCs based on their
support and confidence values. Only LSCs in the same
bucket would need to be compared with one another.

To further speed up the process, we check for redundant
LSCs on-the-fly when new LSCs are formed and added to
the bucket. A temporary data structure is used to hold
candidate non-redundant LSCs. Whenever an LSC in the
bucket is considered, this LSC is checked only against all
candidate LSCs found so far. If there exists a candidate LSC
that is a super-chart of the new LSC, this LSC would not
be added as a candidate. Otherwise, it is added. During the
process, candidate LSCs that are found to be embedded in
newly formed LSCs are removed from the list of candidates.
At the end, the candidate LSCs in each bucket would be the
set of non-redundant LSCs with that particular statistics
(i.e., support and confidence values).

Let us analyze the complexity of the procedure Com-
poseNRLSCs. The procedure combines the step of com-
posing LSCs with detecting redundant LSCs to speed up
the process. Let us split the two steps and analyze them
separately.

Let fsc be the number of frequent symbolic charts. It
could be noted that for a chart of size l, ignoring LSCs with
empty pre- and main-charts, at most l − 1 LSCs could be

7

Procedure ComposeNRLSCs
Inputs:

CHT : All frequent charts
min conf : Min. Conf. Thresh.

Output:
A set of non-redundant significant LSCs

Method:
1: Initialize BKTS as a hash table
2: For each full in CHT
3: For each isomorphic prefix pre of full
4: Create LSC L(pre,full)
5: If (conf(L) ≥ min conf)
6: Put L to BKTS based on its support and conf.
7: Let CandNR = bucket’s candidate non-red. LSCs
8: Update CandNR accordingly – see text
9: For each bucket in BKTS
10: Output all non-redundant LSCs in the bucket

Figure 10: Compose Non-Redundant Significant LSCs

formed. Hence, the complexity of forming LSCs satisfying
minimum support and confidence thresholds is O(m × fsc),
where m is the length of the largest frequent chart.

Let sl be the number of symbolic LSCs that satisfy min-
imum support and confidence thresholds. Checking of re-
dundancy involves hashing LSCs into buckets. In the worst
case, all LSCs map to the same bucket. The complexity of
the redundancy check would then be O(sl2).

Checking Isomorphic Embeddings. The algorithm
performing redundancy checks described in the preceding
paragraphs builds upon checking of isomorphic embeddings
as a building block. To describe how isomorphic embed-
dings is checked, we first describe our approach to check for
isomorphic charts. We then expand the approach to check
for isomorphic embeddings.

Let us define a new operation LC(C) that takes in a chart
C and outputs a set of constraints imposes on the lifelines as
defined in Definition 4.3. The operation LC would explicitly
enumerate all the conditions such as the left/right lifeline
involves in the ith event is the same as the left/right lifeline
involves in the jth event.

Definition 4.3 (LC(C)). Consider a chart C= 〈E, L,
bdg〉. We define the operation LC(C) to return a set of pairs
of sets:
{〈{i|i → (lj , lk) ∈ bdg}, {i|i → (lk, lj) ∈ bdg}〉|lj ∈ L}
Each element in an LC(C) corresponds to a lifeline in L.

For an element of LC(C) corresponding to lifeline lj, the left
element of the pair would list out the positions of the events
in E that has lj as the left lifeline. The right element of the
pair would be the positions of the events in E that has lk as
the right lifeline.

Property 2 (Isomorphic Check). Two charts c1=
〈E1, L1, bdg1〉 and c2= 〈E2, L2, bdg2〉 are isomorphic if E1 =
E2 and LC(c1) = LC(c2).

Proof. Without the loss of generality, consider an arbi-
trary lifeline l1 in c1 that maps to the ath element of LC(c1).
Since LC(c1) = LC(c2), there must exists a lifeline l2 in c2
that maps to the bth element of LC(c2) such that LC(c1)[a]
= LC(c2)[b]. From Defn 4.3, it must be the case then for
all i:

1. (l1,xi) in bdg1[i] iff (l2,yi) in bdg2[i]

2. (xi,l1) in bdg1[i] iff (yi,l2) in bdg2[i]

Procedure IsoEmbeddingExists
Inputs:

C1 : Smaller chart
C2 : Larger chart

Output:
True/False

Method:
1: Return IsoEmbeddingExistsAt(C1,C2,1,1)

Procedure IsoEmbeddingExistsAt
Inputs:

C1 : Smaller chart
C2 : Larger chart
p1 : Index pointing to an event in C1
p2 : Index pointing to an event in C2

Output:
True/False

Method:
2: If (p1 > |C1| ∧ p2 > |C2|)
3: Return False
4: Let matches = {p2n | p2n > p2 ∧

p-embed(C1[1..p1],C2[1..p2n])}
5: For each m in matches
6: Let exist = IsoEmbeddingExistsAt (C1,C2,p1+1,m+1)
7: if (exist) Return True
8: Return False

Figure 11: Check for Isomorphic Embeddings

Let us create a mapping map that maps such an l1 to the
l2. Since LC(c1) = LC(c2), from Defn 4.3, it must be the
case that map(xi) = yi. From the above, it must be the case
that:
∀i, (kx, ky) = bdg1[i]iff(map(kx), map(ky)) = bdg2[i]
Since ∀i.E1[i] = E2[i] too, based on Defn 3.4, c1 is an

isomorph of c2.

Note that the above check could be performed in a linear
time relative to the size of the LSCs. It is different from
checking graph isomorphism in general, which has no known
polynomial algorithm.

Next we describe our algorithm to check for the existence
of an isomorphic embeddings of a chart C1 inside a chart C2
where |L1| ≤ |L2|. Let C[1..p] corresponds to the sub-chart
of C containing events 1 until p in C. Let p-embed(C1,C2)
be a boolean predicate that checks if there exists a sub-chart
of C2 which is isomorphic to C1, and the last event of C1
is mapped to the last event of C2. Based on the above
definitions, our algorithm is shown in Fig. 11.

The procedure IsoEmbeddingExists simply calls the pro-
cedure IsoEmbeddingExistsAt. The procedure IsoEmbed-
dingExistsAt will recursively check for embeddings of pre-
fixes of C1 (the smaller chart) inside C2 (the larger chart).
With every recursive call, a longer prefix is considered. The
index p1 is maintained to point to the position of an event
within C1 corresponding to the prefix under consideration.
The index p2 is maintained to point to the position of an
event within C2 that maps to the last event of C1 and
C1[1 . . . p1] is embedded inside C2[1 . . . p2]. At every recur-
sion, we compute the next positions within C2 that is iso-
morphic with the prefix of C1 using the p-embed operation.
Implementation-wise, we perform memoization to store past
embeddings of the prefixes of C1 and C2 to fasten the p-
embed operation. The algorithm eventually returns True if
an embedding of C1 exists in C2. It returns False otherwise.

Since, for every recursive call to IsoEmbeddingExists the
parameter p2 differs, the operation p-embed is called at most

8

Procedure SummarizeLSCs
Inputs:

NRLSC : All Non-Redundant LSCs
delta: Delta Discriminative Thresh.

Output:
A set of succinct LSCs

Method:
1: Let Ranked = Rank NRLSC – see text
2: For each lsc in Ranked
3: Let min gain = 0
4: For each lsc′ of higher rank than lsc
5: Let gain = infogain(lsc,lsc′)
6: If (gain < min gain) min gain = gain
7: If (min gain ≥ delta)
8: Output lsc

Figure 12: Summarize LSCs

|C2| times. Each time p-embed is called, at most |C2| chart
isomorphism checks are performed. Each isomorphic check
costs |C1| + |C2| < 2×|C2| = O(|C2|). Hence, the total
cost of checking isomorphic embeddings of C1 inside C2 is
O(|C2|3). This is lower than the cost of checking for sub-
graph isomorphism of general graphs, which is known to be
an NP-Complete problem.

Ranking and Summarization. To perform the sum-
marization, we first sort the LSCs in an ascending order
based on number of lifelines, total length (i.e., number of
messages), the inverse length of the premise, their confidence
and their support. The sorted list is then summarized by
removing those LSCs which do not give enough extra in-
formation (in terms of added messages) relative to the ones
ranked above them. The delta-discrimination threshold is
defined by the user; only those LSCs that have at least δ
percent difference from LSCs ranked above them would be
left in the summary. The algorithm to perform the above is
shown in Fig. 12.

Let nr be the number of non-redundant symbolic LSCs
that satisfy the minimum support and confidence thresholds.
The complexity of the SummarizeLSCs procedure is O(nr2)
as for every non-redundant LSCs we need to compare it to
all other LSCs of higher rank.

Output Guarantee. The above algorithm guarantees
that all specifications mined are succinct (i.e., sound), and
all succinct specifications are mined (i.e., complete). The
definition and discussion on statistical soundness and com-
pleteness is given in Section 2.4.

Theorem 1. Our algorithm produces a statistically sound
and complete set of succinct LSCs (i.e., it is significant,
symbolic, non-redundant, delta-discriminative and obeys the
set of filters specified by users).

Proof. Soundness is guaranteed as we check each LSC
output to see if it is succinct.

Completeness is guaranteed due to the following. Our
framework systematically consider the search space of all
possible LSCs in a depth first search fashion. This search
space is of infinite size. To make mining feasible, a prun-
ing strategy based on Property 1 is used to cut the search
space of non-frequent charts. Additional search space might
be pruned based on the filters described in Section 3.4. Since
only search spaces consisting of non-succinct LSCs (i.e., those
not satisfying minimum support or are deemed not interest-
ing based on the filteres) are pruned, and we exhaustive tra-
versed all search space which are not pruned, our algorithm

App. msup Time(s) |Syb.| |NR| |Suc.|
Jeti 10 527 323,269 50 16
Jeti 15 232 127,903 24 9
Jeti 20 1 20 7 6
CrossFTP 20 1,640 118,012 12 11
CrossFTP 30 1,635 115,234 5 4
CrossFTP 40 1,636 115,234 5 4

Table 2: Experiment result by varying trace sets and

minimum support thresholds with min conf=100%, and

min disc=10%. The columns correspond to the applica-

tion where the traces come from (App.), the minimum

support threshold (msup), the number of symbolic LSCs

(|Syb.|), the number of non-redundant LSCs (|NR|), and

the number of succinct LSCs mined (|Suc.|), respectively.

produces a complete set of succinct LSCs.

Given a specification format, a set of traces and some cri-
teria (i.e., support, confidence, delta discrimination, etc),
we would mine all specifications from the traces obeying the
format and criteria. These properties are commonly obeyed
by data mining tools [12, 20] and invariant generation tools
like Daikon [9]. Admittedly, just like other dynamic analysis
tools, the quality of the mined specifications would vary de-
pending on the traces. This is common to dynamic analysis
tasks and to data mining tools: results can only be as good
as the quality of the input data.

5. EXPERIMENTAL RESULTS
We have implemented the ideas presented in this paper

and evaluated them on two case study applications. All
experiments were performed on a Intel Core 2 Duo 2.40GHz
Tablet PC with 3.24 GB of RAM running Windows XP
Professional. Algorithms were written using Visual C#.Net
running under .Net Framework 2.0 with generics compiled
using Visual Studio.Net 2005.

We first analyzed crossFTP server [4], a commercial open
source FTP server built on top of Apache FTP server. The
server consists of 15 packages containing 1148 methods in
165 classes spanning 18841 LOC. We used AspectJ to gen-
erate traces suitable for our needs, running the server with
usage scenarios involving file transfers, deletions, renames,
closing/ opening connections, starting/ closing the server
etc. We collected 54 traces with a total length of 1876 events.

We also analyzed Jeti [1], a popular full featured open
source instant messaging application. Jeti has an open plug-
in architecture. It supports many features including file
transfer, group chat, buddy lists, presence indicators, etc.
Its core contains 49K LOC consisting of about 3400 meth-
ods, 511 classes in 62 packages. We collected 5 traces with
a total length of 1797 events.
Succinctness Experiments. We vary the support val-
ues for the two sets of traces and run the mining. Table 2
contains information on the time needed to mine the sce-
narios for the various support thresholds, and the number
of symbolic LSCs, non-redundant symbolic LSCs, and suc-
cinct LSCs mined.

From Table 2, running on traces from Jeti at the minimum
support, confidence and delta-discrimination threshold set
at 10, 100% and 10% respectively, the algorithm completed
within 10 minutes and a total of 16 succinct scenarios were

9

LSC UpdatePicture

addShapeDrawnByMe()

showWindow()

send(Packet)

send(Packet)

CBPHPCPCL

send(Packet)

O

Figure 13: [Jeti] Mined LSC: Update Picture

LSC DiscoverInfo

send()
send()

CBD O

send()

Figure 14: [Jeti] Mined LSC: Discover Information

mined. Note that mining symbolic LSCs without the re-
dundancy filter and summarization produces 323,269 LSCs.
That is, the algorithm reduced the number of LSCs mined
by a factor greater than 10,000; many concrete LSCs could
be merged into one symbolic LSC; many redundant and non-
delta discriminative LSCs were removed.

In addition, for traces of CrossFTP at the minimum sup-
port, confidence and delta-discrimination threshold set at
20, 100% and 10% respectively, the algorithm completed
within 35 minutes and a total of 11 succinct scenarios were
mined. Note that mining symbolic LSCs without the re-
dundancy filter and summarization produced 118,012 LSCs.
That is, the algorithm reduced the number of LSCs mined
by a factor greater than 10,000; again many concrete LSCs
could be merged into one symbolic LSC; many redundant
and non-delta discriminative LSCs were removed.

For Jeti traces, at higher support threshold (i.e., 20) the
number of the mined LSCs is smaller. This affects also the
number of redundancies found. Still the eventual number of
succinct LSCs mined is smaller (6 instead of 9 or 16), show-
ing that indeed some information was lost due to the use
of the initial higher support threshold. For CrossFTP, even
with higher support thresholds the number of redundant
LSCs remains high as there are large mined LSCs appearing
with a high support.
Some Mined Scenarios. We show some mined scenar-
ios from Jeti and CrossFTP. Figs. 13 & 14 show two sce-
narios related to the drawing and internal information dis-
covery functionalities of Jeti. Fig 13 shows that whenever
PictureChangeListener (PCL) (i.e., an object of type PCL)
calls the showWindow() method of PictureChat (PC) and
PC calls addShapeDrawnByMe() of PictureHistory (PH), it
is the case that PH calls calls the send(Packet) method of
Backend (B) which is then relayed by calling send(Packet)
methods of Connect (C) and Output (C). Fig 14 shows that
whenever Discovery (D) calls send(Packet) method of Back-
end (B), the packet is relayed via the send(Packet) methods
of Connect (C) and Output (O).

Figs. 15 shows an LSC mined from CrossFTP. It tells the
‘story’ of uploading a file to the server: whenever a Re-

LSC STORE CMD

getFileOffset()

execute()

onUploadStart()

getDataInputStream()

NFO FSI SPFCFRISTORRH

createOutputStream()

transfer()

setUpload()

notifyUpload()

onUploadEnd()
notifyUpload()

Figure 15: [CrossFTP] Mined LSC: Upload

LSC MKDIR

setMkdir()

onMkdirStart()

onMkdirEnd()

FSIFCMKD

Figure 16: [CrossFTP] Mined LSC: Make Directory

questHandler (RH) object calls the execute() method of a
STOR command object, the latter eventually calls the get-
FileOffset() method of a FtpRequestImpl (FRI) object, the
onUploadStart() method of a FtpletContainer (FC) object,
the getDataInputStream() method of the FRI object, and
the createOutputStream() of a NativeFileObject (NFO) ob-
ject. Later the STOR command object calls the transfer()
method of the RequestHandler (RH) object and the setU-
pload() method of a an FtpStatisticsImpl (FSI) object. Fi-
nally, the FSI object makes two calls to the notifyUpload()
method of a StatisticsPanel (SP) object (each with a dif-
ferent signature, abstracted away in the diagram), and the
scenario ends with the STOR command object calling the
onUploadEnd() of the FC object. Note how this mined LSC
gives a comprehensive inter-object picture of the way up-
load requests are handled by the server. Also note the use
of symbolic lifelines (notice the indefinite ‘a’ and definite
‘the’ in the description). Finally, recall that this scenario
was extracted from a number of traces, where many events
related to other features interleaved with the events in the
scenario, including the simultaneous uploading of a number
of files. Thus, abstraction from concrete to symbolic LSC
had to be correctly employed.

Fig. 16 describes the scenario of creating a new directory
on the server, involving an MKDIR command, an FC, and
a FSI objects. It is interesting to note that two other mined
scenarios, for moving and renaming files (not shown here),
were also mined. The three scenarios share a very similar
structure, differing only in the identity of the first lifeline and
the names of the methods involved. As future work, it may
be interesting to develop additional abstraction operators
that will allow us to automatically recognize such similar
structures and thus report them in a more succinct way.

More details of the case studies and additional examples
of mined LSCs are available at [24].

6. RELATED WORK
Many work suggest and implement variants of dynamic

10

analysis based specification mining (e.g., [9] mine boolean
expressions describing likely invariants on values of program
variables, [3] mine temporal orderings of method calls in the
form of a single finite state machines, [29] mine finite state
machines with boolean expressions). Unlike these, we mine
a set of LSCs from traces of program executions. We be-
lieve sequence diagrams in general and LSCs in particular,
are suitable for the specification of inter-object behavior, as
they make the different role of each participating object and
the communications between the different objects explicit.
Thus, our work is not aimed at discovering the complete be-
havior or APIs of certain components, but, rather, to cap-
ture the way components cooperate to implement certain
system features. Indeed, inter-object scenarios are popular
means to specify requirements (see, e.g., [13, 36]).

The challenge of succinctness in specification mining is not
limited to the scenario-based approach. Some work present
mining of rules and patterns (see, e.g., [8, 34, 35, 39]). At
times, the number of rules and patterns could be very large.
This makes it hard for users to investigate mined specifica-
tions as there are many reported rules and patterns which
are very similar to one another. In Daikon [9], the num-
ber of reported invariants could also be too large. In order
to address this issue, according to Daikon’s documentation,
Daikon may be configured to remove logically redundant in-
variants by using a theorem prover. In mining finite-state
machines (e.g., [3, 21, 29]), at times the size of the automa-
ton could be too large to be useful, with too many connec-
tions between nodes. This could happen especially if var-
ious un-related sub-specifications are interleaved together.
To address this, Whaley et al. mine one automaton for each
field in a program [37]. However, some interesting specifi-
cations capturing relations and interactions spanning across
multiple fields/objects may be missed by this approach.

Some work mine frequent patterns of API usage [8, 22]
and temporal invariants on API method calls [23, 39]. [22,
23] introduce non-redundancy in mining temporal patterns
and rules. Instead, we consider not only method calls but
also lifelines and isomorphic relationships among charts. We
believe our combined succinctness strategies could be ported
to these approaches and benefit them as well.

Several work propose summarization approaches. [38] pro-
poses a summarization approach for itemset patterns, sub-
sets that appear frequently in a set of transactions. Dif-
ferent from itemset patterns, which ignore the order among
elements in a set, mined scenarios consider temporal rela-
tionship among events; moreover, they include object iden-
tities. Our work is thus very different than the one in [38].
[11] proposes to summarize traces by removing uninteresting
events. Different from that work, we perform summarization
on mined LSCs rather than events. The two approaches are
orthogonal; we could use the approach in [11] to help in
selecting the important events that we should trace.

7. CONCLUSION AND FUTURE WORK
In this paper we addressed the succinctness challenge of

specification mining in the context of the scenario-based ap-
proach, mining a succinct set of significant LSCs from a set
of program execution traces. We formulated and evaluated a
definition of an equivalence relation over LSCs, a definition
of a redundancy and inclusion relation based on isomorphic
embeddings among LSCs, and a delta-discriminative mea-
sure based on an information gain metric on a sorted set of

LSCs, all used on top of the statistical metrics of support
and confidence. Our case studies showed the utility of our
work in reducing the number of mined LSCs.

Work in progress includes the integration of the above
methods into LM, the LSC mining tool [7]. Moreover, we are
working on an integration with hierarchical scenario-based
specification mining [27] and with the polymorphic exten-
sion of LSC [30], to further increase the expressive power of
the mined scenarios while not compromising succinctness.

Future work includes potential generalization and appli-
cation of the methods we presented in this paper to other
specification mining approaches.

8. REFERENCES
[1] Jeti. Version 0.7.6 (Oct. 2006).

http://jeti.sourceforge.net/.

[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API
Patterns as Partial Orders from Source Code: From
Usage Scenarios to Specifications. In FSE, 2007.

[3] G. Ammons, R. Bodik, and J. R. Larus. Mining
Specification. In POPL, 2002.

[4] CrossFTPServer.
sourceforge.net/projects/crossftpserver/.

[5] V. Dallmeier, C. Lindig, A. Wasylkowski, and
A. Zeller. Mining Object Behavior with ADABU. In
WODA, 2006.

[6] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. J. on Formal Methods in
System Design, 19(1):45–80, 2001.

[7] T. Doan, D. Lo, S. Maoz, and S.-C. Khoo. LM: A
Tool for Scenario-Based Specification Mining. In
ICSE, 2010. To Appear.

[8] M. El-Ramly, E. Stroulia, and P. Sorenson.
Interaction-pattern mining: Extracting usage scenarios
from run-time behavior traces. In KDD, 2002.

[9] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE TSE, 27(2):99–123,
February 2001.

[10] M. Gabel and Z. Su. Javert: Fully automatic mining
of general temporal properties from dynamic traces. In
FSE, 2008.

[11] A. Hamou-Lhadj and T. Lethbridge. Summarizing the
content of large traces to facilitate the understanding
of the behaviour of a software system. In ICPC, 2006.

[12] J. Han and M. Kamber. Data Mining Concepts and
Techniques. Morgan Kaufmann, 2006.

[13] D. Harel. From play-in scenarios to code: An
achievable dream. IEEE Computer, 34(1):53–60, 2001.

[14] D. Harel and S. Maoz. Assert and Negate Revisited:
Modal Semantics for UML Sequence Diagrams.
Software and Systems Modeling, 7(2):237–252, 2008.

[15] D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, 2003.

[16] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
control-flow-based test adequacy criteria. In ICSE,
1994.

[17] J. Klose, T. Toben, B. Westphal, and H. Wittke.
Check it out: On the efficient formal verification of
Live Sequence Charts. In CAV, 2006.

11

[18] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and
Y. Bontemps. Temporal Logic for Scenario-Based
Specifications. In TACAS, 2005.

[19] M. Lettrari and J. Klose. Scenario-Based Monitoring
and Testing of Real-Time UML Models. In UML,
2001.

[20] J. Li, H. Li, L. Wong, J. Pei, and G. Dong. Minimum
description length principle: Generators are preferable
to closed patterns. In AAAI, 2006.

[21] D. Lo and S.-C. Khoo. SMArTIC: Towards building
an accurate, robust and scalable specification miner.
In FSE, 2006.

[22] D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of
iterative patterns for software specification discovery.
KDD, 2007.

[23] D. Lo, S.-C. Khoo, and C. Liu. Mining temporal rules
for software maintenance. Journal of Software
Maintenance and Evolution: Research and Practice,
20(4):227–247, 2008.

[24] D. Lo and S. Maoz. Mining succinct LSCs, 2010.
www.mysmu.edu/faculty/davidlo/succinct/succinct.html.

[25] D. Lo and S. Maoz. Mining Scenario-Based Triggers
and Effects. In ASE, 2008.

[26] D. Lo and S. Maoz. Mining Symbolic Scenario-Based
Specifications. In PASTE, 2008.

[27] D. Lo and S. Maoz. Mining Hierarchical
Scenario-Based Specifications. In ASE, 2009.

[28] D. Lo, S. Maoz, and S.-C. Khoo. Mining Modal
Scenario-Based Specifications from Execution Traces
of Reactive Systems. In ASE, 2007.

[29] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic
Generation of Software Behavioral Models. In ICSE,
2008.

[30] S. Maoz. Polymorphic Scenario-Based Specifications:
Semantics and Applications. In MoDELS, 2009.

[31] S. Maoz and D. Harel. From multi-modal scenarios to
code: compiling LSCs into AspectJ. In FSE, 2006.

[32] R. Marelly, D. Harel, and H. Kugler. Multiple
Instances and Symbolic Variables in Executable
Sequence Charts. In OOPSLA, 2002.

[33] L. Mariani, S. Papagiannakis, and M. Pezzè.
Compatibility and regression testing of
COTS-component-based software. In ICSE, 2007.

[34] M. Ramanathan, A. Grama, and S. Jagannathan.
Static specification inference using predicate mining.
In PLDI, 2007.

[35] H. Safyallah and K. Sartipi. Dynamic Analysis of
Software Systems using Execution Pattern Mining. In
ICPC, 2006.

[36] S. Uchitel, J. Kramer, and J. Magee. Detecting
implied scenarios in message sequence chart
specifications. In FSE, 2001.

[37] J. Whaley, M. Martin, and M. Lam. Automatic
extraction of object oriented component interfaces. In
ISSTA, 2002.

[38] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing
itemset patterns: a profile-based approach. In KDD,
2005.

[39] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das.
Perracotta: Mining temporal API rules from imperfect
traces. In ICSE, 2006.

[40] Q. Yang, J. Li, and D. Weiss. A survey of
coverage-based testing tools. The Computer Journal,
2007.

12

