School of)
Information Systems

GAPORE MAN. MENT
VERSITY

< SMU

Data Analytics for Automated
Software Engineering

David Lo
School of Information Systems
Singapore Management University
davidlo@smu.edu.sg

Short Course, ESSCaSS 2014, Estonia

A Brief Self-Introduction

A Brief Self-Introduction

| I
|;|. E 1I1:| ki 10350

] 7 10 mi

MALAYSIA

From
Wikipedia
—=1"10 ﬁ .
b O
Main Strait e &
% © ;‘LH 3

‘ School of wn - é ﬁ
Information Systems 10350 X
10340 A ot R TeSy

A Brief Self-Introduction

A Brief Self-Introduction

= Graduated from National Uni. Of Singapore, 2008
= Work on the intersection of software engineering and

data mining
Mining Software Traces Mining Software Text
Specification Mining Bug Report Analysis
Fault Localization Concern Localization
Malware Detection Software Forum Mining
Mining Code Mining Socio-Technical Network
Code Search Mining Developer Network
Anomaly Detection Mining Developer Microblogs
Privacy Preserving Testing Community Detection
Empirical Studies Data Mining Algorithms
Widespread Changes Sequential/Graph Pattern Mining
Feature Diffusion Discriminative Pattern Mining
Effectiveness of Exist. Tools Game Mining

Focus of This Short Course

= Highlight research problems in software
engineering

= Describe the wealth of software data available for
analysis

*= Present some data mining concepts and how it can

ne used to automate software engineering tasks

= Present some information retrieval concepts and
now it can be used to automate software
engineering tasks

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Three Lectures

|. Software Engineering (SE): A Primer
= Challenges & Problems = Data Sources
= Research Topics = Basic Tools
1. Data Mining for Automated Software Engineering
= Pattern Mining
= Clustering
= Classification
[11. Information Retrieval for Automated SE

= Vector Space Model = Topic Model
= Language Model = Text Classification

‘ Information Systems

ot
School of]x(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

\F SMU

- hal SINGAPORE MANAGEMENT
Information Systems UNIVERSITY

Software Engineering: A Primer

The most certaln wa Y to suceeed Ls
always to trgjust ONE MAOYE time,

- Thomas A, Edison

Slide Outline

= Part I: SE Challenges & Problems

= Part Il: Research Topics
= Software Testing and Reliability
= Software Maintenance and Evolution
= Software Analytics: A Recent Trend
= Part Il1l: Data Sources

= Part IV: Basic Program Analysis Tools

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Part |. Software Engineering (SE)

“Process and techniques that are followed to design,
develop, verify, validate, and maintain a software
system that satisfies a set of requirements and
properties with reasonable or low cost.”

Information Systems

ot
School of &(SMl '
SINGAPORE MANAGEMENT
UNIVERSITY

SE: Challenges & Problems

= Building and maintaining complex software system
IS challenging and costs much resources

= High cost and scarcity of qualified manpower
= Software changes over time

= Software systems are plagued with bugs and
removing them costs much resources

= Hard to ensure high reliability of complex systems

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

SE: Challenges & Problems

= Many other challenges:
= Hard to capture needs of end users

= Hard to manage developers working at
geographically disparate locations

= Ftc.

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

Part 11: Research Topics in SE

= Software Testing and Reliability

= Software Maintenance and Evolution
= Software Analytics, A Recent Trend
= Empirical Software Engineering

= Requirement Engineering

= Many more

School of]x(SMU

‘ Information Systems SINGAPORE MANAGEMENT

Topics: Software Testing and Reliability

= Software and bugs are often inseparable

= Many systems receive hundreds of bug reports
daily (Anvik et al., 2005)
= Software gets more complex
= Written in multiple languages
= Written by many people
= QOver a long period of time
* |Increases likelihood of bugs

*Anvik et al..: Coping with an open bug repository.
ETX 2005: 35-39

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Software Testing and Reliability: Why Bother?

= Software bugs cost US economy 22.2 — 59.5
billions annually (NIST, 2002)

= Many software bugs have disastrous effects

Therac-25 Ariane-5 Mars Climate
Orbiter

*National Institute of Standards and Technology
- (NIST): The Economic Impacts of Inadequate pe
nformation systems INfrastructure for Software Testing. Report 2002. < SMU

NNNNNNNNNNNNNNNNNNN

Software Reliability: Goals

= Ensure the absence of (a family of) bugs o
= Formal verification of a set of properties £ ca’ﬁ\o
= Heavyweight ges

= Prevention and early detection of bugs
= Does not guarantee the absence of bugs
= |dentify as many bugs as possible as early as ‘\6

possible °
* “Q * “Q
= Lightweight '(09“ Q‘\(\é\
g\)‘)

‘ Informatlon Systems SINGAPORE MANAGEMENT

Software Testing and Bug Finding: Goals

= Test adequacy measurement

= How thorough is a test suite?

= Does it cover all parts of a code?
» Test adequacy improvement

= How to create additional test cases?

= How to make a test suite more thorough?
= Test selection

= How to reduce the number of test cases to run
when a change Is made?

» |dentification of software bugs

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

SE Topics: What is Software Evolution?

= A piece of software system becomes gradually
more and more different than the original code

= Reasons:
= Bug fixes
= New requirements or features
= Changing environment (e.g., GUI, database, etc.)
= Code quality improvement

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

What I1s Software Maintenance?

= Changes made to existing software system
= Resulting In software evolution
= Types of maintenance tasks:
= Corrective maintenance: Bug fixes
» Perfective maintenance: New features
= Adaptive maintenance: Changing environments
* Preventive maintenance: Code quality improvement

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Software Maintenance — Relative Costs

Requirements Specification

2% / 5%

Implementation
12%

\Integration
0
0

Why Is Software Maintenance Expensive?

= Costs can be high because:

School of)
Information Systems SINGAPORE MANAGEMENT
IIIIIII TY

Inexperienced maintenance staffs

Poor code

Poor documentation

Changes may introduce new faults, which trigger further
changes

As a system is changed, its structure tends to degrade,
which makes it harder to change

Lehman’s Laws of Evolution

= A classic study by Lehman and Belady (1985)
Identified several “laws” of system change.

= Continuing change

= A program that is used in a real-world environment must
change, or become progressively less useful in that
environment

* |ncreasing complexity

= As a program evolves, it becomes more complex, and
extra resources are needed to preserve and simplify Its
structure

WORDST*R. - K SMU

INTERNATIONAL INCORPORATED

What Is a Legacy System?

= Legacy IS are large software systems
= They are old, often more than 10 years old

= They are written in a legacy language (e.qg.,
COBOL), and built around legacy databases

= Legacy ISs are autonomous, and mission critical
= They are inflexible and brittle

= They are responsible for the consumption of at least
80% of the IS budget

School of)]X(SMU
Information Systems SINGAP GEMENT

Problems of Legacy Systems

= Availablility of original developers

= Lack of documentation

= Size and complexity of the software system
= Accumulated past maintenance activities

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

History of Eclipse

‘ School of)
Information Systems

1997 — IBM VisualAge for Java (implemented In
small talk)

1999 — IBM VisualAge for Java micro-edition
(Eclipse code based from here)

2001 — Eclipse (change name for marketing issue)
2003 — Eclipse.org foundation

2005 — Eclipse V3.1

2006 — Eclipse V3.2

2014 — Eclipse V4.4

g
)
X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

History of Microsoft Word

= 1983 — MS Word for DOS
= 1985 — MS Word for Mac
= 1980 — MS Word for Windows
= 1991 — MS Word 2

= 1993 - MS Word 6

= 1995 — MS Word 95

= 1997 — MS Word 97

= 1998 — MS Word 98

= 2000 — MS Word 2000

= 2002 — MS Word XP

= 2003 — MS Word 2003

= 2014 — MS Word 2013

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Topics: Software Analytics

"Data exploration and analysis in order to obtain
iInsightful and actionable information for data-
driven tasks around software and services”

(Zhang and Xie, 2012)

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Software Analytics: Definition

= Analysis of a large amount of software data
stored In various repositories in order to:

* Understand software development process

= Hel
= Hel

0 Improve software maintenance
0 Improve software reliability

= ANQ

School of)
Information Systems

maore

Topics: Software Analytics

Coge B Vimenve a Atlassian
— i B
rdic & DI
Dl *fitbit *&\ - -
Sy
ot Ot @B =t Bugzilla

L Sears (Googles

ithub

SOCIAL CODI

9 g
| Etsy | JA ZACKS

School of

Information Systems

Big Data for Software Engineering

Atlassian

3itbucket

SSSS

‘ School of)
Information Systems

Part I11: Software Data Sources

= Source Code

= Execution Trace

= Development History
= Bug Reports

= Developer Activities
= Software Forums

= Software Microblogs
= Other Artifacts

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

—)

Artifact: Source Code

Microsoft

NET

string targetDir

fore

1

#lusrindper -

use strict

F=1

my $filename = $ARGY[O] || undef,

iy Foutput = ARG 1] || undef;

if { ldefined{$filename) or ldefined{$output))1 {
print "Usage: w\n";
print "t$0 inputfile outputfile\n”;

}

else
open (FILE, $filename);
my $data = join", <FILE=);
close FILE;
$olata =~ s/ [A-Za-20-0]4) (") P13 1 value="$3"
Fdata =~ sABMEamph i,
nnen (FILFE Tadmnben by

1[] saFiles
@"D: \devview\target"™;

ach (string file in saFiles)

FileInfo f1i = new FileInfo(file);

Directory.GetFiles(@"D: \dey

zountTests. java - Eclipse SDK

- | e |
[2 package Explorer 332 Hierarchy 8
i [—=] <§D =~

= E Banking

= /# org.edipse.banking
Elm BankAccount.java
=@ Bankaccount
o balance
@ deposit{BigDedmal)
@ getBalance()
@ withdraw(BigDedmal)
EEI---m InsufficientFundsException.java
=@ org.edipse.banking. tests
@ BankAccountTests.java
= JRE System Library [jre1.5.0_08]
&= Unit 3.8.1

string target
Streambriter sw
StreamReader sr

targetDir + “/" + fi.Name
new StreambWriter(target
new StreamReader(file);

arar

string line = "";
while ((line = sr.ReadlLine()) != null)

EE-\

'f -
0= Qutline 53

B R s e w ™
-} org.edipse.banking. tests

import dedarations

Ean

M *BankAccountTests.java

package org.eclipse.
Fimport java.math.Bic

public class Banklcc

= public void test
BankBAccount

2 4 Import ‘Bank

2 (O Create dass

B Create interi

2| @ Change to 'B

} G Create enurmr

2 Add type pal

@ Rename in fil

@ Add type pal

= publi
B

ol

a

=P

a

assertBEgual:

= public void test
BankBccount

=P

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Artifact: Source Code

= Where to find code?
* Google code: http://code.google.com/
= Many other places online

= How to analyze source code?
= Analyze -> automatically parse and understand
= Program analysis tools

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

http://code.google.com/

Artifact: Source Code

= Various languages
= Various kinds of systems
= Various scale: small, medium, large

= Various complexities
» Cyclomatic Complexity

= Various programming styles

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Artifact: Execution Trace

* |Information collected when a program Iis run

= What kind of information is collected?
= Sequences of methods that are executed
= State of various variables at various times
= State of various invariants at various times
= Which components are loaded at various times

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Artifact:

Execution Traces

nu.
.
nu.
.
nu.
.
nu.
.
nu.
nu.
nu.
nu.
nu.
nu.
nu.
nu.
nu.
nu.
nu.
nu.
.
nu.
.
nu.
.
nu.
.
nu.
.
nu.
.
nu.
nu.

fw.
far.

fuwr
fur

fw.
fuw.
fw.
fuw.

fw

fuwr
fw

fw.
fuw.
fw.
fuw.

fuwr
fur

fuwr
fur

fw

jeti
jeti

.jeti.
.jeti.

jeEtl
jeti
jeEtl
jeti

.Jjet1
fw.
fw.
fw.
fw.

jeti
jeti
jeti
jeti

.jeti.
.Jjeti.
.backend .
.baclend.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.
.plugin=.

jeti
jeti
jeti
jeti

.Jjeti
Jjeti
fw.
fuw.
fw.
fuw.

jeti
jeti
jeti
jeti

.jeti
.jeti
fw.
fuw.
fw.
fuw.

jeEtl
jeti
jetl
jeti

.Jjet1
fw.

jeti

.baclkend .
.baclkend .
baclend.
baclend .
.baclkend .
.baclkend .
.baclkend .
.baclkend .
il ChatWindow=s433406487 |nu. fw.jeti . ul.ChatWindow=433406487 |nu.fw. jeti . ul.Chat
.backend . JabberHandleré14716637 |[nu. fw. jeti backend Jabber&l12532667 |nu. fw. jeti.
.backend . Jabberé& 12532667 |nu.fvw.jeti . ul. ChatWindow=4:33406487 |nu. fw. jet1 . ui. Chat
il ChatWindow=433406487 |nu.fw.jeti . ul. ChatWindow=s4:33406487 |nu. fw. jeti . ui. Chat
.backend .

baclend
baclkend

JabberHandleréld4?16637
JabberHandlerél4716637
JabberHandleréld4?16637
JabberHandlerdél4716637
JabberHandleréld?16637
JabberHandleril4716637
JabberHandleréld?16637

.
nu.
.
nu.
nu.
nu.

nu.

fw.
fw.

fw
fuw

fw.

jeti
Jjeti

jeti.
jeti.
tw.
fw.

=1
jeti
Jjetl .

.baclkend .
.baclend.

baclend .
backend .

.baclkend .
.baclend .

baclend .

Jabberil2532667
Jabberil25326E67
Jabberil2532667
Jabberil2532667
Jabberil2d532667
Jabberil25326E67
Jabberild532667

nu.
.
nu.
.
nma.
nu .

nma.

jeti.
Jeti .
jeti.
CJjeti .
.Jjeti .
Jjeti .

.Jjeti .

Jabberi&l12532667 |nu. fw.jeti . ul . ChatWindows4&33406487 |nu. fw.jeti . ui. Chat

JabberHandleré14716637 |nu.fw. jeti backend . Jabberé&l12532667 |nu. fw. jeti.

.JabberHandleril14716637 |nu. fw. jeti backend Jabber&l12532667 |nu. fw. jeti.
.Jabberé&l12532667 |nu.fw.jeti.plugins.draving . shapes . PictureChat&l150765¢

JabberHandleré&l14716637 |nu.fvw. jeti backend Jabberé&l2532667 |nu. fw. jeti.
Jabbertl12532667 |nu.fw.jetl . plugins . drawing . shapes . PictureChat& 1507654

drawing.
drawing.
drawing.
drawing.
drawing.
drawing.
drawing.
drawing.
drawing.
drawing.

shapes .
shape=
shapes .
shapes .
shapes .
Shapes

drawing.
drawing.
drawing.
drawing.
drawing.
drawing.

ui
ui
ui
ui
ui
ui

HistorvPanel&S5049504 |nu.
HistorvyPan=el4&5049504 |nu.
HistorvPanel&S5049504 |nu.
HistorvyPan=el4&5049504 |nu.
HistorvPanel&S5049504 |nu.
HistorvPansel4&5049504 |nu.

ftw

tw.
fw.
tw.
fw.

jetl
jeti
jetl
jeti

.jetl
fw.

jeti

.plugin=s.
.plugins=.
.plugin=.
.plugins=.
.plugin=.
.plugin=.

drawing.

drawing.
drawing.
drawing.
drawing.
drawing.

shapes PictureChat$14&16548518 |nu.fw. jeti . plugins . drawing.shag
shapes PictureHistorv&23493887 |nu. fw. jeti . plugins . drawving. shs
shapes PictureHistorv&23493887 |nu. fw. jeti . plugins . drawving . ui.
ui.HistoryPan=l4&5049504 |nu. fw. jeti . plugins drawing.shapes . act
PictureHistoryi&23493887 |nu. fw. jeti . plugins . drawing. =hs:
PictureChat$14&16548518 |nu.fw. jeti . plugins.drawving.=shag
FictureChats1&7798629 |nu. fw. jeti . plugins . draving. shape
PictureHistory&23493887 |nu.fw. jet1 . plugins. drawing.
FictureHistorv&23493887 |nu. fw.jeti . plugins . drawing.
PictureHistory&23493887 |nu.fw. jeti . plugins. drawing.

Shc
=he
ui .

shapes=s .
shape= .
shape= .
shape= .
shape= .
shape=.

act
act
act
act
act
act

¢ SMU

SINGAPORE MANAGEMENT

UNIVERSITY

Artifact: Execution Trace

Chicory Trace: Variable values
decl-version 2.0 At methOd entrles and eXItS

var—conparability none

ppt org.apache. ftpEerver . gui . ServerFramne . getDefaul tEootPath{): : ENTER
ppt—tyvpe enter
parent parent org.apache.ftp=server. guil. ServerFrame: : CLASS 1
wvariable org.apache. ftp=erver gui ServerFrame. serialVersionlID
var—lkind wvariable
dec—type long
rep—tyvpe int
constant #399655106217258507
flag= nomod
conparability 22
parent org.apache.{tpserver . gul . ServerFrams:: CLASS 1
wvariable org.apache. ftpserver . gul . ServerFrames. BASE_PAGE
wvar—kind variable
dec—type java.lang.String
rep—type hashcode
flag= nomod
conparability 22
parent org.apache.{tpserver . gul . ServerFrams:: CLASS 1
wvariable org.apache. ftpserver . gul . ServerFrame. BASE_PAGE . toString
wvar—kind function toString()
enclozing—var org.apache. f tpEerver guil ServerFrame. BASE FPAGE
dec—type java.lang.String
rep—type java.lang.String
flags nomod s=ynthetic to_string
conparability 22
parent org.apache. ftpszerver gui . ServerFrame:: CLASS 1
wariable org.apache. ftpzerver gul . ServerFrams. HOME PAGE
war—kind wvariable
dec—type java.lang.String

rep—type hashcode o
School of flags nomod ‘X(SMU
InfUrma DD]TLl:IEl.I‘El.]:Ii l 1 t?- 2 2 SINGAPORE MANAGEMENT

UNIVERSITY

Artifact: Execution Trace

= How to collect?
* Insert instrumentation code
= Execute program
= Instrumentation code writes a log file

= \What tools are available to collect traces?

= Daikon Chicory:
http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html

= PIN:
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-

Instrumentation-tool
= Valgrind:
http://valgrind.org/

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://valgrind.org/

Artifact: Development History

= What code is
= Added
= Deleted
= Edited
= When
= By Whom
= For What Reason

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Artifact: Development History

5 Log Messages - Cpublc hmivos\ndor o= S|
Fraom: &/ 3/2011 - To & 9/2011 - 9"’1 Messages, authors and paths
Revision Actions Author Date i
| 60 @l victor.stanciu 3:02:51 PM, Thursday, June 09, 2011 L
55 @ wictor, stanciu 2:57:21 PM, Thursday, June 09, 2011 0
53 & 4 J victor.standu 2:47:23 PM, Thursday, June 09, 2011
57 & wictor, stanciu 2:20:50 PM, Thursday, June 09, 2011
56 @ 4 victor.stanciu 1:58:41 PM, Thursday, June 09, 2011
55 + ¥ wictor, stanciu 1:50:10 PM, Thursday, June 09, 2011
54 & 4 victor.standiu 1:47:54 PM, Thursday, June 09, 2011
53 & victor.stanciu 11:24:04 AM, Thursday, June 09, 2011 i
52 &l victor, stanciu 10:57:57 AM, Thursday, June 09, 2011 N
51 & wictor, stanciu 6:53:16 PM, Wednesday, June 08, 2011 i
50 @ wictor, stanciu 5:51:53 PM, Wednesday, June 08, 2011 !
43 @ victor.standiu 5:46:54 PM, Wednesday, June 08, 2011
43 @ wictor, stanciu 4:44: 24 PM, Wednesday, June 08, 2011 -
4 i | b
I |
]
1]
Action Path Copy from path Rewvision i |
ftrunkfwebfapplication/modules /default/controllers Page. php
ftrunkfwebfapplication/modules/default/views login/register. php
ftrunkwebfapplication/modules/default/views modules ffooter. php
ftrunkwebfapplication/modules defaultjviews /modules /navigation. php e
Showing 57 revision(s), fram revision 2 to revision 60 - 2 revision(s) selected.
[H| Hide unrelated changed paths Statistics
Stop on copyfrename
— .
Indude merged revisions
ot
‘gchom of [Show Al o] [mMextioo | [Refresh | [ok | 1< SNMU
Information System SINGATORE MANAGEMENT

Artifact: Development History

W Search Revisions

Lisk log entries from: | 2009-06-03 (YY-PMM-DD - emply means all) | Lisk

18 nvarun Jun 3, 2009 12:06:05 AM ”~
This commit ensures that this plug in is backward compatible and warks with MetBeans 6.1 as well, o
25 MY arun Jun 5, 2009 8:52:03 PM

Taq for code Fixes, .

31 My arun Jun &, 2009 1:29:05 AM

Refactored overloaded setPosition methods, removed unnecessary code ko dekect anchor in html and refactored code to add
ckatic import of certain API's.,

32 mvarun Jun 9, 2009 1:22:59 AM

Refactored some maore code.. Replaced OpenHTMLThread with more apk name OpenThreadImpl. .

I==ie #MBRCP_KOLEKTIV-1 - Can't navigate to documents when the walue of href atkribuke contains (1))

53 nvarun Jun 14, 2009 12:09:55 aM
Maoving tag inko branch

Ik Cancel || Help

School of y =
Information Systems “ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Artifact: Development History

= Useful for distributed software development
= Various people updating different parts of code
= Easy to backtrack changes
= Easier to find out answer to the question:
= My code works yesterday but not today. Why?
= Easier to quantify contributions of team members

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Artifact: Development History

= Various tools
= CVS — Version per file
= SVN — Version per snapshot
= Git - Distributed
= Slightly different ways to manage content

—

—, SUBVERSION Q}git

Information Systems

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

43

Artifact: Bug Reports

= People report errors and issues that they
encounter in the field

= These errors include:
= Description of the bugs
= Steps to reproduce the bugs
= Severity level
= Parts of the system affected by the bug
= Failure traces

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Artifact: Bug Reports

-

e'clipsecﬁ

Bugzilla - Bug 214050 Cannot update clipse

Home | New | Search | [Find] | Beports | Reguests | Help | Ne
Copyright Agent

Bug List: (1 of 1) First Last Prev Next Show last search results

Bug 214050 - Cannot update clipse T|t|e
Status: NEW

Product: Platform
Component: Update (deprecated - use RT=Equinox>p2)

Version: 3.3.1
Platform: PC Windows XP

Importance: P3 normal {vote)

School of]XT SMU

Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

Artifact: Bug Reports

Yair Eshel 2008-01-01 07:55:49 EST e ~N
Build ID: M20071023-1652 Detailed
Steps To EReproduce: Descrlptlon
1.Update eclise 3.3.1.1 from the help menu - J

2.Mark with V Eclipse RCP Patch 1 for 3.3.1.1 3.3.1.1 v20071204 3311,
on http://ftp.ocsuosl.org/pub/eclipse/eclipse/updates/3.3/site.xml
3.Next until error

More information:
Update operation has failed
Error retrieving
"plugins/com.ibm.icu3é.data.update 3.6.1.v20071204 20073.3ar". [Serve
HTTP response code: "403 Forbidden" for URL:
http://ftp.osuosl . .org/pub/eclipse/eclipse/updates/3.3/plugins/com. 1bn
Server returned HTTP response code: "403 Forbidden" for URL:
http://ftp.osuosl.org/pub/eclipse/eclipse/updates/3.3/plugins/com.ibn

Eunning on winxp

School of Jr DMU

Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

GGG T

Artifact: Bug Reports

= Various kinds of bug repositories

» BugZilla: http://www.bugzilla.org/

= Example site:
https://bugzilla.mozilla.org/

= JIRA: http://www.atlassian.com/software/jira/

= Example site:
https://issues.apache.org/jira/browse/WW

YIIIIA

‘ Informatlon Systems SINGAPORE MANAGEMENT

http://www.bugzilla.org/
https://bugzilla.mozilla.org/
http://www.atlassian.com/software/jira/
https://issues.apache.org/jira/browse/WW

Artifact: Developer Activities

= Developers form a social network
* Developers work on various projects

* Projects have various types, programming
languages and developers

= Developers follow updates from various other
developers and projects

= Social coding sites
= A heterogeneous social network is formed

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Artifact: Developer Activities

github

SOCIAL CODING

_ Atlassian

Social Coding Sites

g
.
oooooooo ‘X(S M[|
SINGAPORE MANAGEMENT
UNIVERSITY

Artifact: Developer Activities

1,701,125 people hosting over 2,990,366 repositories

jQuery, reddit, Sparkle, curl, Ruby on Rails, node js, ClickToFlash, Erfang/OTP, CakePHP, Redis, and many more Find any repository

twitker Microsoft vmware @ rednat Linkedf mozilla

git ["grt/ git-hub /'qrt hab/

Git is an extremely fast, efficient, distributed version control system GitHub is the best way to collaborate with others. Fork, send pull
ideal for the collaborative development of software. requests and manage all your public and private git repositories.

Plans, Pricing and Signup

Unlimited public repositories are free!

More than a year ago =
School of < SMU

Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

Features

Project Management Code Hosting Community

. P8 trasn £} Ousnboaed bhox 4 AccoumBeitisgs Trnsitoms StMocs Log Out I
gl!!h!',g e Every| repositoryJon GitHub comes with the tools

T — e —— — needed t.o manage your .pmject_ Open to the .
community for public projects — secured for private
Source - Commits Metwork {188] Downlonds (#0) Wisi (18] Grapha R b prj'EHﬂS.
Svich Brarchet (€« Sedch Tags (20 = Bearch Ll
umem Repostory — Fang oo
) = R L
= =l i
Collaboration Git Powered Wikis Integrated Issue Tracking Code Review
manage large teams with ease clone, push, branch and tag it bug tracking tied to commits living discussions about code
Manage Teams with Organizations s
Whether you're running an open source project or a Fortune 500 '
L . e 2 Beewi Pped Pyl lageests Teems Orpamseion Sesegn B fpaar
company. Crganizations simplify team management.
Owvrairn

e L e]

With teams you can give your developers as much or as little power as .;;um-.;mmn ' E.:.::“;.’:‘:‘“ﬁ:‘.;“
they need, from the ability to create projects on behalf of your - ' '

[

Enginssm

organization to read-only access on existing projects. '
Grnphic Designess e
{Prans App Deva —

Team permissions: Read-only, read-write, and admin-level access. s

Stmts Team A

Best of all: create as many teams with as many members as you need. e e =

Py < SMU

Information Systems

SINGAPORE MANAGEMENT
UNIVERSITY

Artifact: Developer Activities

& [Trending repositories this week v]

E pixelsign/html5-device-mockups [* 1,785 ¥ BE]

HTMLS mockups of popular devices, to showcase your portfolio...

‘ deanmalmgrenitextract w1017 P

extract text from any document. no muss. no fuss.

Imccart/p5.js w935 V41
A JS client-side library for creating graphic and interactive expe. ..

ot
,
ol o < SMU
SINGAPORE NAGE
UNIVERSITY

Information Systems (ORE MANAGEMENT

Artifact: Developer Activities

Wei Wang

onevcat

-

Kayac Inc.

Kawasaki, Japan
onevi@onevcat.com
hitp-//onev.cat

\ Joined on Sep 01, 2011

J
11k 690 92

Followers Starred

Following

\. J

‘ School of)
Information Systems

[[# Contributions Repositories & Public activity] @ Follow Lr~
mular repositories Repositories contributed to \
VVDocumenter-Xcode A objccn/articles i
Xcode plug-in which helps you write Jav... ' Articles for objccn.io. objciofI=EE « f
VVSpringCollectionViewFlow. S objcio/articles Gk
A spring-like collection view layout. The __. All current objc.io aricles
| Easy-Cal-Swift L] Alamofire/Alamofire
. y 37 s ; 176 . e : 2767 W
Owerload +* operator for Swift, make it . Elegant Metworking in Swift
XUPorter 71 4 SocialObjects-... /SOMotionDe. . 564 A
Add files and frameworks to your Xcode__. ¢ Simple library to detect mation type (wal...
Vho o supermarin/ObjectiveSugar S
Wno, just another ghost theme ? ObjectiveC additions for humans. Ruby ... 2
Public contributions
[Aug Sep = Fe AT May n url \
= BB H EEE | |
m HER N
[B] B i
m HEE N || | |
| | || i
e B B BEFE =
| EEEEEN [|
Qummar-_.- of Pull Requests, issues opened, and commits. Learn more, Less

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Artifact: Developer Activities

reddit

San Francisco, CA hitp:ifwww reddit. cominr...

Filters ~ Find a repository__

reddit Python +# 5,996 71,343
the code that powers reddit.com

Updated a day ago

reddit-plugin-liveupdate JavaScript %13 [714
the code behind reddit live

| Ipdated 2 days ago

School of]);F SMU

Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

54

Artifact: Developer Activities

= | UBitbucket | Dashboard ~ Teams ~

Repositories ~ Create

Yuki KODAMA (kuy)

hitp://blog_endflow net/
Tokyo, Japan
Member since January 2009

Overview [Followers 25 Following (@8

Teams (2]

Language ~

Q, Find repositories

@ pxpi

=3- FirePalette

O Flickr Fav set
@ GeckoFxHelperSample

Updated 2012—05%
Updated 2012-06-25

Updated 2012-06-25

Updated 2012—05@

School of)
Information Systems

Send message | Follow

@cent activity \

g befadba - Added tag 0.1.1 for changeset. ..
Commit pushed to kuy/wifihandowver
Yuki KODAMA - 2012-12-19

ﬁ 21413233 - prepare for release
Commit pushed to kuy/wifihandover
Yuki KODAMA - 2012-12-19

ﬁ 1g6a07f - Merge with default

Commit pushed to kuy/wifihandover
K Yuki KODAMA - 2012-12-149 j

< SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Artifact: Software Forums

= Developers ask and answer questions
= About various topics
= |n various threads, some of which are very long

= Stored In various sites
= StackOverflow: http://stackoverflow.com/

= SoftwareTripsAndTricks:
http://www.softwaretipsandtricks.com/forum/

Information Systems

ot
School of]X(SMl l
SINGAPORE MANAGEMENT
UNIVERSITY

http://stackoverflow.com/
http://www.softwaretipsandtricks.com/forum/

Artifact: Software Forums

Q!
=] stackoverflow EEE X I 2 K

TOP Questions interesting m featured hot week month
0 0 1 Check_mk agent based checks for monitoring each jenkins job.
votes answers view jenkins| heatm-monitnring| just now Maverick143 33

0 1 58 MimeType is always application/octet-stream
votes QEURVEM views | asp_net| flash | mime-types | uploadify | 25 ago TomTom 24.5k
0 0 1 Sys.Webforms.PageRequestManagerServerErrorException server error
votes answers view 503
c#| asp_net| windm-fs—sewer—Eﬂﬂ3| runtim&errur| 95 ago vini 482
School of i
Information Systems < SNM&AJGM

UNIVERSITY

57

Artifact: Software Forums

C++ multiple c++ files - |d: symbol(s) not found for architecture x86_64

_ _ Hello World!
CAR E E RS 2 0 II + j Have projects on BitBucket? o)
- wil \ Import them easily to your profile UL [2 2 22 E DT R
by stackoverflow edited question and answer
site for professional and
. When | put my Stack.cpp into Stack h it works just fine but, when | separate Stack.h,.cpp files it gives this enthusiast programmers.
error. | have also a main.cpp file which does nothing but includes AlgebraicExpression. h | use this command It's 100% free, no registration
0 to compile : "g++ -0 main main.cpp AlgebraicExpression.cpp Stack.cpp” required '
v
A Undefined symbeols for architecture x86_64: "Stack<char>::pop()", referenced from: about» fag»
W infix2postfix(char*) in ccKgncmm.o "Stack<char:::top()", referenced from:
infix2postfix{char*) in ccKgncmm. "Stack<char»::push{char)”, referenced from: tagged

"Stack<char»::size()", referenced from:

"Stack<char>::Stack()", referenced from: cH | x 169186

"Stack<double>::pop()”, referenced from:
"Stack<doublex::top()", referenced from:

infix2postfix{char*) in ccKgncmm.
infix2postfix(char*) in ccKgncmm.
infix2postfix(char*) in ccKgncmm.
evaluatePostfix(char*) in ccKgncmm.

2

0
o
o
o

i

templates | = 12930

]
evaluatePostfix(char*) in ccKgncmm.o "Stack<double>::push{double)”, referenced - linker | = 3820
evaluatePostfix(char*) in ccKgncmm.o "Stack<double>::Stack()”, referenced from: . -
evaluatePostfix(char*) in ccKgncmm.o 1d: symbol(s) not found for architecture x86 JETEEEEEEEEJ B

1 i | N

asked today
AlnehrairFynreezinn h viewed 13 times

‘ School of]XT SMU

Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

Artifact: Software Microblogs

= Developers microblog too

= Developers microblog about various activities
(Tian et al. 2012)

= Advertisements
= Code and tools

= News

= Q&A ’
= Events

= Opinions

" T PS *Tian et al.: What does software engineering

= F{C. community microblog about? MSR 2012: 247-250

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

5

9

Artifact: Software Microblogs

Results for #csharp L~

Tweets Top/

Kunal Chowdhury @kunal2383 1h
What's the difference between the "ref” and "out" keywords in C -
shar.es/d4aRyl #doiNet #CSharp #interviewQuestion

Expand

Rozalia Mihailescu (rozaliamih 1h
Wow! 70% off Programming Courses w/ Paul Deitel: #0356, #Android,
#Csharp, #Java, #lavascript, C++ ow ly/ggrvU #udemy

Expand

Robert W. McBean (roberdmchean 1h
plEE]SEjDir"l my linkedin network @ linkedin.comfin/robertwmcbe. ..
#csharp #it #software #yyc Fweb

Expand

L Ik B8

Lucian Mihailescu (wrointercer 1h

Wow! STILL ON! 70% off Programming Courses w/ Paul Deitel:
#1056, #Android, #Csharp, #Java, #lavascript, C++ ow Iy/gvipn
#udemy

School of EIDEII'I'L']X‘F SMU

Information Syste! SINGAPORE MANAGEMENT

UNIVERSITY

)

Artifact: Software Microblogs

© | Lastweek | Last2weeks | Last month Search for a Twitter @usemame or topic Q, search
Top Programming Languages Top Framework, Libraries, Systems and Applications

JavaScript Ruby Ada Java PHP c Apple wmicrosoft Windows

Top Software Concepts and Methodologies

Agile Open Source Unit testing

Collection Scrum Cloud Computing MVC
Factory

http://research.larc.smu.edu.sg/palanteer/swdev

School of]X(SMU
Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

5 w

http://research.larc.smu.edu.sg/palanteer/swdev

Part IV: Basic Program Analysis Tools

= Static Analysis
= Dynamic Analysis

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Static Analysis

= Control Flow Graph Construction
= Program Dependence Graph Construction

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Control Flows: Control-Flow Graphs

int main() {
(1) INnt sum =
2)int i = 1;
Bwhile (i < 11) {
(49) sum = sum + i;
® i=i+1;

+

() printfF(“%d\n”, sum);
Dprintf“%d\n”, i);
+

0;

= Control flow Is a relation that
represents the possible flow of
execution in a program.
= (&, b) in the relation means that

control can directly flow from element
a to element b6 during execution.

‘ School of)
Information Systems

Entry

-

Exit

Control Flows: Control Dependence

int main() {

@int sum = 0

in1_: 1 = 1

Wh';‘jm(:'sjmli %_{ Entry node controls nodes 1,2,3,6,7
® i=i+1: Node 3 controls nodes 4 and 5

+
() printf(“%d\n”, sum);
Dprintf“%d\n”, i);

}

= Given nodes C and N in a CFG, N Is
control-dependent on C if the
outcome of C determines if N Is

reached in the CFG.
= We call C as a controller of N.

‘ School of lx(SMU

Information Systems SINGAPORE MANAGEMENT

Data Flows: Definitions / Uses

int main() {
(1) INnt sum =
D)int i = 1;

Bwhile (i < 11) {
(4) sum = sum + i;

® i=i+1;

ks

() printf(“%d\n”, sum);
printf(“%d\n”, 1);
s

0;

= A definition-use chain or DU-chain,
for a definition D of variable v, is:

= the set of pair-wise connections

= petween D and all uses of v that D
can reach.

ot
,
st o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Data Dependence Graphs

int main() {
(1) INnt sum =
D)int i = 1;

Bwhile (i < 11) {
(4) sum = sum + i;

® i=i+1;

ks

() printf(“%d\n”, sum);
printf(“%d\n”, 1);
s

0; sum

= A data-dependence graph contains:

= one node for every program line (or an
Instruction, or a basic block, or a desired
granularity) and

= |abelled edges that correspond to DU-
chains.

‘ School of lx(SMU

Information Systems SINGAPORE MANAGEMENT

Program/Procedural Dependence Graphs

int main() {

(1) Int sum = 0;

D)int i = 1;

Bwhile (i < 11) {
(4)

sum = sum + 1;
® i=i+1;
¥
() printf(“%d\n”, sum);
printf(“%d\n”, 1);
¥

= PDGs are control- and
data-dependence graphs
= Capture “semantics”
= EXpose parallelism
= Facilitate debugging

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Tools

= Program analysis platforms
= WALA: http://wala.sourceforge.net/wiki/index.php/Main_Page
= Chord: http://code.gooagle.com/p/jchord/
= ROSE: http://www.rosecompiler.org/

= Other tools
= JPF: http://babelfish.arc.nasa.qgov/trac/jpf
= BLAST: http://mtc.epfl.ch/software-tools/blast/index-epfl.php
= ESC/Java: http://kindsoftware.com/products/opensource/ESCJava2/
= SPIN: http://spinroot.com/spin/whatispin.html
= PAT: http://www.comp.nus.edu.sg/~pat/
= Choco: http://www.emn.fr/z-info/choco-solver/
» Yices: http://yices.csl.sri.com/
= STP: https://sites.google.com/site/stpfastprover/STP-Fast-Prover
= Z3: http://z3.codeplex.com/ B

Information Systems

http://wala.sourceforge.net/wiki/index.php/Main_Page
http://code.google.com/p/jchord/
http://www.rosecompiler.org/
http://babelfish.arc.nasa.gov/trac/jpf
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://kindsoftware.com/products/opensource/ESCJava2/
http://spinroot.com/spin/whatispin.html
http://www.comp.nus.edu.sg/%7Epat/
http://www.emn.fr/z-info/choco-solver/
http://yices.csl.sri.com/
https://sites.google.com/site/stpfastprover/STP-Fast-Prover
http://z3.codeplex.com/

Dynamic Analysis

= [Instrumentation
= Test Case Generation

o
,
Sl o > SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

What is Dynamic (Program) Analysis?

= Basically
= Run a program
= Monitor program states during/after the executions
= Extract useful information/properties about the program

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

How to Run?

= Testing
= Choose good test cases
= The test suite determines the expense
* In time and space

= The test suite determines the accuracy
= \What executions are seen or not seen

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Tracing / Profiling

= Tracing: Record faithfully (lossless) detailed information of
program executions

= Control flow tracing
= Sequence of executed statements.

= Dependence tracing
= Sequence of exercised dependences.

= Value tracing
= Sequence of values produced by each instruction.

= Memory access tracing
= Sequence of memory references during an execution

= Profiling: Record aggregated (lossy) information about
program executions

= Control flow profiling: execution frequencies of instructions

‘ School of

nomai® sSMajue profiling: occurrence frequencies of values < SMU

IIIIIII

Tracing/Profiling by Instrumentation

= Source code instrumentation
= Binary instrumentation

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

74

Test Case Generation: Concolic Testing

= Goal: find actual inputs that exhibit an error or execute as many
program elements as possible

= By exploring different execution paths

1) Start with an execution with random inputs
2) Collect the path conditions for the execution
3) Negate some of the path conditions
= SO0 as to be used as the path conditions for the next execution
which should follow a different path
4) Solve the new path conditions to get actual values for the inputs
= The execution using these new inputs should follow a different path

5) Repeat 2)—4) until no more new paths to explore

*Godefroid et al.. DART: directed automated random testing.
PLDI 2005: 213-223
*Sen et al.: CUTE: a concolic unit testing engine for C. N
School of ESEC/SIGSOFT FSE 2005: 263-272 gxﬁ SMU

Information Systems

AGEMENT

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic

int double (int v) { Execution Execution
return 2*v; concrete symbolic path

} state state condition

void testme (int x, inty) {
X=22,y=17 X=X Y =Yo
z = double (y);

if (z==x) {
if (x >y+10) {

ERROR;

¥
ol . + k< SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic
int double (int v) { Execution Execution
return 2*v; concrete symbolic path
} state state condition
void testme (int X, inty) {
z = double (y);
X=22,y=1, X =Xo Y = Yo
|f(z ==)(){ z=14 z:2*yo
if (x >y+10) {
ERROR;
}
}
} _
‘School of v v kX SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic
int double (int v) { Execution Execution
return 2*v; concrete symbolic path
Y state state condition
void testme (int x, inty) {
z = double (y);
if (z==x){ 2%y, 1= X,
if (x> y+10) {
ERROR;
}
}
_ X:22,y:71 X=Xo Y = Yo
} z=14 zZ = 2%y,
‘School of v v]X(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic

int double (int v) { Execution Execution
return 2*v; concrete symbolic path

¥ state state condition

void testme (int x, int
(2 Solve: 2*y, == X,

z = double (y); Solution: X, = 2,y, =1

if (z==x) { 2%y, 1= X,

if (x >y+10) {

ERROR;
¥
b
_ X:22’y:7’ X:XO’y:yO’
} z=14 Z = 2%y,
fri;gilr;;tion Systems v " SNMEAJM

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic

int double (int v) { Execution Execution
return 2*v; concrete symbolic path

¥ state state condition

void testme (int x, inty) {

— X:2,y:l X:XO’y:yO

z = double (y);
if (z==x) {
if (x >y+10) {

ERROR;

by
‘School of v v lx(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic
int double (int v) { Execution Execution
return 2*v; concrete symbolic path
¥ state state condition
void testme (int x, inty) {
z = double (y);
X=2,y=1, X=X, Y = Yo
if(z::x){ z=2 Z = 2%y,
if (x >y+10) {
ERROR;
¥
b
} —
‘School of v v]x(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic
int double (int v) { Execution Execution
return 2*v; concrete symbolic path
¥ state state condition
void testme (int x, inty) {
z = double (y);
if (z==x){ 2%y == Xo
_ X=2,y=1, X=X, Y = Yo
Iif (x >y+10) { z=2 z = 2*y,
ERROR;
¥
¥
} —
‘School of v v]X(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic
Int double (int v) { Execution Execution
return 2*v; concrete symbolic path
¥ state state condition
void testme (int x, inty) {
z = double (y);
if (z==x) { 2%y == X
if (x >y+10) { X <= Yo+10
ERROR;
¥
¥
— X:2,y:1, X:XO,y:yO,
} z=2 z = 2%y, _
‘School of v v]X(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x){
if (x> y+10) {

ERROR;

}

School of)
Information Systems

Concrete Symbolic
Execution Execution

path
condition

symbolic
state

concrete
state

Solve: (2*y, == Xp) /\ (Xo > Yy, + 10)

Solution: x, = 30, y, = 15

2%y == Xo
Xp <= Yo +10
X:2’y—1 X:XO’y:yO’
z=2 Z = 2%y, _
v v K< SMU

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic

int double (int v) { Execution Execution
return 2*v; concrete symbolic path

¥ state state condition

void testme (int x, inty) {

x=30,y=15 X=Xy Y=Y
z = double (y);

if (z==x) {
if (x >y+10) {

ERROR;

by
‘School of v v lx(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

int double (int v) {

return 2*v;

}

void testme (int x, int y) {
z = double (y);
if (z==x){
if (x> y+10) {

ERROR;

}

School of)
Information Systems

Concrete Symbolic
Execution Execution
concrete symbolic path
state condition
Program Error
2%y == Xo
Xo> Yo +10

x=30,y=15

X=X Y =Yo

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic

int foo (int v) { Execution Execution
return (v*v) % 50; concrete symbolic path

¥ state state condition

void testme (int x, inty) {

— X:22,y:7 X=X0Y =Yo
z = foo (y);
if (z==x) {

if (x >y+10) {

ERROR;

¥
‘School of v v lx(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, inty) {
z = foo (y);
if (z==x){
if (x> y+10) {
ERROR;
}
}

———————
}

School of)
Information Systems

concrete
Execution

symbolic

concrete
state

state

Symbolic
Execution

path
condition

Solve: (yo*y,)%50 == X,
Don’t know how to solvel
Stuck?

X=22,y=1,
z =49

X=X Y = Yo
z = (Yo™Y0)%50

(Yo*Y0) %050 =X,

Concolic Testing: Symbolic & Concrete Executions

Concrete Symbolic
Execution Execution

path
condition

symbolic
state

concrete
state

void testme (int x, inty) { Solve: foo (yg) == x
. 0o/ —— 0

z = foo (y); Don’t know how to solve!

. 2

if (z==x){ Stuck’ foo (Yo) '=Xo
if (x >y+10) {

ERROR;

}

}

— X:221y:71 X:X01y:y07

} z =49 Z = (Yp*Yo)%050
‘fﬁ;g?rﬁfation Systems v " SNJ\Q}AJM

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic
int foo (int v) { Execution Execution
return (v*v) % 50; concrete symbolic path
¥ state state condition
void testme (int x, inty) { Solve: (yo*yq 19650 == xg
z = foo (y); Don’t know how to solve!
_ Not Stuck!
Tz ==x1 Use concrete state (¥0™¥0) %050 1=X,
if (x >y+10) { Replace y, by 7
ERROR;
}
}
— X:221y:71 X:X01y:y07
} z =49 Z = (Yp*Yo)%050
School of

Information Systems v " SNMU PMENT

Concolic Testing: Symbolic & Concrete Executions

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, int y) {
z = foo (y);
if (z==x){
if (x> y+10) {

ERROR;

}

‘ School of)
Information Systems

Concrete Symbolic
Execution Execution
concrete symbolic path
state state condition
Solve: 49 == x,
Solution : X, =49,y,=7
49 1=x,
X=22,y=7, | X=XpY= Yo
z =48 z=49(_

Concolic Testing: Symbolic & Concrete Executions

_ _ Concrete Symbolic

int foo (int v) { Execution Execution
return (v*v) % 50; concrete symbolic path

¥ state state condition

void testme (int x, inty) {
X=49,y=7 X=Xo Y = Yo
z = foo (y);

if (z==x) {
if (x >y+10) {

ERROR;

¥
‘School of v v lx(SMU

Information Systems SINGAPORE MANAGEMENT

Concolic Testing: Symbolic & Concrete Executions

Concrete Symbolic

int foo (int v) { Execution Execution

return (v*v) % 50; symbolic path
} state condition
void testme (int x, inty) {
Program Error
z = foo (y);
if (z==x) { 2%Yo == Xo
if (x >y+10) { Xy > Yo+10
) X=49,y =7, X=Xy Y=V,
ERROR; z =49 i Z = 1(1)9
¥
¥
} —
‘School of v v]X(SMU

Information Systems SINGAPORE MANAGEMENT

Tools

= Program instrumentation and analysis frameworks
= CIL: http://cil.sourceforge.net/

Valgrind: http://valgrind.org/

Daikon: http://groups.csail.mit.edu/pag/daikon/

Jikes: http://jikes.sourceforge.net/

QEMU: http://wiki.gemu.org/Main_Page

Pin: http://www.pintool.org/

= Omega: http://www.cs.umd.edu/projects/omega/

= Test case generation
= Korat: http://korat.sourceforge.net/
= CUTE: http://srl.cs.berkeley.edu/—ksen/doku.php

CREST: http://crest.qooglecode.com/ ;SMQ

Information Systems

http://cil.sourceforge.net/
http://valgrind.org/
http://groups.csail.mit.edu/pag/daikon/
http://jikes.sourceforge.net/
http://wiki.qemu.org/Main_Page
http://www.pintool.org/
http://www.cs.umd.edu/projects/omega/
http://korat.sourceforge.net/
http://srl.cs.berkeley.edu/%7Eksen/doku.php
http://crest.googlecode.com/

Conclusion

= Part I: Challenges & Problems
= High software cost
= Ensuring reliability of systems
= Part Il: Research Topics
= Software testing and reliability
= Software maintenance and evolution
= Software analytics
= Part Ill: Data Sources

= Code, traces, history, bug reports, developer activities,
forums, microblogs, etc.

= Part IV: Basic Program Analysis Tools
= Static analysis
= Dynamic analysis ~

Information Systems

Additional References & Acknowledgements

= Some slides and images are taken or adapted from:
= Ying Zou’'s, Ahmed Hassan’s and Tao Xie’s slides
= Lingxiao Jiang’s slides
(from SMU’s 1S706 slides that we co-taught together)
= Mauro Pezze's and Michal Young’s slides
(from the resource slides of their book)

SOFTWARE TESTING

AND ANALYSIS Prihﬁiples
' of Program
+ Analysis

‘ Informatlon Systems

Thank you!

Questions? Comments?

davidlo@smu.edu.sg
‘ Isri;gilrﬁfation Systems 3 USN%&E}M{GM

School of

Information Systems

Data Mining for
Software Engineering

Gentus is 1% tnspiration and 99%
persplration!

-Thomwmas A, Edison

98

Slide Outline

= Part |: Pattern Mining
= Techniques
= Applications

= Part Il: Clustering
= Techniques
= Applications

= Part Ill: Classification
= Techniques
= Applications

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

Part I. Pattern Mining

= Frequent pattern: a pattern (a set of items,
subsequences, substructures, etc.) that occurs
many times in a data set

= Motivation: Finding inherent regularities in data
= What products were often purchased together?
= What are the subsequent purchases after buying a PC?

= What kinds of DNA are sensitive to this new drug?

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Structure

= Techniques
= Association Rule Mining
= Sequential Pattern Mining
= Subgraph Mining
= Applications
= Allatin: Mining Alternative Patterns
= Other Applications

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

|(A): Pattern Mining Techniques

Association Rule Mining

Sch
‘ Information Systems

ot
,
oot o 5 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Definition: Frequent Itemsets

= Frequent pattern mining: find all
frequent itemsets in a database

= |temset: a set of items Transaction database TDB

= £.g.,,acm={a, ¢, m
J { ! TID Items bought

= Support of itemsets 100 |f a,c,d, g,i,m,p

= Sup(acm)=3 200 |a,b.c flm, o

= Glven min_sup = 3, acm s a 300 |b.f hj o

frequent pattern 400 |b,c, ks, p

500 |a,f,c,e |, p,mn

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

103

Definition: Assoclation Rules

= Find all the rules X = Y with minimum support and
confidence
= support, s, number of transactions contain X U Y

= confidence, c, conditional probability that a transaction
having X also contains Y

* |[temsets should be frequent
= |t can be applied extensively

= Rules should be confident
= With strong prediction capability

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Definition: Assoclation Rules

* buy(diaper) = buy(beer)
= Dads taking care of babies in weekends drink beer

Customer
buys both

Customer
buys diaper

Customer
buys beer

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Definition: Assoclation Rules

Transaction-id

Items bought

10 A, B, D
20 A C D
30 A, D E
40 B, E, F
50 B,C,D,EF

= Let min-sup = 3, min-conf = 50%
» freq. FPat.. {A:3, B:3, D:4, E:3, AD:5}
= Association rules:

= A> D (3, 100%)
= D> A (3, 75%)

School of)
Information Systems

g
)
X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Methodology

* The downward closure property of frequent
patterns
= Any subset of a frequent itemset must be frequent
= |If {beer, diaper, nuts} is frequent, so is {beer, diaper}
= |.e., every transaction having {beer, diaper, nuts} also
contains {beer, diaper}
= Scalable mining methods:
= Apriori (Agrawal & Srikant@VLDB’94) <::|

* Freq. pattern growth (FPgrowth—Han, Pei & Yin
@SIGMOD’00)

= Vertical data format approach (Charm—Zaki & Hsiao

@SDM'02) _.

Information Systems

107

Methodology: Apriori Algorithm

= Apriori pruning principle:

= If there is any itemset which is infrequent, Its
superset should not be generated/tested!

= Method.:
= Initially, scan DB once to get frequent 1-itemset

= Generate length (k+1) candidate itemsets from
length k frequent itemsets

= Test the candidates against DB

= Terminate when no frequent or candidate set

n be generated . SMU

‘ Informatlon Systems SINGAPORE MANAGEMENT

Apriori Algorithm—An Example

SUPnin =2 | Itemset | sup
Database TDB A > Itemset | sup
. L, {A} 2
Tid Items C, {B} 3 5} 3
10 A C, D
1st scan i ° — {C} 3
o | soE | Msoan S
30 | ABCE (E} 3
40 B, E
C,| Itemset | sup C @
¢ pliemeet
L, | Itemset | sup {A) > 2nd scan {A, B}
Cotz! oo (4.
{B’ 5 2 ~— | {B,C} 2 {A, E}
{C, E} 2 {B, E} 3 {B, C}
@ : {C, E} 2 {B, E}
{C, E}
03 Itemset 3d scan Ly Itemset | sup
> B,C,E 2 ey
‘Schoo\ of {B’ C’ E} { } &X(éMMHAGEMENT

Information Syst

ms

Apriori Algorithm

= Pseudo-code:
C,. Candidate itemset of size k

L, : frequent itemset of size k

L, = {frequent items};
for (k=1; L, '=3; k++) do begin
C..; = candidates generated from L,;
for each transaction 7in database do
Increment the count of all candidates in C,,
that are contained in ¢
L.,;, = candidates in C,,; with min_support
end
return U, L;;

School of)
Information Systems SINGAPORE MANAGEMENT
IIIIIII TY

Apriori Algorithm: Detalls

= How to generate candidates?
= Step 1: self-joining L,
= Step 2: pruning
= Example of Candidate-generation
» [,={abc, aba, acd, ace, bca}
= Self-joining: L;*L,
= abcd from abc and abd
= acde from acd and ace

= Pruning:
= acdeis removed because adeis notin L,

= C~{abca}

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Closed Patterns and Max-Patterns

= A long pattern contains a combinatorial number of sub-
patterns, e.g., {a,, ..., 8,90} contains 210 -1 = 1.27*1030
sub-patterns!

= Solution: Mine closed patterns and max-patterns instead

= An itemset X is closed if X is frequent and there exists no
super-patternY > X, with the same support as X
(proposed by Pasquier, et al. @ ICDT’99)

= Closed pattern is a lossless compression of freq. patterns
* Reducing the # of patterns and rules

= An itemset X Is a max-pattern if X is frequent and there
exists no frequent super-pattern Y > X (proposed by

Bayardo @ SIGMOD’98) s

Information Systems

112

Closed Patterns and Max-Patterns

= Exercise. DB = {ay, ..., a;00}, {84s -+, 5o}
= Min_sup = 1.
= What Is the set of closed itemset?
" {ag, .., Aok 1
" {8y, .y B50): 2
= What Is the set of max-pattern?
" {ag, .., Aok 1

= What Is the set of all patterns?
.l

Information Systems

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

I(A): Pattern Mining Techniques

Sequential Pattern Mining

Sch
‘ Information Systems

ot
,
oot < SMU
SINGAPORE MANAGEMENT
UNIVERSITY
114

Definition: Sequential Pattern Mining

= Glven a set of sequences, find the complete set of
frequent subsequences

A sequence : <|(ef) (ab) (df)icb >

T\

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Definition: Sequential Pattern Mining

A sequence database

SID Sequence Given support threshold
10 <a(abc)(ac)d(cf)> min_sup =2
20 <(ad)c(bc)(ae)> — ’
30 =(eN)(ab)(dP b= <(ab)c> IS a frequent
40 <eg(af)cbc> sequential pattern
<(ab)c> <(ab)c>
IS a subsequence of IS a subsequence of
<a(abc)(ac)d(cf)> <(ef)(ab)(df)cb>

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

116

Methodology

= A basic property: Apriori (Agrawal & Srikant’94)
= |f a sequence S is not freguent

= Then none of the super-sequences of S is frequent

* E.g, <hb> is infrequent - so do <hab> and
<(ah)b>

= Many algorithms:
= Apriori (Agrawal & Srikant'94): GSP <::|

= PrefixSpan <::|

= BIDE, etc.

School of

Information Systems \ SINGAPORE MANAGEMENT
UNIVERSITY

GSP—Generalized Sequential Pattern Mining

* Proposed by Agrawal and Srikant, EDBT'96

= Qutline of the method
= Initially, every item in DB is a candidate of length-1

= For each level (i.e., sequences of length-k) do

= Scan database to collect support count for each
candidate sequence

» Generate candidate length-(k+1) sequences from
length-k frequent sequences using Apriori

= Repeat until no frequent sequence or no candidate
can be found

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

PrefixSpan: Definition

= Prefix and Suffix (Projection)

" <a>, <aa>, <a(ab)> and <a(abc)> are prefixes
of sequence <a(abc)(ac)d(cf)>

= Glven sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)
<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)=>

g
.
oooooooo ‘X(S M| |
SINGAPORE MANAGEMENT
UNIVERSITY

PrefixSpan: Approach

= Step 1: find length-1 sequential patterns
n <g> , <c>, <d>, <e>, <f>

= Step 2: divide search space. The complete set of
seg. pat. can be partitioned into 6 subsets:
= The ones having prefix <a>;
= The ones having prefix ;

. SID sequence

10 <a(abc)(ac)d(cf)>

= The ones having prefix <f> 20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Information Systems

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

120

PrefixSpan: Approach

= Only need to consider projections w.r.t. <a=

= <a>-projected database: <(abc)(ac)d(cf)>,
<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

= Find all the length-2 seq. pat. having prefix <a>:
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

= Further partition into 6 subsets

» Having prefix <aa>; SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>

m Having prefix <af> 30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

Information Systems

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

121

PrefixSpan: Approach

SID sequence

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>

<eg(af)cbc>
Having prefix <c>, ..., <f>
Having prefix <a%g pref&
<a>-projected database -projected database
<(abc)(ac)d(cf)> Length-2 sequential
<(_d)c(bc)(ae)> patterns
<(_b)(df)cb> <aa>, <ab>, <(ab)>,
<(_f)cbc> <ac>, <ad>, <af>
Havin%‘ix <aa> Ha>\gz prefix <af>
School of ST]XT SMU

Information Systems SINGAPORE MANAGEMENT

Closed Frequent Seqguences

= Motivation: Handling sequential pattern explosion
problem

* Closed frequent sequence

= A frequent (sub) sequence S is closed If there
exists no supersequence of S that carries the
same support as S

= |If some of S’s subsequences have the same
support, it is unnecessary to output these
subsequences (nonclosed sequences)

= Lossless compression: still ensures that the
mining result is complete

‘ School of)]x(SMU
Information Systems GEMENT

I(A): Pattern Mining Techniques

Subgraph Mining

Sch
‘ Information Systems

ot
,
oot < SMU
SINGAPORE MANAGEMENT
UNIVERSITY
124

Definition : Subgraph Mining

= Frequent subgraphs

= A (sub)graph is frequent if its support
(occurrence frequency) in a given dataset is no
less than a minimum support threshold

= Applications of graph pattern mining
= Mining biochemical structures
= Program control flow analysis

= Building blocks for graph classification, clustering,

compression, etc.
School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Methodology

size-(k+2)

Size—(k+1)/ O
=0

size—k/ duplicate
/ graph

ot
,
oooooooo < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Methodology: Joining two graphs

. >

= AGM (Inokuchi, et al. PKDD’00)
= generates new graphs with one more node

= FSG (Kuramochi and Karypis ICDM’01)
= generates new graphs with one more edge

‘ Information Systems

ot
School of]x(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Graph Mining and Sequence Mining

* Flatten a graph into a sequence using depth first
search

e0: (0,1)
el: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)

School of]X(SMU
Information Systems SINGATORE MANAGEMENT

Closed Frequent Graphs

= Motivation: Handling graph pattern explosion
problem

* Closed frequent graph

= A frequent graph G is closed If there exists no

supergraph of G that carries the same support
as G

= If some of G’s subgraphs have the same support,
It IS unnecessary to output these subgraphs
(nonclosed graphs)

= Lossless compression: still ensures that the
mining result is complete

‘ School of)]x(SMU
Information Systems GEMENT

1(B): Pattern Mining Applications

Allatin: Mining Alternating Patterns
for Defect Detection

Allatin: Mining Alternative Patterns

= Suresh Thummalapenta, IBM Research
= Tao Xie, North Carolina State University

= Published in Automated Software Engineering
Journal, 2011

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Introduction

= Programming rules often exists for APIs

00:String printEntriesl (ArrayList<String>
entries) {

01:

02: Iterator 1t = entries.iterator();...

03: 1f (i1t.hasNext()) |

04 : String last = (String) it.next();... }}

= These programming rules are often not
documented well

‘ School of Ik SMU

Information Systems SINGAPORE MANAGEMENT

Introduction

= Allatin recovers common usages of APIs

= Expressed as simple patterns:

= P71 = Boolean-check on return of lterator.hasNext
before /terator.next

= Patterns are mined by looking to many code pieces
that use the API before In the internet.

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Introduction

= There might be various acceptable usages

00:String printEntries?2 (ArrayList<String>
entries) {

01:

02: 1if (entries.size() > 0) {

03: Tterator 1t = entries.iterator() ;...

04 : String last = (String) i1t.next();... }}

= Alternative pattern: P2 = Constant-check on return
of ArrayList.size before [terator.next

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Introduction

= Allatin recovers a combination of simple patterns
= And patterns: P1 AND P2
= Or patterns: P1 OR P2
= XOR patterns: P1 XOR P2
= Combo patterns: (P1 AND P2) XOR P3

= The patterns are used to detect neglected
conditions

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Methodology

= Phase 1. Gathering code examples

= Phase 2: Generating pattern candidates

= Focus on condition checks before and after API
method invocations

* Phase 3: Mining alternative patterns
= Phase 4. Detect neglected conditions

School of]x(SMU

‘ Information Systems SINGAPORE MANAGEMENT

Methodology

= Algorithm
= Starts with small pattern

= Combines them by various operators
1v2v3v4 {1.0}

P

1v2 {1.0} 1v3{0.83} 1v4{0.67} 2v3{0.5} 2v4 {0.83} 3v4 {0.67
< 7< N a
1 {0.67) 2 {0.33} 3 {0.33} 4 {0.5}
_ v\/7 7
® {

School ot : ‘X\ DMU
‘ Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

Methodology

= Limitation
= Employ a number of ad-hoc heuristics

= If “A AND B” and “A XOR B” have support >= min-
sup then the right pattern is “A OR B”

= No guarantee that a complete set of patterns are
mined

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Experiment

Method: JarInputStream.read (bytel[], int, int)
A. And Pattern

Pattern: Py, SUP(P;): 0.63

P;: “const-check on the return of JarInputStream.read
with -17

B. Or Pattern

Pattern: “ Py v P>”. SUP(Py v Pr): 0.67

P;: “const-check on the return of JarInputStream.read
with -17

P>: "null-check on the return of

JarInputStream.getNextJarEntry () before
JarInputStream.read’

School of

] —
Information Systems 3 SNEU

IIIIIII

Experiment

C. Xor Patterns

Pattern: *“P;”, SUP(P;): 0.63

Pi: “const-check on the return of JarInputStream.read
with -17

Pattern: “P> @ P3”. SUP(P> @ P3): 0.52

P>: “null-check on the return of

JarInputStream.getNextJarEntry () before
JarInputStream.read’

P3: “null-check on the return of
JarInputStream.getNextEntry () before
JarInputStream.read’

School of

] —
Information Systems 3 SNNEU

IIIIIII

Experiment

D. Combo Pattern

Pattern: “Py v (P> @ P3) 7. SUP(P; v (P2 @ P3)): 0.67

P;: “const-check on the return of JarInputStream.read
with -17

P>: “null-check on the return of

JarInputStream.getNextJarEntry () before
JarInputStream.read”
P3: “null-check on the return of

JarInputStream.getNextEntry () before
JarInputStream.read”

School of)
Information Systems

Experiment

Application # Real | And patterns Or patterns
defects | Total #RD #FN % #FP % Total #RD #FEN % #FP %

Columba 49 117 26 23 47 91 78 113 41 8 163 72 63.7

Hibernate | 22 903 14 8 36 71 76 177 17 5 2277 160 904

Hsqldb 6 13 6 0 0 7 53.8 5 5 1 16.7 0 0

BCEL 1 2 0 1 100 2 100 13 0 0 12923
Xor patterns Combo patterns

Total #RD #FN % #FP % Total #RD #FN % #FP %

Columba 49 164 49 0 0 115 73 144 47 2 4 97 67
Hibernate 22 214 21 1 45 193 90.2 195 19 3 13.6 176 90.3
HsqlDB 6 11 6 0 0 5 455 10 6 0 0 4 40
BCEL 1 20 1 0 0 19 095 16 0 0 15 0938

““““““““ LUC OIVILIY

ANAGEMENT
UNIVERSITY

Other Applications

= Mining temporal specifications
= Zhenmin Li, Yuanyuan Zhou: PR-Miner:
automatically extracting implicit programming rules

and detecting violations in large software code.
ESEC/SIGSOFT FSE 2005: 306-315

= David Lo, Siau-Cheng Khoo, Chao Liu: Efficient
mining of iterative patterns for software
specification discovery. KDD 2007: 460-469

= David Lo, Bolin Ding, Lucia, Jiawei Han: Bidirectional
mining of non-redundant recurrent rules from a
sequence database. ICDE 2011: 1043-1054

‘ School of)]x(SMU
Information Systems SINGATORE MANAGEMENT

Other Applications

= Mining temporal specifications (cont)

= David Lo, Jinyan Li, Limsoon Wong, Siau-Cheng
Khoo: Mining lterative Generators and
Representative Rules for Software Specification

Discovery. IEEE Trans. Knowl. Data Eng. 23(2):
282-296 (2011)

= Detecting duplicate bug reports

= David Lo, Hong Cheng, Lucia: Mining closed
discriminative dyadic sequential patterns. EDBT
2011: 21-32

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Other Applications

= Bug and failure identification

= Hwa-You Hsu, James A. Jones, Alessandro Orso:

Rapid: lIdentifying Bug Signatures to Support
Debugging Activities. ASE 2008: 439-442

= Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang,
Xifeng Yan: Identifying bug signatures using
discriminative graph mining. ISSTA 2009: 141-152

= David Lo, Hong Cheng, Jiawel Han, Siau-Cheng
Khoo, Chengnian Sun: Classification of software
pehaviors for failure detection: a discriminative
pattern mining approach. KDD 2009: 557-566

School of

> SMU
‘Informatlon Systems k SINGAPORE MANAGEMENT
UNIVERSITY

Other Applications

= Predicting project outcome

= Didi Surian, Yuan Tian, David Lo, Hong Cheng, Ee-
Peng Lim: Predicting Project Outcome Leveraging
Socio-Technical Network Patterns. CSMR 2013: 47-
56

= Detecting co-occurring changes

= Thomas Zimmermann, Peter Weil3gerber, Stephan
Diehl, Andreas Zeller: Mining Version Histories to
Guide Software Changes. ICSE 2004: 563-572

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Part I1: Clustering

= Cluster: a collection of data objects
= Similar to one another within the same cluster
= Dissimilar to the objects in other clusters

= Cluster analysis

* Finding similarities among data objects
according to their characteristics

= Grouping similar data objects into clusters

School of]x(SMU

‘ Information Systems SINGAPORE MANAGEMENT

Part I1: Clustering

= Typical applications
= As a stand-alone tool to get insight into data
= As a preprocessing step for other algorithms

Information Systems

ot
School of &(SMl '
SINGAPORE MANAGEMENT
UNIVERSITY

Quality: What Is Good Clustering?

= A good clustering method will produce clusters
with:
= high intra-class similarity
= [ow Inter-class similarity

= The quality of a clustering method Is also
measured by its ability to discover some or all of
the hidden patterns

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

Structure

= Techniques

= kK-Means

= k-Medoids

= Hierarchical Clustering
= Applications

= Performance Debugging in the Large via Mining
Millions of Stack Traces

= Other applications

School of]X(SMU
SINGADP GEMENT

Information Systems

[1(A): Clustering Techniques

k-Means

‘ Information Systems

g
School of 7)((SM[|
SINGAPORE MANAGEMENT
UNIVERSITY

The K-Means Clustering Method

= Given &, the k-means algorithm is implemented in four
steps:

1.
2.

‘ School of)
Information Systems SINGAPORE MANAGEMENT

Partition objects into k nonempty subsets

Compute the means of the clusters of the current partition
(the mean is the center of the cluster)

Re-assign each object to the cluster with the nearest mean

Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

10 10
9 9
8 -\\ s /
SEAS\ 7
6 - 6 TN
5 > ‘ —_—) 5 * *
—_ 4 4
K=2 . \\\I » Compute | , \\ \\\3 /
Arbitrarily | ° \ \ the i N \ T
partition the | , —/ cluster |~ g
ObjeCtS intOK 0o 1 2 3 4 5 6 7 8 9 10 means 0O 1 2 3 4 5 6 7 8 9 10
clusters _ _
T Reassign l Reassign
10
9 10
8 9
. [N\ .
6 >® \ N\ — 7
5 oS q 5) {
Update °
: y/ASEN P .
the))¢
2 {‘t / cluster | :
! I~
"1
0O 1 2 3 4 5 6 7 8 9 10 means :) ?
o 1 2 3 4 5 5 7 8 9 1

g
"
School of Jx(SM| I
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Limitations

= Applicable only when mean is defined
= Need to specify &, the number of clusters, in advance

= Unable to handle noisy data and outliers

ot
,
oot o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

[1(A): Clustering Techniques

k-Medoids

‘ Information Systems

g
School of 7)((SM[|
SINGAPORE MANAGEMENT
UNIVERSITY

k-Medoids

* Find representative objects, called medoids, in clusters
= Many algorithms:

PAM (Partitioning Around Medoids, 1987) <::|
CLARA (Kaufmann & Rousseeuw, 1990)

CLARANS (Ng & Han, 1994): Randomized sampling

School of]X(SMU
‘ Information Systems SINGATORE MANAGEMENT

Focusing + spatial data structure (Ester et al., 1995)

PAM (Partitioning Around Medoids) (1987)

= PAM (Kaufman and Rousseeuw, 1987)
= Use real object to represent the cluster
= Select krepresentative objects arbitrarily

* For each pair of non-selected object /7 and selected
object /, calculate the total swapping cost 7C,

= For each pair of 7and A,
= |If 7C,;,, <O, /Is replaced by A

* Then reassign each non-selected object to the most
similar representative object

= repeat steps 2-3 until there i1s no change
formation s & oMU
ystems GEMENT

PAM (Partitioning Around Medoids) (1987)

10 10 10 — =
: N|
9 EEEE— 9 ‘ > 9 ./‘ ‘ ’\‘\
8 A\ 8 8 ./ -
T - : & an | OV s
6 <5) 1 Arbitrary | o PN Assign | I | o DN
. Y<> choose k| . Y|<> each Y ifd Y<>\-\
. O S objectas - & & remaining i —~ <>/~/. &
3 % initial 3 < objectto| - 1 PO AN
: g medoids | ° Y nearest | ° X |V
i . medoids | |
K=2 T l Randomly select a
nonmedoid object, O,
10 10
Swapping : * Compute | . Py
Loop until no mecéogj o |- total cost | -
and Ug, ° Y of ° Y
improved. . b 3) b I?
School of) ! !
Information Systems 0 1z s 4 5 6 7 6 o 0tz 3 4 5 6 7 6 o

158

[1(A): Clustering Techniques

Hierarchical Clustering

Sch
‘ Information Systems

ot
,
oot o 5 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Hierarchical Clustering

Step0 Stepl Step2 Step3 Step4 agglomerative
| | | | | > (AGNES)

divisive
(DIANA)

| | | | |
Step4 Step3 Step2 Stepl StepO

= This method does not require the number of clusters k as
an input, but needs a termination condition

Information Systems

g
.
School of ‘X(SM[|
SINGAPORE MANAGEMENT
UNIVERSITY

160

AGNES (Agglomerative Nesting)

= Introduced in Kaufmann and Rousseeuw (1990)

= Merge nodes that have the least dissimilarity
= Go on until eventually all nodes belong to the same cluster

= ARSY »
L~ 188 sl ~ 180,
4
& $¢, \4?_,"?/ & 8\
¢ >

School of
SINGAPORE MANAGEMENT

Information Systems
UNIVERSITY

DIANA (Divisive Analysis)

= Introduced in Kaufmann and Rousseeuw (1990)
= |nverse order of AGNES
= Eventually each node forms a cluster on its own

-
>0
\
RS
[4
A
\ *he
&7«»}
)
¢
o
%

0
000000000000000000000000000000000000

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT
UNIVER!

Dendrogram: Shows How the Clusters are Merged
\

Decompose data objects into several levels oﬁnested

partitjoning (tree of clusters), called a dendrogram.

A clustering of the data objects is olgtained by cutting the
dendrnogram at the desired level, then each connected
component forms a cluster.

g
"
‘ School of Jx(SM| I
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

11(B): Clustering Applications

Performance Debugging in the Large
via Mining Millions of Stack Traces

chool of]X(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Performance Debugging by Mining Stack Traces

= Shi Han, Yingnhong Dang, Song Ge, Dongmel
Zhang, Microsoft Research

= Tao Xie, North Carolina State University

= Published In International Conference on Software
Engineering, 2012

‘ School of)]x(SMU
Information Systems GEMENT

Introduction

= Performance of software system is important
= Performance bugs leads to unbearably slow system

= To debug performance issues, Windows has the
facility to collect execution traces

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Introduction

= Manual Investigation needs to be performed
= Very tedious and time-consuming
= Many execution traces
= Each of them can be very long
= Semi/Fully automated support needed
* Proposed solution:
= Group related execution traces together

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Methodology

= Phase 1: Extract area of interest
= Not all collected execution traces are interesting

= Focus on events that wait for other events in the
traces

= Use developers domain knowledge to localize this
area of interest

* Phase 2: Extract maximal sequential patterns
= Phase 3: Cluster the patterns together

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Methodology

= Hjerarchical clustering is performed
= Key: similarity measure
= Similarity measure:

= Alignment of two patterns
= Computation of similarity

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Methodology

Callstack Pattern L Callstack Pattern R
App mailn App main
Initialize Initialize
InitComponents Match InitComponents
< >
HashTableOperate HashTableOperate
GetHashCode GetHashCode
GetShortPathName GetShortPathName

wowodService
hmmﬁomf wowb4dSystem
Deletion
wowobdQueryAttr
Substitution
SwapKernelStack |[e=————pilkxpandKernelStack
MmAccessFault MmAccessFault
Match .
MiIssueHardFault |[¢=————p| MiIssueHardFault
IoPageRead IoPageRead

M1, 1
M1, 2
M1, 3
M1, 4
M1, 5
ML, 6

> M1

ID1,
ID1,2
ID1,3

1} S1
M2, 1

M2 3} i SMU

U]

M2, 2

SINGAPORE MANAGEMENT
UNIVERSITY

170

Experiment

* Finding hidden performance bugs
= on Windows Explorer Ul

= [nput: 921 trace streams
= 140 million call stacks

= Qutput: 1,215 pattern clusters
= Pattern mining and clustering time: 10 hours

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Experiment

= Developer manually investigate the clusters
= Eight hours -> produce 93 signatures

= Twelve of them are highly impactful performance
bugs

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Other Applications

= Testing multi-threaded applications

= Adrian Nistor, Qingzhou Luo, Michael Pradel,
Thomas R. Gross, Darko Marinov: Ballerina:
Automatic generation and clustering of efficient

random unit tests for multithreaded code. ICSE
2012: 727-737

= Defect prediction

= Nicolas Bettenburg, Melyappan Nagappan, Ahmed
E. Hassan: Think locally, act globally: Improving

defect and effort prediction models. MSR 2012: 60-
69

School of i
‘Information Systems 3 SM U GEMENT

Other Applications

= Ontology inference

= Shaowel Wang, David Lo, Lingxiao Jiang: Inferring
semantically related software terms and their
taxonomy by leveraging collaborative tagging. ICSM
2012: 604-607

= Detecting malicious apps

= Alessandra Gorla, llaria Tavecchia, Florian Gross,
Andreas Zeller: Checking app behavior against app
descriptions. 1025-1035

School of]x(SMU

‘ Information Systems SINGAPORE MANAGEMENT

Other Applications

= Software remodularization

= Nicolas Anquetil, Timothy Lethbridge: Experiments
with Clustering as a Software Remodularization
Method. WCRE 1999: 235-255

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Part I11: Classification

= Assigns data to some predefined categories

* |t performs this
= By constructing a model

= Based on:
* the training set

= the values (class labels) in a classifying attribute
= Uses it In classifying new data
= TWO steps process:

= Model construction
= Model usage

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Classification — Model Construction

= Model construction: describing the set of
predetermined class/categories

= The set of tuples used for model construction is
called the training set

= Each tuple/sample is assumed to belong to a
predefined class, as determined by the class label
attribute

= The model is represented as classification rules,
decision trees, or mathematical formulae

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Classification — Model Usage

= Model usage: for classifying future or unknown
objects
» Estimate accuracy of the model

* The known label of test sample is compared with
the classified result from the model

= Accuracy rate Is the percentage of test set
samples that are correctly classified by the model

» Test set is independent of training set, otherwise
over-fitting will occur

= If the accuracy Is acceptable, use the model to
classify data tuples whose class labels are not known

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

178

Process (1): Model Construction

N Classification
— / Algorithms

Training
Data l
. —
/ ~_

NAVE[RANK __[vEARSTENURED| (sl
(Model)

Mike |Assistant Prof
u
yes
yes

Mary |Assistant Prof
Bill Professor

WO ININ N W

Jim |Associate Prof yes IF rank = “professor’
Dave |Assistant Prof no OR years > 6
Anne |Associate Prof no THEN tenured = ‘yes’

g
. g
School X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

‘ Information Systems

179

Process (2): Using the Model in Prediction
’ Classifier \
~

— >
/ (Jeff, Professor, 4)

NAME [RANK___|[YEARS|TENURED| __ ., 1

Tom |Assistant Prof 2 no

Merlisa |Associate Prof| 7 no ,
George |Professor 5 yes Y@S
Joseph |Assistant Prof 7 yes

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Structure

= Techniques
= Decision Tree
= Support Vector Machine
= k-Nearest Neighbor
= Applications
= An Industrial Study on the Risk of Software Changes
= Other Applications

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

[11(A): Classification Techniques

Decision Tree

Sch
‘ Information Systems

ot
,
oot o 5 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Decision Tree Induction: Training Dataset

_age | income |student| credit rating | buys_computer

School of)
Information Systems

Output: A Decision Tree for “buys computer”

>40

AN

credit rating?
/N
excellent fair

/
no

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

High-Level Methodology

= Tree Is constructed in a top-down recursive divide-and-
conguer manner

= At start, all the training examples are at the root

= Examples are partitioned recursively based on selected
attributes

= Attributes are selected on the basis of a heuristic or statistical
measure

‘School of]X(SMU
Information Systems SINGATORE MANAGEMENT

High-Level Methodology

= Conditions for stopping partitioning
= All samples for a given node belong to the same class
= There are no remaining attributes for further partitioning
= There are no samples left

= Majority voting is employed for classifying the leaf

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

[11(A): Classification Techniques

Support Vector Machine (SVM)

Sch
‘ Information Systems

ot
,
oot o 5 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

High-Level Methodology

= Searches for the linear optimal separating hyperplane (i.e.,
“decision boundary”)

SVM searches for the hyperplane with the largest margin, i.e.,
maximum marginal hyperplane (MMH)

LIS
0
0 i
o0 P50
040" o |
0 0 iy 0
o ©
0
... Small Margin Large Margin % SMU
Information Systems Support VeCtorS k SINGAPORE NANAGEMENT

188

High-Level Methodology

= How if not separable by a linear hyperplane?

= |t uses a nonlinear mapping to transform the original training
data into a higher dimension

= With an appropriate nonlinear mapping to a sufficiently high
dimension, data from two classes can always be separated by
a hyperplane

ot
,
el < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

High-Level Methodology

* Features:
* Training can be slow

= Accuracy Is often high owing to their ability to
model complex nonlinear decision boundaries

= Applications:

= Handwritten digit recognition, object recognition,
speaker identification, etc

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

[11(A): Classification Techniques

k-Nearest Neighbors

Sch
‘ Information Systems

ot
,
oot o 5 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Lazy Learner: Instance-Based Methods

* |nstance-based learning:

= Store training examples and delay the

orocessing (“lazy evaluation”) until a new
Instance must be classified

* Typical approaches
= k-nearest neighbor approach

= Locally weighted regression
= Case-based reasoning

‘ School of

y
Information Systems 3 SMU GEMENT

The A-Nearest Neighbor Algorithm

= All instances correspond to points in the n-D space
= New instance label is predicted based on its k-NN

= |If the predicted label is discrete:

= Return the most common value among the neighbors in
the training data

= |f the predicted label is a real number:
= Return the mean values of the k& nearest neighbors

ot
- 3
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Discussion on the A~-NN Algorithm

= Distance-weighted nearest neighbor algorithm

= Weight the contribution of each of the k neighbors

according to their distance to the query x, 1

W
d(xq,xi)2

* Give greater weight to closer neighbors

= Problem:

= Curse of dimensionality: distance between neighbors could
be dominated by irrelevant attributes

= To overcome it: elimination of least relevant attributes

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

[11(A): Classification Applications

An Industrial Study on the Risk of
Software Changes

chool of]X(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Predicting Risk of Software Changes

= Emad Shihab, Ahmed E. Hassan, Queen’s
University, Canada

= Bram Adams, Ecole Polytechnigue de Montreal,
Canada

= Zhen Ming Jiang, Research in Motion, Canada

= Published in ACM Symposium on Foundations of
Software Engineering (FSE), 2012

‘ Information Systems

g
.
School of ‘X(SM[|
SINGAPORE MANAGEMENT
UNIVERSITY

Introduction

= Many companies care about risk
= Negative impact on products and processes

= Some software changes are risky to be
Implemented

» Risky changes = “changes for which developers
pelieve that additional attention is needed Iin the
form of careful code or design reviewing and/or
more testing”

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Approach

= Feature Extraction (Key Step)
= Classifier Construction
= Classifier Application

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Approach

Dim.| Factor | Type Explanation
Hour Numeric | Time when the change was made, measured in
hours (0-23).
E Weekday [Numeric | Day of the week (e.g., Mon, Tue) when the change
- was performed.

Month | Numeric | Calendar day of the month (I-3T) when the change
day was performed.

Month Numeric | Month of the year (O-1T) when the change was per-
formed.

ot
School of]X(SM| I
SINGAPORE MAN.
UNIVERSITY

Information Systems

AGEMENT

199

Approach

Rationale

Changes performed at certain times in the day, e.g.. late
afternoons, might be done by over-worked or less aware
developers. hence. these changes may be more risky [12].
Changes performed on specific days of the week (e.g., Fri-
s) are not as carefully examined and might be more
[33].
Changes performed during specific periods, i.e., begin-
ning, mid or end of the month might be rushed to meet
end-of-the-month quotas and are likely to be more risky.
Changes performed in specilic monihs, e.g.. [ater in the
year or during holiday months like December, when less
developers and expertise are available, might be more

risky.

g
"
‘ School of Jx(SM| I
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

200

Approach

Lines Numeric | The number of Tines added as part of the change.
Added
Chunks | Numeric | The number of chunks (ie., different sections)
Added added as part of the change.
Lines Numeric | The number of [ines delefed as part of the change.
Deleted
& [Chunks | Numeric | The number ol chunks (i.c., dillerent sections)
v | Deleted deleted as part of the change.
Lines Numeric | The number of Tines modified as part of the
Modi- change.
fied
Chunks | Numeric | The number of chunks (i.e., differeni sections)
Menddi- modified as part of the change.
fi
Churn Numeric | The tofal number of lines added, delefed and mod-
ified as part of the change.

g
"
‘ School of Jx(SM| I
SINGAPORE MAN.
UNIVERSITY

Information Systems

201

AGEMENT

Approach

Number | Numeric | The number of files modified by the change.
of Files
No. Tile | Numeric | The number of unique developers that modified the
devs changed files. If a change modifies multiple files
we use the number of developers of the file that
" has the most developers.
= [No. file | Numeric | The number of past changes to the Tiles modified
= | changes by the change. If a change modifies multiple files,
we use the number of changes of the file with the
most past changes.
No. file | Numernc | The number of past bug fixes to the files modified
fixes by the change. If a change modifies multiple files,
we use the number of bug fixes of the file with the
most past bug fixes.
File Numeric | The ratio of bug fixes to total changes of a file. It
buggi- a change touches more than one file, we use the
ness value of the file with the largest file bugginess.

School of

Information Systems

g
)
X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

202

Approach

Modify | Boolean | Indicates whether the change modifies Java code.

Java
Modify | Boolean | Indicates whether the change modifies C++ code.
. | CPP For this project, only low-level functionality was
= implemented in C++.
< | Modily | Boolean | Indicaies whether the change modifies anything
Other other than Java and C++ code, e.g., documentation
files.
Modify | Boolean | Indicaies whether the change modifies any APIS.
APl

School of]XT SMU
ONIVERSITY

Information Systems

203

AGEMENT

Approach

2 Bug Boolean | Indicates whether the change fixes a bug.
= | Fix?
& [No. of | Numeric | Indicates the number of bug reporis that are linked
< | Linked to the change.

Bug

Reports
< | Devw. Numeric | Indicates the experience of the developer who
= | Experi- made the change. Experience is measured as the
% ence number of previous changes (from the start of the
5 project) done by the developer.

School of)
Information Systems

g
)
X SMU
SINGAPORE MAN.
UNIVERSITY

AGEMENT

204

Approach

= Find that risky changes classification is subjective

= Thus they add two additional features for two
kinds of models:
* Developers based: Add developer name

= Team base: Add team name

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Result

= Ten fold cross validation
= Recall
= Developer based: 67.6%
= Team based: 67.9%
= Relative precision
= Compared with random model

* Developer based: 1.87x
= Team based: 1.37X

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

Other Applications

= Predicting faulty commits

= Tian Jiang, Lin Tan, Sunghun Kim: Personalized
defect prediction. ASE 2013: 279-289

= Refining anomaly reports

= Lucia, David Lo, Lingxiao Jiang, Aditya Budi: Active
refinement of clone anomaly reports. ICSE 2012:
397-407

= Automated fixing of bugs Iin SQL-like queries

= Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha,
Satish Chandra: Data-guided repair of selection
statements. ICSE 2014: 243-253

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Other Applications

= Class diagram summarization

* Ferdian Thung, David Lo, Mohd Hafeez Osman,
Michel R. V. Chaudron: Condensing class diagrams
by analyzing design and network metrics using
optimistic classification. ICPC 2014: 110-121

= Predicting effectiveness of automated fault
localization tools

* Tien-Duy B. Le, David Lo: Will Fault Localization
Work for These Failures? An Automated Approach to
Predict Effectiveness of Fault Localization Tools.
ICSM 2013: 310-319

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Conclusion

= Part |: Pattern Mining
= Extract frequent structures from database
= Structures: Set, Sequence, Graph
= Application: Find common API patterns
= Part Il: Clustering
= Group similar things together
= Approaches: k-Means, k-Medoids, Hierarchical, etc.
= Application: Group traces to reduce inspection cost
= Part Ill: Classification
= Predict class label of unknown data
= Approaches: Decision tree, SVM, kNN, etc.
= Application: Predict risk of software changes

Information Systems

g
"
‘ School of Jx(SMl l
SINGAPORE MANAGEMENT
UNIVERSITY

209

Acknowledgements & Additional References

= Many slides and images are taken or adapted
from:

= Resource slides of: Data mining: Concepts and
Techniques, 2" Ed., by Han et al., 2006

= Ahmed Hassan’s and Tao Xie’s slides
= The three research papers mentioned in the slides.

g By

pls and Tn.--.rlr'.qu. 3

‘ School of

Information Systems

Thank you!

Questions? Comments?

davidlo@smu.edu.sg
‘ Isri;gilrﬁfation Systems 3 USN%&E}M{GM

o~ nformation Retrieval
K ~ for Software
Source Code, Engineering

Examples,
Bugs, Tests, Etc

| have wot_{auteol vejust
founol £o:6@88Ways that wowf’
work. =

.- Thomas A=Edison

Definition

= Information retrieval (IR) Is finding material
» (usually documents)
= of an unstructured nature (usually text)
* that satisfies an information need
= from within large collections

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Software Engineering Corpora

= Real text
= Code (iIs text?)

eclipse o

Bugzilla — Bug 214050

I untitled - Notepad
File Edit Format View Help

public class Helloworld {

® Search Revisions

List log entries From: | 2009-06-03 (Y-M-DD - empty means all)

// The smallest Java program possible

public static void main(String[] args) {

13 rvarun Jun 3, 2009 12:06:05 AM

25 Tiarun Jun 57075 P

—
Cannot update clipg

Home | New | Search | |

H Find] | Reports | Reg

How to Find

Copyright Agent

C++ multip

Bug List: {1 of 1) First Last Frev Next Show last
Bug 214050 - Cannot update clips¢

Status: NEW

Product: Platform

Component: Update {deprecated - us
Version: 3.3.1
Platform: PC Windows XP

Importance: P23 normal (vote)

School of

Information Systems

Interesting
Information

CARE Given a Query?

by stackoverflow

. When | put my Stack.cp
error. | have also 2 main.cp
0 to compile : "g++ -0 main main.cpp Ay

v

pp files it gives this
oraicExpression h | use this command

praicl

“Stack<char>::pop()", referenced from:
"Stack<char>::top()", referenced from:

Undefined symbols for architecture x86_64:
infix2postfix(char*) in ccKgncmm.o

infix2postfix(char*) in ccKgncmm.o "Stack<char>::push(char)", referenced from:
infix2postfix(char*) in ccKgncmm.o "Stack<char>»::size()", referenced from:
infix2postfix(char*) in ccKgncmm.c "Stack<char>::Stack()", referenced from:
infix2postfix(char*) in ccKgncmm.o "Stack<double:::pop()", referenced from:
evaluatePostfix(char*) in ccKgnemm.o “Stack<double>::top()”, referenced from:
evaluatePostfix(char*) in ccKgnecmm.o “"Stack<double>::push{double)", referenced -
evaluatePostfix(char*) in ccKgncmm.o “"Stack<double>::Stack()", referenced from:
evaluatePostfix(char*) in ccKgncmm.o ld: symbol(s) not found for architecture x86

4 [} | b

AlnahrairEvnrecsian b

his commit ensures that this plug in is backward compatible and works with NetBeans 6.1 as well,

code to detect anchaor in html and refactored code to add

same OpenThreadImpl. .
of href attribute contains ()

x86_64

Hello World!

This Is a collaboratively
edited question and answer
site for professional and
enthusiast programmers.
It's 100% free, no reqgistration
required.

about » fag»

tagged

cH | = 169186
templates | x 12930
linker | = 3820
compiler-errors | = 3343

asked today
viewsad 13 time=s I

Outline

= |. Preliminaries = |1l. Language Model
= Preprocessing = Techniques
= Retrieval = Applications
= Recent Studies in SE = |V. Topic Model
= |I. Vector Space Model = Techniques
= Techniques = Applications
= Applications = V. Text Classification

* Techniques
= Applications

‘ School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Part 1: Preliminaries

Document Preprocessing Indexed Corpus

Retrieval Model

— \

How to Evaluate Results? Results

‘ School of

Information Systems

Structure

* Preprocessing:
= Document Boundary & Format
= Text Preprocessing
= Code Preprocessing
= Retrieval:
= Retrieval Model
= Evaluation Criteria

= Recent Studies in SE

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

I(A): Preprocessing

Document Boundary & Format
Text Preprocessing
Code Preprocessing

Sch
‘ Information Systems

ot
,
oot o 5 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Document Boundary

= What is the document unit ?
= A file?
= An email?
= An emall with 5 attachments?
= A group of files (ppt or latex in HTML)?
= A method ? A class ?

= Requires some design decisions.

Information Systems

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Document Format

= We need to deal with format and language of each
document.

= What format is it in?

= pdf, word, excel, html, etc.
= What language is it In?

* English, Java, C#, Chinese, Hindi, etc.
= What character set is in use?

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Text Preprocessing

= Tokenization

= Stop-word Removal
= Normalization

= Stemming

= |ndexing

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Text: Tokenization

» Breaking a document into Its constituent tokens or

terms

= |In a textual document, a token is typically a word.

= Example (Shakespeare’s Play):

Doc 1. | did enact Julius Caesar: |
was killed i’ the Capitol; Brutus killed
me.

Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

School of)
Information Systems

Doc 1. i did enact julius caesar | was
killed i" the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

Text: Stop-Word Removal

= stop words = extremely common words

= |ittle value in helping select documents matching a
user need

= Examples: a, an, and, are, as, at, be, by, for, from,
has, he, in, Is, it, its, of, on, that, the, to, was, were,
will, with
= Stop word elimination used to be standard in older
IR systems.

= However, stop words needed for phrase queries,
e.g. “president of Singapore”

= Most web search engines index stop words

Information Systems

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

223

Text: Normalization

= Need to normalize terms In indexed text as well as
guery terms into the same form.

= Example: We want to match U.S5.A. and USA

= We most commonly implicitly define equivalence
classes of terms.

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Text: Stemming

= Definition of stemming: Crude heuristic process

that chops off the ends of words to reduce related
words to their root form

= Language dependent

= Example: automate, automatic, automation all
reduce to automat

School of)]X(SMU
Information Systems SINGAP GEMENT

Text: Stemming

= Porter’s Algorithm
= Most commonly used algorithm
= Five phases of reductions
» Phases are applied sequentially

= Each phase consists of a set of commands.

= Sample command: Delete final ement if what
remains is longer than 1 character

* replacement — replac
= cement — cement

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Text: Stemming

= Stemming can increase effectiveness for some
gueries, and decrease effectiveness for others

= Queries where stemming is likely to help:

= [wool sweaters], [sightseeing tour singapore]

* (equivalence classes: {sweater,sweaters},
{tour,tours})

= Queries where stemming hurts:

= [operational AND research], [operating AND
system], [operative AND dentistry]

Information Systems

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

227

Text: Stemming

= Other stemming algorithms:
= Lovins stemmer
= Paice stemmer
= Etc.

o
,
Sl o > SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Text: Indexing

= |nverted Index

For each term ¢ we store a list of all documents that
contain .

BruTUSs — | 1 2 4 11 [31 |45 | 173 | 174

CAESAR — |1 2| 4 5 616 | 57| 132

CALPURNIA | — | 2| 31 | 54 | 101

‘!—.Y._l" \l_.y._l‘"

dictionary documents B
| School of g}é SMU

' Information Systems

229

Text: Indexing

= Bi-word index

* Index every consecutive pair of terms in the text as a
phrase.

= k-gram index
= Positional index
= efc.

ot
,
el < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Code Preprocessing

= Parsing
= |dentifier Extraction
= |dentifier Tokenization

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Code: Parsing

= Creating an abstract syntax tree of the code.

* |dentify which ones are variable names, which
ones are method calls, etc.

= Difficulties: Multiple languages, partial code

» Tools: Ex
= ANTLR assgn] [@sgn] [
= WALA

|vari} w |uar II 4 | copzre | add | if | var |

|‘uari| w |vari| u cnpzre assign |

'varil |vari| |var'| mult

‘ School of)
Information Systems

|'urari| varj

Code: ldentifier Extraction

= Extract the names of identifiers in the code.
= Method names
= Variable names
= Parameter names
= Class names

= Extract the comments in the code
= Extract string literals in the code
= How about if/loop/switch structures ?

Information Systems

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Code: Identifier Tokenization

= Break identifier names into tokens.

= printLine => print line

= System.out.printin => system out printin
= Many identifier names are in camel casing

= Why do we need to break identifier names?
= Do all identifiers need to be broken?

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

|(B): Retrieval

Retrieval Model
Evaluation Metrics

Information Systems

ot
School of &(SMl '
SINGAPORE MANAGEMENT
UNIVERSITY

Retrieval Model

= Vector Space Model
* Model documents and queries as a vector of values

= Language Model

= Model documents and/or queries by a probability
distribution

* Probabillity for it to generate a word, a sequence of
words, etc.

= Topic Model

* Model documents and queries by a set of topics,
where a topic iIs a set of words

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Evaluation Metrics - 1

= Unranked evaluation

= Precision (P) Is the fraction of retrieved documents
that are relevant

#(relevant items retrieved)
#(retrieved items)

Precision = = P(relevant|retrieved)

= Recall (R) Is the fraction of relevant documents
that are retrieved

#(relevant items retrieved)

Recall = = P(retrieved|relevant)

#(relevant items)

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

237

Evaluation Metrics - 2

= Ranked evaluation
= P-R Curve
= Compute precision and recall for each “prefix”
= top 1, top 2, top 3, top 4 etc results
* Produces a precision-recall curve.
= Mean Average Precision (MAP)

= Average precision for the top k documents
= each time a relevant doc is retrieved

= Averaged over all queries

1 1Q| 1 m;
MAP(Q) = a0 Z ZPremsmn{Rﬁ]
=1 " k=1 =
‘School of)]x(SMU

Information Systems SINGAPORE MANAGEMENT

1(C): Recent Studies in SE

Ildentifier Expansion

Sch
‘ Information Systems

ot
,
oo X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Recent Studies in SE

= Dawn Lawrie, David Binkley: Expanding identifiers
to normalize source code vocabulary. ICSM 2011.:
113-122

= Dave Binkley, Dawn Lawrie, Christopher Uehlinger:
Vocabulary normalization improves IR-based
concept location. ICSM 2012: 588-591

‘ Information Systems

ot
School of]x(SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Expanding ldentifiers: Introduction

= Language used in code and other documents must
be standardized for effective retrieval.

= A significant proportion of invented vocabulary.
= To standardize:

= Split an identifier into parts
= Expand the identifier into a word

= Closer to gueries expressed In human language

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

241

Expanding ldentifiers: Approach (Nutshell)

* Break an identifiers into many possible splits

* For each possible split, expand the identifier parts
» Expand each part by adding wildcard characters

= See If any of the resultant regular expression match
any dictionary word surrounding the identifier

» Find the best possible split and expansion
= Criterion: Maximize similarity of expanded parts

= Measure word-similarity based on co-occurrence

= Trained on a dataset of over one trillion words
collected by Google

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Expanding ldentifiers: Accuracy

= Compared with manual expansion of identifiers
= Variants: Top-1 or Top-10 splits
= Accuracy criteria:

= |dentifier match: % of identifiers correctly expanded
= Word match: % of identifier parts correctly expanded

70%

m Top Ten S||Iits

60%

W Top Split
50% -

40%

30% -

20%

10% -

0%

Information Systems

[
Sl ot a2ps which a2ps which &i‘ SMU
‘SJIL‘II(\],%;%%MANAGFMENT

Identifier Level Soft-word Level

Expanding ldentifiers: Application in Retrieval

Feature Location:
Queries (Feature Description) -> Relevant Code Units

Table I Table 11
THE ORIGINAL SET OF USER GENERATED QUERIES PAIR AND TRIPLE QUERIES
Query Pair Queries Triple Queries
1 font
2 font size style small regular large i er‘y. i QUBI'_‘;I
3 font style laree small regular family I font size I font size style
4 font style bold italics large small regular 2 font style 2 font size small
5 font size style small regular large family bold italics type 3 font small 3 font size regular
6 font size style small regular large family bold italics 4 font regular 4 font size large
7 font family style bold italics size small regular medium large 5 font large 5 font size family
8 font size style small regular large family bold italics medium type 6 font family 6 font size bold
7 font bold 7 font size italics
8 font italics 8 font size medium
9 font medium |
10 font type 45 font medium type
School of 4
Information Systems 3 SMIJAJM

UNIVERSITY

244

Expanding ldentifiers: Application in Retrieval

O Original
B GenTest
B Normalize
o
o
o _
O
o _
©
o
<L
=
o _
v
o _
(aY
O

Original Set Auto-Generated Pairs Triples

g
"
‘ School of Jx(SM| I
SINGAPORE MANAGEMENT
UNIVERSITY

Information System: Query Sets

245

Summary: Retrieval Process

Document Preprocessing Indexed Corpus

Retrieval Model

Results

‘ School of

Information Systems

Part Il - Vector Space Model (VSM)

* Model documents and queries as a vector of values

= Retrieval i1s done by computing similarities of:
= Document and queries
* In the vector space

= Questions:

= What are the appropriate vectors of values that
represent documents?

= How to compute similarities between two vector-
based representations of documents?

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Structure

= Techniques

= Document Representation
= Bag-of-Word Model
= Term Frequency (TF)
* Inverse Document Frequency (IDF)
= Other TF-IDF Variants

= Retrieval using VSM

= Applications
= Duplicate Bug Report Detection
= Other Applications

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

[1(A): Techniques

Bag-of-Word Model
Term Frequency (TF)
Inverse Document Frequency (I1DF)
Other TF-IDF Variants
Retrieval using VSM

Information Systems

ot
School of]X(SMl l
SINGAPORE MANAGEMENT
UNIVERSITY

Bag of Words Consideration

= |t considers a document as a multi-set of Its
constituent words (or terms).

= WWe do not consider the order of words In a
document.

= John is quicker than Mary, and
= Mary is quicker than John
are represented the same way.

Information Systems

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

VSM: Term Weighting (TF)

= Not all words/terms equally characterize a
document.

= If term t appears more times in a document d, that
term is more relevant to d

= \We denote the number of times that a term t
occurs in a document d as tf, 4

= We refer to this as term frequency (TF)

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

VSM: Term Weighting (IDF)

= Rare terms are more informative than frequent
terms

= Recall stop words
= We want a high weight for rare terms

= Consider a term in the query that is rare in the
collection (e.q., arachnocentric)

= A document containing this term is very likely to be
relevant to the query arachnocentric

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

VSM: Term Weighting (IDF)

= To do this we make use of inverse document
frequency (IDF):

idf, = N/df,

= N is the total number of documents in the corpus
= df,is the document frequency of ¢
* the number of documents that contain ¢

= df,is an inverse measure of the informativeness of ¢
n df, <N

‘ School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

VSM: Term Weighting (TF-1DF)

= The tf-i1df weight of a term is the product of its tf
weight and its idf weight.

w =tf, , xIdf,

t,d

= [ncreases with the number of occurrences within a
document

= |Increases with the rarity of the term in the
collection

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

VSM: Document Representation

= Each document and each query is characterized as
a vector of terms weights

= So we have a |V|-dimensional vector space
= VV = set of all terms
= Terms are dimensions of the space
= Documents are points in this space

Information Systems

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

VSM: TF-IDF Variants

Term frequency

Document frequency

Normalization

n (natural) tfeq n (no) 1 n (none) 1
| (logarithm) 1 + log(tf:.q) t (idf) Iogdﬂft c (cosine) .
f N s
a (augmented) 0.5+ %’% p (prob idf) max{0,log ij%}
1 iftfeg >0
b (boolean) {0 otherwise
1+log(tfe o)

L (Iog ave) 1+log(avercd(tfe.d))
School of

Information Systems

< SMU

SINGAPORE MANAGEMENT

UNIVERSITY

256

VSM: Retrieval

= Represent documents and queries as vectors
= Compute the similarity between the vectors
= Cosine similarity Is normally used.:

qoc . 4id;

d|d :\/ Y73 g

gi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) =

= Return top-k most similar documents

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

[1(B): Applications

An Approach to Detecting Duplicate
Bug Reports using Natural Language
and Execution Information

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Duplicate Bug Report Detection

= Xiaoyin Wang, Lu Zhang, Jiasu Sun, Peking
University, China

= Tao Xie, North Carolina State University, USA
= John Anvik, University of Victoria, Canada

= Published in ACM/IEEE International Conference on
Software Engineering (ICSE), 2008

‘ Information Systems

ot
School of]x(SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Duplicate Bug Reports: Motivation

= To iImprove quality of software systems, often
developers allow users to report bugs.

= Bug reporting Is inherently an uncoordinated
distributed process.

= A number of reports of the same defect/bug are often
made by different users.

= This lead to a problem of duplicate bug reports.

School of)]X(SMU
Information Systems SINGAP GEMENT

Duplicate Bug Reports: Motivation

= |n practice, a special developer (a triager) Is often
assigned to detect duplicate reports.

= Number of bug reports are often too many for
developers to handle.

= A (semi) automated solution Is needed.

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Duplicate Bug Reports: Dataset

e'clipSE(Q

Buggzilla — Bug 214050 Cannot update clipse

Home | Mew | Search | | |[Find] | Beports | Reguests | Help | Ne

Copyright &gent

Bug List: {1 of 1) First Last Prev Next Show last search results

Bug 214050 - Cannot update clipse

Status: MEW

Product: Platform

Component: Update (deprecated - use RT=Equinox=p2)
Version: 3.3.1
Platform: PC Windows XP

Importance: P3 normal {vote)

School of]XT SMU

Information Systems SINGAPORE MANAGEMENT
UNIVERSITY

262

Duplicate Bug Reports: Dataset

Yair Eshel 2008-01-01 07:55:49 EST

Build ID: MZ0071023-1¢52

Steps To EReproduce:

1.Update eclise 3.3.1.1 from the help menu

2.Mark with V Eclipse RCP Patch 1 for 3.3.1.1 3.3.1.1 vZ0071204 3311,
on http://ftp.csuosl.org/pub/eclipse/eclipse/updates/3.3/site.xml
3.Next until error

More information:
Update operation has failed
Error retrieving
"plugins/com.ibm.icu3é.data.update 3.6.1.v20071204 20073.3ar". [Berve
HTTP response code: "403 Forbidden" for URL:
http://ftp.osucsl.org/pub/eclipse/eclipse/updates/3.3/plugins/com.ibn
Server returned HTTP response code: "403 Forbidden"™ for URL:
http://ftp.osucsl.org/pub/eclipse/eclipse/updates/3.3/plugins/com. ibn

Running on winxp

School of]XT SMU

Information Systems SINGAPORE MANAGEMENT

UNIVERSITY

263

Duplicate Bug Reports: Dataset

= Text Data
= Summary
= Concise text
= Description
= Longer text
= Execution Traces

= One execution trace for each bug that exhibits the
error

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Duplicate Bug Reports: Technique

= Modeling text information
= Take summary and description of bug reports

= Perform preprocessing
» Tokenization
= Stemming
= Stop-word removal

= Create a vector of term weights using:

idf; = log (Dsum / Dw;)

Dsum = Total number of documents

Dwi = Number of documents containing term | »
School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Duplicate Bug Reports: Technique

= Modeling trace information

= Take method calls that appear in the execution
trace
= Treat each method as a word

= Use canonical signature of a method
Differentiate overloaded methods

= Model it in similar way as text information

= Each method tf is either O or 1
Ignore repeated method calls

= At the end, we have a vector of method weights

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Duplicate Bug Reports: Technique

= Computing similarity
= Use cosine similarity of two vectors:

= Need to combine textual and trace information:

SIM,, +SIM

combined ~— 2

SIM

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Duplicate Bug Reports: Technique

= Given a new bug report

= Return the top-k most similar bug reports that
have been reported before

Information Systems

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Duplicate Bug Reports: Experiments

recalled

N

tafal

recall rate =

" N..caieq = Number of duplicate reports whose
duplicate Is detected in the top-k list

= N, = Number of duplicate reports considered

‘ Informatlon Systems

et
SINGAPORE MANAGEMENT
UNIVERSITY

Duplicate Bug Reports: Experiments

95.00% Corsider Ex: - »
Trace Info P
85. 00% — /%
/&/ PRC Ry
@80- GO% -+ :{_'_}.q_,r_'-;;_..-_:’_-.'.
‘:; / B "-+-::,:.-:",I ,)(:"'.
= 75. 00% ——— = —
-~ I S o
"= 70. 00% =< e X
o P e
P ,.a-‘:_-/__.."‘ﬁ /-
65. 00% TE
60. 00% e
e
X
55. 00% !
1 2 3 4 5 6

suggested list size

—a&— sumtCEHeur
—+— 2sumtdes+BHeur
—-H-— 2sumtdes

—=— ZsumtdestCEHeur —>¢— sumtBHeur
—-+-— execution —-¥-— sum
—-&-— sumtdes

School of)
Information Systems

o
o SMU
SINGAPORE NAGE.

ORE MAI MENT
UUUUUU SITY

Other Applications

= Finding buggy files given bug descriptions
= Shaowel Wang, David Lo: Version history, similar

report, and structure: putting them together for
Improved bug localization. ICPC 2014: 53-63

= Tracing high-level to low-level requirements

= Jane Huffman Hayes, Alex Dekhtyar, Senthil
Karthikeyan Sundaram, Sarah Howard: Helping
Analysts Trace Requirements: An Objective Look. RE
2004: 249-259

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

Other Applications

= Recommending relevant methods to use

= Ferdian Thung, Shaowei Wang, David Lo, Julia L.
Lawall: Automatic recommendation of APl methods
from feature requests. ASE 2013: 290-300

= Locating code that corresponds to a particular
feature

= Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, Fuqing
Yang: SNIAFL: Towards a static noninteractive
approach to feature location. ACM Trans. Softw.
Eng. Methodol. 15(2): 195-226 (2006)

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Other Applications

= Semantic search engine to find answers from
software forums
= Swapna Gottipati, David Lo, Jing Jiang: Finding
relevant answers in software forums. ASE 2011:
323-332

ot
,
oot o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Part 11l - Language Model

= Model a document as a probability distribution

= Able to compute the probability of a query to belong
to the document

= Rank document based on the probability of the
guery to belong to the document

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Structure

= Techniques
= Unigram Language Model
= Language Model for IR
= Parameter Estimation
= Smoothing
= Applications
= Code Auto-Completion
= Other Applications

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

[11(A): Technigques

Unigram Language Model
Language Model for IR
Parameter Estimation

Smoothing

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Unigram Language Model

w Piwlqr) [w P(w|qi)
STOP 0.2 toad 0.01
the 0.2 said 0.03

. 2 0.1 likes 0.0
frog 0.01 that 0.04
= One-state probabilistic finite-state automaton

= State emission distribution for its one state gl

= STOP is a special symbol indicating that the
automaton stops

= string = “frog said that toad likes frog STOP”

P(string) = 0.01 - 0.03 - 0.04 - 0.01 - 0.02 - 0.01 -
0.02 = 0.0000000000048 S SMU

‘Information Systems ATORE MAN.
UNIVERS]
277

A different language model for each document

language model of d;

language model of d>

w P(w|.) | w P(w|.) w P(w|.) | w P(w|.)
STOP .2 toad .01 STOP .2 toad .02
the 2 said .03 the 15 said .03
a 1 likes .02 a .08 likes .02
frog 01 that .04 frog 01 that .05

School of

Information Systems

string = “frog said that toad likes frog STOP “
P(string|Md1) = 0.01 - 0.03 - 0.04 - 0.01 - 0.02 - 0.01 - 0.02 = 4.8 - 1012
P(string|Md2) = 0.01 - 0.03 - 0.05 - 0.02 - 0.02 - 0.01 - 0.02 =12 - 101
P(string|Md1) < P(string|Md2)
Thus, document d2 is “more relevant” to the string than d1 is.

g
)
X SMU
SINGAPORE MANAGEMENT

APORE MAN.
UNIVERSQ'Y78

278

Using language models in IR

= Each document d is represented by a language
model Md

= Glven a query g
= Rank documents based on P(q|Md)
= How do we compute P(q|Md)?

‘Informatlon Systems x(SMU
NG

How to compute P(g|Md)

= Make conditional independence assumption:

P(q|Mg) = P((t1, ... tignIMa) =]| P(txIMs)
1<k<[ql

(la]: length of q; tk : the token occurring at position
Kin Q)

= This Is equivalent to:
P(q|Ma) = 11 P(t|Mq)es

distinct term t in g

= tf,,: term frequency (# occurrences) of tin g

0. SMU

‘ Informatlon Systems GEMENT
NGB0

280

Parameter estimation

= Missing piece: Where do the parameters P(t|Md) come from?

. . . i . t-f
Use the following estimate: P(t|My) = t,d

d|
(ld]: length of d; tf, 4 : # occurrences of t in d)

= We have a problem with zeros
= A single t with P(t|Md) = 0 will make P(q|Mq) =[] P(t|Ma)
Zero
= We would give a single term “veto power”

= \We need to smooth the estimates to avoid zeros

0. SMU
g

‘ Informatlon Systems

Smoothing

= Key intuition: A non occurring term is possible (even
though it didn’t occur), . . .

= ... butnomore likely than would be expected by chance
In the collection

= We will use ﬁ’(ﬂM) to “smooth” P(t|Md) away from
Zero
P(timM.) = cf /T

= Mc: the collection model;
= cf,: the number of occurrences of t in the collection;

= T =) .cf: : the total number of tokens in the
collection

0. SMU
T

‘ Informatlon Systems

Mixture Model

= P (tjMd) = AP(t]Md) + (1 - A)P(t|Mc)
= Mixes the probability considering the document with
the probability considering the collection.

= High value of A: “conjunctive-like” search — tends to
retrieve documents containing all query words.

= Low value of A: more disjunctive, suitable for long queries
= Correctly setting A is very important for good performance.

ot
‘ School of]x(SMl l
SINGAPORE MANA!
UNIVE

Information Systems GEMENT
783

283

Example

= Collection: d1 and d2

= dl : Jackson was one of the most talented entertainers of all time
= d2 : Michael Jackson anointed himself King of Pop

= Query q: Michael Jackson

= Use mixture model with A = 1/2
= P(g|dl) = [(0/11 + 1/18)/2] - [(1/11 + 2/18)/2] =~ 0.003
= P(q|d2) = [(1/7 + 1/18)/2] - [(1/7 + 2/18)/2] =~ 0.013

= Ranking: d2 >dl

‘ School of]XT SMU
SUI[TI(\]/}ER%MANAGEM ENT
4

Information Systems

Other Models

= Bigram model
= K-L model
= Other models

o
Sl o > SMU
SINGAPORE MANAGEMENT

Information Systems

UNIVERSITY

[11(B): Applications

On the Naturalness of Software

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Code Auto-Completion

= Abram Hindle, Earl T. Barr, Zhendong Su, Mark
Gabel, Premkumar T. Devanbu, University of
California, Davis, USA

= Published in ACM/IEEE International Conference on
Software Engineering (ICSE), 2012

‘ School of)]x(SMU
Information Systems GEMENT

Naturalness of Software: Introduction

= Natural language Is often repetitive and predictable
= Can be modeled by a language model

= |s software code like natural language?
= |f it is could we exploit the naturalness of code?

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

Naturalness of Software: Technique

= k-gram language model:

= Token occurrences are influenced only by the
previous k-1 tokens

= For a 4-gram language model:

p(a@-\al e G@'—l) = p(ai \ ai—Sai—Qai—l)

= Maximum Likelihood Estimate (MLE):

count(aiasasay)

(4|Q1a2a3) =
plaslarazas) count(aiazasx)

Information Systems

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

289

Naturalness of Software: Dataset

Tokens
Java Project Version Lines Total Unique
Ant 20110123 254457 919148 27008
Batik 20110118 367293 1384554 30298
Cassandra 20110122 135992 697498 13002
Eclipse-E4 20110426 1543206 6807301 98652
Log4] 20101119 68528 247001 8056
Lucene 20100319 429957 2130349 32676
Maven2 20101118 61622 263831 7637
Maven3 20110122 114527 462397 10839
Xalan-J 20091212 349837 1085022 39383
Xerces 20110111 257572 992623 19542

ot
” : ~ r
School of ‘}6 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

290

Naturalness of Software: Dataset

Tokens
Ubuntu Domain Version Lines Total Unique
Admin (116) 10.10 9092325 41208531 1140555
Doc (22) 10.10 87192 362501 15373
Graphics (21) 10.10 1422514 7453031 188792
Interp. (23) 10.10 1416361 6388351 201538
Mail (15) 10.10 1049136 4408776 137324
Net (86) 10.10 5012473 20666917 541896
Sound (26) 10.10 1698584 29310969 436377
Tex (135) 10.10 1405674 14342943 375845
Text (118) 10.10 1325700 6291804 155177
Web (31) 10.10 1743376 11361332 216474

ot
” : ~ r
School of ‘}6 SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

291

Naturalness of Software: Experiments

= Cross Entropy

= Captures how bad a language model in modeling a
new document.

= Considering a document s (i.e., al...an) and a model
M, the cross entropy of s wrt. model M

Haq(s ———Zlog pmla; |ar...a;—1)

= PM(a;|a,...a; ;) = probability of a, happening
considering model M

= The lower the cross entropy score, the better a

language model is. "
‘School of)]x(SMU

Information Systems SINGAPORE MANAGEMENT

Is Software Natural ?

10

English Text

0]
o

o o o
= L= = b=

Cross Entropy (10-Fold Cross Validation)

School of]x(SMU
Information Syste Order of N-Grams e —

Could it be used for auto-completion?

= Extend Eclipse IDE auto-completion function
= Use Eclipse if at least 1 recommended tokens is long
= Otherwise use both Eclipse and Language Model

= Uses a trigram model

Algorithm 1 MSE(eproposals, nproposals, maxrank, minlen)

Require: eproposals and nproposals are ordered sets of
Eclipse and N-gram proposals.

elong := {p € eproposals|1..maxrank] | strlen(p) > 6}
if elong +# () then
return eproposals|l..maxrank]
end if '
return eproposals|1.. [mﬂ"‘f"k}] o nproposals] 1.. L%m“kj]

—
‘Schoo[of X(SM[|
SINGAPORE MANAGEMENT
\ UNIVERSITY

Information Systems

294

Could it be used for auto-completion?

= Use a test set of 200 files to see how good Is the
auto-complete.

= Keystrokes saved:

Top 2 Top6 Top 10

ECSE 42743 77245 05318
MSE 68798 103100 120750
Increase 61% 33% 2'7%

g
.
School of ‘X(SM| |
SINGAPORE MANAGEMENT
UNIVERSITY

‘ Information Systems

Other Applications

= Code auto-completion

= Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh
Nguyen, Tien N. Nguyen: A statistical semantic
language model for source code. ESEC/SIGSOFT
FSE 2013: 532-542

» Finding buggy files from bug descriptions

= Shivani Rao, Avinash C. Kak: Retrieval from
software libraries for bug localization: a comparative
study of generic and composite text models. MSR
2011: 43-52

School of]x(SMU

‘ Information Systems SINGAPORE MANAGEMENT

Part IV: Topic Model

= Model a group of words as a topic
= Typically in a probabilistic sense

= Many recent SE papers use topic models

Information Systems

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Structure

= Techniques
= Topic Modeling: Black-Box View
= Using Topic Modeling for IR
= Algorithms
= Applications
= Bug Localization
= Other Applications

Information Systems

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

IV(A): Techniques

Topic Modeling: A Black-Box View
Using Topic Modeling for IR
Algorithms

ot
oooooo & SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Topic Modeling: Black-Box View

= Model a document as a probability distribution of
topics
= A topic is a probability distribution of words
= Dimensionality reduction: words -> topics
= Benefit: Able to link a document and a query
= Do not share any words
= Share related words of the same topics

‘ Information Systems

g
.
School of ‘X(SM[|
SINGAPORE MANAGEMENT
UNIVERSITY

IR using Topic Model (VSM Like)

* Create topic model for a training set of documents

= |nfer topic distributions of all documents in the
training set

= Infer topic distributions of new, unseen document

(query)
= Compute similarity between two distributions

= Kullback Leibner (KL) divergence
= Jensen Shannon (JS) divergence

School of]x(SMU

Information Systems SINGAPORE MANAGEMENT

IR using Topic Model (Language Model Like)

= We can use the query likelihood model

= Training a topic model computes:
P(t|topic)
P(topic|d)

= With the above we can compute:

K
Pt|d)= Z P(t | topic,)P(topic, | doc)
k=1

= Extending to query level, we can compute:

K
" 1 fi d
P(q|d) =] [{2 P(t|topic,)P(topic, | d)}"
School of teq k=1 gx.r §MMHAGEMENT

‘ Information Systems

302

Algorithms

= Probabilistic Latent Semantic Analysis (pLSA)
= Latent Dirichlet Allocation (LDA)
= Many more

Information Systems

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

IV(B): Applications

A Topic-Based Approach for
Narrowing the Search Space of Buggy
Files from a Bug Report

Bug Localization

= Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M.
Al-Kofahi, Hung Viet Nguyen, Tien N. Nguyen,
lowa State University, USA

= Published in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2011

School of]x(SMU

‘ Information Systems SINGAPORE MANAGEMENT

Bug Localization: Introduction

= Program Is often large with hundreds/thousands of
files.

= Glven a bug report, how to locate files responsible
for the bug?

= A (semi) automated solution Is needed.

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT
IIIIIII TY

Bug Localization: Technique

= Model the similarity of bug reports and files
= At topic level

= Model the bug proneness of files
= Number of bugs in a file (based on its history)
= Size of the file

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Bug Localization: Technique

= Computing topic similarity:
= Learn a topic mode
* Find the topic distribution of a bug report
* Find the topic distribution of a source code file
= Compute the similarity using cosine similarity

= Combine topic similarity and bug proneness:
P(s|b) = P(s) x sim(s,b)

= P(s) = bug proneness score of file s
= sim(s,b) = similarity between file s and bug report b

Information Systems

g
"
‘ School of Jx(SMl |
SINGAPORE MANAGEMENT
UNIVERSITY

308

Bug Localization: Experiments

= Subjects
System Jazz | Eclipse | Aspect] | ArgoUML
mapped bug reports 6,246 4,136 271 1,764
source code files 16,071 10,635 978 2,216
words In corpus 53.820 45,387 7,234 16,762
= Accuracy

= Return top-k most likely files

= |f at least one matches, then a recommendation is a
hit
= Accuracy = proportion of recommendations which

are hits -
School of]X(SMU
ZILQI(‘]IAEQ(S){I-{FE{MANAGEMENT

Information Systems

309

Bug Localization: Experiments

50%
45%
40%
35%
30%
5 —+—Top-20
5 25% —=—Top-15
20% —&—Top-10
—— Top-5
15% —é—Top-1
10%
. f’k_F_
0%
0 100 200 300 400 500 600 700 800 9200 1000
School of Number of topics K AU

Information oo

RSITY

Other Applications

= Recovering links from code to documentation

= Andrian Marcus, Jonathan I. Maletic: Recovering
Documentation-to-Source-Code Traceability Links
using Latent Semantic Indexing. ICSE 2003: 125-
137

= Black-box test case prioritization

= Stephen W. Thomas, Hadi Hemmati, Ahmed E.
Hassan, Dorothea Blostein: Static test case

prioritization using topic models. Empirical Software
Engineering 19(1): 182-212 (2014)

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Other Applications

= Duplicate bug report detection

= Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N.
Nguyen, David Lo, Chengnian Sun: Duplicate bug
report detection with a combination of information
retrieval and topic modeling. ASE 2012: 70-79

= Predicting affected components from bug reports

= Kalyanasundaram Somasundaram, Gail C. Murphy:
Automatic categorization of bug reports using latent
Dirichlet allocation. ISEC 2012: 125-130

chool of]x(SMU

Sch
‘ Information Systems SINGAPORE MANAGEMENT

Other Applications

= Recovering links from feature description to source
code implementing it
= Annibale Panichella, Bogdan Dit, Rocco Oliveto,
Massimiliano Di Penta, Denys Poshyvanyk, Andrea
De Lucia: How to effectively use topic models for

software engineering tasks? an approach based on
genetic algorithms. ICSE 2013: 522-531

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT
IIIIIII TY

Part V - Text Classification

= Consider a set of textual documents that are
assigned some class labels as a training dataset.

= Create a model that differentiates documents of
one class from other class(es).

= Use this model to label textual documents with
unknown labels.

School of)]X(SMU
Information Systems SINGAP GEMENT

Structure

= Techniques
= Vector space representation
= Vector space classification
= Feature selection
= Applications
= Defect Categorization
= Other Applications

ot
,
ol o X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

V(A): Technigues

Vector space representation
Vector space classification
Feature selection

Information Systems

ot
School of &(SMl ,
SINGAPORE MANAGEMENT
UNIVERSITY

Vector Space Representation

= Each document is a vector
= One element for each term/word

= Value of each element:
= Number of times that word appear

= Normalize each vector (document) to unit length
= High dimensionality: 100,000s of dimensions
= Terms/words are dimensions

0. SMU
S T

‘ Informatlon Systems

Vector Space Classification

= The training set of documents with known class
labels.

= |Labeled set of points in a high dimensional space

= We define lines, surfaces, hypersurfaces to divide
regions.

= Use classification algorithms to divide the training
sets Into regions

= E.g., SYM

0. SMU

IAGEMENT
"‘?,‘18

‘ Informatlon Systems

Feature Selection

= Many dimensions correspond to rare words.
= Rare words can mislead the classifier.
= Rare misleading features are called noise features.
= Eliminating noise features from the representation
* Increases efficiency and effectiveness
= Called feature selection.

0. SMU
gy

‘ Informatlon Systems

Example of a Noise Feature

= A rare term ARACHNOCENTRIC happens to occur
In China documents in our training data.

= Then we may learn a classifier that incorrectly
iInterprets ARACHNOCENTRIC as evidence for the class
China.
= Such an incorrect generalization from an
accidental property of the training set is called
overfitting.

= Feature selection reduces overfitting and improves
the accuracy of the classifier.

0. SMU
g

‘ Informatlon Systems

V(B): Applications

AutoODC: Automated Generation of
Orthogonal Defect Classifications

Defect Categorization

* LiGuo Huang, Ruili Geng, Xu Bal, Jeff Tian,
Southern Methodist University, USA

= Vincent Ng, Isaac Persing, University of Texas at
Dallas, USA

= Published in IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2011

‘ Information Systems

g
.
School of ‘X(SM[|
SINGAPORE MANAGEMENT
UNIVERSITY

AutoODC: Introduction

= Developers often analyze and categorize bugs for
post-mortem Iinvestigation

= This process Is often done manually

= One commonly used categorization is Orthogonal
Defect Categorization (ODC)

= Class Labels: Reliability, Capability, Security,
Usability, Requirements.

= Huang et al. would like to automate the process.

School of 7)((SMU

Information Systems SINGAPORE MANAGEMENT

AutoODC: Approach

Basic Defect Classification Framework

Step 1l A /' Step 2) 4 A
Pre-

Defect : Learning Step 3 '
Report > processing :> oDC :> Classification
/ defect

Classification

\ report j \ j

<

Annotation Relevance Framework

8)) (_ \ rPrE:(ta-nsit::m 3\
Extensm.n 1 Extensm'n 2 Exploiting
Generztmg Gir;:.er-atlnlg domain
.psfu > af |tt|ona knowledge
instances eatures
L
> Relevant Annotations
School of b, <
Information Systems 3 SMIJAJM

UNIVERSITY

324

AutoODC: Preprocessing

= Tokenization

= Stemming

= No removal of stop words
= Normalize each vector

School of) &(SMU
Information Systems SINGATORE MANAGEMENT

AutoODC: Learning

= Use Support Vector Machine (SVM)
= Train one SVM per class
= One-versus-others training
= Assign class of highest probability value

= |ncorporation of user annotations
= User highlights part of the defect report that are
useful for classification
= Used to generate more instances (pseudo +ve/-ve)
» Used as “k-gram” like features (new features)
* Use manually constructed dictionary that define

synonymous phrases that are mapped to a common
representation (new features) =

‘ School of

Information Systems SINGAPORE MANAGEMENT

AutoODC: Results

Reliability | Capability | Security Usability | Require-
ments

F-Measure 22.2% 88.5% 70.0% 62.9% 39.3%

g
School of X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Information Systems

Other Applications

= Predicting severity of bug reports

= Tim Menzies, Andrian Marcus: Automated severity
assessment of software defect reports. ICSM 2008:
346-355

= Predicting priority of bug reports

= Yuan Tian, David Lo, Chengnian Sun: DRONE:
Predicting Priority of Reported Bugs by Multi-factor
Analysis. ICSM 2013: 200-209

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Other Applications

= Content categorization in software forums

= Daging Hou, Lingfeng Mo: Content Categorization of
API Discussions. ICSM 2013: 60-69

= Filtering software microblogs

= Philips Kokoh Prasetyo, David Lo, Palakorn
Achananuparp, Yuan Tian, Ee-Peng Lim: Automatic
classification of software related microblogs. ICSM
2012: 596-599

School of]X(SMU

Information Systems SINGAPORE MANAGEMENT

Other Applications

= Recommending a developer to fix a bug report

= John Anvik, Gail C. Murphy: Reducing the effort of
bug report triage: Recommenders for development-
oriented decisions. ACM Trans. Softw. Eng.
Methodol. 20(3): 10 (2011)

Information Systems

ot
,
ol o < SMU
SINGAPORE MANAGEMENT
UNIVERSITY

Conclusion

= Part I: Preliminaries

= Tokeniz., Stop Word Removal, Stemming, Indexing, etc.

= Part Il: Vector Space Modeling
= Model a document as a vector of term weights

= Part Ill: Language Model
= Model a document as a probability distribution of terms
= Query likelihood model

= Part IV: Topic Model
= Model a document as a probability distribution of topics
= Model a topic as a probability distribution of words

= Part V: Text Classification
= Convert to VSM representation

- = Use standard classifiers (e.g., SVM)

Information Systems

g
)
X SMU
SINGAPORE MANAGEMENT
UNIVERSITY

331

Acknowledgements & Additional References

= Many slides and images are taken or adapted
from:

= Resource slides of: Introduction to Information
Retrieval, by Manning et al., Cambridge Press, 2008

= The research papers mentioned in the slides.

Introduction to

Information Systems

g
"
‘ School of Jx(SM| I
SINGAPORE MANAGEMENT
UNIVERSITY

Thank you!

Questions? Comments?

davidlo@smu.edu.sg
‘ Isri;gilrﬁfation Systems 3 USN%&E}M{GM

	Data Analytics for Automated Software Engineering
	A Brief Self-Introduction
	A Brief Self-Introduction
	A Brief Self-Introduction
	A Brief Self-Introduction
	Focus of This Short Course
	Three Lectures
	Software Engineering: A Primer
	Slide Outline
	Part I: Software Engineering (SE)
	SE: Challenges & Problems
	SE: Challenges & Problems
	Part II: Research Topics in SE
	Topics: Software Testing and Reliability
	Software Testing and Reliability: Why Bother?
	Software Reliability: Goals
	Software Testing and Bug Finding: Goals
	SE Topics: What is Software Evolution?
	What is Software Maintenance?
	Software Maintenance – Relative Costs
	Why is Software Maintenance Expensive?
	Lehman’s Laws of Evolution
	What is a Legacy System?
	Problems of Legacy Systems
	History of Eclipse
	History of Microsoft Word
	Topics: Software Analytics
	Software Analytics: Definition
	Topics: Software Analytics
	Big Data for Software Engineering
	Part III: Software Data Sources
	Artifact: Source Code
	Artifact: Source Code
	Artifact: Source Code
	Artifact: Execution Trace
	Artifact: Execution Traces
	Artifact: Execution Trace
	Artifact: Execution Trace
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Development History
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Bug Reports
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Slide Number 51
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Developer Activities
	Artifact: Software Forums
	Artifact: Software Forums
	Artifact: Software Forums
	Artifact: Software Microblogs
	Artifact: Software Microblogs
	Artifact: Software Microblogs
	Part IV: Basic Program Analysis Tools
	Static Analysis
	Control Flows: Control-Flow Graphs
	Control Flows: Control Dependence
	Data Flows: Definitions / Uses
	Data Dependence Graphs
	Program/Procedural Dependence Graphs
	Tools
	Dynamic Analysis
	What is Dynamic (Program) Analysis?
	How to Run?
	Tracing / Profiling
	Tracing/Profiling by Instrumentation
	Test Case Generation: Concolic Testing
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Concolic Testing: Symbolic & Concrete Executions
	Tools
	Conclusion
	Additional References & Acknowledgements
	Thank you!
	Data Mining for Software Engineering
	Slide Outline
	Part I: Pattern Mining
	Structure
	Slide Number 102
	Definition: Frequent Itemsets
	Definition: Association Rules
	Definition: Association Rules
	Definition: Association Rules
	Methodology
	Methodology: Apriori Algorithm
	Apriori Algorithm—An Example
	Apriori Algorithm
	Apriori Algorithm: Details
	Closed Patterns and Max-Patterns
	Closed Patterns and Max-Patterns
	Slide Number 114
	Definition: Sequential Pattern Mining
	Definition: Sequential Pattern Mining
	Methodology
	GSP—Generalized Sequential Pattern Mining
	PrefixSpan: Definition
	PrefixSpan: Approach
	PrefixSpan: Approach
	PrefixSpan: Approach
	Closed Frequent Sequences
	Slide Number 124
	Definition : Subgraph Mining
	Methodology
	Methodology: Joining two graphs
	Graph Mining and Sequence Mining
	Closed Frequent Graphs
	Slide Number 130
	Allatin: Mining Alternative Patterns
	Introduction
	Introduction
	Introduction
	Introduction
	Methodology
	Methodology
	Methodology
	Experiment
	Experiment
	Experiment
	Experiment
	Other Applications
	Other Applications
	Other Applications
	Other Applications
	Part II: Clustering
	Part II: Clustering
	Quality: What Is Good Clustering?
	Structure
	Slide Number 151
	The K-Means Clustering Method
	The K-Means Clustering Method
	Limitations
	Slide Number 155
	k-Medoids
	PAM (Partitioning Around Medoids) (1987)
	PAM (Partitioning Around Medoids) (1987)
	Slide Number 159
	Hierarchical Clustering
	AGNES (Agglomerative Nesting)
	DIANA (Divisive Analysis)
	Slide Number 163
	Slide Number 164
	Performance Debugging by Mining Stack Traces
	Introduction
	Introduction
	Methodology
	Methodology
	Methodology
	Experiment
	Experiment
	Other Applications
	Other Applications
	Other Applications
	Part III: Classification
	Classification – Model Construction
	Classification – Model Usage
	Process (1): Model Construction
	Process (2): Using the Model in Prediction
	Structure
	Slide Number 182
	Decision Tree Induction: Training Dataset
	Output: A Decision Tree for “buys_computer”
	High-Level Methodology
	High-Level Methodology
	Slide Number 187
	High-Level Methodology
	High-Level Methodology
	High-Level Methodology
	Slide Number 191
	Lazy Learner: Instance-Based Methods
	The k-Nearest Neighbor Algorithm
	Discussion on the k-NN Algorithm
	Slide Number 195
	Predicting Risk of Software Changes
	Introduction
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Approach
	Result
	Other Applications
	Other Applications
	Conclusion
	Acknowledgements & Additional References
	Thank you!
	Information Retrieval for Software Engineering
	Definition
	Software Engineering Corpora
	Outline
	Part I: Preliminaries
	Structure
	Slide Number 218
	Document Boundary
	Document Format
	Text Preprocessing
	Text: Tokenization
	Text: Stop-Word Removal
	Text: Normalization
	Text: Stemming
	Text: Stemming
	Text: Stemming
	Text: Stemming
	Text: Indexing
	Text: Indexing
	 Code Preprocessing
	Code: Parsing
	Code: Identifier Extraction
	Code: Identifier Tokenization
	Slide Number 235
	Retrieval Model
	Evaluation Metrics - 1
	Evaluation Metrics - 2
	Slide Number 239
	Recent Studies in SE
	Expanding Identifiers: Introduction
	Expanding Identifiers: Approach (Nutshell)
	Expanding Identifiers: Accuracy
	Expanding Identifiers: Application in Retrieval
	Expanding Identifiers: Application in Retrieval
	Summary: Retrieval Process
	Part II - Vector Space Model (VSM)
	Structure
	Slide Number 249
	Bag of Words Consideration
	VSM: Term Weighting (TF)
	VSM: Term Weighting (IDF)
	VSM: Term Weighting (IDF)
	VSM: Term Weighting (TF-IDF)
	VSM: Document Representation
	VSM: TF-IDF Variants
	VSM: Retrieval
	Slide Number 258
	Duplicate Bug Report Detection
	Duplicate Bug Reports: Motivation
	Duplicate Bug Reports: Motivation
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Dataset
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Technique
	Duplicate Bug Reports: Experiments
	Duplicate Bug Reports: Experiments
	Other Applications
	Other Applications
	Other Applications
	Part III - Language Model
	Structure
	Slide Number 276
	Slide Number 277
	Slide Number 278
	Slide Number 279
	Slide Number 280
	Slide Number 281
	Slide Number 282
	Slide Number 283
	Slide Number 284
	Other Models
	Slide Number 286
	Code Auto-Completion
	Naturalness of Software: Introduction
	Naturalness of Software: Technique
	Naturalness of Software: Dataset
	Naturalness of Software: Dataset
	Naturalness of Software: Experiments
	Is Software Natural ?
	Could it be used for auto-completion?
	Could it be used for auto-completion?
	Other Applications
	Part IV: Topic Model
	Structure
	Slide Number 299
	Topic Modeling: Black-Box View
	IR using Topic Model (VSM Like)
	IR using Topic Model (Language Model Like)
	Algorithms
	Slide Number 304
	Bug Localization
	Bug Localization: Introduction
	Bug Localization: Technique
	Bug Localization: Technique
	Bug Localization: Experiments
	Bug Localization: Experiments
	Other Applications
	Other Applications
	Other Applications
	Part V - Text Classification
	Structure
	Slide Number 316
	Slide Number 317
	Slide Number 318
	Slide Number 319
	Slide Number 320
	Slide Number 321
	Defect Categorization
	AutoODC: Introduction
	AutoODC: Approach
	AutoODC: Preprocessing
	AutoODC: Learning
	AutoODC: Results
	Other Applications
	Other Applications
	Other Applications
	Conclusion
	Acknowledgements & Additional References
	Thank you!

