
Data Analytics for Automated 
Software Engineering

David Lo
School of Information Systems

Singapore Management University
davidlo@smu.edu.sg

Short Course, ESSCaSS 2014, Estonia



A Brief Self-Introduction

X

X

5674 miles or 9131 km

X

4812 miles or 7744 km

2



A Brief Self-Introduction

From 
Wikipedia

3



A Brief Self-Introduction

4



A Brief Self-Introduction

 Graduated from National Uni. Of Singapore, 2008
 Work on the intersection of software engineering and 

data mining

Mining Software Traces
Specification Mining
Fault Localization

Malware Detection

Mining Software Text
Bug Report Analysis
Concern Localization

Software Forum Mining

Mining Code
Code Search

Anomaly Detection
Privacy Preserving Testing

Data Mining Algorithms
Sequential/Graph Pattern Mining

Discriminative Pattern Mining
Game Mining

Mining Socio-Technical Network
Mining Developer Network

Mining Developer Microblogs
Community Detection

Empirical Studies
Widespread Changes

Feature Diffusion
Effectiveness of Exist. Tools
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Focus of This Short Course 

 Highlight research problems in software 
engineering

 Describe the wealth of software data available for 
analysis

 Present some data mining concepts and how it can 
be used to automate software engineering tasks

 Present some information retrieval concepts and 
how it can be used to automate software 
engineering tasks
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Three Lectures
I. Software Engineering (SE): A Primer
 Challenges & Problems
 Research Topics

II.  Data Mining for Automated Software Engineering
 Pattern Mining
 Clustering
 Classification

III. Information Retrieval for Automated SE
 Vector Space Model
 Language Model

 Topic Model
 Text Classification

 Data Sources
 Basic Tools
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The most certain way to succeed is 
always to try just one more time.

- Thomas A. Edison

Software Engineering: A Primer
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Slide Outline
 Part I: SE Challenges & Problems
 Part II: Research Topics
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics: A Recent Trend

 Part III: Data Sources
 Part IV: Basic Program Analysis Tools
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Part I: Software Engineering (SE) 

“Process and techniques that are followed to design, 
develop, verify, validate, and maintain a software 
system that satisfies a set of requirements and 

properties with reasonable or low cost.”
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SE: Challenges & Problems 
 Building and maintaining complex software system 

is challenging and costs much resources
 High cost and scarcity of qualified manpower
 Software changes over time

 Software systems are plagued with bugs and 
removing them costs much resources
 Hard to ensure high reliability of complex systems
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SE: Challenges & Problems 
 Many other challenges:
 Hard to capture needs of end users
 Hard to manage developers working at 

geographically disparate locations
 Etc.
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Part II: Research Topics in SE
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics, A Recent Trend
 Empirical Software Engineering
 Requirement Engineering
 Many more
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Topics: Software Testing and Reliability
 Software and bugs are often inseparable
 Many systems receive hundreds of bug reports 

daily (Anvik et al., 2005)
 Software gets more complex
 Written in multiple languages
 Written by many people
 Over a long period of time
 Increases likelihood of bugs

*Anvik et al.: Coping with an open bug repository. 
ETX 2005: 35-39
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Software Testing and Reliability: Why Bother?
 Software bugs cost US economy 22.2 – 59.5 

billions annually (NIST, 2002)
 Many software bugs have disastrous effects

Therac-25 Ariane-5 Mars Climate
Orbiter

*National Institute of Standards and Technology 
(NIST): The Economic Impacts of Inadequate 

Infrastructure for Software Testing. Report 2002.
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Software Reliability: Goals
 Ensure the absence of (a family of) bugs
 Formal verification of a set of properties 
 Heavyweight

 Prevention and early detection of bugs
 Does not guarantee the absence of bugs
 Identify as many bugs as possible as early as 

possible
 Lightweight
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Software Testing and Bug Finding: Goals 
 Test adequacy measurement
 How thorough is a test suite?
 Does it cover all parts of a code?

 Test adequacy improvement
 How to create additional test cases?
 How to make a test suite more thorough?

 Test selection
 How to reduce the number of test cases to run 

when a change is made?
 Identification of software bugs
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SE Topics: What is Software Evolution?
 A piece of software system becomes gradually 

more and more different than the original code
 Reasons:
 Bug fixes
 New requirements or features
 Changing environment (e.g., GUI, database, etc.)
 Code quality improvement
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What is Software Maintenance?
 Changes made to existing software system
 Resulting in software evolution
 Types of maintenance tasks:
 Corrective maintenance: Bug fixes
 Perfective maintenance: New features
 Adaptive maintenance: Changing environments
 Preventive maintenance: Code quality improvement
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Software Maintenance – Relative Costs
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Why is Software Maintenance Expensive?
 Costs can be high because:
 Inexperienced maintenance staffs
 Poor code
 Poor documentation 
 Changes may introduce new faults, which trigger further 

changes
 As a system is changed, its structure tends to degrade, 

which makes it harder to change
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Lehman’s Laws of Evolution
 A classic study by Lehman and Belady (1985) 

identified several “laws” of system change.
 Continuing change
 A program that is used in a real-world environment must 

change, or become progressively less useful in that 
environment

 Increasing complexity
 As a program evolves, it becomes more complex, and 

extra resources are needed to preserve and simplify its 
structure
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What is a Legacy System?
 Legacy IS are large software systems
 They are old, often more than 10 years old
 They are written in a legacy language (e.g., 

COBOL), and built around legacy databases
 Legacy ISs are autonomous, and mission critical
 They are inflexible and brittle
 They are responsible for the consumption of at least 

80% of the IS budget
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Problems of Legacy Systems
 Availability of original developers
 Lack of documentation
 Size and complexity of the software system
 Accumulated past maintenance activities
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History of Eclipse
 1997 – IBM VisualAge for Java ( implemented in 

small talk)
 1999 – IBM VisualAge for Java micro-edition 

(Eclipse code based from here)
 2001 – Eclipse (change name for marketing issue)
 2003 – Eclipse.org foundation
 2005 – Eclipse V3.1
 2006 – Eclipse V3.2
 ….
 2014 – Eclipse V4.4
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History of Microsoft Word
 1983 – MS Word for DOS
 1985 – MS Word for Mac
 1980 – MS Word for Windows
 1991 – MS Word 2
 1993 – MS Word  6
 1995 – MS Word 95
 1997 – MS Word  97
 1998 – MS Word  98
 2000 – MS Word  2000
 2002 – MS Word  XP
 2003 – MS Word 2003
 …
 2014 – MS Word 2013
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Topics: Software Analytics

”Data exploration and analysis in order to obtain 
insightful and actionable information for data-

driven tasks around software and services”
(Zhang and Xie, 2012)
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Software Analytics: Definition
 Analysis of a large amount of software data 

stored in various repositories in order to:
 Understand software development process
 Help improve software maintenance
 Help improve software reliability
 And more
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Topics: Software Analytics

MailingsBugzilla

Execution
traces

Dev. 
Network

Code

SVN
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Big Data for Software Engineering
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Part III: Software Data Sources
 Source Code
 Execution Trace
 Development History
 Bug Reports
 Developer Activities
 Software Forums
 Software Microblogs
 Other Artifacts
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Artifact: Source Code
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Artifact: Source Code
 Where to find code?
 Google code: http://code.google.com/
 Many other places online

 How to analyze source code?
 Analyze -> automatically parse and understand
 Program analysis tools

33
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Artifact: Source Code
 Various languages
 Various kinds of systems
 Various scale: small, medium, large
 Various complexities
 Cyclomatic Complexity

 Various programming styles
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Artifact: Execution Trace
 Information collected when a program is run
 What kind of information is collected?
 Sequences of methods that are executed
 State of various variables at various times
 State of various invariants at various times
 Which components are loaded at various times
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Artifact: Execution Traces

Caller | Callee | Method Signature
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Artifact: Execution Trace

Chicory Trace: Variable values 
At method entries and exits
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Artifact: Execution Trace
 How to collect?
 Insert instrumentation code
 Execute program
 Instrumentation code writes a log file 

 What tools are available to collect traces?
 Daikon Chicory: 

http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html
 PIN: 

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool
 Valgrind: 

http://valgrind.org/
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Artifact: Development History
 What code is
 Added
 Deleted
 Edited

 When
 By Whom
 For What Reason
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Artifact: Development History
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Artifact: Development History
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Artifact: Development History
 Useful for distributed software development
 Various people updating different parts of code

 Easy to backtrack changes
 Easier to find out answer to the question:
 My code works yesterday but not today. Why?

 Easier to quantify contributions of team members
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Artifact: Development History
 Various tools
 CVS – Version per file
 SVN – Version per snapshot
 Git - Distributed

 Slightly different ways to manage content
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Artifact: Bug Reports
 People report errors and issues that they 

encounter in the field
 These errors include:
 Description of the bugs
 Steps to reproduce the bugs
 Severity level
 Parts of the system affected by the bug
 Failure traces
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Artifact: Bug Reports

Title
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Artifact: Bug Reports

Detailed
Description
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Artifact: Bug Reports
 Various kinds of bug repositories

 BugZilla: http://www.bugzilla.org/
 Example site: 

https://bugzilla.mozilla.org/

 JIRA: http://www.atlassian.com/software/jira/
 Example site: 

https://issues.apache.org/jira/browse/WW
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Artifact: Developer Activities
 Developers form a social network
 Developers work on various projects
 Projects have various types, programming 

languages and developers
 Developers follow updates from various other 

developers and projects
 Social coding sites

 A heterogeneous social network is formed
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Artifact: Developer Activities

Social Coding Sites
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Artifact: Developer Activities

More than a year ago
50
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Artifact: Developer Activities



Artifact: Developer Activities
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Artifact: Developer Activities
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Artifact: Developer Activities
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Artifact: Software Forums
 Developers ask and answer questions
 About various topics
 In various threads, some of which are very long
 Stored in various sites
 StackOverflow: http://stackoverflow.com/
 SoftwareTripsAndTricks: 

http://www.softwaretipsandtricks.com/forum/
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Artifact: Software Forums
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Artifact: Software Forums
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Artifact: Software Microblogs
 Developers microblog too
 Developers microblog about various activities 

(Tian et al. 2012) :
 Advertisements
 Code and tools
 News
 Q&A
 Events
 Opinions
 Tips
 Etc.

*Tian et al.: What does software engineering 
community microblog about? MSR 2012: 247-250
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Artifact: Software Microblogs
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Artifact: Software Microblogs

http://research.larc.smu.edu.sg/palanteer/swdev

61

http://research.larc.smu.edu.sg/palanteer/swdev


Part IV: Basic Program Analysis Tools

 Static Analysis
 Dynamic Analysis
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Static Analysis
 Control Flow Graph Construction
 Program Dependence Graph Construction
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Control Flows: Control-Flow Graphs

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Control flow is a relation that 
represents the possible flow of 
execution in a program. 
 (a, b) in the relation means that 

control can directly flow from element 
a to element b during execution.

Entry

1

3

2

4

5

6

7

Exit

F

T

1
2
3
4
5

6
7
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Control Flows: Control Dependence

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Given nodes C and N in a CFG, N is 
control-dependent on C if the 
outcome of C determines if N is 
reached in the CFG.

 We call C as a controller of N.

1
2
3
4
5

6
7

Entry node controls nodes 1,2,3,6,7
Node 3 controls nodes 4 and 5
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Data Flows: Definitions / Uses

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A definition-use chain or DU-chain, 
for a definition D of variable v, is: 
 the set of pair-wise connections 
 between D and all uses of v that D 

can reach.

1
2
3
4
5

6
7
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Data Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A data-dependence graph contains:
 one node for every program line (or an 

instruction, or a basic block, or a desired 
granularity) and 

 labelled edges that correspond to DU-
chains. 

1 2

5 3

76

4
sum

sum

sum

i
i

i
i

i

iisum

1
2
3
4
5

6
7
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Program/Procedural Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 PDGs are control- and 
data-dependence graphs
 Capture “semantics”
 Expose parallelism
 Facilitate debugging

i < 11

Entry

1 2

5 3

76

4
sum

sum

sum

i
i

i

i

i

iisum
i < 11

1
2
3
4
5

6
7
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Tools
 Program analysis platforms

 WALA: http://wala.sourceforge.net/wiki/index.php/Main_Page
 Chord: http://code.google.com/p/jchord/
 ROSE: http://www.rosecompiler.org/

 Other tools
 JPF: http://babelfish.arc.nasa.gov/trac/jpf
 BLAST: http://mtc.epfl.ch/software-tools/blast/index-epfl.php
 ESC/Java: http://kindsoftware.com/products/opensource/ESCJava2/
 SPIN: http://spinroot.com/spin/whatispin.html
 PAT: http://www.comp.nus.edu.sg/~pat/
 Choco: http://www.emn.fr/z-info/choco-solver/ 
 Yices: http://yices.csl.sri.com/
 STP: https://sites.google.com/site/stpfastprover/STP-Fast-Prover
 Z3: http://z3.codeplex.com/
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Dynamic Analysis
 Instrumentation
 Test Case Generation
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What is Dynamic (Program) Analysis?
 Basically
 Run a program
 Monitor program states during/after the executions
 Extract useful information/properties about the program
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How to Run?
 Testing
 Choose good test cases
 The test suite determines the expense 
 In time and space

 The test suite determines the accuracy 
 What executions are seen or not seen

72



Tracing / Profiling
 Tracing: Record faithfully (lossless) detailed information of 

program executions
 Control flow tracing

 Sequence of executed statements.
 Dependence tracing

 Sequence of exercised dependences.
 Value tracing

 Sequence of values produced by each instruction.
 Memory access tracing

 Sequence of memory references during an execution
 Profiling: Record aggregated (lossy) information about 

program executions
 Control flow profiling: execution frequencies of instructions
 Value profiling: occurrence frequencies of values
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Tracing/Profiling by Instrumentation
 Source code instrumentation
 Binary instrumentation
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Test Case Generation: Concolic Testing
 Goal: find actual inputs that exhibit an error or execute as many 

program elements as possible
 By exploring different execution paths

1) Start with an execution with random inputs
2) Collect the path conditions for the execution
3) Negate some of the path conditions

 So as to be used as the path conditions for the next execution 
which should follow a different path

4) Solve the new path conditions to get actual values for the inputs
 The execution using these new inputs should follow a different path

5) Repeat 2)—4) until no more new paths to explore

*Godefroid et al.: DART: directed automated random testing. 
PLDI 2005: 213-223

*Sen et al.: CUTE: a concolic unit testing engine for C. 
ESEC/SIGSOFT FSE 2005: 263-272
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Concolic Testing: Symbolic & Concrete Executions

int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7 x = x0, y = y0
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7,
z = 14

x = x0, y = y0, 
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7,
z = 14

x = x0, y = y0, 
z = 2*y0

2*y0 != x0

Concolic Testing: Symbolic & Concrete Executions
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

2*y0 != x0

x = 22, y = 7,
z = 14

x = x0, y = y0, 
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

Solve: 2*y0 == x0

Solution: x0 = 2, y0 = 1
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,      
z = 2

x = x0, y = y0, 
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,       
z = 2

x = x0, y = y0, 
z = 2*y0

2*y0 == x0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,       

z = 2
x = x0, y = y0, 

z = 2*y0

2*y0 == x0

x0 <= y0+10

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,       

z = 2
x = x0, y = y0, 

z = 2*y0

Solve: (2*y0 == x0) /\ (x0 > y0 + 10)
Solution: x0 = 30, y0 = 15

Concolic Testing: Symbolic & Concrete Executions

2*y0 == x0

x0 <= y0+10
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 22, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49
x = x0, y = y0,

z = (y0*y0)%50

(y0*y0)%50 !=x0

Concolic Testing: Symbolic & Concrete Executions

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 
Stuck?
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

foo (y0) !=x0

Solve: foo (y0) == x0

Don’t know how to solve! 
Stuck?

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 
Not Stuck!
Use concrete state

Replace y0 by 7

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50

(y0*y0)%50 !=x0
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,    

z = 48
x = x0, y = y0,  

z = 49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Concolic Testing: Symbolic & Concrete Executions
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

92



Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7,
z = 49

x = x0, y = y0 ,
z = 49  

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions
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Tools
 Program instrumentation and analysis frameworks
 CIL: http://cil.sourceforge.net/
 Valgrind: http://valgrind.org/
 Daikon: http://groups.csail.mit.edu/pag/daikon/
 Jikes: http://jikes.sourceforge.net/
 QEMU: http://wiki.qemu.org/Main_Page
 Pin: http://www.pintool.org/
 Omega: http://www.cs.umd.edu/projects/omega/

 Test case generation
 Korat: http://korat.sourceforge.net/
 CUTE: http://srl.cs.berkeley.edu/~ksen/doku.php
 CREST: http://crest.googlecode.com/
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Conclusion
 Part I: Challenges & Problems
 High software cost
 Ensuring reliability of systems

 Part II: Research Topics
 Software testing and reliability
 Software maintenance and evolution
 Software analytics

 Part III: Data Sources
 Code, traces, history, bug reports, developer activities, 

forums, microblogs, etc.
 Part IV: Basic Program Analysis Tools
 Static analysis
 Dynamic analysis
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Additional References & Acknowledgements
 Some slides and images are taken or adapted from:
 Ying Zou’s, Ahmed Hassan’s and Tao Xie’s slides
 Lingxiao Jiang’s slides 

(from SMU’s IS706 slides that we co-taught together)
 Mauro Pezze’s and Michal Young’s slides

(from the resource slides of their book)
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Thank you!

Questions? Comments? 
davidlo@smu.edu.sg



Data Mining for 
Software Engineering

Genius is 1% inspiration and 99% 
perspiration! 

-Thomas A. Edison
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Slide Outline
 Part I: Pattern Mining
 Techniques
 Applications

 Part II: Clustering
 Techniques
 Applications

 Part III: Classification
 Techniques
 Applications
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Part I: Pattern Mining
 Frequent pattern: a pattern (a set of items,

subsequences, substructures, etc.) that occurs
many times in a data set

 Motivation: Finding inherent regularities in data
 What products were often purchased together?
 What are the subsequent purchases after buying a PC?
 What kinds of DNA are sensitive to this new drug?
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Structure
 Techniques
 Association Rule Mining
 Sequential Pattern Mining
 Subgraph Mining

 Applications
 Allatin: Mining Alternative Patterns
 Other Applications
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Association Rule Mining

I(A): Pattern Mining Techniques
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Definition: Frequent Itemsets
 Frequent pattern mining: find all

frequent itemsets in a database

 Itemset: a set of items
 E.g., acm={a, c, m}

 Support of itemsets
 Sup(acm)=3

 Given min_sup = 3, acm is a 
frequent pattern

TID Items bought
100 f, a, c, d, g, i, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o
400 b, c, k, s, p
500 a, f, c, e, l, p, m, n

Transaction database TDB
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Definition: Association Rules
 Find all the rules X  Y with minimum support and 

confidence
 support, s, number of transactions contain X ∪ Y
 confidence, c, conditional probability that a transaction 

having X also contains Y

 Itemsets should be frequent
 It can be applied extensively

 Rules should be confident
 With strong prediction capability
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Definition: Association Rules
 buy(diaper)  buy(beer)
 Dads taking care of babies in weekends drink beer

Customer
buys diaper

Customer
buys both

Customer
buys beer
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Definition: Association Rules

 Let  min-sup = 3,  min-conf = 50%
 Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
 Association rules:
 A  D  (3, 100%)
 D  A  (3, 75%)

Transaction-id Items bought
10 A, B, D
20 A, C, D
30 A, D, E
40 B, E, F
50 B, C, D, E, F
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Methodology
 The downward closure property of frequent 

patterns
 Any subset of a frequent itemset must be frequent
 If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 i.e., every transaction having {beer, diaper, nuts} also 

contains {beer, diaper} 
 Scalable mining methods: 
 Apriori (Agrawal & Srikant@VLDB’94)
 Freq. pattern growth (FPgrowth—Han, Pei & Yin 

@SIGMOD’00)
 Vertical data format approach (Charm—Zaki & Hsiao 

@SDM’02)
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Methodology: Apriori Algorithm
 Apriori pruning principle: 
 If there is any itemset which is infrequent, its 

superset should not be generated/tested! 
 Method: 
 Initially, scan DB once to get frequent 1-itemset
 Generate length (k+1) candidate itemsets from 

length k frequent itemsets
 Test the candidates against DB
 Terminate when no frequent or candidate set 

can be generated
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Apriori Algorithm—An Example 

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2
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Apriori Algorithm

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;
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Apriori Algorithm: Details
 How to generate candidates?
 Step 1: self-joining Lk

 Step 2: pruning
 Example of Candidate-generation
 L3={abc, abd, acd, ace, bcd}
 Self-joining: L3*L3

 abcd from abc and abd
 acde from acd and ace

 Pruning:
 acde is removed because ade is not in L3

 C4={abcd}
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Closed Patterns and Max-Patterns

 A long pattern contains a combinatorial number of sub-
patterns, e.g., {a1, …, a100} contains 2100 – 1 = 1.27*1030 

sub-patterns!
 Solution: Mine closed patterns and max-patterns instead
 An itemset X is closed if X is frequent and there exists no 

super-pattern Y כ X, with the same support as X 
(proposed by Pasquier, et al. @ ICDT’99) 
 Closed pattern is a lossless compression of freq. patterns
 Reducing the # of patterns and rules

 An itemset X is a max-pattern if X is frequent and there 
exists no frequent super-pattern Y כ X (proposed by 
Bayardo @ SIGMOD’98)
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Closed Patterns and Max-Patterns

 Exercise.  DB = {a1, …, a100}, {a1, …, a50} 
 Min_sup = 1.

 What is the set of closed itemset?
 {a1, …, a100}: 1
 {a1, …, a50}: 2

 What is the set of max-pattern?
 {a1, …, a100}: 1

 What is the set of all patterns?
 !!
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Sequential Pattern Mining

I(A): Pattern Mining Techniques
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Definition: Sequential Pattern Mining

 Given a set of sequences, find the complete set of 
frequent subsequences

An element may contain a set of items.
Items within an element are unordered

and we list them alphabetically. 

A sequence : < (ef) (ab) (df) c b >

115



Definition: Sequential Pattern Mining

A sequence database 
SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<(ab)c> 
is a subsequence of 
<a(abc)(ac)d(cf)>

<(ab)c> 
is a subsequence of 

<(ef)(ab)(df)cb>

Given support threshold 
min_sup =2, 

<(ab)c> is a frequent 
sequential pattern
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Methodology
 A basic property: Apriori (Agrawal & Srikant’94) 
 If a sequence S is not frequent 
 Then none of the super-sequences of S is frequent
 E.g, <hb> is infrequent  so do <hab> and 

<(ah)b>
 Many algorithms:
 Apriori (Agrawal & Srikant’94): GSP
 PrefixSpan
 BIDE, etc.
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GSP—Generalized Sequential Pattern Mining
 Proposed by Agrawal and Srikant, EDBT’96
 Outline of the method
 Initially, every item in DB is a candidate of length-1
 For each level (i.e., sequences of length-k) do
 Scan database to collect support count for each 

candidate sequence
 Generate candidate length-(k+1) sequences from 

length-k frequent sequences using Apriori
 Repeat until no frequent sequence or no candidate 

can be found
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PrefixSpan: Definition
 Prefix and Suffix (Projection)
 <a>, <aa>, <a(ab)> and <a(abc)> are prefixes

of sequence <a(abc)(ac)d(cf)>
 Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)
<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>
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PrefixSpan: Approach
 Step 1: find length-1 sequential patterns
 <a>, <b>, <c>, <d>, <e>, <f>

 Step 2: divide search space. The complete set of 
seq. pat. can be partitioned into 6 subsets:
 The ones having prefix <a>;
 The ones having prefix <b>;
 …
 The ones having prefix <f>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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PrefixSpan: Approach
 Only need to consider projections w.r.t. <a>
 <a>-projected database: <(abc)(ac)d(cf)>, 

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

 Find all the length-2 seq. pat. having prefix <a>: 
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
 Further partition into 6 subsets
 Having prefix <aa>;
 …
 Having prefix <af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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PrefixSpan: Approach
SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Having prefix <a>

Length-2 sequential 
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <b>

<b>-projected database

Having prefix <c>, …, <f>

… …
Having prefix <aa>

… …
Having prefix <af>

…
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Closed Frequent Sequences

 Motivation: Handling sequential pattern explosion 
problem

 Closed frequent sequence
 A frequent (sub) sequence S is closed if there 

exists no supersequence of S that carries the 
same support as S
 If some of S’s subsequences have the same 

support, it is unnecessary to output these 
subsequences (nonclosed sequences)
 Lossless compression: still ensures that the 

mining result is complete
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Subgraph Mining

I(A): Pattern Mining Techniques
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Definition : Subgraph Mining

 Frequent subgraphs
 A (sub)graph is frequent if its support 

(occurrence frequency) in a given dataset is no 
less than a minimum support threshold

 Applications of graph pattern mining
 Mining biochemical structures
 Program control flow analysis
 Building blocks for graph classification, clustering, 

compression, etc.
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Methodology

…

G

G1

G2

Gn

size-k

size-(k+1)

…

size-(k+2)

…

duplicate 
graph
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Methodology: Joining two graphs 

 AGM (Inokuchi, et al. PKDD’00) 
 generates new graphs with one more node

 FSG (Kuramochi and Karypis ICDM’01)
 generates new graphs with one more edge
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e0: (0,1)

e1: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)

Graph Mining and Sequence Mining
 Flatten a graph into a sequence using depth first 

search

0

1

2

3
4
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Closed Frequent Graphs

 Motivation: Handling graph pattern explosion 
problem

 Closed frequent graph
 A frequent graph G is closed if there exists no 

supergraph of G that carries the same support 
as G
 If some of G’s subgraphs have the same support, 

it is unnecessary to output these subgraphs
(nonclosed graphs)
 Lossless compression: still ensures that the 

mining result is complete
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Allatin: Mining Alternating Patterns 
for Defect Detection

I(B): Pattern Mining Applications
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Allatin: Mining Alternative Patterns
 Suresh Thummalapenta, IBM Research
 Tao Xie, North Carolina State University

 Published in Automated Software Engineering 
Journal, 2011

131



Introduction

 Programming rules often exists for APIs

 These programming rules are often not 
documented well
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Introduction
 Allatin recovers common usages of APIs
 Expressed as simple patterns:
 P1 = Boolean-check on return of Iterator.hasNext

before Iterator.next
 Patterns are mined by looking to many code pieces 

that use the API before in the internet.
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Introduction
 There might be various acceptable usages

 Alternative pattern: P2 = Constant-check on return 
of ArrayList.size before Iterator.next
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Introduction
 Allatin recovers a combination of simple patterns
 And patterns: P1 AND P2
 Or patterns: P1 OR P2
 XOR patterns: P1 XOR P2
 Combo patterns: (P1 AND P2) XOR P3

 The patterns are used to detect neglected 
conditions
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Methodology
 Phase 1: Gathering code examples
 Phase 2: Generating pattern candidates
 Focus on condition checks before and after API 

method invocations
 Phase 3: Mining alternative patterns
 Phase 4: Detect neglected conditions
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Methodology
 Algorithm
 Starts with small pattern
 Combines them by various operators
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Methodology
 Limitation
 Employ a number of ad-hoc heuristics
 If “A AND B” and “A XOR B” have support >= min-

sup then the right pattern is “A OR B”
 No guarantee that a complete set of patterns are 

mined
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Experiment
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Experiment
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Experiment
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Experiment
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Other Applications
 Mining temporal specifications
 Zhenmin Li, Yuanyuan Zhou: PR-Miner: 

automatically extracting implicit programming rules 
and detecting violations in large software code. 
ESEC/SIGSOFT FSE 2005: 306-315
 David Lo, Siau-Cheng Khoo, Chao Liu: Efficient 

mining of iterative patterns for software 
specification discovery. KDD 2007: 460-469
 David Lo, Bolin Ding, Lucia, Jiawei Han: Bidirectional 

mining of non-redundant recurrent rules from a 
sequence database. ICDE 2011: 1043-1054
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Other Applications
 Mining temporal specifications (cont)
 David Lo, Jinyan Li, Limsoon Wong, Siau-Cheng 

Khoo: Mining Iterative Generators and 
Representative Rules for Software Specification 
Discovery. IEEE Trans. Knowl. Data Eng. 23(2): 
282-296 (2011)

 Detecting duplicate bug reports
 David Lo, Hong Cheng, Lucia: Mining closed 

discriminative dyadic sequential patterns. EDBT 
2011: 21-32

144



Other Applications
 Bug and failure identification
 Hwa-You Hsu, James A. Jones, Alessandro Orso: 

Rapid: Identifying Bug Signatures to Support 
Debugging Activities. ASE 2008: 439-442
 Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang, 

Xifeng Yan: Identifying bug signatures using 
discriminative graph mining. ISSTA 2009: 141-152
 David Lo, Hong Cheng, Jiawei Han, Siau-Cheng 

Khoo, Chengnian Sun: Classification of software 
behaviors for failure detection: a discriminative 
pattern mining approach. KDD 2009: 557-566

145



Other Applications
 Predicting project outcome
 Didi Surian, Yuan Tian, David Lo, Hong Cheng, Ee-

Peng Lim: Predicting Project Outcome Leveraging 
Socio-Technical Network Patterns. CSMR 2013: 47-
56

 Detecting co-occurring changes
 Thomas Zimmermann, Peter Weißgerber, Stephan 

Diehl, Andreas Zeller: Mining Version Histories to 
Guide Software Changes. ICSE 2004: 563-572
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Part II: Clustering
 Cluster: a collection of data objects
 Similar to one another within the same cluster
 Dissimilar to the objects in other clusters

 Cluster analysis
 Finding similarities among data objects 

according to their characteristics
 Grouping similar data objects into clusters
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Part II: Clustering
 Typical applications
 As a stand-alone tool to get insight into data
 As a preprocessing step for other algorithms
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Quality: What Is Good Clustering?
 A good clustering method will produce clusters 

with:
 high intra-class similarity
 low inter-class similarity 

 The quality of a clustering method is also 
measured by its ability to discover some or all of 
the hidden patterns
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Structure
 Techniques
 k-Means
 k-Medoids
 Hierarchical Clustering

 Applications
 Performance Debugging in the Large via Mining 

Millions of Stack Traces
 Other applications
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k-Means

II(A): Clustering Techniques

151



The K-Means Clustering Method

 Given k, the k-means algorithm is implemented in four 
steps:
1. Partition objects into k nonempty subsets
2. Compute the means of the clusters of the current partition 

(the mean is the center of the cluster)
3. Re-assign each object to the cluster with the nearest mean
4. Go back to Step 2, stop when no more new assignment
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The K-Means Clustering Method
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Limitations
 Applicable only when mean is defined
 Need to specify k, the number of clusters, in advance
 Unable to handle noisy data and outliers

154



k-Medoids

II(A): Clustering Techniques
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k-Medoids
 Find representative objects, called medoids, in clusters

 Many algorithms:
 PAM (Partitioning Around Medoids, 1987)

 CLARA (Kaufmann & Rousseeuw, 1990)

 CLARANS (Ng & Han, 1994): Randomized sampling

 Focusing + spatial data structure (Ester et al., 1995)
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PAM (Partitioning Around Medoids) (1987)

 PAM (Kaufman and Rousseeuw, 1987)
 Use real object to represent the cluster
 Select k representative objects arbitrarily
 For each pair of non-selected object h and selected 

object i, calculate the total swapping cost TCih

 For each pair of i and h, 
 If TCih < 0, i is replaced by h
 Then reassign each non-selected object to the most 

similar representative object
 repeat steps 2-3 until there is no change
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Randomly select a 
nonmedoid object, OR

PAM (Partitioning Around Medoids) (1987)
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Hierarchical Clustering

II(A): Clustering Techniques
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Hierarchical Clustering

 This method does not require the number of clusters k as 
an input, but needs a termination condition 

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative
(AGNES)

divisive
(DIANA)
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AGNES (Agglomerative Nesting)
 Introduced in Kaufmann and Rousseeuw (1990)
 Merge nodes that have the least dissimilarity
 Go on until eventually all nodes belong to the same cluster
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DIANA (Divisive Analysis)

 Introduced in Kaufmann and Rousseeuw (1990)
 Inverse order of AGNES
 Eventually each node forms a cluster on its own
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Dendrogram: Shows How the Clusters are Merged

Decompose data objects into several levels of nested 
partitioning (tree of clusters), called a dendrogram. 

A clustering of the data objects is obtained by cutting the 
dendrogram at the desired level, then each connected 
component forms a cluster.
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Performance Debugging in the Large 
via Mining Millions of Stack Traces

II(B): Clustering Applications
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Performance Debugging by Mining Stack Traces

 Shi Han, Yingnong Dang, Song Ge, Dongmei 
Zhang, Microsoft Research

 Tao Xie, North Carolina State University

 Published in International Conference on Software 
Engineering, 2012
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Introduction
 Performance of software system is important
 Performance bugs leads to unbearably slow system
 To debug performance issues, Windows has the 

facility to collect execution traces
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Introduction
 Manual investigation needs to be performed
 Very tedious and time-consuming
 Many execution traces
 Each of them can be very long

 Semi/Fully automated support needed
 Proposed solution:
 Group related execution traces together
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Methodology
 Phase 1: Extract area of interest
 Not all collected execution traces are interesting
 Focus on events that wait for other events in the 

traces
 Use developers domain knowledge to localize this 

area of interest
 Phase 2: Extract maximal sequential patterns
 Phase 3: Cluster the patterns together
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Methodology
 Hierarchical clustering is performed
 Key: similarity measure
 Similarity measure:
 Alignment of two patterns
 Computation of similarity
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Methodology
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Experiment
 Finding hidden performance bugs 
 on Windows Explorer UI

 Input: 921 trace streams
 140 million call stacks

 Output: 1,215 pattern clusters
 Pattern mining and clustering time: 10 hours
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Experiment
 Developer manually investigate the clusters
 Eight hours -> produce 93 signatures
 Twelve of them are highly impactful performance 

bugs
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Other Applications
 Testing multi-threaded applications
 Adrian Nistor, Qingzhou Luo, Michael Pradel, 

Thomas R. Gross, Darko Marinov: Ballerina: 
Automatic generation and clustering of efficient 
random unit tests for multithreaded code. ICSE 
2012: 727-737

 Defect prediction
 Nicolas Bettenburg, Meiyappan Nagappan, Ahmed 

E. Hassan: Think locally, act globally: Improving 
defect and effort prediction models. MSR 2012: 60-
69
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Other Applications
 Ontology inference
 Shaowei Wang, David Lo, Lingxiao Jiang: Inferring 

semantically related software terms and their 
taxonomy by leveraging collaborative tagging. ICSM 
2012: 604-607

 Detecting malicious apps
 Alessandra Gorla, Ilaria Tavecchia, Florian Gross, 

Andreas Zeller: Checking app behavior against app 
descriptions. 1025-1035
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Other Applications
 Software remodularization
 Nicolas Anquetil, Timothy Lethbridge: Experiments 

with Clustering as a Software Remodularization
Method. WCRE 1999: 235-255
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Part III: Classification
 Assigns data to some predefined categories
 It performs this 
 By constructing a model
 Based on:
 the training set
 the values (class labels) in a classifying attribute 

 Uses it in classifying new data
 Two steps process:
 Model construction
 Model usage
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Classification – Model Construction

 Model construction: describing the set of 
predetermined class/categories
 The set of tuples used for model construction is 

called the training set
 Each tuple/sample is assumed to belong to a 

predefined class, as determined by the class label 
attribute

 The model is represented as classification rules, 
decision trees, or mathematical formulae
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Classification – Model Usage

 Model usage: for classifying future or unknown 
objects
 Estimate accuracy of the model
 The known label of test sample is compared with 

the classified result from the model
 Accuracy rate is the percentage of test set 

samples that are correctly classified by the model
 Test set is independent of training set, otherwise 

over-fitting will occur
 If the accuracy is acceptable, use the model to 

classify data tuples whose class labels are not known
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Process (1): Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6

THEN tenured = ‘yes’ 

Classifier
(Model)
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Process (2): Using the Model in Prediction 

Classifier

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?
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Structure
 Techniques
 Decision Tree
 Support Vector Machine
 k-Nearest Neighbor

 Applications
 An Industrial Study on the Risk of Software Changes
 Other Applications
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Decision Tree

III(A): Classification Techniques
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Decision Tree Induction: Training Dataset
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

183



Output: A Decision Tree for “buys_computer”

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno
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High-Level Methodology
 Tree is constructed in a top-down recursive divide-and-

conquer manner
 At start, all the training examples are at the root
 Examples are partitioned recursively based on selected 

attributes
 Attributes are selected on the basis of a heuristic or statistical 

measure
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High-Level Methodology
 Conditions for stopping partitioning
 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning
 There are no samples left

 Majority voting is employed for classifying the leaf
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Support Vector Machine (SVM)

III(A): Classification Techniques
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High-Level Methodology
 Searches for the linear optimal separating hyperplane (i.e., 

“decision boundary”)

Support Vectors
Small Margin Large Margin

SVM searches for the hyperplane with the largest margin, i.e., 
maximum marginal hyperplane (MMH)
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High-Level Methodology
 How if not separable by a linear hyperplane?
 It uses a nonlinear mapping to transform the original training 

data into a higher dimension
 With an appropriate nonlinear mapping to a sufficiently high 

dimension, data from two classes can always be separated by 
a hyperplane
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High-Level Methodology
 Features: 
 Training can be slow
 Accuracy is often high owing to their ability to 

model complex nonlinear decision boundaries
 Applications: 
 Handwritten digit recognition, object recognition, 

speaker identification, etc
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k-Nearest Neighbors

III(A): Classification Techniques
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Lazy Learner: Instance-Based Methods

 Instance-based learning: 
 Store training examples and delay the 

processing (“lazy evaluation”) until a new 
instance must be classified

 Typical approaches
 k-nearest neighbor approach
 Locally weighted regression
 Case-based reasoning
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The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space
 New instance label is predicted based on its k-NN
 If the predicted label is discrete:
 Return the most common value among the neighbors in 

the training data
 If the predicted label is a real number:
 Return the mean values of the k nearest neighbors

. 

_
+

_ xq

+

_ _
+

_

_

+
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Discussion on the k-NN Algorithm

 Distance-weighted nearest neighbor algorithm
 Weight the contribution of each of the k neighbors 

according to their distance to the query xq

 Give greater weight to closer neighbors

 Problem:
 Curse of dimensionality: distance between neighbors could 

be dominated by irrelevant attributes   
 To overcome it: elimination of least relevant attributes

2),(
1

ixqxd
w≡
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An Industrial Study on the Risk of 
Software Changes

III(A): Classification Applications
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Predicting Risk of Software Changes
 Emad Shihab, Ahmed E. Hassan, Queen’s 

University, Canada
 Bram Adams, Ecole Polytechnique de Montreal, 

Canada
 Zhen Ming Jiang, Research in Motion, Canada

 Published in ACM Symposium on Foundations of 
Software Engineering (FSE), 2012
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Introduction
 Many companies care about risk
 Negative impact on products and processes

 Some software changes are risky to be 
implemented
 Risky changes = “changes for which developers 

believe that additional attention is needed in the 
form of careful code or design reviewing and/or 
more testing”
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Approach
 Feature Extraction (Key Step)
 Classifier Construction
 Classifier Application
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Approach
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Approach
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Approach
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Approach
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Approach
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Approach
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Approach
 Find that risky changes classification is subjective
 Thus they add two additional features for two 

kinds of models:
 Developers based: Add developer name
 Team base: Add team name
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Result
 Ten fold cross validation
 Recall
 Developer based: 67.6%
 Team based: 67.9%

 Relative precision
 Compared with random model
 Developer based: 1.87x
 Team based: 1.37x
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Other Applications
 Predicting faulty commits
 Tian Jiang, Lin Tan, Sunghun Kim: Personalized 

defect prediction. ASE 2013: 279-289
 Refining anomaly reports
 Lucia, David Lo, Lingxiao Jiang, Aditya Budi: Active 

refinement of clone anomaly reports. ICSE 2012: 
397-407

 Automated fixing of bugs in SQL-like queries
 Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, 

Satish Chandra: Data-guided repair of selection 
statements. ICSE 2014: 243-253
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Other Applications
 Class diagram summarization
 Ferdian Thung, David Lo, Mohd Hafeez Osman, 

Michel R. V. Chaudron: Condensing class diagrams 
by analyzing design and network metrics using 
optimistic classification. ICPC 2014: 110-121

 Predicting effectiveness of automated fault 
localization tools
 Tien-Duy B. Le, David Lo: Will Fault Localization 

Work for These Failures? An Automated Approach to 
Predict Effectiveness of Fault Localization Tools. 
ICSM 2013: 310-319
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Conclusion
 Part I: Pattern Mining
 Extract frequent structures from database
 Structures: Set, Sequence, Graph
 Application: Find common API patterns

 Part II: Clustering
 Group similar things together
 Approaches: k-Means, k-Medoids, Hierarchical, etc.
 Application: Group traces to reduce inspection cost

 Part III: Classification
 Predict class label of unknown data
 Approaches: Decision tree, SVM, kNN, etc.
 Application: Predict risk of software changes
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 Many slides and images are taken or adapted 

from:
 Resource slides of: Data mining: Concepts and 

Techniques, 2nd Ed., by Han et al., 2006
 Ahmed Hassan’s and Tao Xie’s slides
 The three research papers mentioned in the slides.
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Thank you!

Questions? Comments? 
davidlo@smu.edu.sg



Source Code,
Examples,

Bugs, Tests, Etc
I have not failed. I've just 
found 10,000 ways that won't 
work.

- Thomas A. Edison

Information Retrieval 
for Software 
Engineering
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Definition
 Information retrieval (IR) is finding material
 (usually documents) 
 of an unstructured nature (usually text) 
 that satisfies an information need 
 from within large collections
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Software Engineering Corpora
 Real text
 Code (is text?)

How to Find 
Interesting 
Information 

Given a Query?
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Outline

 I. Preliminaries
 Preprocessing
 Retrieval
 Recent Studies in SE

 II. Vector Space Model
 Techniques
 Applications

 III. Language Model
 Techniques
 Applications

 IV. Topic Model
 Techniques
 Applications

 V. Text Classification
 Techniques
 Applications
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Part I: Preliminaries

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

ResultsHow to Evaluate Results?
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Structure
 Preprocessing:
 Document Boundary & Format
 Text Preprocessing
 Code Preprocessing

 Retrieval:
 Retrieval Model
 Evaluation Criteria

 Recent Studies in SE

217



Document Boundary & Format
Text Preprocessing
Code Preprocessing

I(A): Preprocessing
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Document Boundary
 What is the document unit ?
 A file?
 An email?
 An email with 5 attachments?
 A group of files (ppt or latex in HTML)?
 A method ? A class ?

 Requires some design decisions.
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Document Format
 We need to deal with format and language of each 

document.
 What format is it in? 
 pdf, word, excel, html, etc.

 What language is it in?
 English, Java, C#, Chinese, Hindi, etc.

 What character set is in use?
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Text Preprocessing
 Tokenization
 Stop-word Removal
 Normalization
 Stemming
 Indexing
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Text: Tokenization
 Breaking a document into its constituent tokens or 

terms
 In a textual document, a token is typically a word.

 Example (Shakespeare’s Play):
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Text: Stop-Word Removal
 stop words = extremely common words 
 little value in helping select documents matching a 

user need
 Examples: a, an, and, are, as, at, be, by, for, from, 

has, he, in, is, it, its, of, on, that, the, to, was, were, 
will, with

 Stop word elimination used to be standard in older 
IR systems.
 However, stop words needed for phrase queries, 

e.g. “president of Singapore”
 Most web search engines index stop words
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Text: Normalization
 Need to normalize terms in indexed text as well as 

query terms into the same form.
 Example: We want to match U.S.A. and USA
 We most commonly implicitly define equivalence 

classes of terms.
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Text: Stemming
 Definition of stemming: Crude heuristic process 

that chops off the ends of words to reduce related 
words to their root form

 Language dependent
 Example: automate, automatic, automation all 

reduce to automat
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Text: Stemming

 Porter’s Algorithm 
 Most commonly used algorithm
 Five phases of reductions
 Phases are applied sequentially

 Each phase consists of a set of commands.
 Sample command: Delete final ement if what 

remains is longer than 1 character
 replacement → replac
 cement → cement
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Text: Stemming

 Stemming can increase effectiveness for some 
queries, and decrease effectiveness for others

 Queries where stemming is likely to help: 
 [wool sweaters], [sightseeing tour singapore] 
 (equivalence classes: {sweater,sweaters}, 

{tour,tours})
 Queries where stemming hurts: 
 [operational AND research], [operating AND 

system], [operative AND dentistry]

227



Text: Stemming
 Other stemming algorithms:
 Lovins stemmer
 Paice stemmer
 Etc.
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Text: Indexing

 Inverted Index
For each term t, we store a list of all documents that 

contain t.

dictionary documents
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Text: Indexing
 Bi-word index
 Index every consecutive pair of terms in the text as a 

phrase.
 k-gram index
 Positional index
 etc.
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Code Preprocessing
 Parsing
 Identifier Extraction
 Identifier Tokenization
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Code: Parsing
 Creating an abstract syntax tree of the code.
 Identify which ones are variable names, which 

ones are method calls, etc.
 Difficulties: Multiple languages, partial code
 Tools:
 ANTLR
 WALA
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Code: Identifier Extraction
 Extract the names of identifiers in the code.
 Method names
 Variable names
 Parameter names
 Class names

 Extract the comments in the code
 Extract string literals in the code
 How about if/loop/switch structures ?
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Code: Identifier Tokenization
 Break identifier names into tokens.
 printLine => print line
 System.out.println => system out println

 Many identifier names are in camel casing

 Why do we need to break identifier names?
 Do all identifiers need to be broken?
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Retrieval Model
Evaluation Metrics

I(B): Retrieval
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Retrieval Model

 Vector Space Model
 Model documents and queries as a vector of values

 Language Model
 Model documents and/or queries by a probability 

distribution
 Probability for it to generate a word, a sequence of 

words, etc.
 Topic Model
 Model documents and queries by a set of topics, 

where a topic is a set of words
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Evaluation Metrics - 1
 Unranked evaluation
 Precision (P) is the fraction of retrieved documents 

that are relevant

 Recall (R) is the fraction of relevant documents 
that are retrieved
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Evaluation Metrics - 2
 Ranked evaluation
 P-R Curve
 Compute precision and recall for each “prefix”
 top 1, top 2, top 3, top 4 etc results

 Produces a precision-recall curve.
 Mean Average Precision (MAP)
 Average precision for the top k documents
 each time a relevant doc is retrieved

 Averaged over all queries
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Identifier Expansion

I(C): Recent Studies in SE
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Recent Studies in SE
 Dawn Lawrie, David Binkley: Expanding identifiers 

to normalize source code vocabulary. ICSM 2011: 
113-122

 Dave Binkley, Dawn Lawrie, Christopher Uehlinger: 
Vocabulary normalization improves IR-based 
concept location. ICSM 2012: 588-591
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Expanding Identifiers: Introduction
 Language used in code and other documents must 

be standardized for effective retrieval.
 A significant proportion of invented vocabulary.
 To standardize:
 Split an identifier into parts
 Expand the identifier into a word

 Closer to queries expressed in human language
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Expanding Identifiers: Approach (Nutshell)
 Break an identifiers into many possible splits
 For each possible split, expand the identifier parts
 Expand each part by adding wildcard characters 
 See if any of the resultant regular expression match 

any dictionary word surrounding the identifier
 Find the best possible split and expansion
 Criterion: Maximize similarity of expanded parts
 Measure word-similarity based on co-occurrence
 Trained on a dataset of over one trillion words 

collected by Google
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Expanding Identifiers: Accuracy
 Compared with manual expansion of identifiers
 Variants: Top-1 or Top-10 splits
 Accuracy criteria: 
 Identifier match: % of identifiers correctly expanded
 Word match: % of identifier parts correctly expanded
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Expanding Identifiers: Application in Retrieval

Feature Location: 
Queries (Feature Description) -> Relevant Code Units
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Expanding Identifiers: Application in Retrieval
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Summary: Retrieval Process

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

Results
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Part II - Vector Space Model (VSM)
 Model documents and queries as a vector of values
 Retrieval is done by computing similarities of:
 Document and queries
 In the vector space

 Questions:
 What are the appropriate vectors of values that 

represent documents?
 How to compute similarities between two vector-

based representations of documents?
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Structure
 Techniques
 Document Representation
 Bag-of-Word Model
 Term Frequency (TF)
 Inverse Document Frequency (IDF)
 Other TF-IDF Variants

 Retrieval using VSM 
 Applications
 Duplicate Bug Report Detection
 Other Applications
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Bag-of-Word Model
Term Frequency (TF)

Inverse Document Frequency (IDF)
Other TF-IDF Variants
Retrieval using VSM

II(A): Techniques
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Bag of Words Consideration
 It considers a document as a multi-set of its 

constituent words (or terms).
 We do not consider the order of words in a 

document.
 John is quicker than Mary, and 
 Mary is quicker than John 
are represented the same way.
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VSM: Term Weighting (TF)
 Not all words/terms equally characterize a 

document.
 If term t appears more times in a document d, that 

term is more relevant to d
 We denote the number of times that a term t 

occurs in a document d as tft,d
 We refer to this as term frequency (TF)
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VSM: Term Weighting (IDF)
 Rare terms are more informative than frequent 

terms
 Recall stop words

 We want a high weight for rare terms
 Consider a term in the query that is rare in the 

collection (e.g., arachnocentric)
 A document containing this term is very likely to be 

relevant to the query arachnocentric
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VSM: Term Weighting (IDF)

 To do this we make use of inverse document 
frequency (IDF):

 N is the total number of documents in the corpus
 dft is the document frequency of t
 the number of documents that contain t
 dft is an inverse measure of the informativeness of t
 dft ≤ N

tt N/df  idf =
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VSM: Term Weighting (TF-IDF)
 The tf-idf weight of a term is the product of its tf

weight and its idf weight.

 Increases with the number of occurrences within a 
document
 Increases with the rarity of the term in the 

collection

tdtdt
idftfw ,,

×=
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VSM: Document Representation
 Each document and each query is characterized as 

a vector of terms weights
 So we have a |V|-dimensional vector space
 V = set of all terms
 Terms are dimensions of the space
 Documents are points in this space
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VSM: TF-IDF Variants
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VSM: Retrieval

 Represent documents and queries as vectors
 Compute the similarity between the vectors
 Cosine similarity is normally used:

 Return top-k most similar documents

∑∑
∑

==

==
•

=
V

i i
V

i i

V

i ii

dq

dq

dq
dqdq

1
2

1
2

1),cos( 



qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document
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An Approach to Detecting Duplicate 
Bug Reports using Natural Language 

and Execution Information

II(B): Applications
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Duplicate Bug Report Detection
 Xiaoyin Wang, Lu Zhang, Jiasu Sun, Peking 

University, China
 Tao Xie, North Carolina State University, USA
 John Anvik, University of Victoria, Canada

 Published in ACM/IEEE International Conference on 
Software Engineering (ICSE), 2008
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Duplicate Bug Reports: Motivation
 To improve quality of software systems, often 

developers allow users to report bugs.
 Bug reporting is inherently an uncoordinated 

distributed process.
 A number of reports of the same defect/bug are often 

made by different users.
 This lead to a problem of duplicate bug reports.
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Duplicate Bug Reports: Motivation
 In practice, a special developer (a triager) is often 

assigned to detect duplicate reports.
 Number of bug reports are often too many for 

developers to handle.
 A (semi) automated solution is needed.
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Duplicate Bug Reports: Dataset
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Duplicate Bug Reports: Dataset
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Duplicate Bug Reports: Dataset
 Text Data
 Summary
 Concise text

 Description
 Longer text

 Execution Traces
 One execution trace for each bug that exhibits the 

error
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Duplicate Bug Reports: Technique
 Modeling text information
 Take summary and description of bug reports
 Perform preprocessing
 Tokenization
 Stemming
 Stop-word removal

 Create a vector of term weights using:

Dsum = Total number of documents
Dwi = Number of documents containing term i
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Duplicate Bug Reports: Technique
 Modeling trace information
 Take method calls that appear in the execution 

trace
 Treat each method as a word
 Use canonical signature of a method

 Differentiate overloaded methods
 Model it in similar way as text information
 Each method tf is either 0 or 1

 Ignore repeated method calls
 At the end, we have a vector of method weights
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Duplicate Bug Reports: Technique
 Computing similarity
 Use cosine similarity of two vectors:

 Need to combine textual and trace information:
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Duplicate Bug Reports: Technique
 Given a new bug report
 Return the top-k most similar bug reports that 

have been reported before
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Duplicate Bug Reports: Experiments

 Nrecalled = Number of duplicate reports whose 
duplicate is detected in the top-k list

 Ntotal = Number of duplicate reports considered
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Duplicate Bug Reports: Experiments

Consider Ex. 
Trace Info
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Other Applications
 Finding buggy files given bug descriptions
 Shaowei Wang, David Lo: Version history, similar 

report, and structure: putting them together for 
improved bug localization. ICPC 2014: 53-63

 Tracing high-level to low-level requirements
 Jane Huffman Hayes, Alex Dekhtyar, Senthil

Karthikeyan Sundaram, Sarah Howard: Helping 
Analysts Trace Requirements: An Objective Look. RE 
2004: 249-259
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Other Applications
 Recommending relevant methods to use
 Ferdian Thung, Shaowei Wang, David Lo, Julia L. 

Lawall: Automatic recommendation of API methods 
from feature requests. ASE 2013: 290-300

 Locating code that corresponds to a particular 
feature
 Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, Fuqing

Yang: SNIAFL: Towards a static noninteractive
approach to feature location. ACM Trans. Softw. 
Eng. Methodol. 15(2): 195-226 (2006)
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Other Applications
 Semantic search engine to find answers from 

software forums
 Swapna Gottipati, David Lo, Jing Jiang: Finding 

relevant answers in software forums. ASE 2011: 
323-332
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Part III - Language Model
 Model a document as a probability distribution
 Able to compute the probability of a query to belong 

to the document
 Rank document based on the probability of the 

query to belong to the document
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Structure
 Techniques
 Unigram Language Model
 Language Model for IR
 Parameter Estimation
 Smoothing

 Applications
 Code Auto-Completion
 Other Applications
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Unigram Language Model
Language Model for IR
Parameter Estimation

Smoothing

III(A): Techniques

276



277

 One-state probabilistic finite-state automaton 
 State emission distribution for its one state q1 
 STOP is a special symbol indicating that the 

automaton stops
 string = “frog said that toad likes frog STOP”

P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 
0.02 = 0.0000000000048

Unigram Language Model
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string = “frog said that toad likes frog STOP “
P(string|Md1 ) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.02 = 4.8 · 10-12

P(string|Md2 ) = 0.01 · 0.03 · 0.05 · 0.02 · 0.02 · 0.01 · 0.02 = 12 · 10-12

P(string|Md1 ) <  P(string|Md2 )
Thus, document d2 is “more relevant” to the string than d1 is.

A different language model for each document
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 Each document d is represented by a language 
model Md

 Given a query q
 Rank documents based on P(q|Md)

 How do we compute P(q|Md)?

Using language models in IR 
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 Make conditional independence assumption:

(|q|: length of q; tk : the token occurring at position 
k in q)

 This is equivalent to:

 tft,q: term frequency (# occurrences) of t in q

How to compute P(q|Md) 
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 Missing piece: Where do the parameters P(t|Md) come from?
 Use the following estimate:

(|d|: length of d; tft,d : # occurrences of t in d)

 We have a problem with zeros
 A single t with P(t|Md) = 0 will make                                     

zero
 We would give a single term “veto power”

 We need to smooth the estimates to avoid zeros

Parameter estimation
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 Key intuition: A non occurring term is possible (even 
though it didn’t occur), . . . 

 . . . but no more likely than would be expected by chance 
in the collection

 We will use                 to “smooth” P(t|Md) away from 
zero

 Mc: the collection model; 
 cft: the number of occurrences of t in the collection; 
 : the total number of tokens in the 

collection

= cft/T

Smoothing

282



283

 Pmix(t|Md) = λP(t|Md) + (1 - λ)P(t|Mc)
 Mixes the probability considering the document with 

the probability considering the collection.

 High value of λ: “conjunctive-like” search – tends to 
retrieve documents containing all query words.

 Low value of λ: more disjunctive, suitable for long queries
 Correctly setting λ is very important for good performance.

Mixture Model
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 Collection: d1 and d2
 d1 : Jackson was one of the most talented entertainers of all time
 d2 : Michael Jackson anointed himself King of Pop 

 Query q: Michael Jackson 

 Use mixture model with λ = 1/2
 P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003
 P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

 Ranking:  d2 > d1

Example

284



Other Models
 Bigram model
 K-L model
 Other models
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On the Naturalness of Software

III(B): Applications
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Code Auto-Completion
 Abram Hindle, Earl T. Barr, Zhendong Su, Mark 

Gabel, Premkumar T. Devanbu, University of 
California, Davis, USA

 Published in ACM/IEEE International Conference on 
Software Engineering (ICSE), 2012
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Naturalness of Software: Introduction
 Natural language is often repetitive and predictable
 Can be modeled by a language model

 Is software code like natural language?
 If it is could we exploit the naturalness of code?
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Naturalness of Software: Technique
 k-gram language model:
 Token occurrences are influenced only by the 

previous k-1 tokens

 For a 4-gram language model:

 Maximum Likelihood Estimate (MLE):
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Naturalness of Software: Dataset
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Naturalness of Software: Dataset
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Naturalness of Software: Experiments
 Cross Entropy
 Captures how bad a language model in modeling a 

new document.
 Considering a document s (i.e.,  a1…an) and a model 

M, the cross entropy of s wrt. model M:

 PM(ai|a1…ai-1) = probability of ai happening 
considering model M

 The lower the cross entropy score, the better a 
language model is.

292



Is Software Natural ?

English Text

Code
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Could it be used for auto-completion?
 Extend Eclipse IDE auto-completion function
 Use Eclipse if at least 1 recommended tokens is long
 Otherwise use both Eclipse and Language Model

 Uses a trigram model
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Could it be used for auto-completion?
 Use a test set of 200 files to see how good is the 

auto-complete.
 Keystrokes saved:
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Other Applications
 Code auto-completion
 Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh

Nguyen, Tien N. Nguyen: A statistical semantic 
language model for source code. ESEC/SIGSOFT 
FSE 2013: 532-542

 Finding buggy files from bug descriptions
 Shivani Rao, Avinash C. Kak: Retrieval from 

software libraries for bug localization: a comparative 
study of generic and composite text models. MSR 
2011: 43-52
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Part IV: Topic Model
 Model a group of words as a topic
 Typically in a probabilistic sense

 Many recent SE papers use topic models
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Structure
 Techniques
 Topic Modeling: Black-Box View
 Using Topic Modeling for IR
 Algorithms

 Applications
 Bug Localization
 Other Applications
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Topic Modeling: A Black-Box View
Using Topic Modeling for IR

Algorithms

IV(A): Techniques

299



Topic Modeling: Black-Box View
 Model a document as a probability distribution of 

topics
 A topic is a probability distribution of words

 Dimensionality reduction: words -> topics
 Benefit: Able to link a document and a query
 Do not share any words
 Share related words of the same topics
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IR using Topic Model (VSM Like)
 Create topic model for a training set of documents
 Infer topic distributions of all documents in the 

training set
 Infer topic distributions of new, unseen document 

(query)
 Compute similarity between two distributions
 Kullback Leibner (KL) divergence
 Jensen Shannon (JS) divergence
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IR using Topic Model (Language Model Like)

 Training a topic model computes:

 With the above we can compute:
)|(
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 Extending to query level, we can compute:
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 We can use the query likelihood model
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Algorithms
 Probabilistic Latent Semantic Analysis (pLSA)
 Latent Dirichlet Allocation (LDA)
 Many more
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A Topic-Based Approach for 
Narrowing the Search Space of Buggy 

Files from a Bug Report

IV(B): Applications
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Bug Localization
 Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M. 

Al-Kofahi, Hung Viet Nguyen, Tien N. Nguyen, 
Iowa State University, USA

 Published in IEEE/ACM International Conference on 
Automated Software Engineering (ASE), 2011
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Bug Localization: Introduction
 Program is often large with hundreds/thousands of 

files.
 Given a bug report, how to locate files responsible 

for the bug?
 A (semi) automated solution is needed.
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Bug Localization: Technique
 Model the similarity of bug reports and files
 At topic level

 Model the bug proneness of files
 Number of bugs in a file (based on its history)
 Size of the file
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Bug Localization: Technique
 Computing topic similarity:
 Learn a topic model
 Find the topic distribution of a bug report
 Find the topic distribution of a source code file
 Compute the similarity using cosine similarity

 Combine topic similarity and bug proneness:

 P(s) = bug proneness score of file s
 sim(s,b) = similarity between file s and bug report b
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Bug Localization: Experiments
 Subjects

 Accuracy
 Return top-k most likely files
 If at least one matches, then a recommendation is a 

hit
 Accuracy = proportion of recommendations which 

are hits
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Bug Localization: Experiments
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Other Applications
 Recovering links from code to documentation
 Andrian Marcus, Jonathan I. Maletic: Recovering 

Documentation-to-Source-Code Traceability Links 
using Latent Semantic Indexing. ICSE 2003: 125-
137

 Black-box test case prioritization
 Stephen W. Thomas, Hadi Hemmati, Ahmed E. 

Hassan, Dorothea Blostein: Static test case 
prioritization using topic models. Empirical Software 
Engineering 19(1): 182-212 (2014)
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Other Applications
 Duplicate bug report detection
 Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. 

Nguyen, David Lo, Chengnian Sun: Duplicate bug 
report detection with a combination of information 
retrieval and topic modeling. ASE 2012: 70-79

 Predicting affected components from bug reports
 Kalyanasundaram Somasundaram, Gail C. Murphy: 

Automatic categorization of bug reports using latent 
Dirichlet allocation. ISEC 2012: 125-130
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Other Applications
 Recovering links from feature description to source 

code implementing it
 Annibale Panichella, Bogdan Dit, Rocco Oliveto, 

Massimiliano Di Penta, Denys Poshyvanyk, Andrea 
De Lucia: How to effectively use topic models for 
software engineering tasks? an approach based on 
genetic algorithms. ICSE 2013: 522-531
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Part V - Text Classification
 Consider a set of textual documents that are 

assigned some class labels as a training dataset.
 Create a model that differentiates documents of 

one class from other class(es).
 Use this model to label textual documents with 

unknown labels.
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Structure
 Techniques
 Vector space representation
 Vector space classification
 Feature selection

 Applications
 Defect Categorization
 Other Applications

315



Vector space representation
Vector space classification

Feature selection

V(A): Techniques
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 Each document is a vector 
 One element for each term/word
 Value of each element:
 Number of times that word appear

 Normalize each vector (document) to unit length
 High dimensionality: 100,000s of dimensions
 Terms/words are dimensions

Vector Space Representation
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 The training set of documents with known class 
labels.
 Labeled set of points in a high dimensional space

 We define lines, surfaces, hypersurfaces to divide 
regions.

 Use classification algorithms to divide the training 
sets into regions
 E.g., SVM

Vector Space Classification
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 Many dimensions correspond to rare words.
 Rare words can mislead the classifier.
 Rare misleading features are called noise features.

 Eliminating noise features from the representation
 Increases efficiency and effectiveness
 Called feature selection.

Feature Selection
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 A rare term ARACHNOCENTRIC happens to occur 
in China documents in our training data.
 Then we may learn a classifier that incorrectly

interprets ARACHNOCENTRIC as evidence for the class 
China.

 Such an incorrect generalization from an 
accidental property of the training set is called 
overfitting.

 Feature selection reduces overfitting and improves 
the accuracy of the classifier.

Example of a Noise Feature
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AutoODC: Automated Generation of 
Orthogonal Defect Classifications

V(B): Applications
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Defect Categorization
 LiGuo Huang, Ruili Geng, Xu Bai, Jeff Tian, 

Southern Methodist University, USA
 Vincent Ng, Isaac Persing, University of Texas at 

Dallas, USA

 Published in IEEE/ACM International Conference on 
Automated Software Engineering (ASE), 2011
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AutoODC: Introduction
 Developers often analyze and categorize bugs for 

post-mortem investigation
 This process is often done manually
 One commonly used categorization is Orthogonal 

Defect Categorization (ODC)
 Class Labels: Reliability, Capability, Security, 

Usability, Requirements.
 Huang et al. would like to automate the process.
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AutoODC: Approach
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AutoODC: Preprocessing
 Tokenization
 Stemming
 No removal of stop words
 Normalize each vector
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AutoODC: Learning
 Use Support Vector Machine (SVM)
 Train one SVM per class
 One-versus-others training
 Assign class of highest probability value

 Incorporation of user annotations
 User highlights part of the defect report that are 

useful for classification
 Used to generate more instances (pseudo +ve/-ve)
 Used as “k-gram” like features (new features)

 Use manually constructed dictionary that define 
synonymous phrases that are mapped to a common 
representation (new features)
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AutoODC: Results

Reliability Capability Security Usability Require-
ments

F-Measure 22.2% 88.5% 70.0% 62.9% 39.3%
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Other Applications
 Predicting severity of bug reports
 Tim Menzies, Andrian Marcus: Automated severity 

assessment of software defect reports. ICSM 2008: 
346-355

 Predicting priority of bug reports
 Yuan Tian, David Lo, Chengnian Sun: DRONE: 

Predicting Priority of Reported Bugs by Multi-factor 
Analysis. ICSM 2013: 200-209
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Other Applications
 Content categorization in software forums
 Daqing Hou, Lingfeng Mo: Content Categorization of 

API Discussions. ICSM 2013: 60-69

 Filtering software microblogs
 Philips Kokoh Prasetyo, David Lo, Palakorn

Achananuparp, Yuan Tian, Ee-Peng Lim: Automatic 
classification of software related microblogs. ICSM 
2012: 596-599
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Other Applications
 Recommending a developer to fix a bug report
 John Anvik, Gail C. Murphy: Reducing the effort of 

bug report triage: Recommenders for development-
oriented decisions. ACM Trans. Softw. Eng. 
Methodol. 20(3): 10 (2011)
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Conclusion
 Part I: Preliminaries
 Tokeniz., Stop Word Removal, Stemming, Indexing, etc.

 Part II: Vector Space Modeling
 Model a document as a vector of term weights

 Part III: Language Model
 Model a document as a probability distribution of terms
 Query likelihood model

 Part IV: Topic Model
 Model a document as a probability distribution of topics
 Model a topic as a probability distribution of words

 Part V: Text Classification
 Convert to VSM representation
 Use standard classifiers (e.g., SVM)
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Thank you!

Questions? Comments? 
davidlo@smu.edu.sg
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