
Data Analytics for Automated
Software Engineering

David Lo
School of Information Systems

Singapore Management University
davidlo@smu.edu.sg

Short Course, ESSCaSS 2014, Estonia

A Brief Self-Introduction

X

X

5674 miles or 9131 km

X

4812 miles or 7744 km

2

A Brief Self-Introduction

From
Wikipedia

3

A Brief Self-Introduction

4

A Brief Self-Introduction

 Graduated from National Uni. Of Singapore, 2008
 Work on the intersection of software engineering and

data mining

Mining Software Traces
Specification Mining
Fault Localization

Malware Detection

Mining Software Text
Bug Report Analysis
Concern Localization

Software Forum Mining

Mining Code
Code Search

Anomaly Detection
Privacy Preserving Testing

Data Mining Algorithms
Sequential/Graph Pattern Mining

Discriminative Pattern Mining
Game Mining

Mining Socio-Technical Network
Mining Developer Network

Mining Developer Microblogs
Community Detection

Empirical Studies
Widespread Changes

Feature Diffusion
Effectiveness of Exist. Tools

5

Focus of This Short Course

 Highlight research problems in software
engineering

 Describe the wealth of software data available for
analysis

 Present some data mining concepts and how it can
be used to automate software engineering tasks

 Present some information retrieval concepts and
how it can be used to automate software
engineering tasks

6

Three Lectures
I. Software Engineering (SE): A Primer
 Challenges & Problems
 Research Topics

II. Data Mining for Automated Software Engineering
 Pattern Mining
 Clustering
 Classification

III. Information Retrieval for Automated SE
 Vector Space Model
 Language Model

 Topic Model
 Text Classification

 Data Sources
 Basic Tools

7

The most certain way to succeed is
always to try just one more time.

- Thomas A. Edison

Software Engineering: A Primer

8

Slide Outline
 Part I: SE Challenges & Problems
 Part II: Research Topics
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics: A Recent Trend

 Part III: Data Sources
 Part IV: Basic Program Analysis Tools

9

Part I: Software Engineering (SE)

“Process and techniques that are followed to design,
develop, verify, validate, and maintain a software
system that satisfies a set of requirements and

properties with reasonable or low cost.”

10

SE: Challenges & Problems
 Building and maintaining complex software system

is challenging and costs much resources
 High cost and scarcity of qualified manpower
 Software changes over time

 Software systems are plagued with bugs and
removing them costs much resources
 Hard to ensure high reliability of complex systems

11

SE: Challenges & Problems
 Many other challenges:
 Hard to capture needs of end users
 Hard to manage developers working at

geographically disparate locations
 Etc.

12

Part II: Research Topics in SE
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics, A Recent Trend
 Empirical Software Engineering
 Requirement Engineering
 Many more

13

Topics: Software Testing and Reliability
 Software and bugs are often inseparable
 Many systems receive hundreds of bug reports

daily (Anvik et al., 2005)
 Software gets more complex
 Written in multiple languages
 Written by many people
 Over a long period of time
 Increases likelihood of bugs

*Anvik et al.: Coping with an open bug repository.
ETX 2005: 35-39

14

Software Testing and Reliability: Why Bother?
 Software bugs cost US economy 22.2 – 59.5

billions annually (NIST, 2002)
 Many software bugs have disastrous effects

Therac-25 Ariane-5 Mars Climate
Orbiter

*National Institute of Standards and Technology
(NIST): The Economic Impacts of Inadequate

Infrastructure for Software Testing. Report 2002.
15

Software Reliability: Goals
 Ensure the absence of (a family of) bugs
 Formal verification of a set of properties
 Heavyweight

 Prevention and early detection of bugs
 Does not guarantee the absence of bugs
 Identify as many bugs as possible as early as

possible
 Lightweight

16

Software Testing and Bug Finding: Goals
 Test adequacy measurement
 How thorough is a test suite?
 Does it cover all parts of a code?

 Test adequacy improvement
 How to create additional test cases?
 How to make a test suite more thorough?

 Test selection
 How to reduce the number of test cases to run

when a change is made?
 Identification of software bugs

17

SE Topics: What is Software Evolution?
 A piece of software system becomes gradually

more and more different than the original code
 Reasons:
 Bug fixes
 New requirements or features
 Changing environment (e.g., GUI, database, etc.)
 Code quality improvement

18

What is Software Maintenance?
 Changes made to existing software system
 Resulting in software evolution
 Types of maintenance tasks:
 Corrective maintenance: Bug fixes
 Perfective maintenance: New features
 Adaptive maintenance: Changing environments
 Preventive maintenance: Code quality improvement

19

Software Maintenance – Relative Costs

20

Why is Software Maintenance Expensive?
 Costs can be high because:
 Inexperienced maintenance staffs
 Poor code
 Poor documentation
 Changes may introduce new faults, which trigger further

changes
 As a system is changed, its structure tends to degrade,

which makes it harder to change

21

Lehman’s Laws of Evolution
 A classic study by Lehman and Belady (1985)

identified several “laws” of system change.
 Continuing change
 A program that is used in a real-world environment must

change, or become progressively less useful in that
environment

 Increasing complexity
 As a program evolves, it becomes more complex, and

extra resources are needed to preserve and simplify its
structure

22

What is a Legacy System?
 Legacy IS are large software systems
 They are old, often more than 10 years old
 They are written in a legacy language (e.g.,

COBOL), and built around legacy databases
 Legacy ISs are autonomous, and mission critical
 They are inflexible and brittle
 They are responsible for the consumption of at least

80% of the IS budget

23

Problems of Legacy Systems
 Availability of original developers
 Lack of documentation
 Size and complexity of the software system
 Accumulated past maintenance activities

24

History of Eclipse
 1997 – IBM VisualAge for Java (implemented in

small talk)
 1999 – IBM VisualAge for Java micro-edition

(Eclipse code based from here)
 2001 – Eclipse (change name for marketing issue)
 2003 – Eclipse.org foundation
 2005 – Eclipse V3.1
 2006 – Eclipse V3.2
 ….
 2014 – Eclipse V4.4

25

History of Microsoft Word
 1983 – MS Word for DOS
 1985 – MS Word for Mac
 1980 – MS Word for Windows
 1991 – MS Word 2
 1993 – MS Word 6
 1995 – MS Word 95
 1997 – MS Word 97
 1998 – MS Word 98
 2000 – MS Word 2000
 2002 – MS Word XP
 2003 – MS Word 2003
 …
 2014 – MS Word 2013

26

Topics: Software Analytics

”Data exploration and analysis in order to obtain
insightful and actionable information for data-

driven tasks around software and services”
(Zhang and Xie, 2012)

27

Software Analytics: Definition
 Analysis of a large amount of software data

stored in various repositories in order to:
 Understand software development process
 Help improve software maintenance
 Help improve software reliability
 And more

28

Topics: Software Analytics

MailingsBugzilla

Execution
traces

Dev.
Network

Code

SVN

29

Big Data for Software Engineering

30

Part III: Software Data Sources
 Source Code
 Execution Trace
 Development History
 Bug Reports
 Developer Activities
 Software Forums
 Software Microblogs
 Other Artifacts

31

Artifact: Source Code

32

Artifact: Source Code
 Where to find code?
 Google code: http://code.google.com/
 Many other places online

 How to analyze source code?
 Analyze -> automatically parse and understand
 Program analysis tools

33

http://code.google.com/

Artifact: Source Code
 Various languages
 Various kinds of systems
 Various scale: small, medium, large
 Various complexities
 Cyclomatic Complexity

 Various programming styles

34

Artifact: Execution Trace
 Information collected when a program is run
 What kind of information is collected?
 Sequences of methods that are executed
 State of various variables at various times
 State of various invariants at various times
 Which components are loaded at various times

35

Artifact: Execution Traces

Caller | Callee | Method Signature
36

Artifact: Execution Trace

Chicory Trace: Variable values
At method entries and exits

37

Artifact: Execution Trace
 How to collect?
 Insert instrumentation code
 Execute program
 Instrumentation code writes a log file

 What tools are available to collect traces?
 Daikon Chicory:

http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html
 PIN:

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool
 Valgrind:

http://valgrind.org/

38

http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://valgrind.org/

Artifact: Development History
 What code is
 Added
 Deleted
 Edited

 When
 By Whom
 For What Reason

39

Artifact: Development History

40

Artifact: Development History

41

Artifact: Development History
 Useful for distributed software development
 Various people updating different parts of code

 Easy to backtrack changes
 Easier to find out answer to the question:
 My code works yesterday but not today. Why?

 Easier to quantify contributions of team members

42

Artifact: Development History
 Various tools
 CVS – Version per file
 SVN – Version per snapshot
 Git - Distributed

 Slightly different ways to manage content

43

Artifact: Bug Reports
 People report errors and issues that they

encounter in the field
 These errors include:
 Description of the bugs
 Steps to reproduce the bugs
 Severity level
 Parts of the system affected by the bug
 Failure traces

44

Artifact: Bug Reports

Title

45

Artifact: Bug Reports

Detailed
Description

46

Artifact: Bug Reports
 Various kinds of bug repositories

 BugZilla: http://www.bugzilla.org/
 Example site:

https://bugzilla.mozilla.org/

 JIRA: http://www.atlassian.com/software/jira/
 Example site:

https://issues.apache.org/jira/browse/WW

47

http://www.bugzilla.org/
https://bugzilla.mozilla.org/
http://www.atlassian.com/software/jira/
https://issues.apache.org/jira/browse/WW

Artifact: Developer Activities
 Developers form a social network
 Developers work on various projects
 Projects have various types, programming

languages and developers
 Developers follow updates from various other

developers and projects
 Social coding sites

 A heterogeneous social network is formed

48

Artifact: Developer Activities

Social Coding Sites

49

Artifact: Developer Activities

More than a year ago
50

51

Artifact: Developer Activities

Artifact: Developer Activities

53

Artifact: Developer Activities

54

Artifact: Developer Activities

55

Artifact: Software Forums
 Developers ask and answer questions
 About various topics
 In various threads, some of which are very long
 Stored in various sites
 StackOverflow: http://stackoverflow.com/
 SoftwareTripsAndTricks:

http://www.softwaretipsandtricks.com/forum/

56

http://stackoverflow.com/
http://www.softwaretipsandtricks.com/forum/

Artifact: Software Forums

57

Artifact: Software Forums

58

Artifact: Software Microblogs
 Developers microblog too
 Developers microblog about various activities

(Tian et al. 2012) :
 Advertisements
 Code and tools
 News
 Q&A
 Events
 Opinions
 Tips
 Etc.

*Tian et al.: What does software engineering
community microblog about? MSR 2012: 247-250

59

Artifact: Software Microblogs

60

Artifact: Software Microblogs

http://research.larc.smu.edu.sg/palanteer/swdev

61

http://research.larc.smu.edu.sg/palanteer/swdev

Part IV: Basic Program Analysis Tools

 Static Analysis
 Dynamic Analysis

62

Static Analysis
 Control Flow Graph Construction
 Program Dependence Graph Construction

63

Control Flows: Control-Flow Graphs

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Control flow is a relation that
represents the possible flow of
execution in a program.
 (a, b) in the relation means that

control can directly flow from element
a to element b during execution.

Entry

1

3

2

4

5

6

7

Exit

F

T

1
2
3
4
5

6
7

64

Control Flows: Control Dependence

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Given nodes C and N in a CFG, N is
control-dependent on C if the
outcome of C determines if N is
reached in the CFG.

 We call C as a controller of N.

1
2
3
4
5

6
7

Entry node controls nodes 1,2,3,6,7
Node 3 controls nodes 4 and 5

65

Data Flows: Definitions / Uses

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A definition-use chain or DU-chain,
for a definition D of variable v, is:
 the set of pair-wise connections
 between D and all uses of v that D

can reach.

1
2
3
4
5

6
7

66

Data Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A data-dependence graph contains:
 one node for every program line (or an

instruction, or a basic block, or a desired
granularity) and

 labelled edges that correspond to DU-
chains.

1 2

5 3

76

4
sum

sum

sum

i
i

i
i

i

iisum

1
2
3
4
5

6
7

67

Program/Procedural Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 PDGs are control- and
data-dependence graphs
 Capture “semantics”
 Expose parallelism
 Facilitate debugging

i < 11

Entry

1 2

5 3

76

4
sum

sum

sum

i
i

i

i

i

iisum
i < 11

1
2
3
4
5

6
7

68

Tools
 Program analysis platforms

 WALA: http://wala.sourceforge.net/wiki/index.php/Main_Page
 Chord: http://code.google.com/p/jchord/
 ROSE: http://www.rosecompiler.org/

 Other tools
 JPF: http://babelfish.arc.nasa.gov/trac/jpf
 BLAST: http://mtc.epfl.ch/software-tools/blast/index-epfl.php
 ESC/Java: http://kindsoftware.com/products/opensource/ESCJava2/
 SPIN: http://spinroot.com/spin/whatispin.html
 PAT: http://www.comp.nus.edu.sg/~pat/
 Choco: http://www.emn.fr/z-info/choco-solver/
 Yices: http://yices.csl.sri.com/
 STP: https://sites.google.com/site/stpfastprover/STP-Fast-Prover
 Z3: http://z3.codeplex.com/

69

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://code.google.com/p/jchord/
http://www.rosecompiler.org/
http://babelfish.arc.nasa.gov/trac/jpf
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://kindsoftware.com/products/opensource/ESCJava2/
http://spinroot.com/spin/whatispin.html
http://www.comp.nus.edu.sg/%7Epat/
http://www.emn.fr/z-info/choco-solver/
http://yices.csl.sri.com/
https://sites.google.com/site/stpfastprover/STP-Fast-Prover
http://z3.codeplex.com/

Dynamic Analysis
 Instrumentation
 Test Case Generation

70

What is Dynamic (Program) Analysis?
 Basically
 Run a program
 Monitor program states during/after the executions
 Extract useful information/properties about the program

71

How to Run?
 Testing
 Choose good test cases
 The test suite determines the expense
 In time and space

 The test suite determines the accuracy
 What executions are seen or not seen

72

Tracing / Profiling
 Tracing: Record faithfully (lossless) detailed information of

program executions
 Control flow tracing

 Sequence of executed statements.
 Dependence tracing

 Sequence of exercised dependences.
 Value tracing

 Sequence of values produced by each instruction.
 Memory access tracing

 Sequence of memory references during an execution
 Profiling: Record aggregated (lossy) information about

program executions
 Control flow profiling: execution frequencies of instructions
 Value profiling: occurrence frequencies of values

73

Tracing/Profiling by Instrumentation
 Source code instrumentation
 Binary instrumentation

74

Test Case Generation: Concolic Testing
 Goal: find actual inputs that exhibit an error or execute as many

program elements as possible
 By exploring different execution paths

1) Start with an execution with random inputs
2) Collect the path conditions for the execution
3) Negate some of the path conditions

 So as to be used as the path conditions for the next execution
which should follow a different path

4) Solve the new path conditions to get actual values for the inputs
 The execution using these new inputs should follow a different path

5) Repeat 2)—4) until no more new paths to explore

*Godefroid et al.: DART: directed automated random testing.
PLDI 2005: 213-223

*Sen et al.: CUTE: a concolic unit testing engine for C.
ESEC/SIGSOFT FSE 2005: 263-272

75

Concolic Testing: Symbolic & Concrete Executions

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7 x = x0, y = y0

76

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = x0, y = y0,
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions

77

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = x0, y = y0,
z = 2*y0

2*y0 != x0

Concolic Testing: Symbolic & Concrete Executions

78

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

2*y0 != x0

x = 22, y = 7,
z = 14

x = x0, y = y0,
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

Solve: 2*y0 == x0

Solution: x0 = 2, y0 = 1

79

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

80

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

81

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

2*y0 == x0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

82

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,

z = 2
x = x0, y = y0,

z = 2*y0

2*y0 == x0

x0 <= y0+10

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

83

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,

z = 2
x = x0, y = y0,

z = 2*y0

Solve: (2*y0 == x0) /\ (x0 > y0 + 10)
Solution: x0 = 30, y0 = 15

Concolic Testing: Symbolic & Concrete Executions

2*y0 == x0

x0 <= y0+10

84

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

85

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions

86

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 22, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

87

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49
x = x0, y = y0,

z = (y0*y0)%50

(y0*y0)%50 !=x0

Concolic Testing: Symbolic & Concrete Executions

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

Solve: (y0*y0)%50 == x0

Don’t know how to solve!
Stuck?

88

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

foo (y0) !=x0

Solve: foo (y0) == x0

Don’t know how to solve!
Stuck?

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50

89

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

Solve: (y0*y0)%50 == x0

Don’t know how to solve!
Not Stuck!
Use concrete state

Replace y0 by 7

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50

(y0*y0)%50 !=x0

90

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 48
x = x0, y = y0,

z = 49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Concolic Testing: Symbolic & Concrete Executions

91

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

92

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7,
z = 49

x = x0, y = y0 ,
z = 49

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions

93

Tools
 Program instrumentation and analysis frameworks
 CIL: http://cil.sourceforge.net/
 Valgrind: http://valgrind.org/
 Daikon: http://groups.csail.mit.edu/pag/daikon/
 Jikes: http://jikes.sourceforge.net/
 QEMU: http://wiki.qemu.org/Main_Page
 Pin: http://www.pintool.org/
 Omega: http://www.cs.umd.edu/projects/omega/

 Test case generation
 Korat: http://korat.sourceforge.net/
 CUTE: http://srl.cs.berkeley.edu/~ksen/doku.php
 CREST: http://crest.googlecode.com/

94

http://cil.sourceforge.net/
http://valgrind.org/
http://groups.csail.mit.edu/pag/daikon/
http://jikes.sourceforge.net/
http://wiki.qemu.org/Main_Page
http://www.pintool.org/
http://www.cs.umd.edu/projects/omega/
http://korat.sourceforge.net/
http://srl.cs.berkeley.edu/%7Eksen/doku.php
http://crest.googlecode.com/

Conclusion
 Part I: Challenges & Problems
 High software cost
 Ensuring reliability of systems

 Part II: Research Topics
 Software testing and reliability
 Software maintenance and evolution
 Software analytics

 Part III: Data Sources
 Code, traces, history, bug reports, developer activities,

forums, microblogs, etc.
 Part IV: Basic Program Analysis Tools
 Static analysis
 Dynamic analysis

95

Additional References & Acknowledgements
 Some slides and images are taken or adapted from:
 Ying Zou’s, Ahmed Hassan’s and Tao Xie’s slides
 Lingxiao Jiang’s slides

(from SMU’s IS706 slides that we co-taught together)
 Mauro Pezze’s and Michal Young’s slides

(from the resource slides of their book)

96

Thank you!

Questions? Comments?
davidlo@smu.edu.sg

Data Mining for
Software Engineering

Genius is 1% inspiration and 99%
perspiration!

-Thomas A. Edison

98

Slide Outline
 Part I: Pattern Mining
 Techniques
 Applications

 Part II: Clustering
 Techniques
 Applications

 Part III: Classification
 Techniques
 Applications

99

Part I: Pattern Mining
 Frequent pattern: a pattern (a set of items,

subsequences, substructures, etc.) that occurs
many times in a data set

 Motivation: Finding inherent regularities in data
 What products were often purchased together?
 What are the subsequent purchases after buying a PC?
 What kinds of DNA are sensitive to this new drug?

100

Structure
 Techniques
 Association Rule Mining
 Sequential Pattern Mining
 Subgraph Mining

 Applications
 Allatin: Mining Alternative Patterns
 Other Applications

101

Association Rule Mining

I(A): Pattern Mining Techniques

102

103

Definition: Frequent Itemsets
 Frequent pattern mining: find all

frequent itemsets in a database

 Itemset: a set of items
 E.g., acm={a, c, m}

 Support of itemsets
 Sup(acm)=3

 Given min_sup = 3, acm is a
frequent pattern

TID Items bought
100 f, a, c, d, g, i, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o
400 b, c, k, s, p
500 a, f, c, e, l, p, m, n

Transaction database TDB

103

104

Definition: Association Rules
 Find all the rules X Y with minimum support and

confidence
 support, s, number of transactions contain X ∪ Y
 confidence, c, conditional probability that a transaction

having X also contains Y

 Itemsets should be frequent
 It can be applied extensively

 Rules should be confident
 With strong prediction capability

104

Definition: Association Rules
 buy(diaper) buy(beer)
 Dads taking care of babies in weekends drink beer

Customer
buys diaper

Customer
buys both

Customer
buys beer

105

Definition: Association Rules

 Let min-sup = 3, min-conf = 50%
 Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
 Association rules:
 A D (3, 100%)
 D A (3, 75%)

Transaction-id Items bought
10 A, B, D
20 A, C, D
30 A, D, E
40 B, E, F
50 B, C, D, E, F

106

Methodology
 The downward closure property of frequent

patterns
 Any subset of a frequent itemset must be frequent
 If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 i.e., every transaction having {beer, diaper, nuts} also

contains {beer, diaper}
 Scalable mining methods:
 Apriori (Agrawal & Srikant@VLDB’94)
 Freq. pattern growth (FPgrowth—Han, Pei & Yin

@SIGMOD’00)
 Vertical data format approach (Charm—Zaki & Hsiao

@SDM’02)

107

Methodology: Apriori Algorithm
 Apriori pruning principle:
 If there is any itemset which is infrequent, its

superset should not be generated/tested!
 Method:
 Initially, scan DB once to get frequent 1-itemset
 Generate length (k+1) candidate itemsets from

length k frequent itemsets
 Test the candidates against DB
 Terminate when no frequent or candidate set

can be generated
108

Apriori Algorithm—An Example

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2

109

Apriori Algorithm

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;

110

Apriori Algorithm: Details
 How to generate candidates?
 Step 1: self-joining Lk

 Step 2: pruning
 Example of Candidate-generation
 L3={abc, abd, acd, ace, bcd}
 Self-joining: L3*L3

 abcd from abc and abd
 acde from acd and ace

 Pruning:
 acde is removed because ade is not in L3

 C4={abcd}

111

Closed Patterns and Max-Patterns

 A long pattern contains a combinatorial number of sub-
patterns, e.g., {a1, …, a100} contains 2100 – 1 = 1.27*1030

sub-patterns!
 Solution: Mine closed patterns and max-patterns instead
 An itemset X is closed if X is frequent and there exists no

super-pattern Y כ X, with the same support as X
(proposed by Pasquier, et al. @ ICDT’99)
 Closed pattern is a lossless compression of freq. patterns
 Reducing the # of patterns and rules

 An itemset X is a max-pattern if X is frequent and there
exists no frequent super-pattern Y כ X (proposed by
Bayardo @ SIGMOD’98)

112

Closed Patterns and Max-Patterns

 Exercise. DB = {a1, …, a100}, {a1, …, a50}
 Min_sup = 1.

 What is the set of closed itemset?
 {a1, …, a100}: 1
 {a1, …, a50}: 2

 What is the set of max-pattern?
 {a1, …, a100}: 1

 What is the set of all patterns?
 !!

113

Sequential Pattern Mining

I(A): Pattern Mining Techniques

114

Definition: Sequential Pattern Mining

 Given a set of sequences, find the complete set of
frequent subsequences

An element may contain a set of items.
Items within an element are unordered

and we list them alphabetically.

A sequence : < (ef) (ab) (df) c b >

115

Definition: Sequential Pattern Mining

A sequence database
SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<(ab)c>
is a subsequence of
<a(abc)(ac)d(cf)>

<(ab)c>
is a subsequence of

<(ef)(ab)(df)cb>

Given support threshold
min_sup =2,

<(ab)c> is a frequent
sequential pattern

116

Methodology
 A basic property: Apriori (Agrawal & Srikant’94)
 If a sequence S is not frequent
 Then none of the super-sequences of S is frequent
 E.g, <hb> is infrequent so do <hab> and

<(ah)b>
 Many algorithms:
 Apriori (Agrawal & Srikant’94): GSP
 PrefixSpan
 BIDE, etc.

117

GSP—Generalized Sequential Pattern Mining
 Proposed by Agrawal and Srikant, EDBT’96
 Outline of the method
 Initially, every item in DB is a candidate of length-1
 For each level (i.e., sequences of length-k) do
 Scan database to collect support count for each

candidate sequence
 Generate candidate length-(k+1) sequences from

length-k frequent sequences using Apriori
 Repeat until no frequent sequence or no candidate

can be found

118

PrefixSpan: Definition
 Prefix and Suffix (Projection)
 <a>, <aa>, <a(ab)> and <a(abc)> are prefixes

of sequence <a(abc)(ac)d(cf)>
 Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)
<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>

119

PrefixSpan: Approach
 Step 1: find length-1 sequential patterns
 <a>, , <c>, <d>, <e>, <f>

 Step 2: divide search space. The complete set of
seq. pat. can be partitioned into 6 subsets:
 The ones having prefix <a>;
 The ones having prefix ;
 …
 The ones having prefix <f>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

120

PrefixSpan: Approach
 Only need to consider projections w.r.t. <a>
 <a>-projected database: <(abc)(ac)d(cf)>,

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

 Find all the length-2 seq. pat. having prefix <a>:
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
 Further partition into 6 subsets
 Having prefix <aa>;
 …
 Having prefix <af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

121

PrefixSpan: Approach
SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Having prefix <a>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix

-projected database

Having prefix <c>, …, <f>

… …
Having prefix <aa>

… …
Having prefix <af>

…

122

Closed Frequent Sequences

 Motivation: Handling sequential pattern explosion
problem

 Closed frequent sequence
 A frequent (sub) sequence S is closed if there

exists no supersequence of S that carries the
same support as S
 If some of S’s subsequences have the same

support, it is unnecessary to output these
subsequences (nonclosed sequences)
 Lossless compression: still ensures that the

mining result is complete

123

Subgraph Mining

I(A): Pattern Mining Techniques

124

Definition : Subgraph Mining

 Frequent subgraphs
 A (sub)graph is frequent if its support

(occurrence frequency) in a given dataset is no
less than a minimum support threshold

 Applications of graph pattern mining
 Mining biochemical structures
 Program control flow analysis
 Building blocks for graph classification, clustering,

compression, etc.

125

Methodology

…

G

G1

G2

Gn

size-k

size-(k+1)

…

size-(k+2)

…

duplicate
graph

126

Methodology: Joining two graphs

 AGM (Inokuchi, et al. PKDD’00)
 generates new graphs with one more node

 FSG (Kuramochi and Karypis ICDM’01)
 generates new graphs with one more edge

127

e0: (0,1)

e1: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)

Graph Mining and Sequence Mining
 Flatten a graph into a sequence using depth first

search

0

1

2

3
4

128

Closed Frequent Graphs

 Motivation: Handling graph pattern explosion
problem

 Closed frequent graph
 A frequent graph G is closed if there exists no

supergraph of G that carries the same support
as G
 If some of G’s subgraphs have the same support,

it is unnecessary to output these subgraphs
(nonclosed graphs)
 Lossless compression: still ensures that the

mining result is complete

129

Allatin: Mining Alternating Patterns
for Defect Detection

I(B): Pattern Mining Applications

130

Allatin: Mining Alternative Patterns
 Suresh Thummalapenta, IBM Research
 Tao Xie, North Carolina State University

 Published in Automated Software Engineering
Journal, 2011

131

Introduction

 Programming rules often exists for APIs

 These programming rules are often not
documented well

132

Introduction
 Allatin recovers common usages of APIs
 Expressed as simple patterns:
 P1 = Boolean-check on return of Iterator.hasNext

before Iterator.next
 Patterns are mined by looking to many code pieces

that use the API before in the internet.

133

Introduction
 There might be various acceptable usages

 Alternative pattern: P2 = Constant-check on return
of ArrayList.size before Iterator.next

134

Introduction
 Allatin recovers a combination of simple patterns
 And patterns: P1 AND P2
 Or patterns: P1 OR P2
 XOR patterns: P1 XOR P2
 Combo patterns: (P1 AND P2) XOR P3

 The patterns are used to detect neglected
conditions

135

Methodology
 Phase 1: Gathering code examples
 Phase 2: Generating pattern candidates
 Focus on condition checks before and after API

method invocations
 Phase 3: Mining alternative patterns
 Phase 4: Detect neglected conditions

136

Methodology
 Algorithm
 Starts with small pattern
 Combines them by various operators

137

Methodology
 Limitation
 Employ a number of ad-hoc heuristics
 If “A AND B” and “A XOR B” have support >= min-

sup then the right pattern is “A OR B”
 No guarantee that a complete set of patterns are

mined

138

Experiment

139

Experiment

140

Experiment

141

Experiment

142

Other Applications
 Mining temporal specifications
 Zhenmin Li, Yuanyuan Zhou: PR-Miner:

automatically extracting implicit programming rules
and detecting violations in large software code.
ESEC/SIGSOFT FSE 2005: 306-315
 David Lo, Siau-Cheng Khoo, Chao Liu: Efficient

mining of iterative patterns for software
specification discovery. KDD 2007: 460-469
 David Lo, Bolin Ding, Lucia, Jiawei Han: Bidirectional

mining of non-redundant recurrent rules from a
sequence database. ICDE 2011: 1043-1054

143

Other Applications
 Mining temporal specifications (cont)
 David Lo, Jinyan Li, Limsoon Wong, Siau-Cheng

Khoo: Mining Iterative Generators and
Representative Rules for Software Specification
Discovery. IEEE Trans. Knowl. Data Eng. 23(2):
282-296 (2011)

 Detecting duplicate bug reports
 David Lo, Hong Cheng, Lucia: Mining closed

discriminative dyadic sequential patterns. EDBT
2011: 21-32

144

Other Applications
 Bug and failure identification
 Hwa-You Hsu, James A. Jones, Alessandro Orso:

Rapid: Identifying Bug Signatures to Support
Debugging Activities. ASE 2008: 439-442
 Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang,

Xifeng Yan: Identifying bug signatures using
discriminative graph mining. ISSTA 2009: 141-152
 David Lo, Hong Cheng, Jiawei Han, Siau-Cheng

Khoo, Chengnian Sun: Classification of software
behaviors for failure detection: a discriminative
pattern mining approach. KDD 2009: 557-566

145

Other Applications
 Predicting project outcome
 Didi Surian, Yuan Tian, David Lo, Hong Cheng, Ee-

Peng Lim: Predicting Project Outcome Leveraging
Socio-Technical Network Patterns. CSMR 2013: 47-
56

 Detecting co-occurring changes
 Thomas Zimmermann, Peter Weißgerber, Stephan

Diehl, Andreas Zeller: Mining Version Histories to
Guide Software Changes. ICSE 2004: 563-572

146

Part II: Clustering
 Cluster: a collection of data objects
 Similar to one another within the same cluster
 Dissimilar to the objects in other clusters

 Cluster analysis
 Finding similarities among data objects

according to their characteristics
 Grouping similar data objects into clusters

147

Part II: Clustering
 Typical applications
 As a stand-alone tool to get insight into data
 As a preprocessing step for other algorithms

148

Quality: What Is Good Clustering?
 A good clustering method will produce clusters

with:
 high intra-class similarity
 low inter-class similarity

 The quality of a clustering method is also
measured by its ability to discover some or all of
the hidden patterns

149

Structure
 Techniques
 k-Means
 k-Medoids
 Hierarchical Clustering

 Applications
 Performance Debugging in the Large via Mining

Millions of Stack Traces
 Other applications

150

k-Means

II(A): Clustering Techniques

151

The K-Means Clustering Method

 Given k, the k-means algorithm is implemented in four
steps:
1. Partition objects into k nonempty subsets
2. Compute the means of the clusters of the current partition

(the mean is the center of the cluster)
3. Re-assign each object to the cluster with the nearest mean
4. Go back to Step 2, stop when no more new assignment

152

The K-Means Clustering Method

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2
Arbitrarily

partition the
objects into K

clusters

Compute
the

cluster
means

Update
the

cluster
means

ReassignReassign

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

153

Limitations
 Applicable only when mean is defined
 Need to specify k, the number of clusters, in advance
 Unable to handle noisy data and outliers

154

k-Medoids

II(A): Clustering Techniques

155

k-Medoids
 Find representative objects, called medoids, in clusters

 Many algorithms:
 PAM (Partitioning Around Medoids, 1987)

 CLARA (Kaufmann & Rousseeuw, 1990)

 CLARANS (Ng & Han, 1994): Randomized sampling

 Focusing + spatial data structure (Ester et al., 1995)

156

PAM (Partitioning Around Medoids) (1987)

 PAM (Kaufman and Rousseeuw, 1987)
 Use real object to represent the cluster
 Select k representative objects arbitrarily
 For each pair of non-selected object h and selected

object i, calculate the total swapping cost TCih

 For each pair of i and h,
 If TCih < 0, i is replaced by h
 Then reassign each non-selected object to the most

similar representative object
 repeat steps 2-3 until there is no change

157

Randomly select a
nonmedoid object, OR

PAM (Partitioning Around Medoids) (1987)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrary
choose k
object as

initial
medoids

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Assign
each

remaining
object to
nearest
medoids

Compute
total cost

of
swapping

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Swapping
medoid O
and OR,

if quality is
improved.

Loop until no
change

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

158

Hierarchical Clustering

II(A): Clustering Techniques

159

Hierarchical Clustering

 This method does not require the number of clusters k as
an input, but needs a termination condition

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative
(AGNES)

divisive
(DIANA)

160

AGNES (Agglomerative Nesting)
 Introduced in Kaufmann and Rousseeuw (1990)
 Merge nodes that have the least dissimilarity
 Go on until eventually all nodes belong to the same cluster

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

161

DIANA (Divisive Analysis)

 Introduced in Kaufmann and Rousseeuw (1990)
 Inverse order of AGNES
 Eventually each node forms a cluster on its own

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

162

Dendrogram: Shows How the Clusters are Merged

Decompose data objects into several levels of nested
partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the
dendrogram at the desired level, then each connected
component forms a cluster.

163

Performance Debugging in the Large
via Mining Millions of Stack Traces

II(B): Clustering Applications

164

Performance Debugging by Mining Stack Traces

 Shi Han, Yingnong Dang, Song Ge, Dongmei
Zhang, Microsoft Research

 Tao Xie, North Carolina State University

 Published in International Conference on Software
Engineering, 2012

165

Introduction
 Performance of software system is important
 Performance bugs leads to unbearably slow system
 To debug performance issues, Windows has the

facility to collect execution traces

166

Introduction
 Manual investigation needs to be performed
 Very tedious and time-consuming
 Many execution traces
 Each of them can be very long

 Semi/Fully automated support needed
 Proposed solution:
 Group related execution traces together

167

Methodology
 Phase 1: Extract area of interest
 Not all collected execution traces are interesting
 Focus on events that wait for other events in the

traces
 Use developers domain knowledge to localize this

area of interest
 Phase 2: Extract maximal sequential patterns
 Phase 3: Cluster the patterns together

168

Methodology
 Hierarchical clustering is performed
 Key: similarity measure
 Similarity measure:
 Alignment of two patterns
 Computation of similarity

169

Methodology

170

Experiment
 Finding hidden performance bugs
 on Windows Explorer UI

 Input: 921 trace streams
 140 million call stacks

 Output: 1,215 pattern clusters
 Pattern mining and clustering time: 10 hours

171

Experiment
 Developer manually investigate the clusters
 Eight hours -> produce 93 signatures
 Twelve of them are highly impactful performance

bugs

172

Other Applications
 Testing multi-threaded applications
 Adrian Nistor, Qingzhou Luo, Michael Pradel,

Thomas R. Gross, Darko Marinov: Ballerina:
Automatic generation and clustering of efficient
random unit tests for multithreaded code. ICSE
2012: 727-737

 Defect prediction
 Nicolas Bettenburg, Meiyappan Nagappan, Ahmed

E. Hassan: Think locally, act globally: Improving
defect and effort prediction models. MSR 2012: 60-
69

173

Other Applications
 Ontology inference
 Shaowei Wang, David Lo, Lingxiao Jiang: Inferring

semantically related software terms and their
taxonomy by leveraging collaborative tagging. ICSM
2012: 604-607

 Detecting malicious apps
 Alessandra Gorla, Ilaria Tavecchia, Florian Gross,

Andreas Zeller: Checking app behavior against app
descriptions. 1025-1035

174

Other Applications
 Software remodularization
 Nicolas Anquetil, Timothy Lethbridge: Experiments

with Clustering as a Software Remodularization
Method. WCRE 1999: 235-255

175

Part III: Classification
 Assigns data to some predefined categories
 It performs this
 By constructing a model
 Based on:
 the training set
 the values (class labels) in a classifying attribute

 Uses it in classifying new data
 Two steps process:
 Model construction
 Model usage

176

Classification – Model Construction

 Model construction: describing the set of
predetermined class/categories
 The set of tuples used for model construction is

called the training set
 Each tuple/sample is assumed to belong to a

predefined class, as determined by the class label
attribute

 The model is represented as classification rules,
decision trees, or mathematical formulae

177

Classification – Model Usage

 Model usage: for classifying future or unknown
objects
 Estimate accuracy of the model
 The known label of test sample is compared with

the classified result from the model
 Accuracy rate is the percentage of test set

samples that are correctly classified by the model
 Test set is independent of training set, otherwise

over-fitting will occur
 If the accuracy is acceptable, use the model to

classify data tuples whose class labels are not known

178

Process (1): Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6

THEN tenured = ‘yes’

Classifier
(Model)

179

Process (2): Using the Model in Prediction

Classifier

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

180

Structure
 Techniques
 Decision Tree
 Support Vector Machine
 k-Nearest Neighbor

 Applications
 An Industrial Study on the Risk of Software Changes
 Other Applications

181

Decision Tree

III(A): Classification Techniques

182

Decision Tree Induction: Training Dataset
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

183

Output: A Decision Tree for “buys_computer”

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

184

High-Level Methodology
 Tree is constructed in a top-down recursive divide-and-

conquer manner
 At start, all the training examples are at the root
 Examples are partitioned recursively based on selected

attributes
 Attributes are selected on the basis of a heuristic or statistical

measure

185

High-Level Methodology
 Conditions for stopping partitioning
 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning
 There are no samples left

 Majority voting is employed for classifying the leaf

186

Support Vector Machine (SVM)

III(A): Classification Techniques

187

High-Level Methodology
 Searches for the linear optimal separating hyperplane (i.e.,

“decision boundary”)

Support Vectors
Small Margin Large Margin

SVM searches for the hyperplane with the largest margin, i.e.,
maximum marginal hyperplane (MMH)

188

High-Level Methodology
 How if not separable by a linear hyperplane?
 It uses a nonlinear mapping to transform the original training

data into a higher dimension
 With an appropriate nonlinear mapping to a sufficiently high

dimension, data from two classes can always be separated by
a hyperplane

189

High-Level Methodology
 Features:
 Training can be slow
 Accuracy is often high owing to their ability to

model complex nonlinear decision boundaries
 Applications:
 Handwritten digit recognition, object recognition,

speaker identification, etc

190

k-Nearest Neighbors

III(A): Classification Techniques

191

Lazy Learner: Instance-Based Methods

 Instance-based learning:
 Store training examples and delay the

processing (“lazy evaluation”) until a new
instance must be classified

 Typical approaches
 k-nearest neighbor approach
 Locally weighted regression
 Case-based reasoning

192

The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space
 New instance label is predicted based on its k-NN
 If the predicted label is discrete:
 Return the most common value among the neighbors in

the training data
 If the predicted label is a real number:
 Return the mean values of the k nearest neighbors

.

_
+

_ xq

+

_ _
+

_

_

+

193

Discussion on the k-NN Algorithm

 Distance-weighted nearest neighbor algorithm
 Weight the contribution of each of the k neighbors

according to their distance to the query xq

 Give greater weight to closer neighbors

 Problem:
 Curse of dimensionality: distance between neighbors could

be dominated by irrelevant attributes
 To overcome it: elimination of least relevant attributes

2),(
1

ixqxd
w≡

194

An Industrial Study on the Risk of
Software Changes

III(A): Classification Applications

195

Predicting Risk of Software Changes
 Emad Shihab, Ahmed E. Hassan, Queen’s

University, Canada
 Bram Adams, Ecole Polytechnique de Montreal,

Canada
 Zhen Ming Jiang, Research in Motion, Canada

 Published in ACM Symposium on Foundations of
Software Engineering (FSE), 2012

196

Introduction
 Many companies care about risk
 Negative impact on products and processes

 Some software changes are risky to be
implemented
 Risky changes = “changes for which developers

believe that additional attention is needed in the
form of careful code or design reviewing and/or
more testing”

197

Approach
 Feature Extraction (Key Step)
 Classifier Construction
 Classifier Application

198

Approach

199

Approach

200

Approach

201

Approach

202

Approach

203

Approach

204

Approach
 Find that risky changes classification is subjective
 Thus they add two additional features for two

kinds of models:
 Developers based: Add developer name
 Team base: Add team name

205

Result
 Ten fold cross validation
 Recall
 Developer based: 67.6%
 Team based: 67.9%

 Relative precision
 Compared with random model
 Developer based: 1.87x
 Team based: 1.37x

206

Other Applications
 Predicting faulty commits
 Tian Jiang, Lin Tan, Sunghun Kim: Personalized

defect prediction. ASE 2013: 279-289
 Refining anomaly reports
 Lucia, David Lo, Lingxiao Jiang, Aditya Budi: Active

refinement of clone anomaly reports. ICSE 2012:
397-407

 Automated fixing of bugs in SQL-like queries
 Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha,

Satish Chandra: Data-guided repair of selection
statements. ICSE 2014: 243-253

207

Other Applications
 Class diagram summarization
 Ferdian Thung, David Lo, Mohd Hafeez Osman,

Michel R. V. Chaudron: Condensing class diagrams
by analyzing design and network metrics using
optimistic classification. ICPC 2014: 110-121

 Predicting effectiveness of automated fault
localization tools
 Tien-Duy B. Le, David Lo: Will Fault Localization

Work for These Failures? An Automated Approach to
Predict Effectiveness of Fault Localization Tools.
ICSM 2013: 310-319

208

Conclusion
 Part I: Pattern Mining
 Extract frequent structures from database
 Structures: Set, Sequence, Graph
 Application: Find common API patterns

 Part II: Clustering
 Group similar things together
 Approaches: k-Means, k-Medoids, Hierarchical, etc.
 Application: Group traces to reduce inspection cost

 Part III: Classification
 Predict class label of unknown data
 Approaches: Decision tree, SVM, kNN, etc.
 Application: Predict risk of software changes

209

Acknowledgements & Additional References
 Many slides and images are taken or adapted

from:
 Resource slides of: Data mining: Concepts and

Techniques, 2nd Ed., by Han et al., 2006
 Ahmed Hassan’s and Tao Xie’s slides
 The three research papers mentioned in the slides.

210

Thank you!

Questions? Comments?
davidlo@smu.edu.sg

Source Code,
Examples,

Bugs, Tests, Etc
I have not failed. I've just
found 10,000 ways that won't
work.

- Thomas A. Edison

Information Retrieval
for Software
Engineering

212

Definition
 Information retrieval (IR) is finding material
 (usually documents)
 of an unstructured nature (usually text)
 that satisfies an information need
 from within large collections

213

Software Engineering Corpora
 Real text
 Code (is text?)

How to Find
Interesting
Information

Given a Query?

214

Outline

 I. Preliminaries
 Preprocessing
 Retrieval
 Recent Studies in SE

 II. Vector Space Model
 Techniques
 Applications

 III. Language Model
 Techniques
 Applications

 IV. Topic Model
 Techniques
 Applications

 V. Text Classification
 Techniques
 Applications

215

Part I: Preliminaries

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

ResultsHow to Evaluate Results?

216

Structure
 Preprocessing:
 Document Boundary & Format
 Text Preprocessing
 Code Preprocessing

 Retrieval:
 Retrieval Model
 Evaluation Criteria

 Recent Studies in SE

217

Document Boundary & Format
Text Preprocessing
Code Preprocessing

I(A): Preprocessing

218

Document Boundary
 What is the document unit ?
 A file?
 An email?
 An email with 5 attachments?
 A group of files (ppt or latex in HTML)?
 A method ? A class ?

 Requires some design decisions.

219

Document Format
 We need to deal with format and language of each

document.
 What format is it in?
 pdf, word, excel, html, etc.

 What language is it in?
 English, Java, C#, Chinese, Hindi, etc.

 What character set is in use?

220

Text Preprocessing
 Tokenization
 Stop-word Removal
 Normalization
 Stemming
 Indexing

221

Text: Tokenization
 Breaking a document into its constituent tokens or

terms
 In a textual document, a token is typically a word.

 Example (Shakespeare’s Play):

222

Text: Stop-Word Removal
 stop words = extremely common words
 little value in helping select documents matching a

user need
 Examples: a, an, and, are, as, at, be, by, for, from,

has, he, in, is, it, its, of, on, that, the, to, was, were,
will, with

 Stop word elimination used to be standard in older
IR systems.
 However, stop words needed for phrase queries,

e.g. “president of Singapore”
 Most web search engines index stop words

223

Text: Normalization
 Need to normalize terms in indexed text as well as

query terms into the same form.
 Example: We want to match U.S.A. and USA
 We most commonly implicitly define equivalence

classes of terms.

224

Text: Stemming
 Definition of stemming: Crude heuristic process

that chops off the ends of words to reduce related
words to their root form

 Language dependent
 Example: automate, automatic, automation all

reduce to automat

225

Text: Stemming

 Porter’s Algorithm
 Most commonly used algorithm
 Five phases of reductions
 Phases are applied sequentially

 Each phase consists of a set of commands.
 Sample command: Delete final ement if what

remains is longer than 1 character
 replacement → replac
 cement → cement

226

Text: Stemming

 Stemming can increase effectiveness for some
queries, and decrease effectiveness for others

 Queries where stemming is likely to help:
 [wool sweaters], [sightseeing tour singapore]
 (equivalence classes: {sweater,sweaters},

{tour,tours})
 Queries where stemming hurts:
 [operational AND research], [operating AND

system], [operative AND dentistry]

227

Text: Stemming
 Other stemming algorithms:
 Lovins stemmer
 Paice stemmer
 Etc.

228

Text: Indexing

 Inverted Index
For each term t, we store a list of all documents that

contain t.

dictionary documents

229

Text: Indexing
 Bi-word index
 Index every consecutive pair of terms in the text as a

phrase.
 k-gram index
 Positional index
 etc.

230

Code Preprocessing
 Parsing
 Identifier Extraction
 Identifier Tokenization

231

Code: Parsing
 Creating an abstract syntax tree of the code.
 Identify which ones are variable names, which

ones are method calls, etc.
 Difficulties: Multiple languages, partial code
 Tools:
 ANTLR
 WALA

232

Code: Identifier Extraction
 Extract the names of identifiers in the code.
 Method names
 Variable names
 Parameter names
 Class names

 Extract the comments in the code
 Extract string literals in the code
 How about if/loop/switch structures ?

233

Code: Identifier Tokenization
 Break identifier names into tokens.
 printLine => print line
 System.out.println => system out println

 Many identifier names are in camel casing

 Why do we need to break identifier names?
 Do all identifiers need to be broken?

234

Retrieval Model
Evaluation Metrics

I(B): Retrieval

235

Retrieval Model

 Vector Space Model
 Model documents and queries as a vector of values

 Language Model
 Model documents and/or queries by a probability

distribution
 Probability for it to generate a word, a sequence of

words, etc.
 Topic Model
 Model documents and queries by a set of topics,

where a topic is a set of words

236

Evaluation Metrics - 1
 Unranked evaluation
 Precision (P) is the fraction of retrieved documents

that are relevant

 Recall (R) is the fraction of relevant documents
that are retrieved

237

Evaluation Metrics - 2
 Ranked evaluation
 P-R Curve
 Compute precision and recall for each “prefix”
 top 1, top 2, top 3, top 4 etc results

 Produces a precision-recall curve.
 Mean Average Precision (MAP)
 Average precision for the top k documents
 each time a relevant doc is retrieved

 Averaged over all queries

238

Identifier Expansion

I(C): Recent Studies in SE

239

Recent Studies in SE
 Dawn Lawrie, David Binkley: Expanding identifiers

to normalize source code vocabulary. ICSM 2011:
113-122

 Dave Binkley, Dawn Lawrie, Christopher Uehlinger:
Vocabulary normalization improves IR-based
concept location. ICSM 2012: 588-591

240

Expanding Identifiers: Introduction
 Language used in code and other documents must

be standardized for effective retrieval.
 A significant proportion of invented vocabulary.
 To standardize:
 Split an identifier into parts
 Expand the identifier into a word

 Closer to queries expressed in human language

241

Expanding Identifiers: Approach (Nutshell)
 Break an identifiers into many possible splits
 For each possible split, expand the identifier parts
 Expand each part by adding wildcard characters
 See if any of the resultant regular expression match

any dictionary word surrounding the identifier
 Find the best possible split and expansion
 Criterion: Maximize similarity of expanded parts
 Measure word-similarity based on co-occurrence
 Trained on a dataset of over one trillion words

collected by Google

242

Expanding Identifiers: Accuracy
 Compared with manual expansion of identifiers
 Variants: Top-1 or Top-10 splits
 Accuracy criteria:
 Identifier match: % of identifiers correctly expanded
 Word match: % of identifier parts correctly expanded

243

Expanding Identifiers: Application in Retrieval

Feature Location:
Queries (Feature Description) -> Relevant Code Units

244

Expanding Identifiers: Application in Retrieval

245

Summary: Retrieval Process

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

Results

246

Part II - Vector Space Model (VSM)
 Model documents and queries as a vector of values
 Retrieval is done by computing similarities of:
 Document and queries
 In the vector space

 Questions:
 What are the appropriate vectors of values that

represent documents?
 How to compute similarities between two vector-

based representations of documents?

247

Structure
 Techniques
 Document Representation
 Bag-of-Word Model
 Term Frequency (TF)
 Inverse Document Frequency (IDF)
 Other TF-IDF Variants

 Retrieval using VSM
 Applications
 Duplicate Bug Report Detection
 Other Applications

248

Bag-of-Word Model
Term Frequency (TF)

Inverse Document Frequency (IDF)
Other TF-IDF Variants
Retrieval using VSM

II(A): Techniques

249

Bag of Words Consideration
 It considers a document as a multi-set of its

constituent words (or terms).
 We do not consider the order of words in a

document.
 John is quicker than Mary, and
 Mary is quicker than John
are represented the same way.

250

VSM: Term Weighting (TF)
 Not all words/terms equally characterize a

document.
 If term t appears more times in a document d, that

term is more relevant to d
 We denote the number of times that a term t

occurs in a document d as tft,d
 We refer to this as term frequency (TF)

251

VSM: Term Weighting (IDF)
 Rare terms are more informative than frequent

terms
 Recall stop words

 We want a high weight for rare terms
 Consider a term in the query that is rare in the

collection (e.g., arachnocentric)
 A document containing this term is very likely to be

relevant to the query arachnocentric

252

VSM: Term Weighting (IDF)

 To do this we make use of inverse document
frequency (IDF):

 N is the total number of documents in the corpus
 dft is the document frequency of t
 the number of documents that contain t
 dft is an inverse measure of the informativeness of t
 dft ≤ N

tt N/df idf =

253

VSM: Term Weighting (TF-IDF)
 The tf-idf weight of a term is the product of its tf

weight and its idf weight.

 Increases with the number of occurrences within a
document
 Increases with the rarity of the term in the

collection

tdtdt
idftfw ,,

×=

254

VSM: Document Representation
 Each document and each query is characterized as

a vector of terms weights
 So we have a |V|-dimensional vector space
 V = set of all terms
 Terms are dimensions of the space
 Documents are points in this space

255

VSM: TF-IDF Variants

256

VSM: Retrieval

 Represent documents and queries as vectors
 Compute the similarity between the vectors
 Cosine similarity is normally used:

 Return top-k most similar documents

∑∑
∑

==

==
•

=
V

i i
V

i i

V

i ii

dq

dq

dq
dqdq

1
2

1
2

1),cos(

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

257

An Approach to Detecting Duplicate
Bug Reports using Natural Language

and Execution Information

II(B): Applications

258

Duplicate Bug Report Detection
 Xiaoyin Wang, Lu Zhang, Jiasu Sun, Peking

University, China
 Tao Xie, North Carolina State University, USA
 John Anvik, University of Victoria, Canada

 Published in ACM/IEEE International Conference on
Software Engineering (ICSE), 2008

259

Duplicate Bug Reports: Motivation
 To improve quality of software systems, often

developers allow users to report bugs.
 Bug reporting is inherently an uncoordinated

distributed process.
 A number of reports of the same defect/bug are often

made by different users.
 This lead to a problem of duplicate bug reports.

260

Duplicate Bug Reports: Motivation
 In practice, a special developer (a triager) is often

assigned to detect duplicate reports.
 Number of bug reports are often too many for

developers to handle.
 A (semi) automated solution is needed.

261

Duplicate Bug Reports: Dataset

262

Duplicate Bug Reports: Dataset

263

Duplicate Bug Reports: Dataset
 Text Data
 Summary
 Concise text

 Description
 Longer text

 Execution Traces
 One execution trace for each bug that exhibits the

error

264

Duplicate Bug Reports: Technique
 Modeling text information
 Take summary and description of bug reports
 Perform preprocessing
 Tokenization
 Stemming
 Stop-word removal

 Create a vector of term weights using:

Dsum = Total number of documents
Dwi = Number of documents containing term i

265

Duplicate Bug Reports: Technique
 Modeling trace information
 Take method calls that appear in the execution

trace
 Treat each method as a word
 Use canonical signature of a method

 Differentiate overloaded methods
 Model it in similar way as text information
 Each method tf is either 0 or 1

 Ignore repeated method calls
 At the end, we have a vector of method weights

266

Duplicate Bug Reports: Technique
 Computing similarity
 Use cosine similarity of two vectors:

 Need to combine textual and trace information:

267

Duplicate Bug Reports: Technique
 Given a new bug report
 Return the top-k most similar bug reports that

have been reported before

268

Duplicate Bug Reports: Experiments

 Nrecalled = Number of duplicate reports whose
duplicate is detected in the top-k list

 Ntotal = Number of duplicate reports considered

269

Duplicate Bug Reports: Experiments

Consider Ex.
Trace Info

270

Other Applications
 Finding buggy files given bug descriptions
 Shaowei Wang, David Lo: Version history, similar

report, and structure: putting them together for
improved bug localization. ICPC 2014: 53-63

 Tracing high-level to low-level requirements
 Jane Huffman Hayes, Alex Dekhtyar, Senthil

Karthikeyan Sundaram, Sarah Howard: Helping
Analysts Trace Requirements: An Objective Look. RE
2004: 249-259

271

Other Applications
 Recommending relevant methods to use
 Ferdian Thung, Shaowei Wang, David Lo, Julia L.

Lawall: Automatic recommendation of API methods
from feature requests. ASE 2013: 290-300

 Locating code that corresponds to a particular
feature
 Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, Fuqing

Yang: SNIAFL: Towards a static noninteractive
approach to feature location. ACM Trans. Softw.
Eng. Methodol. 15(2): 195-226 (2006)

272

Other Applications
 Semantic search engine to find answers from

software forums
 Swapna Gottipati, David Lo, Jing Jiang: Finding

relevant answers in software forums. ASE 2011:
323-332

273

Part III - Language Model
 Model a document as a probability distribution
 Able to compute the probability of a query to belong

to the document
 Rank document based on the probability of the

query to belong to the document

274

Structure
 Techniques
 Unigram Language Model
 Language Model for IR
 Parameter Estimation
 Smoothing

 Applications
 Code Auto-Completion
 Other Applications

275

Unigram Language Model
Language Model for IR
Parameter Estimation

Smoothing

III(A): Techniques

276

277

 One-state probabilistic finite-state automaton
 State emission distribution for its one state q1
 STOP is a special symbol indicating that the

automaton stops
 string = “frog said that toad likes frog STOP”

P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 ·
0.02 = 0.0000000000048

Unigram Language Model

277

278

string = “frog said that toad likes frog STOP “
P(string|Md1) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.02 = 4.8 · 10-12

P(string|Md2) = 0.01 · 0.03 · 0.05 · 0.02 · 0.02 · 0.01 · 0.02 = 12 · 10-12

P(string|Md1) < P(string|Md2)
Thus, document d2 is “more relevant” to the string than d1 is.

A different language model for each document

278

279

 Each document d is represented by a language
model Md

 Given a query q
 Rank documents based on P(q|Md)

 How do we compute P(q|Md)?

Using language models in IR

279

280

 Make conditional independence assumption:

(|q|: length of q; tk : the token occurring at position
k in q)

 This is equivalent to:

 tft,q: term frequency (# occurrences) of t in q

How to compute P(q|Md)

280

281

 Missing piece: Where do the parameters P(t|Md) come from?
 Use the following estimate:

(|d|: length of d; tft,d : # occurrences of t in d)

 We have a problem with zeros
 A single t with P(t|Md) = 0 will make

zero
 We would give a single term “veto power”

 We need to smooth the estimates to avoid zeros

Parameter estimation

281

282

 Key intuition: A non occurring term is possible (even
though it didn’t occur), . . .

 . . . but no more likely than would be expected by chance
in the collection

 We will use to “smooth” P(t|Md) away from
zero

 Mc: the collection model;
 cft: the number of occurrences of t in the collection;
 : the total number of tokens in the

collection

= cft/T

Smoothing

282

283

 Pmix(t|Md) = λP(t|Md) + (1 - λ)P(t|Mc)
 Mixes the probability considering the document with

the probability considering the collection.

 High value of λ: “conjunctive-like” search – tends to
retrieve documents containing all query words.

 Low value of λ: more disjunctive, suitable for long queries
 Correctly setting λ is very important for good performance.

Mixture Model

283

284

 Collection: d1 and d2
 d1 : Jackson was one of the most talented entertainers of all time
 d2 : Michael Jackson anointed himself King of Pop

 Query q: Michael Jackson

 Use mixture model with λ = 1/2
 P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003
 P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

 Ranking: d2 > d1

Example

284

Other Models
 Bigram model
 K-L model
 Other models

285

On the Naturalness of Software

III(B): Applications

286

Code Auto-Completion
 Abram Hindle, Earl T. Barr, Zhendong Su, Mark

Gabel, Premkumar T. Devanbu, University of
California, Davis, USA

 Published in ACM/IEEE International Conference on
Software Engineering (ICSE), 2012

287

Naturalness of Software: Introduction
 Natural language is often repetitive and predictable
 Can be modeled by a language model

 Is software code like natural language?
 If it is could we exploit the naturalness of code?

288

Naturalness of Software: Technique
 k-gram language model:
 Token occurrences are influenced only by the

previous k-1 tokens

 For a 4-gram language model:

 Maximum Likelihood Estimate (MLE):

289

Naturalness of Software: Dataset

290

Naturalness of Software: Dataset

291

Naturalness of Software: Experiments
 Cross Entropy
 Captures how bad a language model in modeling a

new document.
 Considering a document s (i.e., a1…an) and a model

M, the cross entropy of s wrt. model M:

 PM(ai|a1…ai-1) = probability of ai happening
considering model M

 The lower the cross entropy score, the better a
language model is.

292

Is Software Natural ?

English Text

Code

293

Could it be used for auto-completion?
 Extend Eclipse IDE auto-completion function
 Use Eclipse if at least 1 recommended tokens is long
 Otherwise use both Eclipse and Language Model

 Uses a trigram model

294

Could it be used for auto-completion?
 Use a test set of 200 files to see how good is the

auto-complete.
 Keystrokes saved:

295

Other Applications
 Code auto-completion
 Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh

Nguyen, Tien N. Nguyen: A statistical semantic
language model for source code. ESEC/SIGSOFT
FSE 2013: 532-542

 Finding buggy files from bug descriptions
 Shivani Rao, Avinash C. Kak: Retrieval from

software libraries for bug localization: a comparative
study of generic and composite text models. MSR
2011: 43-52

296

Part IV: Topic Model
 Model a group of words as a topic
 Typically in a probabilistic sense

 Many recent SE papers use topic models

297

Structure
 Techniques
 Topic Modeling: Black-Box View
 Using Topic Modeling for IR
 Algorithms

 Applications
 Bug Localization
 Other Applications

298

Topic Modeling: A Black-Box View
Using Topic Modeling for IR

Algorithms

IV(A): Techniques

299

Topic Modeling: Black-Box View
 Model a document as a probability distribution of

topics
 A topic is a probability distribution of words

 Dimensionality reduction: words -> topics
 Benefit: Able to link a document and a query
 Do not share any words
 Share related words of the same topics

300

IR using Topic Model (VSM Like)
 Create topic model for a training set of documents
 Infer topic distributions of all documents in the

training set
 Infer topic distributions of new, unseen document

(query)
 Compute similarity between two distributions
 Kullback Leibner (KL) divergence
 Jensen Shannon (JS) divergence

301

IR using Topic Model (Language Model Like)

 Training a topic model computes:

 With the above we can compute:
)|(

)|(
dtopicP

topictP

∑
=

=
K

k
kk doctopicPtopictPdtP

1
)|()|()|(

 Extending to query level, we can compute:
dttf

qt

K

k
kk dtopicPtopictPdqP ,})|()|({)|(

1
∏ ∑
∈ =

=

 We can use the query likelihood model

302

Algorithms
 Probabilistic Latent Semantic Analysis (pLSA)
 Latent Dirichlet Allocation (LDA)
 Many more

303

A Topic-Based Approach for
Narrowing the Search Space of Buggy

Files from a Bug Report

IV(B): Applications

304

Bug Localization
 Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M.

Al-Kofahi, Hung Viet Nguyen, Tien N. Nguyen,
Iowa State University, USA

 Published in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2011

305

Bug Localization: Introduction
 Program is often large with hundreds/thousands of

files.
 Given a bug report, how to locate files responsible

for the bug?
 A (semi) automated solution is needed.

306

Bug Localization: Technique
 Model the similarity of bug reports and files
 At topic level

 Model the bug proneness of files
 Number of bugs in a file (based on its history)
 Size of the file

307

Bug Localization: Technique
 Computing topic similarity:
 Learn a topic model
 Find the topic distribution of a bug report
 Find the topic distribution of a source code file
 Compute the similarity using cosine similarity

 Combine topic similarity and bug proneness:

 P(s) = bug proneness score of file s
 sim(s,b) = similarity between file s and bug report b

308

Bug Localization: Experiments
 Subjects

 Accuracy
 Return top-k most likely files
 If at least one matches, then a recommendation is a

hit
 Accuracy = proportion of recommendations which

are hits

309

Bug Localization: Experiments

310

Other Applications
 Recovering links from code to documentation
 Andrian Marcus, Jonathan I. Maletic: Recovering

Documentation-to-Source-Code Traceability Links
using Latent Semantic Indexing. ICSE 2003: 125-
137

 Black-box test case prioritization
 Stephen W. Thomas, Hadi Hemmati, Ahmed E.

Hassan, Dorothea Blostein: Static test case
prioritization using topic models. Empirical Software
Engineering 19(1): 182-212 (2014)

311

Other Applications
 Duplicate bug report detection
 Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N.

Nguyen, David Lo, Chengnian Sun: Duplicate bug
report detection with a combination of information
retrieval and topic modeling. ASE 2012: 70-79

 Predicting affected components from bug reports
 Kalyanasundaram Somasundaram, Gail C. Murphy:

Automatic categorization of bug reports using latent
Dirichlet allocation. ISEC 2012: 125-130

312

Other Applications
 Recovering links from feature description to source

code implementing it
 Annibale Panichella, Bogdan Dit, Rocco Oliveto,

Massimiliano Di Penta, Denys Poshyvanyk, Andrea
De Lucia: How to effectively use topic models for
software engineering tasks? an approach based on
genetic algorithms. ICSE 2013: 522-531

313

Part V - Text Classification
 Consider a set of textual documents that are

assigned some class labels as a training dataset.
 Create a model that differentiates documents of

one class from other class(es).
 Use this model to label textual documents with

unknown labels.

314

Structure
 Techniques
 Vector space representation
 Vector space classification
 Feature selection

 Applications
 Defect Categorization
 Other Applications

315

Vector space representation
Vector space classification

Feature selection

V(A): Techniques

316

317

 Each document is a vector
 One element for each term/word
 Value of each element:
 Number of times that word appear

 Normalize each vector (document) to unit length
 High dimensionality: 100,000s of dimensions
 Terms/words are dimensions

Vector Space Representation

317

318

 The training set of documents with known class
labels.
 Labeled set of points in a high dimensional space

 We define lines, surfaces, hypersurfaces to divide
regions.

 Use classification algorithms to divide the training
sets into regions
 E.g., SVM

Vector Space Classification

318

319

 Many dimensions correspond to rare words.
 Rare words can mislead the classifier.
 Rare misleading features are called noise features.

 Eliminating noise features from the representation
 Increases efficiency and effectiveness
 Called feature selection.

Feature Selection

319

320

 A rare term ARACHNOCENTRIC happens to occur
in China documents in our training data.
 Then we may learn a classifier that incorrectly

interprets ARACHNOCENTRIC as evidence for the class
China.

 Such an incorrect generalization from an
accidental property of the training set is called
overfitting.

 Feature selection reduces overfitting and improves
the accuracy of the classifier.

Example of a Noise Feature

320

AutoODC: Automated Generation of
Orthogonal Defect Classifications

V(B): Applications

321

Defect Categorization
 LiGuo Huang, Ruili Geng, Xu Bai, Jeff Tian,

Southern Methodist University, USA
 Vincent Ng, Isaac Persing, University of Texas at

Dallas, USA

 Published in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2011

322

AutoODC: Introduction
 Developers often analyze and categorize bugs for

post-mortem investigation
 This process is often done manually
 One commonly used categorization is Orthogonal

Defect Categorization (ODC)
 Class Labels: Reliability, Capability, Security,

Usability, Requirements.
 Huang et al. would like to automate the process.

323

AutoODC: Approach

324

AutoODC: Preprocessing
 Tokenization
 Stemming
 No removal of stop words
 Normalize each vector

325

AutoODC: Learning
 Use Support Vector Machine (SVM)
 Train one SVM per class
 One-versus-others training
 Assign class of highest probability value

 Incorporation of user annotations
 User highlights part of the defect report that are

useful for classification
 Used to generate more instances (pseudo +ve/-ve)
 Used as “k-gram” like features (new features)

 Use manually constructed dictionary that define
synonymous phrases that are mapped to a common
representation (new features)

326

AutoODC: Results

Reliability Capability Security Usability Require-
ments

F-Measure 22.2% 88.5% 70.0% 62.9% 39.3%

327

Other Applications
 Predicting severity of bug reports
 Tim Menzies, Andrian Marcus: Automated severity

assessment of software defect reports. ICSM 2008:
346-355

 Predicting priority of bug reports
 Yuan Tian, David Lo, Chengnian Sun: DRONE:

Predicting Priority of Reported Bugs by Multi-factor
Analysis. ICSM 2013: 200-209

328

Other Applications
 Content categorization in software forums
 Daqing Hou, Lingfeng Mo: Content Categorization of

API Discussions. ICSM 2013: 60-69

 Filtering software microblogs
 Philips Kokoh Prasetyo, David Lo, Palakorn

Achananuparp, Yuan Tian, Ee-Peng Lim: Automatic
classification of software related microblogs. ICSM
2012: 596-599

329

Other Applications
 Recommending a developer to fix a bug report
 John Anvik, Gail C. Murphy: Reducing the effort of

bug report triage: Recommenders for development-
oriented decisions. ACM Trans. Softw. Eng.
Methodol. 20(3): 10 (2011)

330

Conclusion
 Part I: Preliminaries
 Tokeniz., Stop Word Removal, Stemming, Indexing, etc.

 Part II: Vector Space Modeling
 Model a document as a vector of term weights

 Part III: Language Model
 Model a document as a probability distribution of terms
 Query likelihood model

 Part IV: Topic Model
 Model a document as a probability distribution of topics
 Model a topic as a probability distribution of words

 Part V: Text Classification
 Convert to VSM representation
 Use standard classifiers (e.g., SVM)

331

Acknowledgements & Additional References
 Many slides and images are taken or adapted

from:
 Resource slides of: Introduction to Information

Retrieval, by Manning et al., Cambridge Press, 2008
 The research papers mentioned in the slides.

332

Thank you!

Questions? Comments?
davidlo@smu.edu.sg

	Data Analytics for Automated Software Engineering
	A Brief Self-Introduction
	A Brief Self-Introduction
	A Brief Self-Introduction
	A Brief Self-Introduction
	Focus of This Short Course
	Three Lectures
	Software Engineering: A Primer
	Slide Outline
	Part I: Software Engineering (SE)
	SE: Challenges & Problems
	SE: Challenges & Problems
	Part II: Research Topics in SE
	Topics: Software Testing and Reliability
	Software Testing and Reliability: Why Bother?
	Software Reliability: Goals
	Software Testing and Bug Finding: Goals
	SE Topics: What is Software Evolution?
	What is Software Maintenance?
	Software Maintenance – Relative Costs
	Why is Software Maintenance Expensive?
	Lehman’s Laws of Evolution
	What is a Legacy System?
	Problems of Legacy Systems
	History of Eclipse
	History of Microsoft Word
	Topics: Software Analytics
	Software Analytics: Definition
	Topics: Software Analytics
	Big Data for Software Engineering
	Part III: Software Data Sources
	Artifact: Source Code
	Artifact: Source Code
	Artifact: Source Code
	Artifact: Execution Trace
	Artifact: Execution Traces
	Artifact: Execution Trace
	Artifact: Execution Trace
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Slide Number 51
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Software Forums
	Artifact: Software Forums
	Artifact: Software Forums
	Artifact: Software Microblogs
	Artifact: Software Microblogs
	Artifact: Software Microblogs
	Part IV: Basic Program Analysis Tools
	Static Analysis
	Control Flows: Control-Flow Graphs
	Control Flows: Control Dependence
	Data Flows: Definitions / Uses
	Data Dependence Graphs
	Program/Procedural Dependence Graphs
	Tools
	Dynamic Analysis
	What is Dynamic (Program) Analysis?
	How to Run?
	Tracing / Profiling
	Tracing/Profiling by Instrumentation
	Test Case Generation: Concolic Testing
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Tools
	Conclusion
	Additional References & Acknowledgements
	Thank you!
	Data Mining for Software Engineering
	Slide Outline
	Part I: Pattern Mining
	Structure
	Slide Number 102
	Definition: Frequent Itemsets
	Definition: Association Rules
	Definition: Association Rules
	Definition: Association Rules
	Methodology
	Methodology: Apriori Algorithm
	Apriori Algorithm—An Example
	Apriori Algorithm
	Apriori Algorithm: Details
	Closed Patterns and Max-Patterns
	Closed Patterns and Max-Patterns
	Slide Number 114
	Definition: Sequential Pattern Mining
	Definition: Sequential Pattern Mining
	Methodology
	GSP—Generalized Sequential Pattern Mining
	PrefixSpan: Definition
	PrefixSpan: Approach
	PrefixSpan: Approach
	PrefixSpan: Approach
	Closed Frequent Sequences
	Slide Number 124
	Definition : Subgraph Mining
	Methodology
	Methodology: Joining two graphs
	Graph Mining and Sequence Mining
	Closed Frequent Graphs
	Slide Number 130
	Allatin: Mining Alternative Patterns
	Introduction
	Introduction
	Introduction
	Introduction
	Methodology
	Methodology
	Methodology
	Experiment
	Experiment
	Experiment
	Experiment
	Other Applications
	Other Applications
	Other Applications
	Other Applications
	Part II: Clustering
	Part II: Clustering
	Quality: What Is Good Clustering?
	Structure
	Slide Number 151
	The K-Means Clustering Method
	The K-Means Clustering Method
	Limitations
	Slide Number 155
	k-Medoids
	PAM (Partitioning Around Medoids) (1987)
	PAM (Partitioning Around Medoids) (1987)
	Slide Number 159
	Hierarchical Clustering
	AGNES (Agglomerative Nesting)
	DIANA (Divisive Analysis)
	Slide Number 163
	Slide Number 164
	Performance Debugging by Mining Stack Traces
	Introduction
	Introduction
	Methodology
	Methodology
	Methodology
	Experiment
	Experiment
	Other Applications
	Other Applications
	Other Applications
	Part III: Classification
	Classification – Model Construction
	Classification – Model Usage
	Process (1): Model Construction
	Process (2): Using the Model in Prediction
	Structure
	Slide Number 182
	Decision Tree Induction: Training Dataset
	Output: A Decision Tree for “buys_computer”
	High-Level Methodology
	High-Level Methodology
	Slide Number 187
	High-Level Methodology
	High-Level Methodology
	High-Level Methodology
	Slide Number 191
	Lazy Learner: Instance-Based Methods
	The k-Nearest Neighbor Algorithm
	Discussion on the k-NN Algorithm
	Slide Number 195
	Predicting Risk of Software Changes
	Introduction
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Result
	Other Applications
	Other Applications
	Conclusion
	Acknowledgements & Additional References
	Thank you!
	Information Retrieval for Software Engineering
	Definition
	Software Engineering Corpora
	Outline
	Part I: Preliminaries
	Structure
	Slide Number 218
	Document Boundary
	Document Format
	Text Preprocessing
	Text: Tokenization
	Text: Stop-Word Removal
	Text: Normalization
	Text: Stemming
	Text: Stemming
	Text: Stemming
	Text: Stemming
	Text: Indexing
	Text: Indexing
	 Code Preprocessing
	Code: Parsing
	Code: Identifier Extraction
	Code: Identifier Tokenization
	Slide Number 235
	Retrieval Model
	Evaluation Metrics - 1
	Evaluation Metrics - 2
	Slide Number 239
	Recent Studies in SE
	Expanding Identifiers: Introduction
	Expanding Identifiers: Approach (Nutshell)
	Expanding Identifiers: Accuracy
	Expanding Identifiers: Application in Retrieval
	Expanding Identifiers: Application in Retrieval
	Summary: Retrieval Process
	Part II - Vector Space Model (VSM)
	Structure
	Slide Number 249
	Bag of Words Consideration
	VSM: Term Weighting (TF)
	VSM: Term Weighting (IDF)
	VSM: Term Weighting (IDF)
	VSM: Term Weighting (TF-IDF)
	VSM: Document Representation
	VSM: TF-IDF Variants
	VSM: Retrieval
	Slide Number 258
	Duplicate Bug Report Detection
	Duplicate Bug Reports: Motivation
	Duplicate Bug Reports: Motivation
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Experiments
	Duplicate Bug Reports: Experiments
	Other Applications
	Other Applications
	Other Applications
	Part III - Language Model
	Structure
	Slide Number 276
	Slide Number 277
	Slide Number 278
	Slide Number 279
	Slide Number 280
	Slide Number 281
	Slide Number 282
	Slide Number 283
	Slide Number 284
	Other Models
	Slide Number 286
	Code Auto-Completion
	Naturalness of Software: Introduction
	Naturalness of Software: Technique
	Naturalness of Software: Dataset
	Naturalness of Software: Dataset
	Naturalness of Software: Experiments
	Is Software Natural ?
	Could it be used for auto-completion?
	Could it be used for auto-completion?
	Other Applications
	Part IV: Topic Model
	Structure
	Slide Number 299
	Topic Modeling: Black-Box View
	IR using Topic Model (VSM Like)
	IR using Topic Model (Language Model Like)
	Algorithms
	Slide Number 304
	Bug Localization
	Bug Localization: Introduction
	Bug Localization: Technique
	Bug Localization: Technique
	Bug Localization: Experiments
	Bug Localization: Experiments
	Other Applications
	Other Applications
	Other Applications
	Part V - Text Classification
	Structure
	Slide Number 316
	Slide Number 317
	Slide Number 318
	Slide Number 319
	Slide Number 320
	Slide Number 321
	Defect Categorization
	AutoODC: Introduction
	AutoODC: Approach
	AutoODC: Preprocessing
	AutoODC: Learning
	AutoODC: Results
	Other Applications
	Other Applications
	Other Applications
	Conclusion
	Acknowledgements & Additional References
	Thank you!

