
The Many Faces of
Software Analytics

David Lo
School of Information Systems

Singapore Management University
davidlo@smu.edu.sg

Talk at the University of Luxembourg, Dec 2014

A Brief Self-Introduction

X

X

6,496 miles or 10,454 km

2

A Brief Self-Introduction

From
Wikipedia

3

A Brief Self-Introduction

4

Singapore Management University
 Third university in

Singapore
 Number of students:
 7000+ (UG)
 1000+ (PG)

 Schools:
 Information Systems
 Economics
 Law
 Business
 Accountancy
 Social Science

5

School of Information Systems

 Undergraduates: 1000+
 Master students: 100+
 Doctoral students: 50+

6

Our Research Group @ SMU

7

Our Research Group @ SMU
 9 PhD Students
 1 Visiting Professor
 1 Research Engineer (Jan 2015)

8

Software Analytics

”Data exploration and analysis in order to obtain
insightful and actionable information for data-

driven tasks around software and services”
(Zhang and Xie, 2012)

9

Software Analytics: Definition
 Analysis of a large amount of software data

stored in various repositories in order to:
 Understand software development process
 Help improve software maintenance
 Help improve software reliability
 And more

10

Software Analytics

MailingsBugzilla

Execution
traces

Dev.
Network

Code

SVN

11

Research Directions: Software Analytics

Analytics for Requirement & Design Validation

Analytics for Coding & Collaboration

Analytics for Testing & Debugging

12

Our Past and Current Work
Analytics for Coding & Collaboration

13

Intelligent Multi Modal Code Search

14

Intelligent Multi Modal Code Search

Code
Search
Engine

Relevant
Code

User
Query

e.g., structured query, free
text, code example…

e.g., code fragment,
method, class, projects, …

Code base

Version control
system,

collaboration
sites……

15

Intelligent Multimodal Code Search

Code Search Engine

How do I load properties
from an XML file?

Free Text

Nodes: func A, func B, var C,
var D;

Relations: C dataDepends A, D
dataDepends B, D isFieldOf C;

Targets: D

Dependence Query Language

Code Examples
16

Structured Code Search (ASE10)

X1

Bug Report

A developer can define a query about the
dependence relationship in a bug pattern or a
need-to-refactor code pattern. Using our
search engine, he/she can find x1, x2, and x3
which are instances of the code pattern

Codes

Query

Dependence
Based Code Search

Engine

X2
X3

17

Workflow of Our Approach

Query

Graph
Indexing

Query Graph
Construction
and Splitting

Post-Filtering
and Merging

Query
Graphs

SDG
Code

Query
Results

Graph Query
Processing

Indexed
SDG

18

Dependence Query Language (DQL)

 Allows developers to describe a target
 Involving several code elements
 Including the dependencies between the elements

 Composed of 4 parts
 Query identifier declarations [D]
 Code element (node) constraints [N]
 Relation constraints [R]
 Desired target identifiers [T]

19

Dependence Query Language (DQL)
 Node Description [N]: Code element constraints
 contains <Text>, inFile <FileName>, inFunction

<FnName>, controlType <for/while/switch/if>, etc.

 Relation Description [R]: Relationship constraints
 A (transitively) controls B, A calls B, A is data

dependent on B
 A is one step (directly) <depend-operation> on B
 A textual contains B, etc.

20

Query Splitting

 Split a query with disjunctions of conditions
 Result: Multiple queries with only conjunctions

function/control-point A, variable B;
A contains "abc" or contains "de";

A dataDepends B; wantA

function A, variable B; A contains
"abc"; A dataDepends B; want A

control-point A, variable B; A
contains "de"; A dataDepends B;

want A

control-point A, variable B; A
contains "abc"; A dataDepends B;

want A

function A, variable B; A contains
"de"; A dataDepends B; want A

21

Query Graph Construction

 Query Declarations
 Each identifier becomes a node in the query graph

 Relation Descriptions
 Each dependence relation becomes an edge in the

query graph
A:declaration

B: actual-out

C: expression

22

Query Graph Splitting

 Divide the query graph to two sub-graphs
 Each only capture control OR data dependences

A:declaration

B: actual-out

C: expression

D: Control
point

A:declaration

B: actual-out

C: expression

B: actual-out

C: expression

D: Control
point

23

Graph Indexing and Query

 Purpose:
 Locate all instances of a given graph pattern in a

large graph (Cheng et al., ICDE08)
A1 A2

C1

C2

A3

C3

D1

B2 B1

F1

E2 F2E3

E1

A

B

F

(a) (b)

Graph
Query

Three results found:
- triangle
- square
- star

24

Result Filtering & Merging

 Result Filtering
 Textual conditions (e.g., textual contains)
 Other relation descriptions

 Result Merging
 Split 1: Disjunctions
 Split 2: Data vs. Control Dependences
 Need to union the sub-results

25

Evaluation

 Two open source projects
 expat, gpsbabel

 Four software maintenance tasks
 From pairs of snapshots from version histories

 Developer change = Gold standard

Project name Description Version Size (LOC)

expat XML handling
library

2002-05-17 13

2002-05-22 13

gpsbabel GPS toolkit 2004-10-27 50

2005-03-21 54

26

Overall Results: Accuracy

Task #Targets Text Search Code Clone
Detection

Our approach

FP FN FP FN FP FN

1 2 526 0 0 2 36 0

2 8(186) 829(651) 0 0 8 200(22) 0

3 37 297 0 23 3 25 2

4 19 86 0 9 2 3 0

For task 2, the number in the bracket:
Adjusted numbers after considering correct locations

that are not modified yet by developers
27

Free Text Code Search (FSE12)

Find optimum connected graph that meets user needs
Greedy subgraph search algorithm with shortest path indexing

28

Example Based Code Search (ASEJ15)

Extend to compilable
codes Generate PDGs

Mine
common

subgraphs

Recover
textual

information

Generate
dependency

query

PDGs Generation Engine

Query Generation Engine

Example 1:
if(c>3){

c=getStr();
c=ext();

}

Example 2:
if(b>1){

b=ext()+foo();
}

Our Manual
Prec. 0.684 0.584
Recall 0.721 0.767
F1 0.702 0.664

Lightweight type
inference,

Closed subgraph mining

29

Coding &
Collaboration

Structured
Code Search

(ASE10)

Free Text
Code Search

(FSE12)

Active
Code Search

(ASE14)

Structured
+ Topic Model

(WCRE10)

Example
Based

Code Search
(ASEJ15)

Similar Project
Search

(ICSM12)

Multi-Criteria
Project Search
(ICECCS13)

30

Coding &
Collaboration

Recommending
Related Libraries

(WCRE13)

Recommending
API Methods Given
Feature Requests

(ASE13)

Recommending
Answer Posts

(ASE11)

31

Coding &
Collaboration

Recommending
Tags to Contents

(MSR13, ICSME14)

Automated Content
Categorization

(ICPC14)

Observatory of
Tweets and Trends

(ASE11)

Identification of
Relevant Microblogs

(ICSM12)

Developer
Recommendation

(WCRE11)

Project
Success

Estimation
(CSMR13)

Recommending
Best Answerers

(QMC13)

32

Coding &
Collaboration

Coding Practice

PLOS13
COMPSAC13

CSMR13

New Media
Usages

MUD14
CSMR13
SAC13
MSR12

Software Diffusion

APSEC12

Collaboration
Patterns

WCRE10

33

Our Past and Current Work

Analytics for Testing & Debugging

34

Bug Finding and Fixing are Hard !

 Software bugs cost the US Economy 59.5 billion
dollars annually
 Stated by the US National Institute of Standards

and Technology in 2002
(Tassey, 2002)

 Software debugging is an expensive and time
consuming task in software projects
 Testing and debugging activities account 30-90%

of the labor expended on a project
(Beizer, 1990)

35

Bug Finding Techniques

A buggy
program

List of possible buggy
program elements

Analyze program

36

Bug Finding Techniques

Bug ReportFailure

Anomaly

Bug Finder

37

Spectrum-Based Fault Localization

Program spectra

Block
ID

Program Element T1 T2 T3, T4, …

1 double a, x;
double ap, del, sum;
int n;
double temp;
if (x <= 0.0)

2 {return 0.0;}

3 del = sum = 1.0 / (ap = a);
for (n = 1; n <= ITMAX; ++n){

4 sum += del *= x / ++ap;
if (Abs(del) < Abs(sum) * EPS){

5 /*BUGS: supposed to be:*/
/* temp = sum * exp(-x + a*log(x)-Lgamma(a))*/
temp = sum * exp(x + a*log(x)-Lgamma(a));
return temp;}}

Status of Test Case Execution F P

38

Measuring suspiciousness

vbvb

e.g., spectrum-based fault localization
(Abreu et.al, TAICPART-MUTATION’07, Lucia et al., ICSM’10)

Program Elements

Suspiciousness
Scores

39

Motivation

There is no single fault localization techniques that
is the best in all cases. (Lucia et al., JSEP, 2014)

Combine
different

techniques?

40

Fusion Localizer (ASE14)

41

Step 2. Techniques selection

(A) Overlap-based
selection

(B) Bias-based
selection

Choosing the techniques to be fused

A set of
fault localization techniques

Selected
fault localization techniques

42

Step 2. Techniques selection

(A) Overlap-based selection
Based on the overlap ratio
Select 50% of the least overlap techniques

(Wu, Data Fusion in Information Retrieval, 2012)

43

Step 2. Overlap-based selection

Lall Block 1, Block 2, Block 3, Block 4, Block 5,
Block 6, Block 7, Block 8, Block 9, Block 10

LOchiai Block 2, Block 3

10 - 2
10

= 0.8Overlap Rate of Ochiai =

Top-K Most Suspicious Blocks

44

Step 2. Technique selection

(B) Bias-based selection
Based on the similarity score
Bias = 1 – similarity score
Select 50% of the most biased techniques

(Nuray and Can, Information Processing and Management, 2006)

45

Step 2. Bias-based selection

Block Freq.
Block 1 1
Block 2 1
Block 3 1
Block 4 4
Block 5 3
Block 6 3
Block 7 2
Block 8 3
Block 9 1
Block 10 1

Lall
Block Freq.
Block 1 0
Block 2 1
Block 3 1
Block 4 1
Block 5 0
Block 6 0
Block 7 1
Block 8 1
Block 9 0
Block 10 0

LOchiai

Cosine Similarity

Sim(LOchiai, Lall) = = 0.6822

Bias(LOchiai, Lall) = 0.3178
46

Data fusion methods
 Score-based fusion

1. CombSUM : Sum up all scores (Fox et al., NIST, 1994)

2. CombANZ : Average of the non-zero scores
(Fox et al., NIST, 1994)

3. CombMNZ : Sum up all scores multiplied by the
number of techniques that assign a non-zero score

(Fox et al., NIST, 1994)

4. Correlation-based method : CorrA, CorrB
(Wu, “Data Fusion in Information Retrieval”, 2012)

 Ranking-based fusion
5. Borda Count : Sum up all ranking

(Aslam and Montague, SIGIR, 2001)

47

Variants of Fusion Localizer

FScore Normalization, Technique Selection

1. Zero-One Normalization
2. Reciprocal Ranking

Normalization

Data Fusion

1. Overlap-based
2. Bias-based

CombSUM, CombANZ,
CombMNZ,

Correlation-based fusion,
BordaCount

48

Dataset

Total : 230 Bugs
49

Avg. % of code inspected to localize all bugs

50

Proportion/number of bugs localized

When 10% of blocks
are inspected

When 10 blocks are
inspected

51

Report-Directed Bug Finding (ICSME14)

SIG

On average, AmaLgamComposite
improves AmaLgam by 6.8%, 8.0%,
5.0%, 14.4%, and 6.5% in terms of

Hit@1, Hit@5, Hit@10, MAP, and MRR
respectively

IR Composition + Genetic Algorithm + (History + Similar Report + Structure)

52

Anomaly-Directed Bug Finding (ICSE12)

Sorted
Bug Reports

Anomaly Detection
System

Refinement
Engine

<<Refinement Loop>>

1

5

User
Feedback 4

2

First Few Bug
Reports 3

Improve
Avg. % TP Found:

11% for Linux
87% for Eclipse

86% for ArgoUML

Feature Extraction +
Classification

53

Testing &
Debugging

Report-Directed

ICSME14
ICSE12

ICPC14x2

Failure-Directed

ASE14
ICSM10-JSEP14

ICSM12
ASE11

HASE11
ISSTA09

Extensions

Eff. Estimate:
ISSRE14,

ICSM13-EMSE15

Reduce. Man. Eff.:
ASE12-ASEJ15

Comm. Resource:
FSE14
ICSE14

Post Mortem:
WCRE13

Anomaly-Directed

CSMR-WCRE14
COMPSAC14

SAC14
ICSE12
RV11
ASE10
KDD09

Automated
Patching

ASE12
ICSE12

54

Testing &
Debugging

Report
Prioritization

ICSM13-EMSE15
WCRE12
ICSM12

Duplicate
Detection

ASE12
CSMR12
ASE11
ICSE10

Report
Assignment

WCRE13

Report
Categorization

COMPSAC14
ICECCS14
WCRE12

Reopen
Prediction

ASEJ15
CSMR13

55

Testing &
Debugging

Multiple-Data
Release

ASE12

Single-Data
Release

PLDI11

56

Testing &
Debugging

Test Adequacy

APSEC14
CSMR-QSIC13

Real Bugs

ASE12-ASEJ15
IEICE Trans14

SAC14
ISSRE12

Bug
Trackers

CSMR-WCRE14
ISSRE13

Fault
Localization

ASE14
MSR12
ICSM13

Bug
Linking

CSMR13

57

Our Past and Current Work

Analytics for Requirement & Design Validation

58

Specification Mining and Inference
 Most bugs are caused due to semantic errors

(Tan et al., ESEJ14)
 Programs are not implemented according to

requirements
 Developers often do not have the expertise or time

to write formal specifications

 Viable solution: specification mining
 Automated reverse engineering of specifications

from programs

59

Specification Mining and Inference

Strong Properties

Specification
Miners

Unified Model

Likely invariants

Frequent patterns

Temporal rules

Live sequence charts

Finite State Machine

Message Sequence
Graphs

Class Diagram

Execution Traces

60

Mining Temporal Rules [JSEP08,SCP12,ICDE12]

 Aim:
 Find temporal rules observed within a trace set:
“Whenever a series of events occurs, eventually another

series of events will also occur”
 Among most widely used temporal logic expression for

verification (Dwyer et al. ICSE’99).

LTL BNF Notation

61

Significance, Soundness and Completeness
 Distinguish Significant Rules via Statistical Notions
 Support: The number of traces supporting the premise
 Confidence: The likelihood of the premise being followed

by the consequent

 Ensure Soundness and Completeness
With respect to input traces and specified thresholds

 Sound
All mined rules are statistically significant

 Complete
All statistically significant rules are mined/represented

62

Scalability Challenge

Existing Method (Yang06)

Check all possible 2-event rules
(n x n of them)

for statistical significance

Need to check nL rules for L-event
rules

Our Method

Explore the search space
depth first and identify

significant ones

Employ a number of search
space pruning strategies

Linear to the size of the
output significant rules and the

length of traces

Good results on standard
benchmarks datasets

> 50^1000 operations
vs.

< 25 seconds

63

Specification Mining Strategies – I & II

Rx: a -> z ; sup(Rx) < min_sup

a,b -> z
a,b,c -> z
a,c -> z

a,b,d -> z
….

Non-
significant

Rx: a -> z ; conf(Rx) < min_conf

a -> b,z
a -> b,c,z
a -> c,z
a -> b,d,z

….

Non-
significantRys Rys

64

Specification Mining Strategies - III

Redundant rules are
identified and removed

early during mining
process.

Detecting Redundant Rules

a -> b
a -> c

a -> b,c
a -> b,d

….

Redundant
iff

sup and conf are the
same

Rx: a -> b,c,d

Rys

65

Program Comprehension: JBoss App. Server

Premise Consequent
TxManLocator.getInstance()
TxManLocator.locate()
TxManLocator.tryJNDI()
TxManLocator.usePrivateAPI()
TxManager.getInstance()
TxManager.begin()
XidFactory.newXid()
XidImpl.getTrulyGlobalId()
TransactionImpl.assocCurThread()
TransactionImpl.lock()

TransactionImpl.instanceDone()
TxManager.getInstance()
TxManager.releaseTransactionImpl()
TransactionImpl.getLocalId()
XidImpl.getLocalId()
LocalId.hashCode()
LocalId.equals()
TransactionImpl.unlock()
XidImpl.hashCode()

A series of transaction set up events (connection to server instance,
transaction manager and implementation set up) is eventually followed
with transaction termination events (transaction completion, resource

release)

66

Program Verification: VCS Application

Mined Bug-Identifying
Rules/Properties

<W;X;G;T;N> ->
<S;O;Y>

<W;X;G;C;I;D> ->
<A;O;Y>

[Bug-2]

[Bug-3] [Bug-4]

Normal Bug

114
5

S

N

A

S6 S

S

10

C

D
D

A 1198 IC

Bug: Deletion (D) without log update

Bug: Store (S) and rename (N)
without appropriate next actions

[Bug-1]

[Bug-2]

[Bug-3]

[Bug-4]

C

3 T

N
2

0

X

G

G

1
W

13

O

12
Y

O

7

D

67

Library Usage Rules: Windows (WCRE09,SCP12)

 Collect traces from 10 Windows Applications:
 Excell, OneNote, TextPad, VS.Net, Visio, WMPlayer,

Virtual PC, Movie Maker, WordPad, Access

 Collect traces pertaining to:
 Registry, Memory Management, GDI (Device

Control and UI related API)
 Produces several million events

68

Library Usage Rules: Windows

V HeapAlloc(,,); ->HeapFree(,,V);
V GlobalAlloc(,); -> GlobalFree(V);

V VirtualAlloc(,,); ->VirtualFree (,,V);
….

HeapFree(,,V); -P> V HeapAlloc(,,,);

Detect double free, which is disallowed
“Calling HeapFree twice with the same pointer can cause heap

corruption, resulting in subsequent calls to HeapAlloc
returning the same pointer twice.” [MSDN]

69

Library Usage Rules: Windows

RegCreateKeyExA(V,.) ->RegCloseKey(V);
Not all opened registry need to be closed

Predefined keys need not be closed

V CreateCompatDC(); -> DeleteDC(V);
V CreCompatBmap(,,);->DeleteObj (V);

V CreRectRgn(,,,)-> DeleteObj(V);
DeleteDC(V) –precede-> V CreCompDC()

SetBkColor(,V); -> V SetBkColor (,)
…

70

Mining Live Sequence Charts (ASE10,ASEJ12)

Scenario-Based
Specification Miner

Scenario-Based
Slicer Daikon

Invariant
Comparator

Integrate
Invariants
into LSCs

Scenarios/
LSCs

Sliced
Trace (ST)

Invariants
on T

Invariants
on ST

Scenarios/LSCs

Traces
(T)

Scenario
Specific

Invariants

Traces
(T)

Specs

Method Pre Post
send(…) code=257

subId=“PWD”
….

subId=“PWD”
…

CFTP Jeti
Scenario Min. 53s 2s
Daikon (All/Sli) 163s/31s 77s/23s
Slicing 11s 3s

71

Mining Finite State Machines (FSE09)

Identification of bad merges
using mined temporal rules

 FSM learner often overgeneralizes
 Generates a prefix tree acceptor
 Merge nodes (generalization)

73

Mining Message Sequence Graphs (ICSE12)

Concrete Symbolic
Prec. Recall F1 Prec. Recall F1

SIP 0.8 0.05 0.09 0.64 0.66 0.65
XMPP-Core 1.0 0.19 0.32 1.0 0.66 0.79
XMPP-MUC 0.61 0.36 0.45 0.67 0.63 0.65
CTAS 0.25 0.43 0.31 0.88 0.90 0.89

Trace Set Concrete-class
Trace Set

Aggregate
Model

Abstract Model

Class-Level
Specification

Transformation

Aggregation

Guard Inference

ICSE11

75

Requirement
& Design

Unified ModelStrong Properties

Patterns

ICDE09
KDD07

Rules

SCP12
ICDE11
TKDE11

IS09
WODA08

DASFAA08
JSEP08

LSC

ASE13
ICECCS11

ASE10-ASEJ12
ASE09

PASTE08
ASE08
ASE07

Inv.

ICSME14

MSG

ICSE12
ICSE11

Class
Diagram

ICPC14

FSM

FSE09
FSE06

77

Concern Location

ICSM13
WCRE11

Design Defect Detection
In Tiered Architecture

SEKE11

Empirical Evaluation on
Specification Miners

JSS12
WCRE06

Empirical Evaluation on
Interestingness Measures

Requirement
& Design

78

Future Directions

79

Big Data for Software Engineering

80

Wealth of Software Engineering Data

There is a wealth of information about
what’s new, what works, and what

doesn’t in the Web

81

Difficulty in “Making Sense” of Data

?!

82

Our Vision: Personalized Observatory

• Highlights new developments, new
solutions, and new pitfalls
personalized to a target developer

• Gathers, groups, filters, and
summarizes information obtained
from various channels

• Automatically updates itself when
relevant new information is
released in the web

83

Proposed Process

Data Collection

Data Linking and Grouping

Data Matching and Filtering

Data Summarization

Automatic Update

84

Process: Data Collection (1)

 Gather data from various information channels

85

Process: Grouping (2)

 Link related pieces of data together
 Group them to a higher level concept
 Approaches:
 Topic modeling, Clustering

Responsive
Web Design

86

Process: Matching (3)

 Match user interest to community data
 Approaches:
 Information retrieval approaches

Responsive
Web Design Web

87

Process: Summarization (4)

 Motivation: A large collection of documents from
the community might match user interests
 Need to summarize them to a manageable size

 Approach: Text summarization approaches

88

Process: Update (5)

 Continually update considering new user and
community data

89

Proposed Infrastructure

Data
Collector

Data Linker

Automatic
Updater

Client Side Component
Data

Collector

Data Linker

Data
Summarizer

Server Side Component

Automatic
Updater

Data
Matcher

Data
Collector

Data Linker

Automatic
Updater

Client Side Component

90

Challenges: Vocabulary Mismatch

 Assumption: Related pieces of information are
textual similar.

 Reality: Developer might use peculiar words that
are not commonly used by others in the same
community.

 How to bridge the differences in the vocabulary
used by various developers?

91

Challenges: Privacy Concern

 Client component needs to send queries to
server component
 Includes developer personal data

 Raises privacy concern:
 Can some private information be leaked?
 Sensitive web data, source code, industry project,

etc.
 How to minimize privacy leak while not reducing

utility?

92

Challenges: Near Real-Time Update

 Huge amount of information being generated
constantly on the web.

 Scale-up the server side component:
 How to design efficient, incremental and parallel

algorithms to collect, group, match, and summarize
data?

 Reduce the size of queries being sent from clients to
servers:
 How to produce informative yet succinct queries?

93

State of Research @ SMU

 Data Collection:
 Observatory of trends in software related

microblogs. ASE 2012
 Automatic classification of software related

microblogs. ICSM 2012

94

State of Research @ SMU

 Dealing with Vocabulary Mismatch:
 Automated construction of a software-specific

word similarity database. CSMR-WCRE 2014.

 Dealing with Privacy Concern:
 kb-anonymity: a model for anonymized

behaviour-preserving test and debugging
data. PLDI 2011.

95

Summary: Software Analytics

Analytics for Requirement & Design Validation

Analytics for Coding & Collaboration

Analytics for Testing & Debugging

96

Summary: Future Directions

97

Thank you!

Questions? Comments? Advice?
davidlo@smu.edu.sg

98

	The Many Faces of �Software Analytics
	A Brief Self-Introduction
	A Brief Self-Introduction
	A Brief Self-Introduction
	Singapore Management University
	School of Information Systems
	Our Research Group @ SMU
	Our Research Group @ SMU
	Software Analytics
	Software Analytics: Definition
	Software Analytics
	Research Directions: Software Analytics
	Our Past and Current Work
	Intelligent Multi Modal Code Search
	Intelligent Multi Modal Code Search
	Intelligent Multimodal Code Search
	Structured Code Search (ASE10)
	Workflow of Our Approach
	Dependence Query Language (DQL)
	Slide Number 20
	Query Splitting
	Query Graph Construction
	Query Graph Splitting
	Graph Indexing and Query
	Result Filtering & Merging
	Slide Number 26
	Slide Number 27
	Free Text Code Search (FSE12)
	Example Based Code Search (ASEJ15)
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Our Past and Current Work
	Bug Finding and Fixing are Hard !
	Bug Finding Techniques
	Bug Finding Techniques
	Spectrum-Based Fault Localization
	Measuring suspiciousness
	Motivation
	Fusion Localizer (ASE14)
	Step 2. Techniques selection
	Step 2. Techniques selection
	Step 2. Overlap-based selection
	Step 2. Technique selection
	Step 2. Bias-based selection
	Data fusion methods
	Variants of Fusion Localizer
	Dataset
	Avg. % of code inspected to localize all bugs
	Proportion/number of bugs localized
	Report-Directed Bug Finding (ICSME14)
	Anomaly-Directed Bug Finding (ICSE12)
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Our Past and Current Work
	Specification Mining and Inference
	Specification Mining and Inference
	Mining Temporal Rules [JSEP08,SCP12,ICDE12]
	Significance, Soundness and Completeness
	Scalability Challenge
	Specification Mining Strategies – I & II
	Specification Mining Strategies - III
	Slide Number 66
	Program Verification: VCS Application
	Library Usage Rules: Windows (WCRE09,SCP12)
	Library Usage Rules: Windows
	Library Usage Rules: Windows
	Mining Live Sequence Charts (ASE10,ASEJ12)
	Mining Finite State Machines (FSE09)
	Mining Message Sequence Graphs (ICSE12)
	Slide Number 77
	Slide Number 78
	Future Directions
	Big Data for Software Engineering
	Wealth of Software Engineering Data
	Difficulty in “Making Sense” of Data
	Our Vision: Personalized Observatory
	Proposed Process
	Process: Data Collection (1)
	Process: Grouping (2)
	Process: Matching (3)
	Process: Summarization (4)
	Process: Update (5)
	Proposed Infrastructure
	Challenges: Vocabulary Mismatch
	Challenges: Privacy Concern
	Challenges: Near Real-Time Update
	State of Research @ SMU
	State of Research @ SMU
	Summary: Software Analytics
	Summary: Future Directions
	Thank you!

