
Data Analytics for Automated
Software Engineering

David Lo
School of Information Systems

Singapore Management University
davidlo@smu.edu.sg

Short Course, ESSCaSS 2014, Estonia

A Brief Self-Introduction

X

X

5674 miles or 9131 km

X

4812 miles or 7744 km

2

A Brief Self-Introduction

From
Wikipedia

3

A Brief Self-Introduction

4

A Brief Self-Introduction

 Graduated from National Uni. Of Singapore, 2008
 Work on the intersection of software engineering and

data mining

Mining Software Traces
Specification Mining
Fault Localization

Malware Detection

Mining Software Text
Bug Report Analysis
Concern Localization

Software Forum Mining

Mining Code
Code Search

Anomaly Detection
Privacy Preserving Testing

Data Mining Algorithms
Sequential/Graph Pattern Mining

Discriminative Pattern Mining
Game Mining

Mining Socio-Technical Network
Mining Developer Network

Mining Developer Microblogs
Community Detection

Empirical Studies
Widespread Changes

Feature Diffusion
Effectiveness of Exist. Tools

5

Focus of This Short Course

 Highlight research problems in software
engineering

 Describe the wealth of software data available for
analysis

 Present some data mining concepts and how it can
be used to automate software engineering tasks

 Present some information retrieval concepts and
how it can be used to automate software
engineering tasks

6

Three Lectures
I. Software Engineering (SE): A Primer
 Challenges & Problems
 Research Topics

II. Data Mining for Automated Software Engineering
 Pattern Mining
 Clustering
 Classification

III. Information Retrieval for Automated SE
 Vector Space Model
 Language Model

 Topic Model
 Text Classification

 Data Sources
 Basic Tools

7

The most certain way to succeed is
always to try just one more time.

- Thomas A. Edison

Software Engineering: A Primer

8

Slide Outline
 Part I: SE Challenges & Problems
 Part II: Research Topics
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics: A Recent Trend

 Part III: Data Sources
 Part IV: Basic Program Analysis Tools

9

Part I: Software Engineering (SE)

“Process and techniques that are followed to design,
develop, verify, validate, and maintain a software
system that satisfies a set of requirements and

properties with reasonable or low cost.”

10

SE: Challenges & Problems
 Building and maintaining complex software system

is challenging and costs much resources
 High cost and scarcity of qualified manpower
 Software changes over time

 Software systems are plagued with bugs and
removing them costs much resources
 Hard to ensure high reliability of complex systems

11

SE: Challenges & Problems
 Many other challenges:
 Hard to capture needs of end users
 Hard to manage developers working at

geographically disparate locations
 Etc.

12

Part II: Research Topics in SE
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics, A Recent Trend
 Empirical Software Engineering
 Requirement Engineering
 Many more

13

Topics: Software Testing and Reliability
 Software and bugs are often inseparable
 Many systems receive hundreds of bug reports

daily (Anvik et al., 2005)
 Software gets more complex
 Written in multiple languages
 Written by many people
 Over a long period of time
 Increases likelihood of bugs

*Anvik et al.: Coping with an open bug repository.
ETX 2005: 35-39

14

Software Testing and Reliability: Why Bother?
 Software bugs cost US economy 22.2 – 59.5

billions annually (NIST, 2002)
 Many software bugs have disastrous effects

Therac-25 Ariane-5 Mars Climate
Orbiter

*National Institute of Standards and Technology
(NIST): The Economic Impacts of Inadequate

Infrastructure for Software Testing. Report 2002.
15

Software Reliability: Goals
 Ensure the absence of (a family of) bugs
 Formal verification of a set of properties
 Heavyweight

 Prevention and early detection of bugs
 Does not guarantee the absence of bugs
 Identify as many bugs as possible as early as

possible
 Lightweight

16

Software Testing and Bug Finding: Goals
 Test adequacy measurement
 How thorough is a test suite?
 Does it cover all parts of a code?

 Test adequacy improvement
 How to create additional test cases?
 How to make a test suite more thorough?

 Test selection
 How to reduce the number of test cases to run

when a change is made?
 Identification of software bugs

17

SE Topics: What is Software Evolution?
 A piece of software system becomes gradually

more and more different than the original code
 Reasons:
 Bug fixes
 New requirements or features
 Changing environment (e.g., GUI, database, etc.)
 Code quality improvement

18

What is Software Maintenance?
 Changes made to existing software system
 Resulting in software evolution
 Types of maintenance tasks:
 Corrective maintenance: Bug fixes
 Perfective maintenance: New features
 Adaptive maintenance: Changing environments
 Preventive maintenance: Code quality improvement

19

Software Maintenance – Relative Costs

20

Why is Software Maintenance Expensive?
 Costs can be high because:
 Inexperienced maintenance staffs
 Poor code
 Poor documentation
 Changes may introduce new faults, which trigger further

changes
 As a system is changed, its structure tends to degrade,

which makes it harder to change

21

Lehman’s Laws of Evolution
 A classic study by Lehman and Belady (1985)

identified several “laws” of system change.
 Continuing change
 A program that is used in a real-world environment must

change, or become progressively less useful in that
environment

 Increasing complexity
 As a program evolves, it becomes more complex, and

extra resources are needed to preserve and simplify its
structure

22

What is a Legacy System?
 Legacy IS are large software systems
 They are old, often more than 10 years old
 They are written in a legacy language (e.g.,

COBOL), and built around legacy databases
 Legacy ISs are autonomous, and mission critical
 They are inflexible and brittle
 They are responsible for the consumption of at least

80% of the IS budget

23

Problems of Legacy Systems
 Availability of original developers
 Lack of documentation
 Size and complexity of the software system
 Accumulated past maintenance activities

24

History of Eclipse
 1997 – IBM VisualAge for Java (implemented in

small talk)
 1999 – IBM VisualAge for Java micro-edition

(Eclipse code based from here)
 2001 – Eclipse (change name for marketing issue)
 2003 – Eclipse.org foundation
 2005 – Eclipse V3.1
 2006 – Eclipse V3.2
 ….
 2014 – Eclipse V4.4

25

History of Microsoft Word
 1983 – MS Word for DOS
 1985 – MS Word for Mac
 1980 – MS Word for Windows
 1991 – MS Word 2
 1993 – MS Word 6
 1995 – MS Word 95
 1997 – MS Word 97
 1998 – MS Word 98
 2000 – MS Word 2000
 2002 – MS Word XP
 2003 – MS Word 2003
 …
 2014 – MS Word 2013

26

Topics: Software Analytics

”Data exploration and analysis in order to obtain
insightful and actionable information for data-

driven tasks around software and services”
(Zhang and Xie, 2012)

27

Software Analytics: Definition
 Analysis of a large amount of software data

stored in various repositories in order to:
 Understand software development process
 Help improve software maintenance
 Help improve software reliability
 And more

28

Topics: Software Analytics

MailingsBugzilla

Execution
traces

Dev.
Network

Code

SVN

29

Big Data for Software Engineering

30

Part III: Software Data Sources
 Source Code
 Execution Trace
 Development History
 Bug Reports
 Developer Activities
 Software Forums
 Software Microblogs
 Other Artifacts

31

Artifact: Source Code

32

Artifact: Source Code
 Where to find code?
 Google code: http://code.google.com/
 Many other places online

 How to analyze source code?
 Analyze -> automatically parse and understand
 Program analysis tools

33

http://code.google.com/

Artifact: Source Code
 Various languages
 Various kinds of systems
 Various scale: small, medium, large
 Various complexities
 Cyclomatic Complexity

 Various programming styles

34

Artifact: Execution Trace
 Information collected when a program is run
 What kind of information is collected?
 Sequences of methods that are executed
 State of various variables at various times
 State of various invariants at various times
 Which components are loaded at various times

35

Artifact: Execution Traces

Caller | Callee | Method Signature
36

Artifact: Execution Trace

Chicory Trace: Variable values
At method entries and exits

37

Artifact: Execution Trace
 How to collect?
 Insert instrumentation code
 Execute program
 Instrumentation code writes a log file

 What tools are available to collect traces?
 Daikon Chicory:

http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html
 PIN:

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool
 Valgrind:

http://valgrind.org/

38

http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://valgrind.org/

Artifact: Development History
 What code is
 Added
 Deleted
 Edited

 When
 By Whom
 For What Reason

39

Artifact: Development History

40

Artifact: Development History

41

Artifact: Development History
 Useful for distributed software development
 Various people updating different parts of code

 Easy to backtrack changes
 Easier to find out answer to the question:
 My code works yesterday but not today. Why?

 Easier to quantify contributions of team members

42

Artifact: Development History
 Various tools
 CVS – Version per file
 SVN – Version per snapshot
 Git - Distributed

 Slightly different ways to manage content

43

Artifact: Bug Reports
 People report errors and issues that they

encounter in the field
 These errors include:
 Description of the bugs
 Steps to reproduce the bugs
 Severity level
 Parts of the system affected by the bug
 Failure traces

44

Artifact: Bug Reports

Title

45

Artifact: Bug Reports

Detailed
Description

46

Artifact: Bug Reports
 Various kinds of bug repositories

 BugZilla: http://www.bugzilla.org/
 Example site:

https://bugzilla.mozilla.org/

 JIRA: http://www.atlassian.com/software/jira/
 Example site:

https://issues.apache.org/jira/browse/WW

47

http://www.bugzilla.org/
https://bugzilla.mozilla.org/
http://www.atlassian.com/software/jira/
https://issues.apache.org/jira/browse/WW

Artifact: Developer Activities
 Developers form a social network
 Developers work on various projects
 Projects have various types, programming

languages and developers
 Developers follow updates from various other

developers and projects
 Social coding sites

 A heterogeneous social network is formed

48

Artifact: Developer Activities

Social Coding Sites

49

Artifact: Developer Activities

More than a year ago
50

51

Artifact: Developer Activities

Artifact: Developer Activities

53

Artifact: Developer Activities

54

Artifact: Developer Activities

55

Artifact: Software Forums
 Developers ask and answer questions
 About various topics
 In various threads, some of which are very long
 Stored in various sites
 StackOverflow: http://stackoverflow.com/
 SoftwareTripsAndTricks:

http://www.softwaretipsandtricks.com/forum/

56

http://stackoverflow.com/
http://www.softwaretipsandtricks.com/forum/

Artifact: Software Forums

57

Artifact: Software Forums

58

Artifact: Software Microblogs
 Developers microblog too
 Developers microblog about various activities

(Tian et al. 2012) :
 Advertisements
 Code and tools
 News
 Q&A
 Events
 Opinions
 Tips
 Etc.

*Tian et al.: What does software engineering
community microblog about? MSR 2012: 247-250

59

Artifact: Software Microblogs

60

Artifact: Software Microblogs

http://research.larc.smu.edu.sg/palanteer/swdev

61

http://research.larc.smu.edu.sg/palanteer/swdev

Part IV: Basic Program Analysis Tools

 Static Analysis
 Dynamic Analysis

62

Static Analysis
 Control Flow Graph Construction
 Program Dependence Graph Construction

63

Control Flows: Control-Flow Graphs

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Control flow is a relation that
represents the possible flow of
execution in a program.
 (a, b) in the relation means that

control can directly flow from element
a to element b during execution.

Entry

1

3

2

4

5

6

7

Exit

F

T

1
2
3
4
5

6
7

64

Control Flows: Control Dependence

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Given nodes C and N in a CFG, N is
control-dependent on C if the
outcome of C determines if N is
reached in the CFG.

 We call C as a controller of N.

1
2
3
4
5

6
7

Entry node controls nodes 1,2,3,6,7
Node 3 controls nodes 4 and 5

65

Data Flows: Definitions / Uses

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A definition-use chain or DU-chain,
for a definition D of variable v, is:
 the set of pair-wise connections
 between D and all uses of v that D

can reach.

1
2
3
4
5

6
7

66

Data Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A data-dependence graph contains:
 one node for every program line (or an

instruction, or a basic block, or a desired
granularity) and

 labelled edges that correspond to DU-
chains.

1 2

5 3

76

4
sum

sum

sum

i
i

i
i

i

iisum

1
2
3
4
5

6
7

67

Program/Procedural Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while (i < 11) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 PDGs are control- and
data-dependence graphs
 Capture “semantics”
 Expose parallelism
 Facilitate debugging

i < 11

Entry

1 2

5 3

76

4
sum

sum

sum

i
i

i

i

i

iisum
i < 11

1
2
3
4
5

6
7

68

Tools
 Program analysis platforms

 WALA: http://wala.sourceforge.net/wiki/index.php/Main_Page
 Chord: http://code.google.com/p/jchord/
 ROSE: http://www.rosecompiler.org/

 Other tools
 JPF: http://babelfish.arc.nasa.gov/trac/jpf
 BLAST: http://mtc.epfl.ch/software-tools/blast/index-epfl.php
 ESC/Java: http://kindsoftware.com/products/opensource/ESCJava2/
 SPIN: http://spinroot.com/spin/whatispin.html
 PAT: http://www.comp.nus.edu.sg/~pat/
 Choco: http://www.emn.fr/z-info/choco-solver/
 Yices: http://yices.csl.sri.com/
 STP: https://sites.google.com/site/stpfastprover/STP-Fast-Prover
 Z3: http://z3.codeplex.com/

69

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://code.google.com/p/jchord/
http://www.rosecompiler.org/
http://babelfish.arc.nasa.gov/trac/jpf
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://kindsoftware.com/products/opensource/ESCJava2/
http://spinroot.com/spin/whatispin.html
http://www.comp.nus.edu.sg/%7Epat/
http://www.emn.fr/z-info/choco-solver/
http://yices.csl.sri.com/
https://sites.google.com/site/stpfastprover/STP-Fast-Prover
http://z3.codeplex.com/

Dynamic Analysis
 Instrumentation
 Test Case Generation

70

What is Dynamic (Program) Analysis?
 Basically
 Run a program
 Monitor program states during/after the executions
 Extract useful information/properties about the program

71

How to Run?
 Testing
 Choose good test cases
 The test suite determines the expense
 In time and space

 The test suite determines the accuracy
 What executions are seen or not seen

72

Tracing / Profiling
 Tracing: Record faithfully (lossless) detailed information of

program executions
 Control flow tracing

 Sequence of executed statements.
 Dependence tracing

 Sequence of exercised dependences.
 Value tracing

 Sequence of values produced by each instruction.
 Memory access tracing

 Sequence of memory references during an execution
 Profiling: Record aggregated (lossy) information about

program executions
 Control flow profiling: execution frequencies of instructions
 Value profiling: occurrence frequencies of values

73

Tracing/Profiling by Instrumentation
 Source code instrumentation
 Binary instrumentation

74

Test Case Generation: Concolic Testing
 Goal: find actual inputs that exhibit an error or execute as many

program elements as possible
 By exploring different execution paths

1) Start with an execution with random inputs
2) Collect the path conditions for the execution
3) Negate some of the path conditions

 So as to be used as the path conditions for the next execution
which should follow a different path

4) Solve the new path conditions to get actual values for the inputs
 The execution using these new inputs should follow a different path

5) Repeat 2)—4) until no more new paths to explore

*Godefroid et al.: DART: directed automated random testing.
PLDI 2005: 213-223

*Sen et al.: CUTE: a concolic unit testing engine for C.
ESEC/SIGSOFT FSE 2005: 263-272

75

Concolic Testing: Symbolic & Concrete Executions

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7 x = x0, y = y0

76

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = x0, y = y0,
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions

77

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

x = 22, y = 7,
z = 14

x = x0, y = y0,
z = 2*y0

2*y0 != x0

Concolic Testing: Symbolic & Concrete Executions

78

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

2*y0 != x0

x = 22, y = 7,
z = 14

x = x0, y = y0,
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

Solve: 2*y0 == x0

Solution: x0 = 2, y0 = 1

79

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

80

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

81

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,
z = 2

x = x0, y = y0,
z = 2*y0

2*y0 == x0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

82

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,

z = 2
x = x0, y = y0,

z = 2*y0

2*y0 == x0

x0 <= y0+10

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

83

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,

z = 2
x = x0, y = y0,

z = 2*y0

Solve: (2*y0 == x0) /\ (x0 > y0 + 10)
Solution: x0 = 30, y0 = 15

Concolic Testing: Symbolic & Concrete Executions

2*y0 == x0

x0 <= y0+10

84

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

85

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int double (int v) {

return 2*v;
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions

86

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 22, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

87

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49
x = x0, y = y0,

z = (y0*y0)%50

(y0*y0)%50 !=x0

Concolic Testing: Symbolic & Concrete Executions

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

Solve: (y0*y0)%50 == x0

Don’t know how to solve!
Stuck?

88

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

foo (y0) !=x0

Solve: foo (y0) == x0

Don’t know how to solve!
Stuck?

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50

89

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

Solve: (y0*y0)%50 == x0

Don’t know how to solve!
Not Stuck!
Use concrete state

Replace y0 by 7

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50

(y0*y0)%50 !=x0

90

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 48
x = x0, y = y0,

z = 49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Concolic Testing: Symbolic & Concrete Executions

91

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

92

Concrete
Execution

Symbolic
Execution

concrete
state

symbolic
state

path
condition

int foo (int v) {

return (v*v) % 50;
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7,
z = 49

x = x0, y = y0 ,
z = 49

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions

93

Tools
 Program instrumentation and analysis frameworks
 CIL: http://cil.sourceforge.net/
 Valgrind: http://valgrind.org/
 Daikon: http://groups.csail.mit.edu/pag/daikon/
 Jikes: http://jikes.sourceforge.net/
 QEMU: http://wiki.qemu.org/Main_Page
 Pin: http://www.pintool.org/
 Omega: http://www.cs.umd.edu/projects/omega/

 Test case generation
 Korat: http://korat.sourceforge.net/
 CUTE: http://srl.cs.berkeley.edu/~ksen/doku.php
 CREST: http://crest.googlecode.com/

94

http://cil.sourceforge.net/
http://valgrind.org/
http://groups.csail.mit.edu/pag/daikon/
http://jikes.sourceforge.net/
http://wiki.qemu.org/Main_Page
http://www.pintool.org/
http://www.cs.umd.edu/projects/omega/
http://korat.sourceforge.net/
http://srl.cs.berkeley.edu/%7Eksen/doku.php
http://crest.googlecode.com/

Conclusion
 Part I: Challenges & Problems
 High software cost
 Ensuring reliability of systems

 Part II: Research Topics
 Software testing and reliability
 Software maintenance and evolution
 Software analytics

 Part III: Data Sources
 Code, traces, history, bug reports, developer activities,

forums, microblogs, etc.
 Part IV: Basic Program Analysis Tools
 Static analysis
 Dynamic analysis

95

Additional References & Acknowledgements
 Some slides and images are taken or adapted from:
 Ying Zou’s, Ahmed Hassan’s and Tao Xie’s slides
 Lingxiao Jiang’s slides

(from SMU’s IS706 slides that we co-taught together)
 Mauro Pezze’s and Michal Young’s slides

(from the resource slides of their book)

96

Thank you!

Questions? Comments?
davidlo@smu.edu.sg

Data Mining for
Software Engineering

Genius is 1% inspiration and 99%
perspiration!

-Thomas A. Edison

98

Slide Outline
 Part I: Pattern Mining
 Techniques
 Applications

 Part II: Clustering
 Techniques
 Applications

 Part III: Classification
 Techniques
 Applications

99

Part I: Pattern Mining
 Frequent pattern: a pattern (a set of items,

subsequences, substructures, etc.) that occurs
many times in a data set

 Motivation: Finding inherent regularities in data
 What products were often purchased together?
 What are the subsequent purchases after buying a PC?
 What kinds of DNA are sensitive to this new drug?

100

Structure
 Techniques
 Association Rule Mining
 Sequential Pattern Mining
 Subgraph Mining

 Applications
 Allatin: Mining Alternative Patterns
 Other Applications

101

Association Rule Mining

I(A): Pattern Mining Techniques

102

103

Definition: Frequent Itemsets
 Frequent pattern mining: find all

frequent itemsets in a database

 Itemset: a set of items
 E.g., acm={a, c, m}

 Support of itemsets
 Sup(acm)=3

 Given min_sup = 3, acm is a
frequent pattern

TID Items bought
100 f, a, c, d, g, i, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o
400 b, c, k, s, p
500 a, f, c, e, l, p, m, n

Transaction database TDB

103

104

Definition: Association Rules
 Find all the rules X  Y with minimum support and

confidence
 support, s, number of transactions contain X ∪ Y
 confidence, c, conditional probability that a transaction

having X also contains Y

 Itemsets should be frequent
 It can be applied extensively

 Rules should be confident
 With strong prediction capability

104

Definition: Association Rules
 buy(diaper)  buy(beer)
 Dads taking care of babies in weekends drink beer

Customer
buys diaper

Customer
buys both

Customer
buys beer

105

Definition: Association Rules

 Let min-sup = 3, min-conf = 50%
 Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
 Association rules:
 A  D (3, 100%)
 D  A (3, 75%)

Transaction-id Items bought
10 A, B, D
20 A, C, D
30 A, D, E
40 B, E, F
50 B, C, D, E, F

106

Methodology
 The downward closure property of frequent

patterns
 Any subset of a frequent itemset must be frequent
 If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 i.e., every transaction having {beer, diaper, nuts} also

contains {beer, diaper}
 Scalable mining methods:
 Apriori (Agrawal & Srikant@VLDB’94)
 Freq. pattern growth (FPgrowth—Han, Pei & Yin

@SIGMOD’00)
 Vertical data format approach (Charm—Zaki & Hsiao

@SDM’02)

107

Methodology: Apriori Algorithm
 Apriori pruning principle:
 If there is any itemset which is infrequent, its

superset should not be generated/tested!
 Method:
 Initially, scan DB once to get frequent 1-itemset
 Generate length (k+1) candidate itemsets from

length k frequent itemsets
 Test the candidates against DB
 Terminate when no frequent or candidate set

can be generated
108

Apriori Algorithm—An Example

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2

109

Apriori Algorithm

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;

110

Apriori Algorithm: Details
 How to generate candidates?
 Step 1: self-joining Lk

 Step 2: pruning
 Example of Candidate-generation
 L3={abc, abd, acd, ace, bcd}
 Self-joining: L3*L3

 abcd from abc and abd
 acde from acd and ace

 Pruning:
 acde is removed because ade is not in L3

 C4={abcd}

111

Closed Patterns and Max-Patterns

 A long pattern contains a combinatorial number of sub-
patterns, e.g., {a1, …, a100} contains 2100 – 1 = 1.27*1030

sub-patterns!
 Solution: Mine closed patterns and max-patterns instead
 An itemset X is closed if X is frequent and there exists no

super-pattern Y כ X, with the same support as X
(proposed by Pasquier, et al. @ ICDT’99)
 Closed pattern is a lossless compression of freq. patterns
 Reducing the # of patterns and rules

 An itemset X is a max-pattern if X is frequent and there
exists no frequent super-pattern Y כ X (proposed by
Bayardo @ SIGMOD’98)

112

Closed Patterns and Max-Patterns

 Exercise. DB = {a1, …, a100}, {a1, …, a50}
 Min_sup = 1.

 What is the set of closed itemset?
 {a1, …, a100}: 1
 {a1, …, a50}: 2

 What is the set of max-pattern?
 {a1, …, a100}: 1

 What is the set of all patterns?
 !!

113

Sequential Pattern Mining

I(A): Pattern Mining Techniques

114

Definition: Sequential Pattern Mining

 Given a set of sequences, find the complete set of
frequent subsequences

An element may contain a set of items.
Items within an element are unordered

and we list them alphabetically.

A sequence : < (ef) (ab) (df) c b >

115

Definition: Sequential Pattern Mining

A sequence database
SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<(ab)c>
is a subsequence of
<a(abc)(ac)d(cf)>

<(ab)c>
is a subsequence of

<(ef)(ab)(df)cb>

Given support threshold
min_sup =2,

<(ab)c> is a frequent
sequential pattern

116

Methodology
 A basic property: Apriori (Agrawal & Srikant’94)
 If a sequence S is not frequent
 Then none of the super-sequences of S is frequent
 E.g, <hb> is infrequent  so do <hab> and

<(ah)b>
 Many algorithms:
 Apriori (Agrawal & Srikant’94): GSP
 PrefixSpan
 BIDE, etc.

117

GSP—Generalized Sequential Pattern Mining
 Proposed by Agrawal and Srikant, EDBT’96
 Outline of the method
 Initially, every item in DB is a candidate of length-1
 For each level (i.e., sequences of length-k) do
 Scan database to collect support count for each

candidate sequence
 Generate candidate length-(k+1) sequences from

length-k frequent sequences using Apriori
 Repeat until no frequent sequence or no candidate

can be found

118

PrefixSpan: Definition
 Prefix and Suffix (Projection)
 <a>, <aa>, <a(ab)> and <a(abc)> are prefixes

of sequence <a(abc)(ac)d(cf)>
 Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)
<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>

119

PrefixSpan: Approach
 Step 1: find length-1 sequential patterns
 <a>, , <c>, <d>, <e>, <f>

 Step 2: divide search space. The complete set of
seq. pat. can be partitioned into 6 subsets:
 The ones having prefix <a>;
 The ones having prefix ;
 …
 The ones having prefix <f>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

120

PrefixSpan: Approach
 Only need to consider projections w.r.t. <a>
 <a>-projected database: <(abc)(ac)d(cf)>,

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

 Find all the length-2 seq. pat. having prefix <a>:
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
 Further partition into 6 subsets
 Having prefix <aa>;
 …
 Having prefix <af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

121

PrefixSpan: Approach
SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Having prefix <a>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix

-projected database

Having prefix <c>, …, <f>

… …
Having prefix <aa>

… …
Having prefix <af>

…

122

Closed Frequent Sequences

 Motivation: Handling sequential pattern explosion
problem

 Closed frequent sequence
 A frequent (sub) sequence S is closed if there

exists no supersequence of S that carries the
same support as S
 If some of S’s subsequences have the same

support, it is unnecessary to output these
subsequences (nonclosed sequences)
 Lossless compression: still ensures that the

mining result is complete

123

Subgraph Mining

I(A): Pattern Mining Techniques

124

Definition : Subgraph Mining

 Frequent subgraphs
 A (sub)graph is frequent if its support

(occurrence frequency) in a given dataset is no
less than a minimum support threshold

 Applications of graph pattern mining
 Mining biochemical structures
 Program control flow analysis
 Building blocks for graph classification, clustering,

compression, etc.

125

Methodology

…

G

G1

G2

Gn

size-k

size-(k+1)

…

size-(k+2)

…

duplicate
graph

126

Methodology: Joining two graphs

 AGM (Inokuchi, et al. PKDD’00)
 generates new graphs with one more node

 FSG (Kuramochi and Karypis ICDM’01)
 generates new graphs with one more edge

127

e0: (0,1)

e1: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)

Graph Mining and Sequence Mining
 Flatten a graph into a sequence using depth first

search

0

1

2

3
4

128

Closed Frequent Graphs

 Motivation: Handling graph pattern explosion
problem

 Closed frequent graph
 A frequent graph G is closed if there exists no

supergraph of G that carries the same support
as G
 If some of G’s subgraphs have the same support,

it is unnecessary to output these subgraphs
(nonclosed graphs)
 Lossless compression: still ensures that the

mining result is complete

129

Allatin: Mining Alternating Patterns
for Defect Detection

I(B): Pattern Mining Applications

130

Allatin: Mining Alternative Patterns
 Suresh Thummalapenta, IBM Research
 Tao Xie, North Carolina State University

 Published in Automated Software Engineering
Journal, 2011

131

Introduction

 Programming rules often exists for APIs

 These programming rules are often not
documented well

132

Introduction
 Allatin recovers common usages of APIs
 Expressed as simple patterns:
 P1 = Boolean-check on return of Iterator.hasNext

before Iterator.next
 Patterns are mined by looking to many code pieces

that use the API before in the internet.

133

Introduction
 There might be various acceptable usages

 Alternative pattern: P2 = Constant-check on return
of ArrayList.size before Iterator.next

134

Introduction
 Allatin recovers a combination of simple patterns
 And patterns: P1 AND P2
 Or patterns: P1 OR P2
 XOR patterns: P1 XOR P2
 Combo patterns: (P1 AND P2) XOR P3

 The patterns are used to detect neglected
conditions

135

Methodology
 Phase 1: Gathering code examples
 Phase 2: Generating pattern candidates
 Focus on condition checks before and after API

method invocations
 Phase 3: Mining alternative patterns
 Phase 4: Detect neglected conditions

136

Methodology
 Algorithm
 Starts with small pattern
 Combines them by various operators

137

Methodology
 Limitation
 Employ a number of ad-hoc heuristics
 If “A AND B” and “A XOR B” have support >= min-

sup then the right pattern is “A OR B”
 No guarantee that a complete set of patterns are

mined

138

Experiment

139

Experiment

140

Experiment

141

Experiment

142

Other Applications
 Mining temporal specifications
 Zhenmin Li, Yuanyuan Zhou: PR-Miner:

automatically extracting implicit programming rules
and detecting violations in large software code.
ESEC/SIGSOFT FSE 2005: 306-315
 David Lo, Siau-Cheng Khoo, Chao Liu: Efficient

mining of iterative patterns for software
specification discovery. KDD 2007: 460-469
 David Lo, Bolin Ding, Lucia, Jiawei Han: Bidirectional

mining of non-redundant recurrent rules from a
sequence database. ICDE 2011: 1043-1054

143

Other Applications
 Mining temporal specifications (cont)
 David Lo, Jinyan Li, Limsoon Wong, Siau-Cheng

Khoo: Mining Iterative Generators and
Representative Rules for Software Specification
Discovery. IEEE Trans. Knowl. Data Eng. 23(2):
282-296 (2011)

 Detecting duplicate bug reports
 David Lo, Hong Cheng, Lucia: Mining closed

discriminative dyadic sequential patterns. EDBT
2011: 21-32

144

Other Applications
 Bug and failure identification
 Hwa-You Hsu, James A. Jones, Alessandro Orso:

Rapid: Identifying Bug Signatures to Support
Debugging Activities. ASE 2008: 439-442
 Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang,

Xifeng Yan: Identifying bug signatures using
discriminative graph mining. ISSTA 2009: 141-152
 David Lo, Hong Cheng, Jiawei Han, Siau-Cheng

Khoo, Chengnian Sun: Classification of software
behaviors for failure detection: a discriminative
pattern mining approach. KDD 2009: 557-566

145

Other Applications
 Predicting project outcome
 Didi Surian, Yuan Tian, David Lo, Hong Cheng, Ee-

Peng Lim: Predicting Project Outcome Leveraging
Socio-Technical Network Patterns. CSMR 2013: 47-
56

 Detecting co-occurring changes
 Thomas Zimmermann, Peter Weißgerber, Stephan

Diehl, Andreas Zeller: Mining Version Histories to
Guide Software Changes. ICSE 2004: 563-572

146

Part II: Clustering
 Cluster: a collection of data objects
 Similar to one another within the same cluster
 Dissimilar to the objects in other clusters

 Cluster analysis
 Finding similarities among data objects

according to their characteristics
 Grouping similar data objects into clusters

147

Part II: Clustering
 Typical applications
 As a stand-alone tool to get insight into data
 As a preprocessing step for other algorithms

148

Quality: What Is Good Clustering?
 A good clustering method will produce clusters

with:
 high intra-class similarity
 low inter-class similarity

 The quality of a clustering method is also
measured by its ability to discover some or all of
the hidden patterns

149

Structure
 Techniques
 k-Means
 k-Medoids
 Hierarchical Clustering

 Applications
 Performance Debugging in the Large via Mining

Millions of Stack Traces
 Other applications

150

k-Means

II(A): Clustering Techniques

151

The K-Means Clustering Method

 Given k, the k-means algorithm is implemented in four
steps:
1. Partition objects into k nonempty subsets
2. Compute the means of the clusters of the current partition

(the mean is the center of the cluster)
3. Re-assign each object to the cluster with the nearest mean
4. Go back to Step 2, stop when no more new assignment

152

The K-Means Clustering Method

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2
Arbitrarily

partition the
objects into K

clusters

Compute
the

cluster
means

Update
the

cluster
means

ReassignReassign

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

153

Limitations
 Applicable only when mean is defined
 Need to specify k, the number of clusters, in advance
 Unable to handle noisy data and outliers

154

k-Medoids

II(A): Clustering Techniques

155

k-Medoids
 Find representative objects, called medoids, in clusters

 Many algorithms:
 PAM (Partitioning Around Medoids, 1987)

 CLARA (Kaufmann & Rousseeuw, 1990)

 CLARANS (Ng & Han, 1994): Randomized sampling

 Focusing + spatial data structure (Ester et al., 1995)

156

PAM (Partitioning Around Medoids) (1987)

 PAM (Kaufman and Rousseeuw, 1987)
 Use real object to represent the cluster
 Select k representative objects arbitrarily
 For each pair of non-selected object h and selected

object i, calculate the total swapping cost TCih

 For each pair of i and h,
 If TCih < 0, i is replaced by h
 Then reassign each non-selected object to the most

similar representative object
 repeat steps 2-3 until there is no change

157

Randomly select a
nonmedoid object, OR

PAM (Partitioning Around Medoids) (1987)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrary
choose k
object as

initial
medoids

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Assign
each

remaining
object to
nearest
medoids

Compute
total cost

of
swapping

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Swapping
medoid O
and OR,

if quality is
improved.

Loop until no
change

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

158

Hierarchical Clustering

II(A): Clustering Techniques

159

Hierarchical Clustering

 This method does not require the number of clusters k as
an input, but needs a termination condition

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative
(AGNES)

divisive
(DIANA)

160

AGNES (Agglomerative Nesting)
 Introduced in Kaufmann and Rousseeuw (1990)
 Merge nodes that have the least dissimilarity
 Go on until eventually all nodes belong to the same cluster

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

161

DIANA (Divisive Analysis)

 Introduced in Kaufmann and Rousseeuw (1990)
 Inverse order of AGNES
 Eventually each node forms a cluster on its own

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

162

Dendrogram: Shows How the Clusters are Merged

Decompose data objects into several levels of nested
partitioning (tree of clusters), called a dendrogram.

A clustering of the data objects is obtained by cutting the
dendrogram at the desired level, then each connected
component forms a cluster.

163

Performance Debugging in the Large
via Mining Millions of Stack Traces

II(B): Clustering Applications

164

Performance Debugging by Mining Stack Traces

 Shi Han, Yingnong Dang, Song Ge, Dongmei
Zhang, Microsoft Research

 Tao Xie, North Carolina State University

 Published in International Conference on Software
Engineering, 2012

165

Introduction
 Performance of software system is important
 Performance bugs leads to unbearably slow system
 To debug performance issues, Windows has the

facility to collect execution traces

166

Introduction
 Manual investigation needs to be performed
 Very tedious and time-consuming
 Many execution traces
 Each of them can be very long

 Semi/Fully automated support needed
 Proposed solution:
 Group related execution traces together

167

Methodology
 Phase 1: Extract area of interest
 Not all collected execution traces are interesting
 Focus on events that wait for other events in the

traces
 Use developers domain knowledge to localize this

area of interest
 Phase 2: Extract maximal sequential patterns
 Phase 3: Cluster the patterns together

168

Methodology
 Hierarchical clustering is performed
 Key: similarity measure
 Similarity measure:
 Alignment of two patterns
 Computation of similarity

169

Methodology

170

Experiment
 Finding hidden performance bugs
 on Windows Explorer UI

 Input: 921 trace streams
 140 million call stacks

 Output: 1,215 pattern clusters
 Pattern mining and clustering time: 10 hours

171

Experiment
 Developer manually investigate the clusters
 Eight hours -> produce 93 signatures
 Twelve of them are highly impactful performance

bugs

172

Other Applications
 Testing multi-threaded applications
 Adrian Nistor, Qingzhou Luo, Michael Pradel,

Thomas R. Gross, Darko Marinov: Ballerina:
Automatic generation and clustering of efficient
random unit tests for multithreaded code. ICSE
2012: 727-737

 Defect prediction
 Nicolas Bettenburg, Meiyappan Nagappan, Ahmed

E. Hassan: Think locally, act globally: Improving
defect and effort prediction models. MSR 2012: 60-
69

173

Other Applications
 Ontology inference
 Shaowei Wang, David Lo, Lingxiao Jiang: Inferring

semantically related software terms and their
taxonomy by leveraging collaborative tagging. ICSM
2012: 604-607

 Detecting malicious apps
 Alessandra Gorla, Ilaria Tavecchia, Florian Gross,

Andreas Zeller: Checking app behavior against app
descriptions. 1025-1035

174

Other Applications
 Software remodularization
 Nicolas Anquetil, Timothy Lethbridge: Experiments

with Clustering as a Software Remodularization
Method. WCRE 1999: 235-255

175

Part III: Classification
 Assigns data to some predefined categories
 It performs this
 By constructing a model
 Based on:
 the training set
 the values (class labels) in a classifying attribute

 Uses it in classifying new data
 Two steps process:
 Model construction
 Model usage

176

Classification – Model Construction

 Model construction: describing the set of
predetermined class/categories
 The set of tuples used for model construction is

called the training set
 Each tuple/sample is assumed to belong to a

predefined class, as determined by the class label
attribute

 The model is represented as classification rules,
decision trees, or mathematical formulae

177

Classification – Model Usage

 Model usage: for classifying future or unknown
objects
 Estimate accuracy of the model
 The known label of test sample is compared with

the classified result from the model
 Accuracy rate is the percentage of test set

samples that are correctly classified by the model
 Test set is independent of training set, otherwise

over-fitting will occur
 If the accuracy is acceptable, use the model to

classify data tuples whose class labels are not known

178

Process (1): Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6

THEN tenured = ‘yes’

Classifier
(Model)

179

Process (2): Using the Model in Prediction

Classifier

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?

180

Structure
 Techniques
 Decision Tree
 Support Vector Machine
 k-Nearest Neighbor

 Applications
 An Industrial Study on the Risk of Software Changes
 Other Applications

181

Decision Tree

III(A): Classification Techniques

182

Decision Tree Induction: Training Dataset
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

183

Output: A Decision Tree for “buys_computer”

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

184

High-Level Methodology
 Tree is constructed in a top-down recursive divide-and-

conquer manner
 At start, all the training examples are at the root
 Examples are partitioned recursively based on selected

attributes
 Attributes are selected on the basis of a heuristic or statistical

measure

185

High-Level Methodology
 Conditions for stopping partitioning
 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning
 There are no samples left

 Majority voting is employed for classifying the leaf

186

Support Vector Machine (SVM)

III(A): Classification Techniques

187

High-Level Methodology
 Searches for the linear optimal separating hyperplane (i.e.,

“decision boundary”)

Support Vectors
Small Margin Large Margin

SVM searches for the hyperplane with the largest margin, i.e.,
maximum marginal hyperplane (MMH)

188

High-Level Methodology
 How if not separable by a linear hyperplane?
 It uses a nonlinear mapping to transform the original training

data into a higher dimension
 With an appropriate nonlinear mapping to a sufficiently high

dimension, data from two classes can always be separated by
a hyperplane

189

High-Level Methodology
 Features:
 Training can be slow
 Accuracy is often high owing to their ability to

model complex nonlinear decision boundaries
 Applications:
 Handwritten digit recognition, object recognition,

speaker identification, etc

190

k-Nearest Neighbors

III(A): Classification Techniques

191

Lazy Learner: Instance-Based Methods

 Instance-based learning:
 Store training examples and delay the

processing (“lazy evaluation”) until a new
instance must be classified

 Typical approaches
 k-nearest neighbor approach
 Locally weighted regression
 Case-based reasoning

192

The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space
 New instance label is predicted based on its k-NN
 If the predicted label is discrete:
 Return the most common value among the neighbors in

the training data
 If the predicted label is a real number:
 Return the mean values of the k nearest neighbors

.

_
+

_ xq

+

_ _
+

_

_

+

193

Discussion on the k-NN Algorithm

 Distance-weighted nearest neighbor algorithm
 Weight the contribution of each of the k neighbors

according to their distance to the query xq

 Give greater weight to closer neighbors

 Problem:
 Curse of dimensionality: distance between neighbors could

be dominated by irrelevant attributes
 To overcome it: elimination of least relevant attributes

2),(
1

ixqxd
w≡

194

An Industrial Study on the Risk of
Software Changes

III(A): Classification Applications

195

Predicting Risk of Software Changes
 Emad Shihab, Ahmed E. Hassan, Queen’s

University, Canada
 Bram Adams, Ecole Polytechnique de Montreal,

Canada
 Zhen Ming Jiang, Research in Motion, Canada

 Published in ACM Symposium on Foundations of
Software Engineering (FSE), 2012

196

Introduction
 Many companies care about risk
 Negative impact on products and processes

 Some software changes are risky to be
implemented
 Risky changes = “changes for which developers

believe that additional attention is needed in the
form of careful code or design reviewing and/or
more testing”

197

Approach
 Feature Extraction (Key Step)
 Classifier Construction
 Classifier Application

198

Approach

199

Approach

200

Approach

201

Approach

202

Approach

203

Approach

204

Approach
 Find that risky changes classification is subjective
 Thus they add two additional features for two

kinds of models:
 Developers based: Add developer name
 Team base: Add team name

205

Result
 Ten fold cross validation
 Recall
 Developer based: 67.6%
 Team based: 67.9%

 Relative precision
 Compared with random model
 Developer based: 1.87x
 Team based: 1.37x

206

Other Applications
 Predicting faulty commits
 Tian Jiang, Lin Tan, Sunghun Kim: Personalized

defect prediction. ASE 2013: 279-289
 Refining anomaly reports
 Lucia, David Lo, Lingxiao Jiang, Aditya Budi: Active

refinement of clone anomaly reports. ICSE 2012:
397-407

 Automated fixing of bugs in SQL-like queries
 Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha,

Satish Chandra: Data-guided repair of selection
statements. ICSE 2014: 243-253

207

Other Applications
 Class diagram summarization
 Ferdian Thung, David Lo, Mohd Hafeez Osman,

Michel R. V. Chaudron: Condensing class diagrams
by analyzing design and network metrics using
optimistic classification. ICPC 2014: 110-121

 Predicting effectiveness of automated fault
localization tools
 Tien-Duy B. Le, David Lo: Will Fault Localization

Work for These Failures? An Automated Approach to
Predict Effectiveness of Fault Localization Tools.
ICSM 2013: 310-319

208

Conclusion
 Part I: Pattern Mining
 Extract frequent structures from database
 Structures: Set, Sequence, Graph
 Application: Find common API patterns

 Part II: Clustering
 Group similar things together
 Approaches: k-Means, k-Medoids, Hierarchical, etc.
 Application: Group traces to reduce inspection cost

 Part III: Classification
 Predict class label of unknown data
 Approaches: Decision tree, SVM, kNN, etc.
 Application: Predict risk of software changes

209

Acknowledgements & Additional References
 Many slides and images are taken or adapted

from:
 Resource slides of: Data mining: Concepts and

Techniques, 2nd Ed., by Han et al., 2006
 Ahmed Hassan’s and Tao Xie’s slides
 The three research papers mentioned in the slides.

210

Thank you!

Questions? Comments?
davidlo@smu.edu.sg

Source Code,
Examples,

Bugs, Tests, Etc
I have not failed. I've just
found 10,000 ways that won't
work.

- Thomas A. Edison

Information Retrieval
for Software
Engineering

212

Definition
 Information retrieval (IR) is finding material
 (usually documents)
 of an unstructured nature (usually text)
 that satisfies an information need
 from within large collections

213

Software Engineering Corpora
 Real text
 Code (is text?)

How to Find
Interesting
Information

Given a Query?

214

Outline

 I. Preliminaries
 Preprocessing
 Retrieval
 Recent Studies in SE

 II. Vector Space Model
 Techniques
 Applications

 III. Language Model
 Techniques
 Applications

 IV. Topic Model
 Techniques
 Applications

 V. Text Classification
 Techniques
 Applications

215

Part I: Preliminaries

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

ResultsHow to Evaluate Results?

216

Structure
 Preprocessing:
 Document Boundary & Format
 Text Preprocessing
 Code Preprocessing

 Retrieval:
 Retrieval Model
 Evaluation Criteria

 Recent Studies in SE

217

Document Boundary & Format
Text Preprocessing
Code Preprocessing

I(A): Preprocessing

218

Document Boundary
 What is the document unit ?
 A file?
 An email?
 An email with 5 attachments?
 A group of files (ppt or latex in HTML)?
 A method ? A class ?

 Requires some design decisions.

219

Document Format
 We need to deal with format and language of each

document.
 What format is it in?
 pdf, word, excel, html, etc.

 What language is it in?
 English, Java, C#, Chinese, Hindi, etc.

 What character set is in use?

220

Text Preprocessing
 Tokenization
 Stop-word Removal
 Normalization
 Stemming
 Indexing

221

Text: Tokenization
 Breaking a document into its constituent tokens or

terms
 In a textual document, a token is typically a word.

 Example (Shakespeare’s Play):

222

Text: Stop-Word Removal
 stop words = extremely common words
 little value in helping select documents matching a

user need
 Examples: a, an, and, are, as, at, be, by, for, from,

has, he, in, is, it, its, of, on, that, the, to, was, were,
will, with

 Stop word elimination used to be standard in older
IR systems.
 However, stop words needed for phrase queries,

e.g. “president of Singapore”
 Most web search engines index stop words

223

Text: Normalization
 Need to normalize terms in indexed text as well as

query terms into the same form.
 Example: We want to match U.S.A. and USA
 We most commonly implicitly define equivalence

classes of terms.

224

Text: Stemming
 Definition of stemming: Crude heuristic process

that chops off the ends of words to reduce related
words to their root form

 Language dependent
 Example: automate, automatic, automation all

reduce to automat

225

Text: Stemming

 Porter’s Algorithm
 Most commonly used algorithm
 Five phases of reductions
 Phases are applied sequentially

 Each phase consists of a set of commands.
 Sample command: Delete final ement if what

remains is longer than 1 character
 replacement → replac
 cement → cement

226

Text: Stemming

 Stemming can increase effectiveness for some
queries, and decrease effectiveness for others

 Queries where stemming is likely to help:
 [wool sweaters], [sightseeing tour singapore]
 (equivalence classes: {sweater,sweaters},

{tour,tours})
 Queries where stemming hurts:
 [operational AND research], [operating AND

system], [operative AND dentistry]

227

Text: Stemming
 Other stemming algorithms:
 Lovins stemmer
 Paice stemmer
 Etc.

228

Text: Indexing

 Inverted Index
For each term t, we store a list of all documents that

contain t.

dictionary documents

229

Text: Indexing
 Bi-word index
 Index every consecutive pair of terms in the text as a

phrase.
 k-gram index
 Positional index
 etc.

230

Code Preprocessing
 Parsing
 Identifier Extraction
 Identifier Tokenization

231

Code: Parsing
 Creating an abstract syntax tree of the code.
 Identify which ones are variable names, which

ones are method calls, etc.
 Difficulties: Multiple languages, partial code
 Tools:
 ANTLR
 WALA

232

Code: Identifier Extraction
 Extract the names of identifiers in the code.
 Method names
 Variable names
 Parameter names
 Class names

 Extract the comments in the code
 Extract string literals in the code
 How about if/loop/switch structures ?

233

Code: Identifier Tokenization
 Break identifier names into tokens.
 printLine => print line
 System.out.println => system out println

 Many identifier names are in camel casing

 Why do we need to break identifier names?
 Do all identifiers need to be broken?

234

Retrieval Model
Evaluation Metrics

I(B): Retrieval

235

Retrieval Model

 Vector Space Model
 Model documents and queries as a vector of values

 Language Model
 Model documents and/or queries by a probability

distribution
 Probability for it to generate a word, a sequence of

words, etc.
 Topic Model
 Model documents and queries by a set of topics,

where a topic is a set of words

236

Evaluation Metrics - 1
 Unranked evaluation
 Precision (P) is the fraction of retrieved documents

that are relevant

 Recall (R) is the fraction of relevant documents
that are retrieved

237

Evaluation Metrics - 2
 Ranked evaluation
 P-R Curve
 Compute precision and recall for each “prefix”
 top 1, top 2, top 3, top 4 etc results

 Produces a precision-recall curve.
 Mean Average Precision (MAP)
 Average precision for the top k documents
 each time a relevant doc is retrieved

 Averaged over all queries

238

Identifier Expansion

I(C): Recent Studies in SE

239

Recent Studies in SE
 Dawn Lawrie, David Binkley: Expanding identifiers

to normalize source code vocabulary. ICSM 2011:
113-122

 Dave Binkley, Dawn Lawrie, Christopher Uehlinger:
Vocabulary normalization improves IR-based
concept location. ICSM 2012: 588-591

240

Expanding Identifiers: Introduction
 Language used in code and other documents must

be standardized for effective retrieval.
 A significant proportion of invented vocabulary.
 To standardize:
 Split an identifier into parts
 Expand the identifier into a word

 Closer to queries expressed in human language

241

Expanding Identifiers: Approach (Nutshell)
 Break an identifiers into many possible splits
 For each possible split, expand the identifier parts
 Expand each part by adding wildcard characters
 See if any of the resultant regular expression match

any dictionary word surrounding the identifier
 Find the best possible split and expansion
 Criterion: Maximize similarity of expanded parts
 Measure word-similarity based on co-occurrence
 Trained on a dataset of over one trillion words

collected by Google

242

Expanding Identifiers: Accuracy
 Compared with manual expansion of identifiers
 Variants: Top-1 or Top-10 splits
 Accuracy criteria:
 Identifier match: % of identifiers correctly expanded
 Word match: % of identifier parts correctly expanded

243

Expanding Identifiers: Application in Retrieval

Feature Location:
Queries (Feature Description) -> Relevant Code Units

244

Expanding Identifiers: Application in Retrieval

245

Summary: Retrieval Process

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

Results

246

Part II - Vector Space Model (VSM)
 Model documents and queries as a vector of values
 Retrieval is done by computing similarities of:
 Document and queries
 In the vector space

 Questions:
 What are the appropriate vectors of values that

represent documents?
 How to compute similarities between two vector-

based representations of documents?

247

Structure
 Techniques
 Document Representation
 Bag-of-Word Model
 Term Frequency (TF)
 Inverse Document Frequency (IDF)
 Other TF-IDF Variants

 Retrieval using VSM
 Applications
 Duplicate Bug Report Detection
 Other Applications

248

Bag-of-Word Model
Term Frequency (TF)

Inverse Document Frequency (IDF)
Other TF-IDF Variants
Retrieval using VSM

II(A): Techniques

249

Bag of Words Consideration
 It considers a document as a multi-set of its

constituent words (or terms).
 We do not consider the order of words in a

document.
 John is quicker than Mary, and
 Mary is quicker than John
are represented the same way.

250

VSM: Term Weighting (TF)
 Not all words/terms equally characterize a

document.
 If term t appears more times in a document d, that

term is more relevant to d
 We denote the number of times that a term t

occurs in a document d as tft,d
 We refer to this as term frequency (TF)

251

VSM: Term Weighting (IDF)
 Rare terms are more informative than frequent

terms
 Recall stop words

 We want a high weight for rare terms
 Consider a term in the query that is rare in the

collection (e.g., arachnocentric)
 A document containing this term is very likely to be

relevant to the query arachnocentric

252

VSM: Term Weighting (IDF)

 To do this we make use of inverse document
frequency (IDF):

 N is the total number of documents in the corpus
 dft is the document frequency of t
 the number of documents that contain t
 dft is an inverse measure of the informativeness of t
 dft ≤ N

tt N/df idf =

253

VSM: Term Weighting (TF-IDF)
 The tf-idf weight of a term is the product of its tf

weight and its idf weight.

 Increases with the number of occurrences within a
document
 Increases with the rarity of the term in the

collection

tdtdt
idftfw ,,

×=

254

VSM: Document Representation
 Each document and each query is characterized as

a vector of terms weights
 So we have a |V|-dimensional vector space
 V = set of all terms
 Terms are dimensions of the space
 Documents are points in this space

255

VSM: TF-IDF Variants

256

VSM: Retrieval

 Represent documents and queries as vectors
 Compute the similarity between the vectors
 Cosine similarity is normally used:

 Return top-k most similar documents

∑∑
∑

==

==
•

=
V

i i
V

i i

V

i ii

dq

dq

dq
dqdq

1
2

1
2

1),cos(



qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

257

An Approach to Detecting Duplicate
Bug Reports using Natural Language

and Execution Information

II(B): Applications

258

Duplicate Bug Report Detection
 Xiaoyin Wang, Lu Zhang, Jiasu Sun, Peking

University, China
 Tao Xie, North Carolina State University, USA
 John Anvik, University of Victoria, Canada

 Published in ACM/IEEE International Conference on
Software Engineering (ICSE), 2008

259

Duplicate Bug Reports: Motivation
 To improve quality of software systems, often

developers allow users to report bugs.
 Bug reporting is inherently an uncoordinated

distributed process.
 A number of reports of the same defect/bug are often

made by different users.
 This lead to a problem of duplicate bug reports.

260

Duplicate Bug Reports: Motivation
 In practice, a special developer (a triager) is often

assigned to detect duplicate reports.
 Number of bug reports are often too many for

developers to handle.
 A (semi) automated solution is needed.

261

Duplicate Bug Reports: Dataset

262

Duplicate Bug Reports: Dataset

263

Duplicate Bug Reports: Dataset
 Text Data
 Summary
 Concise text

 Description
 Longer text

 Execution Traces
 One execution trace for each bug that exhibits the

error

264

Duplicate Bug Reports: Technique
 Modeling text information
 Take summary and description of bug reports
 Perform preprocessing
 Tokenization
 Stemming
 Stop-word removal

 Create a vector of term weights using:

Dsum = Total number of documents
Dwi = Number of documents containing term i

265

Duplicate Bug Reports: Technique
 Modeling trace information
 Take method calls that appear in the execution

trace
 Treat each method as a word
 Use canonical signature of a method

 Differentiate overloaded methods
 Model it in similar way as text information
 Each method tf is either 0 or 1

 Ignore repeated method calls
 At the end, we have a vector of method weights

266

Duplicate Bug Reports: Technique
 Computing similarity
 Use cosine similarity of two vectors:

 Need to combine textual and trace information:

267

Duplicate Bug Reports: Technique
 Given a new bug report
 Return the top-k most similar bug reports that

have been reported before

268

Duplicate Bug Reports: Experiments

 Nrecalled = Number of duplicate reports whose
duplicate is detected in the top-k list

 Ntotal = Number of duplicate reports considered

269

Duplicate Bug Reports: Experiments

Consider Ex.
Trace Info

270

Other Applications
 Finding buggy files given bug descriptions
 Shaowei Wang, David Lo: Version history, similar

report, and structure: putting them together for
improved bug localization. ICPC 2014: 53-63

 Tracing high-level to low-level requirements
 Jane Huffman Hayes, Alex Dekhtyar, Senthil

Karthikeyan Sundaram, Sarah Howard: Helping
Analysts Trace Requirements: An Objective Look. RE
2004: 249-259

271

Other Applications
 Recommending relevant methods to use
 Ferdian Thung, Shaowei Wang, David Lo, Julia L.

Lawall: Automatic recommendation of API methods
from feature requests. ASE 2013: 290-300

 Locating code that corresponds to a particular
feature
 Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, Fuqing

Yang: SNIAFL: Towards a static noninteractive
approach to feature location. ACM Trans. Softw.
Eng. Methodol. 15(2): 195-226 (2006)

272

Other Applications
 Semantic search engine to find answers from

software forums
 Swapna Gottipati, David Lo, Jing Jiang: Finding

relevant answers in software forums. ASE 2011:
323-332

273

Part III - Language Model
 Model a document as a probability distribution
 Able to compute the probability of a query to belong

to the document
 Rank document based on the probability of the

query to belong to the document

274

Structure
 Techniques
 Unigram Language Model
 Language Model for IR
 Parameter Estimation
 Smoothing

 Applications
 Code Auto-Completion
 Other Applications

275

Unigram Language Model
Language Model for IR
Parameter Estimation

Smoothing

III(A): Techniques

276

277

 One-state probabilistic finite-state automaton
 State emission distribution for its one state q1
 STOP is a special symbol indicating that the

automaton stops
 string = “frog said that toad likes frog STOP”

P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 ·
0.02 = 0.0000000000048

Unigram Language Model

277

278

string = “frog said that toad likes frog STOP “
P(string|Md1) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.02 = 4.8 · 10-12

P(string|Md2) = 0.01 · 0.03 · 0.05 · 0.02 · 0.02 · 0.01 · 0.02 = 12 · 10-12

P(string|Md1) < P(string|Md2)
Thus, document d2 is “more relevant” to the string than d1 is.

A different language model for each document

278

279

 Each document d is represented by a language
model Md

 Given a query q
 Rank documents based on P(q|Md)

 How do we compute P(q|Md)?

Using language models in IR

279

280

 Make conditional independence assumption:

(|q|: length of q; tk : the token occurring at position
k in q)

 This is equivalent to:

 tft,q: term frequency (# occurrences) of t in q

How to compute P(q|Md)

280

281

 Missing piece: Where do the parameters P(t|Md) come from?
 Use the following estimate:

(|d|: length of d; tft,d : # occurrences of t in d)

 We have a problem with zeros
 A single t with P(t|Md) = 0 will make

zero
 We would give a single term “veto power”

 We need to smooth the estimates to avoid zeros

Parameter estimation

281

282

 Key intuition: A non occurring term is possible (even
though it didn’t occur), . . .

 . . . but no more likely than would be expected by chance
in the collection

 We will use to “smooth” P(t|Md) away from
zero

 Mc: the collection model;
 cft: the number of occurrences of t in the collection;
 : the total number of tokens in the

collection

= cft/T

Smoothing

282

283

 Pmix(t|Md) = λP(t|Md) + (1 - λ)P(t|Mc)
 Mixes the probability considering the document with

the probability considering the collection.

 High value of λ: “conjunctive-like” search – tends to
retrieve documents containing all query words.

 Low value of λ: more disjunctive, suitable for long queries
 Correctly setting λ is very important for good performance.

Mixture Model

283

284

 Collection: d1 and d2
 d1 : Jackson was one of the most talented entertainers of all time
 d2 : Michael Jackson anointed himself King of Pop

 Query q: Michael Jackson

 Use mixture model with λ = 1/2
 P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003
 P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

 Ranking: d2 > d1

Example

284

Other Models
 Bigram model
 K-L model
 Other models

285

On the Naturalness of Software

III(B): Applications

286

Code Auto-Completion
 Abram Hindle, Earl T. Barr, Zhendong Su, Mark

Gabel, Premkumar T. Devanbu, University of
California, Davis, USA

 Published in ACM/IEEE International Conference on
Software Engineering (ICSE), 2012

287

Naturalness of Software: Introduction
 Natural language is often repetitive and predictable
 Can be modeled by a language model

 Is software code like natural language?
 If it is could we exploit the naturalness of code?

288

Naturalness of Software: Technique
 k-gram language model:
 Token occurrences are influenced only by the

previous k-1 tokens

 For a 4-gram language model:

 Maximum Likelihood Estimate (MLE):

289

Naturalness of Software: Dataset

290

Naturalness of Software: Dataset

291

Naturalness of Software: Experiments
 Cross Entropy
 Captures how bad a language model in modeling a

new document.
 Considering a document s (i.e., a1…an) and a model

M, the cross entropy of s wrt. model M:

 PM(ai|a1…ai-1) = probability of ai happening
considering model M

 The lower the cross entropy score, the better a
language model is.

292

Is Software Natural ?

English Text

Code

293

Could it be used for auto-completion?
 Extend Eclipse IDE auto-completion function
 Use Eclipse if at least 1 recommended tokens is long
 Otherwise use both Eclipse and Language Model

 Uses a trigram model

294

Could it be used for auto-completion?
 Use a test set of 200 files to see how good is the

auto-complete.
 Keystrokes saved:

295

Other Applications
 Code auto-completion
 Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh

Nguyen, Tien N. Nguyen: A statistical semantic
language model for source code. ESEC/SIGSOFT
FSE 2013: 532-542

 Finding buggy files from bug descriptions
 Shivani Rao, Avinash C. Kak: Retrieval from

software libraries for bug localization: a comparative
study of generic and composite text models. MSR
2011: 43-52

296

Part IV: Topic Model
 Model a group of words as a topic
 Typically in a probabilistic sense

 Many recent SE papers use topic models

297

Structure
 Techniques
 Topic Modeling: Black-Box View
 Using Topic Modeling for IR
 Algorithms

 Applications
 Bug Localization
 Other Applications

298

Topic Modeling: A Black-Box View
Using Topic Modeling for IR

Algorithms

IV(A): Techniques

299

Topic Modeling: Black-Box View
 Model a document as a probability distribution of

topics
 A topic is a probability distribution of words

 Dimensionality reduction: words -> topics
 Benefit: Able to link a document and a query
 Do not share any words
 Share related words of the same topics

300

IR using Topic Model (VSM Like)
 Create topic model for a training set of documents
 Infer topic distributions of all documents in the

training set
 Infer topic distributions of new, unseen document

(query)
 Compute similarity between two distributions
 Kullback Leibner (KL) divergence
 Jensen Shannon (JS) divergence

301

IR using Topic Model (Language Model Like)

 Training a topic model computes:

 With the above we can compute:
)|(

)|(
dtopicP

topictP

∑
=

=
K

k
kk doctopicPtopictPdtP

1
)|()|()|(

 Extending to query level, we can compute:
dttf

qt

K

k
kk dtopicPtopictPdqP ,})|()|({)|(

1
∏ ∑
∈ =

=

 We can use the query likelihood model

302

Algorithms
 Probabilistic Latent Semantic Analysis (pLSA)
 Latent Dirichlet Allocation (LDA)
 Many more

303

A Topic-Based Approach for
Narrowing the Search Space of Buggy

Files from a Bug Report

IV(B): Applications

304

Bug Localization
 Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M.

Al-Kofahi, Hung Viet Nguyen, Tien N. Nguyen,
Iowa State University, USA

 Published in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2011

305

Bug Localization: Introduction
 Program is often large with hundreds/thousands of

files.
 Given a bug report, how to locate files responsible

for the bug?
 A (semi) automated solution is needed.

306

Bug Localization: Technique
 Model the similarity of bug reports and files
 At topic level

 Model the bug proneness of files
 Number of bugs in a file (based on its history)
 Size of the file

307

Bug Localization: Technique
 Computing topic similarity:
 Learn a topic model
 Find the topic distribution of a bug report
 Find the topic distribution of a source code file
 Compute the similarity using cosine similarity

 Combine topic similarity and bug proneness:

 P(s) = bug proneness score of file s
 sim(s,b) = similarity between file s and bug report b

308

Bug Localization: Experiments
 Subjects

 Accuracy
 Return top-k most likely files
 If at least one matches, then a recommendation is a

hit
 Accuracy = proportion of recommendations which

are hits

309

Bug Localization: Experiments

310

Other Applications
 Recovering links from code to documentation
 Andrian Marcus, Jonathan I. Maletic: Recovering

Documentation-to-Source-Code Traceability Links
using Latent Semantic Indexing. ICSE 2003: 125-
137

 Black-box test case prioritization
 Stephen W. Thomas, Hadi Hemmati, Ahmed E.

Hassan, Dorothea Blostein: Static test case
prioritization using topic models. Empirical Software
Engineering 19(1): 182-212 (2014)

311

Other Applications
 Duplicate bug report detection
 Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N.

Nguyen, David Lo, Chengnian Sun: Duplicate bug
report detection with a combination of information
retrieval and topic modeling. ASE 2012: 70-79

 Predicting affected components from bug reports
 Kalyanasundaram Somasundaram, Gail C. Murphy:

Automatic categorization of bug reports using latent
Dirichlet allocation. ISEC 2012: 125-130

312

Other Applications
 Recovering links from feature description to source

code implementing it
 Annibale Panichella, Bogdan Dit, Rocco Oliveto,

Massimiliano Di Penta, Denys Poshyvanyk, Andrea
De Lucia: How to effectively use topic models for
software engineering tasks? an approach based on
genetic algorithms. ICSE 2013: 522-531

313

Part V - Text Classification
 Consider a set of textual documents that are

assigned some class labels as a training dataset.
 Create a model that differentiates documents of

one class from other class(es).
 Use this model to label textual documents with

unknown labels.

314

Structure
 Techniques
 Vector space representation
 Vector space classification
 Feature selection

 Applications
 Defect Categorization
 Other Applications

315

Vector space representation
Vector space classification

Feature selection

V(A): Techniques

316

317

 Each document is a vector
 One element for each term/word
 Value of each element:
 Number of times that word appear

 Normalize each vector (document) to unit length
 High dimensionality: 100,000s of dimensions
 Terms/words are dimensions

Vector Space Representation

317

318

 The training set of documents with known class
labels.
 Labeled set of points in a high dimensional space

 We define lines, surfaces, hypersurfaces to divide
regions.

 Use classification algorithms to divide the training
sets into regions
 E.g., SVM

Vector Space Classification

318

319

 Many dimensions correspond to rare words.
 Rare words can mislead the classifier.
 Rare misleading features are called noise features.

 Eliminating noise features from the representation
 Increases efficiency and effectiveness
 Called feature selection.

Feature Selection

319

320

 A rare term ARACHNOCENTRIC happens to occur
in China documents in our training data.
 Then we may learn a classifier that incorrectly

interprets ARACHNOCENTRIC as evidence for the class
China.

 Such an incorrect generalization from an
accidental property of the training set is called
overfitting.

 Feature selection reduces overfitting and improves
the accuracy of the classifier.

Example of a Noise Feature

320

AutoODC: Automated Generation of
Orthogonal Defect Classifications

V(B): Applications

321

Defect Categorization
 LiGuo Huang, Ruili Geng, Xu Bai, Jeff Tian,

Southern Methodist University, USA
 Vincent Ng, Isaac Persing, University of Texas at

Dallas, USA

 Published in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2011

322

AutoODC: Introduction
 Developers often analyze and categorize bugs for

post-mortem investigation
 This process is often done manually
 One commonly used categorization is Orthogonal

Defect Categorization (ODC)
 Class Labels: Reliability, Capability, Security,

Usability, Requirements.
 Huang et al. would like to automate the process.

323

AutoODC: Approach

324

AutoODC: Preprocessing
 Tokenization
 Stemming
 No removal of stop words
 Normalize each vector

325

AutoODC: Learning
 Use Support Vector Machine (SVM)
 Train one SVM per class
 One-versus-others training
 Assign class of highest probability value

 Incorporation of user annotations
 User highlights part of the defect report that are

useful for classification
 Used to generate more instances (pseudo +ve/-ve)
 Used as “k-gram” like features (new features)

 Use manually constructed dictionary that define
synonymous phrases that are mapped to a common
representation (new features)

326

AutoODC: Results

Reliability Capability Security Usability Require-
ments

F-Measure 22.2% 88.5% 70.0% 62.9% 39.3%

327

Other Applications
 Predicting severity of bug reports
 Tim Menzies, Andrian Marcus: Automated severity

assessment of software defect reports. ICSM 2008:
346-355

 Predicting priority of bug reports
 Yuan Tian, David Lo, Chengnian Sun: DRONE:

Predicting Priority of Reported Bugs by Multi-factor
Analysis. ICSM 2013: 200-209

328

Other Applications
 Content categorization in software forums
 Daqing Hou, Lingfeng Mo: Content Categorization of

API Discussions. ICSM 2013: 60-69

 Filtering software microblogs
 Philips Kokoh Prasetyo, David Lo, Palakorn

Achananuparp, Yuan Tian, Ee-Peng Lim: Automatic
classification of software related microblogs. ICSM
2012: 596-599

329

Other Applications
 Recommending a developer to fix a bug report
 John Anvik, Gail C. Murphy: Reducing the effort of

bug report triage: Recommenders for development-
oriented decisions. ACM Trans. Softw. Eng.
Methodol. 20(3): 10 (2011)

330

Conclusion
 Part I: Preliminaries
 Tokeniz., Stop Word Removal, Stemming, Indexing, etc.

 Part II: Vector Space Modeling
 Model a document as a vector of term weights

 Part III: Language Model
 Model a document as a probability distribution of terms
 Query likelihood model

 Part IV: Topic Model
 Model a document as a probability distribution of topics
 Model a topic as a probability distribution of words

 Part V: Text Classification
 Convert to VSM representation
 Use standard classifiers (e.g., SVM)

331

Acknowledgements & Additional References
 Many slides and images are taken or adapted

from:
 Resource slides of: Introduction to Information

Retrieval, by Manning et al., Cambridge Press, 2008
 The research papers mentioned in the slides.

332

Thank you!

Questions? Comments?
davidlo@smu.edu.sg

	Data Analytics for Automated Software Engineering
	A Brief Self-Introduction
	A Brief Self-Introduction
	A Brief Self-Introduction
	A Brief Self-Introduction
	Focus of This Short Course
	Three Lectures
	Software Engineering: A Primer
	Slide Outline
	Part I: Software Engineering (SE)
	SE: Challenges & Problems
	SE: Challenges & Problems
	Part II: Research Topics in SE
	Topics: Software Testing and Reliability
	Software Testing and Reliability: Why Bother?
	Software Reliability: Goals
	Software Testing and Bug Finding: Goals
	SE Topics: What is Software Evolution?
	What is Software Maintenance?
	Software Maintenance – Relative Costs
	Why is Software Maintenance Expensive?
	Lehman’s Laws of Evolution
	What is a Legacy System?
	Problems of Legacy Systems
	History of Eclipse
	History of Microsoft Word
	Topics: Software Analytics
	Software Analytics: Definition
	Topics: Software Analytics
	Big Data for Software Engineering
	Part III: Software Data Sources
	Artifact: Source Code
	Artifact: Source Code
	Artifact: Source Code
	Artifact: Execution Trace
	Artifact: Execution Traces
	Artifact: Execution Trace
	Artifact: Execution Trace
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Slide Number 51
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Software Forums
	Artifact: Software Forums
	Artifact: Software Forums
	Artifact: Software Microblogs
	Artifact: Software Microblogs
	Artifact: Software Microblogs
	Part IV: Basic Program Analysis Tools
	Static Analysis
	Control Flows: Control-Flow Graphs
	Control Flows: Control Dependence
	Data Flows: Definitions / Uses
	Data Dependence Graphs
	Program/Procedural Dependence Graphs
	Tools
	Dynamic Analysis
	What is Dynamic (Program) Analysis?
	How to Run?
	Tracing / Profiling
	Tracing/Profiling by Instrumentation
	Test Case Generation: Concolic Testing
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Tools
	Conclusion
	Additional References & Acknowledgements
	Thank you!
	Data Mining for Software Engineering
	Slide Outline
	Part I: Pattern Mining
	Structure
	Slide Number 102
	Definition: Frequent Itemsets
	Definition: Association Rules
	Definition: Association Rules
	Definition: Association Rules
	Methodology
	Methodology: Apriori Algorithm
	Apriori Algorithm—An Example
	Apriori Algorithm
	Apriori Algorithm: Details
	Closed Patterns and Max-Patterns
	Closed Patterns and Max-Patterns
	Slide Number 114
	Definition: Sequential Pattern Mining
	Definition: Sequential Pattern Mining
	Methodology
	GSP—Generalized Sequential Pattern Mining
	PrefixSpan: Definition
	PrefixSpan: Approach
	PrefixSpan: Approach
	PrefixSpan: Approach
	Closed Frequent Sequences
	Slide Number 124
	Definition : Subgraph Mining
	Methodology
	Methodology: Joining two graphs
	Graph Mining and Sequence Mining
	Closed Frequent Graphs
	Slide Number 130
	Allatin: Mining Alternative Patterns
	Introduction
	Introduction
	Introduction
	Introduction
	Methodology
	Methodology
	Methodology
	Experiment
	Experiment
	Experiment
	Experiment
	Other Applications
	Other Applications
	Other Applications
	Other Applications
	Part II: Clustering
	Part II: Clustering
	Quality: What Is Good Clustering?
	Structure
	Slide Number 151
	The K-Means Clustering Method
	The K-Means Clustering Method
	Limitations
	Slide Number 155
	k-Medoids
	PAM (Partitioning Around Medoids) (1987)
	PAM (Partitioning Around Medoids) (1987)
	Slide Number 159
	Hierarchical Clustering
	AGNES (Agglomerative Nesting)
	DIANA (Divisive Analysis)
	Slide Number 163
	Slide Number 164
	Performance Debugging by Mining Stack Traces
	Introduction
	Introduction
	Methodology
	Methodology
	Methodology
	Experiment
	Experiment
	Other Applications
	Other Applications
	Other Applications
	Part III: Classification
	Classification – Model Construction
	Classification – Model Usage
	Process (1): Model Construction
	Process (2): Using the Model in Prediction
	Structure
	Slide Number 182
	Decision Tree Induction: Training Dataset
	Output: A Decision Tree for “buys_computer”
	High-Level Methodology
	High-Level Methodology
	Slide Number 187
	High-Level Methodology
	High-Level Methodology
	High-Level Methodology
	Slide Number 191
	Lazy Learner: Instance-Based Methods
	The k-Nearest Neighbor Algorithm
	Discussion on the k-NN Algorithm
	Slide Number 195
	Predicting Risk of Software Changes
	Introduction
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Result
	Other Applications
	Other Applications
	Conclusion
	Acknowledgements & Additional References
	Thank you!
	Information Retrieval for Software Engineering
	Definition
	Software Engineering Corpora
	Outline
	Part I: Preliminaries
	Structure
	Slide Number 218
	Document Boundary
	Document Format
	Text Preprocessing
	Text: Tokenization
	Text: Stop-Word Removal
	Text: Normalization
	Text: Stemming
	Text: Stemming
	Text: Stemming
	Text: Stemming
	Text: Indexing
	Text: Indexing
	 Code Preprocessing
	Code: Parsing
	Code: Identifier Extraction
	Code: Identifier Tokenization
	Slide Number 235
	Retrieval Model
	Evaluation Metrics - 1
	Evaluation Metrics - 2
	Slide Number 239
	Recent Studies in SE
	Expanding Identifiers: Introduction
	Expanding Identifiers: Approach (Nutshell)
	Expanding Identifiers: Accuracy
	Expanding Identifiers: Application in Retrieval
	Expanding Identifiers: Application in Retrieval
	Summary: Retrieval Process
	Part II - Vector Space Model (VSM)
	Structure
	Slide Number 249
	Bag of Words Consideration
	VSM: Term Weighting (TF)
	VSM: Term Weighting (IDF)
	VSM: Term Weighting (IDF)
	VSM: Term Weighting (TF-IDF)
	VSM: Document Representation
	VSM: TF-IDF Variants
	VSM: Retrieval
	Slide Number 258
	Duplicate Bug Report Detection
	Duplicate Bug Reports: Motivation
	Duplicate Bug Reports: Motivation
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Experiments
	Duplicate Bug Reports: Experiments
	Other Applications
	Other Applications
	Other Applications
	Part III - Language Model
	Structure
	Slide Number 276
	Slide Number 277
	Slide Number 278
	Slide Number 279
	Slide Number 280
	Slide Number 281
	Slide Number 282
	Slide Number 283
	Slide Number 284
	Other Models
	Slide Number 286
	Code Auto-Completion
	Naturalness of Software: Introduction
	Naturalness of Software: Technique
	Naturalness of Software: Dataset
	Naturalness of Software: Dataset
	Naturalness of Software: Experiments
	Is Software Natural ?
	Could it be used for auto-completion?
	Could it be used for auto-completion?
	Other Applications
	Part IV: Topic Model
	Structure
	Slide Number 299
	Topic Modeling: Black-Box View
	IR using Topic Model (VSM Like)
	IR using Topic Model (Language Model Like)
	Algorithms
	Slide Number 304
	Bug Localization
	Bug Localization: Introduction
	Bug Localization: Technique
	Bug Localization: Technique
	Bug Localization: Experiments
	Bug Localization: Experiments
	Other Applications
	Other Applications
	Other Applications
	Part V - Text Classification
	Structure
	Slide Number 316
	Slide Number 317
	Slide Number 318
	Slide Number 319
	Slide Number 320
	Slide Number 321
	Defect Categorization
	AutoODC: Introduction
	AutoODC: Approach
	AutoODC: Preprocessing
	AutoODC: Learning
	AutoODC: Results
	Other Applications
	Other Applications
	Other Applications
	Conclusion
	Acknowledgements & Additional References
	Thank you!

