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A Brief Self-Introduction

 Graduated from National Uni. Of Singapore, 2008
 Work on the intersection of software engineering and 

data mining

Mining Software Traces
Specification Mining
Fault Localization

Malware Detection

Mining Software Text
Bug Report Analysis
Concern Localization

Software Forum Mining

Mining Code
Code Search

Anomaly Detection
Privacy Preserving Testing

Data Mining Algorithms
Sequential/Graph Pattern Mining

Discriminative Pattern Mining
Game Mining

Mining Socio-Technical Network
Mining Developer Network

Mining Developer Microblogs
Community Detection

Empirical Studies
Widespread Changes

Feature Diffusion
Effectiveness of Exist. Tools

5



Focus of This Short Course 

 Highlight research problems in software 
engineering

 Describe the wealth of software data available for 
analysis

 Present some data mining concepts and how it can 
be used to automate software engineering tasks

 Present some information retrieval concepts and 
how it can be used to automate software 
engineering tasks
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Three Lectures
I. Software Engineering (SE): A Primer
 Challenges & Problems
 Research Topics

II.  Data Mining for Automated Software Engineering
 Pattern Mining
 Clustering
 Classification

III. Information Retrieval for Automated SE
 Vector Space Model
 Language Model

 Topic Model
 Text Classification

 Data Sources
 Basic Tools
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The most certain way to succeed is 
always to try just one more time.

- Thomas A. Edison

Software Engineering: A Primer
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Slide Outline
 Part I: SE Challenges & Problems
 Part II: Research Topics
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics: A Recent Trend

 Part III: Data Sources
 Part IV: Basic Program Analysis Tools
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Part I: Software Engineering (SE) 

“Process and techniques that are followed to design, 
develop, verify, validate, and maintain a software 
system that satisfies a set of requirements and 

properties with reasonable or low cost.”
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SE: Challenges & Problems 
 Building and maintaining complex software system 

is challenging and costs much resources
 High cost and scarcity of qualified manpower
 Software changes over time

 Software systems are plagued with bugs and 
removing them costs much resources
 Hard to ensure high reliability of complex systems
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SE: Challenges & Problems 
 Many other challenges:
 Hard to capture needs of end users
 Hard to manage developers working at 

geographically disparate locations
 Etc.
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Part II: Research Topics in SE
 Software Testing and Reliability
 Software Maintenance and Evolution
 Software Analytics, A Recent Trend
 Empirical Software Engineering
 Requirement Engineering
 Many more
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Topics: Software Testing and Reliability
 Software and bugs are often inseparable
 Many systems receive hundreds of bug reports 

daily (Anvik et al., 2005)
 Software gets more complex
 Written in multiple languages
 Written by many people
 Over a long period of time
 Increases likelihood of bugs

*Anvik et al.: Coping with an open bug repository. 
ETX 2005: 35-39
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Software Testing and Reliability: Why Bother?
 Software bugs cost US economy 22.2 – 59.5 

billions annually (NIST, 2002)
 Many software bugs have disastrous effects

Therac-25 Ariane-5 Mars Climate
Orbiter

*National Institute of Standards and Technology 
(NIST): The Economic Impacts of Inadequate 

Infrastructure for Software Testing. Report 2002.
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Software Reliability: Goals
 Ensure the absence of (a family of) bugs
 Formal verification of a set of properties 
 Heavyweight

 Prevention and early detection of bugs
 Does not guarantee the absence of bugs
 Identify as many bugs as possible as early as 

possible
 Lightweight
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Software Testing and Bug Finding: Goals 
 Test adequacy measurement
 How thorough is a test suite?
 Does it cover all parts of a code?

 Test adequacy improvement
 How to create additional test cases?
 How to make a test suite more thorough?

 Test selection
 How to reduce the number of test cases to run 

when a change is made?
 Identification of software bugs
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SE Topics: What is Software Evolution?
 A piece of software system becomes gradually 

more and more different than the original code
 Reasons:
 Bug fixes
 New requirements or features
 Changing environment (e.g., GUI, database, etc.)
 Code quality improvement
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What is Software Maintenance?
 Changes made to existing software system
 Resulting in software evolution
 Types of maintenance tasks:
 Corrective maintenance: Bug fixes
 Perfective maintenance: New features
 Adaptive maintenance: Changing environments
 Preventive maintenance: Code quality improvement
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Software Maintenance – Relative Costs

20



Why is Software Maintenance Expensive?
 Costs can be high because:
 Inexperienced maintenance staffs
 Poor code
 Poor documentation 
 Changes may introduce new faults, which trigger further 

changes
 As a system is changed, its structure tends to degrade, 

which makes it harder to change
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Lehman’s Laws of Evolution
 A classic study by Lehman and Belady (1985) 

identified several “laws” of system change.
 Continuing change
 A program that is used in a real-world environment must 

change, or become progressively less useful in that 
environment

 Increasing complexity
 As a program evolves, it becomes more complex, and 

extra resources are needed to preserve and simplify its 
structure
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What is a Legacy System?
 Legacy IS are large software systems
 They are old, often more than 10 years old
 They are written in a legacy language (e.g., 

COBOL), and built around legacy databases
 Legacy ISs are autonomous, and mission critical
 They are inflexible and brittle
 They are responsible for the consumption of at least 

80% of the IS budget
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Problems of Legacy Systems
 Availability of original developers
 Lack of documentation
 Size and complexity of the software system
 Accumulated past maintenance activities
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History of Eclipse
 1997 – IBM VisualAge for Java ( implemented in 

small talk)
 1999 – IBM VisualAge for Java micro-edition 

(Eclipse code based from here)
 2001 – Eclipse (change name for marketing issue)
 2003 – Eclipse.org foundation
 2005 – Eclipse V3.1
 2006 – Eclipse V3.2
 ….
 2014 – Eclipse V4.4
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History of Microsoft Word
 1983 – MS Word for DOS
 1985 – MS Word for Mac
 1980 – MS Word for Windows
 1991 – MS Word 2
 1993 – MS Word  6
 1995 – MS Word 95
 1997 – MS Word  97
 1998 – MS Word  98
 2000 – MS Word  2000
 2002 – MS Word  XP
 2003 – MS Word 2003
 …
 2014 – MS Word 2013
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Topics: Software Analytics

”Data exploration and analysis in order to obtain 
insightful and actionable information for data-

driven tasks around software and services”
(Zhang and Xie, 2012)
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Software Analytics: Definition
 Analysis of a large amount of software data 

stored in various repositories in order to:
 Understand software development process
 Help improve software maintenance
 Help improve software reliability
 And more
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Topics: Software Analytics

MailingsBugzilla

Execution
traces

Dev. 
Network

Code

SVN
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Big Data for Software Engineering
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Part III: Software Data Sources
 Source Code
 Execution Trace
 Development History
 Bug Reports
 Developer Activities
 Software Forums
 Software Microblogs
 Other Artifacts
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Artifact: Source Code
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Artifact: Source Code
 Where to find code?
 Google code: http://code.google.com/
 Many other places online

 How to analyze source code?
 Analyze -> automatically parse and understand
 Program analysis tools

33
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Artifact: Source Code
 Various languages
 Various kinds of systems
 Various scale: small, medium, large
 Various complexities
 Cyclomatic Complexity

 Various programming styles
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Artifact: Execution Trace
 Information collected when a program is run
 What kind of information is collected?
 Sequences of methods that are executed
 State of various variables at various times
 State of various invariants at various times
 Which components are loaded at various times
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Artifact: Execution Traces

Caller | Callee | Method Signature
36



Artifact: Execution Trace

Chicory Trace: Variable values 
At method entries and exits
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Artifact: Execution Trace
 How to collect?
 Insert instrumentation code
 Execute program
 Instrumentation code writes a log file 

 What tools are available to collect traces?
 Daikon Chicory: 

http://groups.csail.mit.edu/pag/daikon/dist/doc/daikon.html
 PIN: 

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool
 Valgrind: 

http://valgrind.org/
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Artifact: Development History
 What code is
 Added
 Deleted
 Edited

 When
 By Whom
 For What Reason
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Artifact: Development History
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Artifact: Development History
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Artifact: Development History
 Useful for distributed software development
 Various people updating different parts of code

 Easy to backtrack changes
 Easier to find out answer to the question:
 My code works yesterday but not today. Why?

 Easier to quantify contributions of team members
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Artifact: Development History
 Various tools
 CVS – Version per file
 SVN – Version per snapshot
 Git - Distributed

 Slightly different ways to manage content
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Artifact: Bug Reports
 People report errors and issues that they 

encounter in the field
 These errors include:
 Description of the bugs
 Steps to reproduce the bugs
 Severity level
 Parts of the system affected by the bug
 Failure traces
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Artifact: Bug Reports

Title
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Artifact: Bug Reports

Detailed
Description
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Artifact: Bug Reports
 Various kinds of bug repositories

 BugZilla: http://www.bugzilla.org/
 Example site: 

https://bugzilla.mozilla.org/

 JIRA: http://www.atlassian.com/software/jira/
 Example site: 

https://issues.apache.org/jira/browse/WW
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Artifact: Developer Activities
 Developers form a social network
 Developers work on various projects
 Projects have various types, programming 

languages and developers
 Developers follow updates from various other 

developers and projects
 Social coding sites

 A heterogeneous social network is formed
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Artifact: Developer Activities

Social Coding Sites
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Artifact: Developer Activities

More than a year ago
50
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Artifact: Developer Activities



Artifact: Developer Activities
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Artifact: Developer Activities
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Artifact: Developer Activities
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Artifact: Software Forums
 Developers ask and answer questions
 About various topics
 In various threads, some of which are very long
 Stored in various sites
 StackOverflow: http://stackoverflow.com/
 SoftwareTripsAndTricks: 

http://www.softwaretipsandtricks.com/forum/
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Artifact: Software Forums

57



Artifact: Software Forums
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Artifact: Software Microblogs
 Developers microblog too
 Developers microblog about various activities 

(Tian et al. 2012) :
 Advertisements
 Code and tools
 News
 Q&A
 Events
 Opinions
 Tips
 Etc.

*Tian et al.: What does software engineering 
community microblog about? MSR 2012: 247-250
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Artifact: Software Microblogs
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Artifact: Software Microblogs

http://research.larc.smu.edu.sg/palanteer/swdev
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Part IV: Basic Program Analysis Tools

 Static Analysis
 Dynamic Analysis
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Static Analysis
 Control Flow Graph Construction
 Program Dependence Graph Construction
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Control Flows: Control-Flow Graphs

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Control flow is a relation that 
represents the possible flow of 
execution in a program. 
 (a, b) in the relation means that 

control can directly flow from element 
a to element b during execution.

Entry

1

3

2

4

5

6

7

Exit

F

T

1
2
3
4
5

6
7
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Control Flows: Control Dependence

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 Given nodes C and N in a CFG, N is 
control-dependent on C if the 
outcome of C determines if N is 
reached in the CFG.

 We call C as a controller of N.

1
2
3
4
5

6
7

Entry node controls nodes 1,2,3,6,7
Node 3 controls nodes 4 and 5
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Data Flows: Definitions / Uses

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A definition-use chain or DU-chain, 
for a definition D of variable v, is: 
 the set of pair-wise connections 
 between D and all uses of v that D 

can reach.

1
2
3
4
5

6
7
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Data Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 A data-dependence graph contains:
 one node for every program line (or an 

instruction, or a basic block, or a desired 
granularity) and 

 labelled edges that correspond to DU-
chains. 

1 2

5 3
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Program/Procedural Dependence Graphs

int main() {
int sum = 0;
int i = 1;
while ( i < 11 ) {

sum = sum + i;
i = i + 1;

}
printf(“%d\n”, sum);
printf(“%d\n”, i);

}

 PDGs are control- and 
data-dependence graphs
 Capture “semantics”
 Expose parallelism
 Facilitate debugging

i < 11

Entry

1 2

5 3
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4
sum

sum

sum
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i

i

i
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i < 11

1
2
3
4
5

6
7
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Tools
 Program analysis platforms

 WALA: http://wala.sourceforge.net/wiki/index.php/Main_Page
 Chord: http://code.google.com/p/jchord/
 ROSE: http://www.rosecompiler.org/

 Other tools
 JPF: http://babelfish.arc.nasa.gov/trac/jpf
 BLAST: http://mtc.epfl.ch/software-tools/blast/index-epfl.php
 ESC/Java: http://kindsoftware.com/products/opensource/ESCJava2/
 SPIN: http://spinroot.com/spin/whatispin.html
 PAT: http://www.comp.nus.edu.sg/~pat/
 Choco: http://www.emn.fr/z-info/choco-solver/ 
 Yices: http://yices.csl.sri.com/
 STP: https://sites.google.com/site/stpfastprover/STP-Fast-Prover
 Z3: http://z3.codeplex.com/
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Dynamic Analysis
 Instrumentation
 Test Case Generation
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What is Dynamic (Program) Analysis?
 Basically
 Run a program
 Monitor program states during/after the executions
 Extract useful information/properties about the program
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How to Run?
 Testing
 Choose good test cases
 The test suite determines the expense 
 In time and space

 The test suite determines the accuracy 
 What executions are seen or not seen
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Tracing / Profiling
 Tracing: Record faithfully (lossless) detailed information of 

program executions
 Control flow tracing

 Sequence of executed statements.
 Dependence tracing

 Sequence of exercised dependences.
 Value tracing

 Sequence of values produced by each instruction.
 Memory access tracing

 Sequence of memory references during an execution
 Profiling: Record aggregated (lossy) information about 

program executions
 Control flow profiling: execution frequencies of instructions
 Value profiling: occurrence frequencies of values
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Tracing/Profiling by Instrumentation
 Source code instrumentation
 Binary instrumentation
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Test Case Generation: Concolic Testing
 Goal: find actual inputs that exhibit an error or execute as many 

program elements as possible
 By exploring different execution paths

1) Start with an execution with random inputs
2) Collect the path conditions for the execution
3) Negate some of the path conditions

 So as to be used as the path conditions for the next execution 
which should follow a different path

4) Solve the new path conditions to get actual values for the inputs
 The execution using these new inputs should follow a different path

5) Repeat 2)—4) until no more new paths to explore

*Godefroid et al.: DART: directed automated random testing. 
PLDI 2005: 213-223

*Sen et al.: CUTE: a concolic unit testing engine for C. 
ESEC/SIGSOFT FSE 2005: 263-272
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Concolic Testing: Symbolic & Concrete Executions

int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7 x = x0, y = y0
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7,
z = 14

x = x0, y = y0, 
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7,
z = 14

x = x0, y = y0, 
z = 2*y0

2*y0 != x0

Concolic Testing: Symbolic & Concrete Executions
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

2*y0 != x0

x = 22, y = 7,
z = 14

x = x0, y = y0, 
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

Solve: 2*y0 == x0

Solution: x0 = 2, y0 = 1
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,      
z = 2

x = x0, y = y0, 
z = 2*y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 2, y = 1,       
z = 2

x = x0, y = y0, 
z = 2*y0

2*y0 == x0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,       

z = 2
x = x0, y = y0, 

z = 2*y0

2*y0 == x0

x0 <= y0+10

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 2, y = 1,       

z = 2
x = x0, y = y0, 

z = 2*y0

Solve: (2*y0 == x0) /\ (x0 > y0 + 10)
Solution: x0 = 30, y0 = 15

Concolic Testing: Symbolic & Concrete Executions

2*y0 == x0

x0 <= y0+10
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int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions
Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int double (int v) { 

return 2*v; 
}

void testme (int x, int y) {

z = double (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 30, y = 15 x = x0, y = y0

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 22, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49
x = x0, y = y0,

z = (y0*y0)%50

(y0*y0)%50 !=x0

Concolic Testing: Symbolic & Concrete Executions

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 
Stuck?
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

foo (y0) !=x0

Solve: foo (y0) == x0

Don’t know how to solve! 
Stuck?

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,

z = 49

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 
Not Stuck!
Use concrete state

Replace y0 by 7

Concolic Testing: Symbolic & Concrete Executions

x = x0, y = y0,
z = (y0*y0)%50

(y0*y0)%50 !=x0
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}
x = 22, y = 7,    

z = 48
x = x0, y = y0,  

z = 49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Concolic Testing: Symbolic & Concrete Executions
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int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7 x = x0, y = y0

Concolic Testing: Symbolic & Concrete Executions

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition
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Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

int foo (int v) { 

return (v*v) % 50; 
}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;
}

}

}

x = 49, y = 7,
z = 49

x = x0, y = y0 ,
z = 49  

2*y0 == x0

x0 > y0+10

Program Error

Concolic Testing: Symbolic & Concrete Executions
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Tools
 Program instrumentation and analysis frameworks
 CIL: http://cil.sourceforge.net/
 Valgrind: http://valgrind.org/
 Daikon: http://groups.csail.mit.edu/pag/daikon/
 Jikes: http://jikes.sourceforge.net/
 QEMU: http://wiki.qemu.org/Main_Page
 Pin: http://www.pintool.org/
 Omega: http://www.cs.umd.edu/projects/omega/

 Test case generation
 Korat: http://korat.sourceforge.net/
 CUTE: http://srl.cs.berkeley.edu/~ksen/doku.php
 CREST: http://crest.googlecode.com/
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Conclusion
 Part I: Challenges & Problems
 High software cost
 Ensuring reliability of systems

 Part II: Research Topics
 Software testing and reliability
 Software maintenance and evolution
 Software analytics

 Part III: Data Sources
 Code, traces, history, bug reports, developer activities, 

forums, microblogs, etc.
 Part IV: Basic Program Analysis Tools
 Static analysis
 Dynamic analysis
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Additional References & Acknowledgements
 Some slides and images are taken or adapted from:
 Ying Zou’s, Ahmed Hassan’s and Tao Xie’s slides
 Lingxiao Jiang’s slides 

(from SMU’s IS706 slides that we co-taught together)
 Mauro Pezze’s and Michal Young’s slides

(from the resource slides of their book)
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Thank you!

Questions? Comments? 
davidlo@smu.edu.sg



Data Mining for 
Software Engineering

Genius is 1% inspiration and 99% 
perspiration! 

-Thomas A. Edison
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Slide Outline
 Part I: Pattern Mining
 Techniques
 Applications

 Part II: Clustering
 Techniques
 Applications

 Part III: Classification
 Techniques
 Applications
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Part I: Pattern Mining
 Frequent pattern: a pattern (a set of items,

subsequences, substructures, etc.) that occurs
many times in a data set

 Motivation: Finding inherent regularities in data
 What products were often purchased together?
 What are the subsequent purchases after buying a PC?
 What kinds of DNA are sensitive to this new drug?
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Structure
 Techniques
 Association Rule Mining
 Sequential Pattern Mining
 Subgraph Mining

 Applications
 Allatin: Mining Alternative Patterns
 Other Applications
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Association Rule Mining

I(A): Pattern Mining Techniques
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Definition: Frequent Itemsets
 Frequent pattern mining: find all

frequent itemsets in a database

 Itemset: a set of items
 E.g., acm={a, c, m}

 Support of itemsets
 Sup(acm)=3

 Given min_sup = 3, acm is a 
frequent pattern

TID Items bought
100 f, a, c, d, g, i, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o
400 b, c, k, s, p
500 a, f, c, e, l, p, m, n

Transaction database TDB
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Definition: Association Rules
 Find all the rules X  Y with minimum support and 

confidence
 support, s, number of transactions contain X ∪ Y
 confidence, c, conditional probability that a transaction 

having X also contains Y

 Itemsets should be frequent
 It can be applied extensively

 Rules should be confident
 With strong prediction capability
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Definition: Association Rules
 buy(diaper)  buy(beer)
 Dads taking care of babies in weekends drink beer

Customer
buys diaper

Customer
buys both

Customer
buys beer
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Definition: Association Rules

 Let  min-sup = 3,  min-conf = 50%
 Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
 Association rules:
 A  D  (3, 100%)
 D  A  (3, 75%)

Transaction-id Items bought
10 A, B, D
20 A, C, D
30 A, D, E
40 B, E, F
50 B, C, D, E, F
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Methodology
 The downward closure property of frequent 

patterns
 Any subset of a frequent itemset must be frequent
 If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 i.e., every transaction having {beer, diaper, nuts} also 

contains {beer, diaper} 
 Scalable mining methods: 
 Apriori (Agrawal & Srikant@VLDB’94)
 Freq. pattern growth (FPgrowth—Han, Pei & Yin 

@SIGMOD’00)
 Vertical data format approach (Charm—Zaki & Hsiao 

@SDM’02)
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Methodology: Apriori Algorithm
 Apriori pruning principle: 
 If there is any itemset which is infrequent, its 

superset should not be generated/tested! 
 Method: 
 Initially, scan DB once to get frequent 1-itemset
 Generate length (k+1) candidate itemsets from 

length k frequent itemsets
 Test the candidates against DB
 Terminate when no frequent or candidate set 

can be generated
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Apriori Algorithm—An Example 

Database TDB

1st scan

C1
L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

Supmin = 2
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Apriori Algorithm

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
end

return ∪k Lk;
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Apriori Algorithm: Details
 How to generate candidates?
 Step 1: self-joining Lk

 Step 2: pruning
 Example of Candidate-generation
 L3={abc, abd, acd, ace, bcd}
 Self-joining: L3*L3

 abcd from abc and abd
 acde from acd and ace

 Pruning:
 acde is removed because ade is not in L3

 C4={abcd}
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Closed Patterns and Max-Patterns

 A long pattern contains a combinatorial number of sub-
patterns, e.g., {a1, …, a100} contains 2100 – 1 = 1.27*1030 

sub-patterns!
 Solution: Mine closed patterns and max-patterns instead
 An itemset X is closed if X is frequent and there exists no 

super-pattern Y כ X, with the same support as X 
(proposed by Pasquier, et al. @ ICDT’99) 
 Closed pattern is a lossless compression of freq. patterns
 Reducing the # of patterns and rules

 An itemset X is a max-pattern if X is frequent and there 
exists no frequent super-pattern Y כ X (proposed by 
Bayardo @ SIGMOD’98)
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Closed Patterns and Max-Patterns

 Exercise.  DB = {a1, …, a100}, {a1, …, a50} 
 Min_sup = 1.

 What is the set of closed itemset?
 {a1, …, a100}: 1
 {a1, …, a50}: 2

 What is the set of max-pattern?
 {a1, …, a100}: 1

 What is the set of all patterns?
 !!
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Sequential Pattern Mining

I(A): Pattern Mining Techniques
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Definition: Sequential Pattern Mining

 Given a set of sequences, find the complete set of 
frequent subsequences

An element may contain a set of items.
Items within an element are unordered

and we list them alphabetically. 

A sequence : < (ef) (ab) (df) c b >
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Definition: Sequential Pattern Mining

A sequence database 
SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<(ab)c> 
is a subsequence of 
<a(abc)(ac)d(cf)>

<(ab)c> 
is a subsequence of 

<(ef)(ab)(df)cb>

Given support threshold 
min_sup =2, 

<(ab)c> is a frequent 
sequential pattern
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Methodology
 A basic property: Apriori (Agrawal & Srikant’94) 
 If a sequence S is not frequent 
 Then none of the super-sequences of S is frequent
 E.g, <hb> is infrequent  so do <hab> and 

<(ah)b>
 Many algorithms:
 Apriori (Agrawal & Srikant’94): GSP
 PrefixSpan
 BIDE, etc.
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GSP—Generalized Sequential Pattern Mining
 Proposed by Agrawal and Srikant, EDBT’96
 Outline of the method
 Initially, every item in DB is a candidate of length-1
 For each level (i.e., sequences of length-k) do
 Scan database to collect support count for each 

candidate sequence
 Generate candidate length-(k+1) sequences from 

length-k frequent sequences using Apriori
 Repeat until no frequent sequence or no candidate 

can be found
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PrefixSpan: Definition
 Prefix and Suffix (Projection)
 <a>, <aa>, <a(ab)> and <a(abc)> are prefixes

of sequence <a(abc)(ac)d(cf)>
 Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)
<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>
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PrefixSpan: Approach
 Step 1: find length-1 sequential patterns
 <a>, <b>, <c>, <d>, <e>, <f>

 Step 2: divide search space. The complete set of 
seq. pat. can be partitioned into 6 subsets:
 The ones having prefix <a>;
 The ones having prefix <b>;
 …
 The ones having prefix <f>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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PrefixSpan: Approach
 Only need to consider projections w.r.t. <a>
 <a>-projected database: <(abc)(ac)d(cf)>, 

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

 Find all the length-2 seq. pat. having prefix <a>: 
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
 Further partition into 6 subsets
 Having prefix <aa>;
 …
 Having prefix <af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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PrefixSpan: Approach
SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Having prefix <a>

Length-2 sequential 
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <b>

<b>-projected database

Having prefix <c>, …, <f>

… …
Having prefix <aa>

… …
Having prefix <af>

…
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Closed Frequent Sequences

 Motivation: Handling sequential pattern explosion 
problem

 Closed frequent sequence
 A frequent (sub) sequence S is closed if there 

exists no supersequence of S that carries the 
same support as S
 If some of S’s subsequences have the same 

support, it is unnecessary to output these 
subsequences (nonclosed sequences)
 Lossless compression: still ensures that the 

mining result is complete
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Subgraph Mining

I(A): Pattern Mining Techniques
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Definition : Subgraph Mining

 Frequent subgraphs
 A (sub)graph is frequent if its support 

(occurrence frequency) in a given dataset is no 
less than a minimum support threshold

 Applications of graph pattern mining
 Mining biochemical structures
 Program control flow analysis
 Building blocks for graph classification, clustering, 

compression, etc.
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Methodology

…

G

G1

G2

Gn

size-k

size-(k+1)

…

size-(k+2)

…

duplicate 
graph
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Methodology: Joining two graphs 

 AGM (Inokuchi, et al. PKDD’00) 
 generates new graphs with one more node

 FSG (Kuramochi and Karypis ICDM’01)
 generates new graphs with one more edge
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e0: (0,1)

e1: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)

Graph Mining and Sequence Mining
 Flatten a graph into a sequence using depth first 

search

0

1

2

3
4
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Closed Frequent Graphs

 Motivation: Handling graph pattern explosion 
problem

 Closed frequent graph
 A frequent graph G is closed if there exists no 

supergraph of G that carries the same support 
as G
 If some of G’s subgraphs have the same support, 

it is unnecessary to output these subgraphs
(nonclosed graphs)
 Lossless compression: still ensures that the 

mining result is complete
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Allatin: Mining Alternating Patterns 
for Defect Detection

I(B): Pattern Mining Applications
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Allatin: Mining Alternative Patterns
 Suresh Thummalapenta, IBM Research
 Tao Xie, North Carolina State University

 Published in Automated Software Engineering 
Journal, 2011
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Introduction

 Programming rules often exists for APIs

 These programming rules are often not 
documented well
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Introduction
 Allatin recovers common usages of APIs
 Expressed as simple patterns:
 P1 = Boolean-check on return of Iterator.hasNext

before Iterator.next
 Patterns are mined by looking to many code pieces 

that use the API before in the internet.

133



Introduction
 There might be various acceptable usages

 Alternative pattern: P2 = Constant-check on return 
of ArrayList.size before Iterator.next
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Introduction
 Allatin recovers a combination of simple patterns
 And patterns: P1 AND P2
 Or patterns: P1 OR P2
 XOR patterns: P1 XOR P2
 Combo patterns: (P1 AND P2) XOR P3

 The patterns are used to detect neglected 
conditions
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Methodology
 Phase 1: Gathering code examples
 Phase 2: Generating pattern candidates
 Focus on condition checks before and after API 

method invocations
 Phase 3: Mining alternative patterns
 Phase 4: Detect neglected conditions
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Methodology
 Algorithm
 Starts with small pattern
 Combines them by various operators
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Methodology
 Limitation
 Employ a number of ad-hoc heuristics
 If “A AND B” and “A XOR B” have support >= min-

sup then the right pattern is “A OR B”
 No guarantee that a complete set of patterns are 

mined
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Experiment
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Experiment
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Experiment
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Experiment
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Other Applications
 Mining temporal specifications
 Zhenmin Li, Yuanyuan Zhou: PR-Miner: 

automatically extracting implicit programming rules 
and detecting violations in large software code. 
ESEC/SIGSOFT FSE 2005: 306-315
 David Lo, Siau-Cheng Khoo, Chao Liu: Efficient 

mining of iterative patterns for software 
specification discovery. KDD 2007: 460-469
 David Lo, Bolin Ding, Lucia, Jiawei Han: Bidirectional 

mining of non-redundant recurrent rules from a 
sequence database. ICDE 2011: 1043-1054
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Other Applications
 Mining temporal specifications (cont)
 David Lo, Jinyan Li, Limsoon Wong, Siau-Cheng 

Khoo: Mining Iterative Generators and 
Representative Rules for Software Specification 
Discovery. IEEE Trans. Knowl. Data Eng. 23(2): 
282-296 (2011)

 Detecting duplicate bug reports
 David Lo, Hong Cheng, Lucia: Mining closed 

discriminative dyadic sequential patterns. EDBT 
2011: 21-32
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Other Applications
 Bug and failure identification
 Hwa-You Hsu, James A. Jones, Alessandro Orso: 

Rapid: Identifying Bug Signatures to Support 
Debugging Activities. ASE 2008: 439-442
 Hong Cheng, David Lo, Yang Zhou, Xiaoyin Wang, 

Xifeng Yan: Identifying bug signatures using 
discriminative graph mining. ISSTA 2009: 141-152
 David Lo, Hong Cheng, Jiawei Han, Siau-Cheng 

Khoo, Chengnian Sun: Classification of software 
behaviors for failure detection: a discriminative 
pattern mining approach. KDD 2009: 557-566
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Other Applications
 Predicting project outcome
 Didi Surian, Yuan Tian, David Lo, Hong Cheng, Ee-

Peng Lim: Predicting Project Outcome Leveraging 
Socio-Technical Network Patterns. CSMR 2013: 47-
56

 Detecting co-occurring changes
 Thomas Zimmermann, Peter Weißgerber, Stephan 

Diehl, Andreas Zeller: Mining Version Histories to 
Guide Software Changes. ICSE 2004: 563-572
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Part II: Clustering
 Cluster: a collection of data objects
 Similar to one another within the same cluster
 Dissimilar to the objects in other clusters

 Cluster analysis
 Finding similarities among data objects 

according to their characteristics
 Grouping similar data objects into clusters
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Part II: Clustering
 Typical applications
 As a stand-alone tool to get insight into data
 As a preprocessing step for other algorithms
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Quality: What Is Good Clustering?
 A good clustering method will produce clusters 

with:
 high intra-class similarity
 low inter-class similarity 

 The quality of a clustering method is also 
measured by its ability to discover some or all of 
the hidden patterns
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Structure
 Techniques
 k-Means
 k-Medoids
 Hierarchical Clustering

 Applications
 Performance Debugging in the Large via Mining 

Millions of Stack Traces
 Other applications
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k-Means

II(A): Clustering Techniques
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The K-Means Clustering Method

 Given k, the k-means algorithm is implemented in four 
steps:
1. Partition objects into k nonempty subsets
2. Compute the means of the clusters of the current partition 

(the mean is the center of the cluster)
3. Re-assign each object to the cluster with the nearest mean
4. Go back to Step 2, stop when no more new assignment
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The K-Means Clustering Method
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Limitations
 Applicable only when mean is defined
 Need to specify k, the number of clusters, in advance
 Unable to handle noisy data and outliers
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k-Medoids

II(A): Clustering Techniques
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k-Medoids
 Find representative objects, called medoids, in clusters

 Many algorithms:
 PAM (Partitioning Around Medoids, 1987)

 CLARA (Kaufmann & Rousseeuw, 1990)

 CLARANS (Ng & Han, 1994): Randomized sampling

 Focusing + spatial data structure (Ester et al., 1995)
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PAM (Partitioning Around Medoids) (1987)

 PAM (Kaufman and Rousseeuw, 1987)
 Use real object to represent the cluster
 Select k representative objects arbitrarily
 For each pair of non-selected object h and selected 

object i, calculate the total swapping cost TCih

 For each pair of i and h, 
 If TCih < 0, i is replaced by h
 Then reassign each non-selected object to the most 

similar representative object
 repeat steps 2-3 until there is no change
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Randomly select a 
nonmedoid object, OR

PAM (Partitioning Around Medoids) (1987)
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Hierarchical Clustering

II(A): Clustering Techniques
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Hierarchical Clustering

 This method does not require the number of clusters k as 
an input, but needs a termination condition 

Step 0 Step 1 Step 2 Step 3 Step 4

b

d

c

e

a
a b

d e

c d e

a b c d e

Step 4 Step 3 Step 2 Step 1 Step 0

agglomerative
(AGNES)

divisive
(DIANA)
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AGNES (Agglomerative Nesting)
 Introduced in Kaufmann and Rousseeuw (1990)
 Merge nodes that have the least dissimilarity
 Go on until eventually all nodes belong to the same cluster
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DIANA (Divisive Analysis)

 Introduced in Kaufmann and Rousseeuw (1990)
 Inverse order of AGNES
 Eventually each node forms a cluster on its own
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Dendrogram: Shows How the Clusters are Merged

Decompose data objects into several levels of nested 
partitioning (tree of clusters), called a dendrogram. 

A clustering of the data objects is obtained by cutting the 
dendrogram at the desired level, then each connected 
component forms a cluster.
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Performance Debugging in the Large 
via Mining Millions of Stack Traces

II(B): Clustering Applications
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Performance Debugging by Mining Stack Traces

 Shi Han, Yingnong Dang, Song Ge, Dongmei 
Zhang, Microsoft Research

 Tao Xie, North Carolina State University

 Published in International Conference on Software 
Engineering, 2012
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Introduction
 Performance of software system is important
 Performance bugs leads to unbearably slow system
 To debug performance issues, Windows has the 

facility to collect execution traces
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Introduction
 Manual investigation needs to be performed
 Very tedious and time-consuming
 Many execution traces
 Each of them can be very long

 Semi/Fully automated support needed
 Proposed solution:
 Group related execution traces together
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Methodology
 Phase 1: Extract area of interest
 Not all collected execution traces are interesting
 Focus on events that wait for other events in the 

traces
 Use developers domain knowledge to localize this 

area of interest
 Phase 2: Extract maximal sequential patterns
 Phase 3: Cluster the patterns together
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Methodology
 Hierarchical clustering is performed
 Key: similarity measure
 Similarity measure:
 Alignment of two patterns
 Computation of similarity
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Methodology
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Experiment
 Finding hidden performance bugs 
 on Windows Explorer UI

 Input: 921 trace streams
 140 million call stacks

 Output: 1,215 pattern clusters
 Pattern mining and clustering time: 10 hours
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Experiment
 Developer manually investigate the clusters
 Eight hours -> produce 93 signatures
 Twelve of them are highly impactful performance 

bugs
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Other Applications
 Testing multi-threaded applications
 Adrian Nistor, Qingzhou Luo, Michael Pradel, 

Thomas R. Gross, Darko Marinov: Ballerina: 
Automatic generation and clustering of efficient 
random unit tests for multithreaded code. ICSE 
2012: 727-737

 Defect prediction
 Nicolas Bettenburg, Meiyappan Nagappan, Ahmed 

E. Hassan: Think locally, act globally: Improving 
defect and effort prediction models. MSR 2012: 60-
69
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Other Applications
 Ontology inference
 Shaowei Wang, David Lo, Lingxiao Jiang: Inferring 

semantically related software terms and their 
taxonomy by leveraging collaborative tagging. ICSM 
2012: 604-607

 Detecting malicious apps
 Alessandra Gorla, Ilaria Tavecchia, Florian Gross, 

Andreas Zeller: Checking app behavior against app 
descriptions. 1025-1035
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Other Applications
 Software remodularization
 Nicolas Anquetil, Timothy Lethbridge: Experiments 

with Clustering as a Software Remodularization
Method. WCRE 1999: 235-255
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Part III: Classification
 Assigns data to some predefined categories
 It performs this 
 By constructing a model
 Based on:
 the training set
 the values (class labels) in a classifying attribute 

 Uses it in classifying new data
 Two steps process:
 Model construction
 Model usage
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Classification – Model Construction

 Model construction: describing the set of 
predetermined class/categories
 The set of tuples used for model construction is 

called the training set
 Each tuple/sample is assumed to belong to a 

predefined class, as determined by the class label 
attribute

 The model is represented as classification rules, 
decision trees, or mathematical formulae
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Classification – Model Usage

 Model usage: for classifying future or unknown 
objects
 Estimate accuracy of the model
 The known label of test sample is compared with 

the classified result from the model
 Accuracy rate is the percentage of test set 

samples that are correctly classified by the model
 Test set is independent of training set, otherwise 

over-fitting will occur
 If the accuracy is acceptable, use the model to 

classify data tuples whose class labels are not known

178



Process (1): Model Construction

Training
Data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification
Algorithms

IF rank = ‘professor’
OR years > 6

THEN tenured = ‘yes’ 

Classifier
(Model)
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Process (2): Using the Model in Prediction 

Classifier

Testing
Data

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?
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Structure
 Techniques
 Decision Tree
 Support Vector Machine
 k-Nearest Neighbor

 Applications
 An Industrial Study on the Risk of Software Changes
 Other Applications

181



Decision Tree

III(A): Classification Techniques
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Decision Tree Induction: Training Dataset
age income student credit_rating buys_computer

<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no
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Output: A Decision Tree for “buys_computer”

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno
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High-Level Methodology
 Tree is constructed in a top-down recursive divide-and-

conquer manner
 At start, all the training examples are at the root
 Examples are partitioned recursively based on selected 

attributes
 Attributes are selected on the basis of a heuristic or statistical 

measure
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High-Level Methodology
 Conditions for stopping partitioning
 All samples for a given node belong to the same class
 There are no remaining attributes for further partitioning
 There are no samples left

 Majority voting is employed for classifying the leaf
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Support Vector Machine (SVM)

III(A): Classification Techniques
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High-Level Methodology
 Searches for the linear optimal separating hyperplane (i.e., 

“decision boundary”)

Support Vectors
Small Margin Large Margin

SVM searches for the hyperplane with the largest margin, i.e., 
maximum marginal hyperplane (MMH)
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High-Level Methodology
 How if not separable by a linear hyperplane?
 It uses a nonlinear mapping to transform the original training 

data into a higher dimension
 With an appropriate nonlinear mapping to a sufficiently high 

dimension, data from two classes can always be separated by 
a hyperplane
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High-Level Methodology
 Features: 
 Training can be slow
 Accuracy is often high owing to their ability to 

model complex nonlinear decision boundaries
 Applications: 
 Handwritten digit recognition, object recognition, 

speaker identification, etc
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k-Nearest Neighbors

III(A): Classification Techniques
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Lazy Learner: Instance-Based Methods

 Instance-based learning: 
 Store training examples and delay the 

processing (“lazy evaluation”) until a new 
instance must be classified

 Typical approaches
 k-nearest neighbor approach
 Locally weighted regression
 Case-based reasoning
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The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space
 New instance label is predicted based on its k-NN
 If the predicted label is discrete:
 Return the most common value among the neighbors in 

the training data
 If the predicted label is a real number:
 Return the mean values of the k nearest neighbors

. 

_
+

_ xq

+

_ _
+

_

_

+
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Discussion on the k-NN Algorithm

 Distance-weighted nearest neighbor algorithm
 Weight the contribution of each of the k neighbors 

according to their distance to the query xq

 Give greater weight to closer neighbors

 Problem:
 Curse of dimensionality: distance between neighbors could 

be dominated by irrelevant attributes   
 To overcome it: elimination of least relevant attributes

2),(
1

ixqxd
w≡
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An Industrial Study on the Risk of 
Software Changes

III(A): Classification Applications
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Predicting Risk of Software Changes
 Emad Shihab, Ahmed E. Hassan, Queen’s 

University, Canada
 Bram Adams, Ecole Polytechnique de Montreal, 

Canada
 Zhen Ming Jiang, Research in Motion, Canada

 Published in ACM Symposium on Foundations of 
Software Engineering (FSE), 2012
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Introduction
 Many companies care about risk
 Negative impact on products and processes

 Some software changes are risky to be 
implemented
 Risky changes = “changes for which developers 

believe that additional attention is needed in the 
form of careful code or design reviewing and/or 
more testing”
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Approach
 Feature Extraction (Key Step)
 Classifier Construction
 Classifier Application
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Approach
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Approach
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Approach
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Approach
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Approach
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Approach
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Approach
 Find that risky changes classification is subjective
 Thus they add two additional features for two 

kinds of models:
 Developers based: Add developer name
 Team base: Add team name
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Result
 Ten fold cross validation
 Recall
 Developer based: 67.6%
 Team based: 67.9%

 Relative precision
 Compared with random model
 Developer based: 1.87x
 Team based: 1.37x
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Other Applications
 Predicting faulty commits
 Tian Jiang, Lin Tan, Sunghun Kim: Personalized 

defect prediction. ASE 2013: 279-289
 Refining anomaly reports
 Lucia, David Lo, Lingxiao Jiang, Aditya Budi: Active 

refinement of clone anomaly reports. ICSE 2012: 
397-407

 Automated fixing of bugs in SQL-like queries
 Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, 

Satish Chandra: Data-guided repair of selection 
statements. ICSE 2014: 243-253
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Other Applications
 Class diagram summarization
 Ferdian Thung, David Lo, Mohd Hafeez Osman, 

Michel R. V. Chaudron: Condensing class diagrams 
by analyzing design and network metrics using 
optimistic classification. ICPC 2014: 110-121

 Predicting effectiveness of automated fault 
localization tools
 Tien-Duy B. Le, David Lo: Will Fault Localization 

Work for These Failures? An Automated Approach to 
Predict Effectiveness of Fault Localization Tools. 
ICSM 2013: 310-319
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Conclusion
 Part I: Pattern Mining
 Extract frequent structures from database
 Structures: Set, Sequence, Graph
 Application: Find common API patterns

 Part II: Clustering
 Group similar things together
 Approaches: k-Means, k-Medoids, Hierarchical, etc.
 Application: Group traces to reduce inspection cost

 Part III: Classification
 Predict class label of unknown data
 Approaches: Decision tree, SVM, kNN, etc.
 Application: Predict risk of software changes
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Thank you!

Questions? Comments? 
davidlo@smu.edu.sg



Source Code,
Examples,

Bugs, Tests, Etc
I have not failed. I've just 
found 10,000 ways that won't 
work.

- Thomas A. Edison

Information Retrieval 
for Software 
Engineering
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Definition
 Information retrieval (IR) is finding material
 (usually documents) 
 of an unstructured nature (usually text) 
 that satisfies an information need 
 from within large collections
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Software Engineering Corpora
 Real text
 Code (is text?)

How to Find 
Interesting 
Information 

Given a Query?
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Outline

 I. Preliminaries
 Preprocessing
 Retrieval
 Recent Studies in SE

 II. Vector Space Model
 Techniques
 Applications

 III. Language Model
 Techniques
 Applications

 IV. Topic Model
 Techniques
 Applications

 V. Text Classification
 Techniques
 Applications
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Part I: Preliminaries

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

ResultsHow to Evaluate Results?
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Structure
 Preprocessing:
 Document Boundary & Format
 Text Preprocessing
 Code Preprocessing

 Retrieval:
 Retrieval Model
 Evaluation Criteria

 Recent Studies in SE
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Document Boundary & Format
Text Preprocessing
Code Preprocessing

I(A): Preprocessing
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Document Boundary
 What is the document unit ?
 A file?
 An email?
 An email with 5 attachments?
 A group of files (ppt or latex in HTML)?
 A method ? A class ?

 Requires some design decisions.
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Document Format
 We need to deal with format and language of each 

document.
 What format is it in? 
 pdf, word, excel, html, etc.

 What language is it in?
 English, Java, C#, Chinese, Hindi, etc.

 What character set is in use?
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Text Preprocessing
 Tokenization
 Stop-word Removal
 Normalization
 Stemming
 Indexing
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Text: Tokenization
 Breaking a document into its constituent tokens or 

terms
 In a textual document, a token is typically a word.

 Example (Shakespeare’s Play):
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Text: Stop-Word Removal
 stop words = extremely common words 
 little value in helping select documents matching a 

user need
 Examples: a, an, and, are, as, at, be, by, for, from, 

has, he, in, is, it, its, of, on, that, the, to, was, were, 
will, with

 Stop word elimination used to be standard in older 
IR systems.
 However, stop words needed for phrase queries, 

e.g. “president of Singapore”
 Most web search engines index stop words
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Text: Normalization
 Need to normalize terms in indexed text as well as 

query terms into the same form.
 Example: We want to match U.S.A. and USA
 We most commonly implicitly define equivalence 

classes of terms.
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Text: Stemming
 Definition of stemming: Crude heuristic process 

that chops off the ends of words to reduce related 
words to their root form

 Language dependent
 Example: automate, automatic, automation all 

reduce to automat
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Text: Stemming

 Porter’s Algorithm 
 Most commonly used algorithm
 Five phases of reductions
 Phases are applied sequentially

 Each phase consists of a set of commands.
 Sample command: Delete final ement if what 

remains is longer than 1 character
 replacement → replac
 cement → cement
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Text: Stemming

 Stemming can increase effectiveness for some 
queries, and decrease effectiveness for others

 Queries where stemming is likely to help: 
 [wool sweaters], [sightseeing tour singapore] 
 (equivalence classes: {sweater,sweaters}, 

{tour,tours})
 Queries where stemming hurts: 
 [operational AND research], [operating AND 

system], [operative AND dentistry]
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Text: Stemming
 Other stemming algorithms:
 Lovins stemmer
 Paice stemmer
 Etc.
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Text: Indexing

 Inverted Index
For each term t, we store a list of all documents that 

contain t.

dictionary documents
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Text: Indexing
 Bi-word index
 Index every consecutive pair of terms in the text as a 

phrase.
 k-gram index
 Positional index
 etc.
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Code Preprocessing
 Parsing
 Identifier Extraction
 Identifier Tokenization
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Code: Parsing
 Creating an abstract syntax tree of the code.
 Identify which ones are variable names, which 

ones are method calls, etc.
 Difficulties: Multiple languages, partial code
 Tools:
 ANTLR
 WALA
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Code: Identifier Extraction
 Extract the names of identifiers in the code.
 Method names
 Variable names
 Parameter names
 Class names

 Extract the comments in the code
 Extract string literals in the code
 How about if/loop/switch structures ?
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Code: Identifier Tokenization
 Break identifier names into tokens.
 printLine => print line
 System.out.println => system out println

 Many identifier names are in camel casing

 Why do we need to break identifier names?
 Do all identifiers need to be broken?
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Retrieval Model
Evaluation Metrics

I(B): Retrieval
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Retrieval Model

 Vector Space Model
 Model documents and queries as a vector of values

 Language Model
 Model documents and/or queries by a probability 

distribution
 Probability for it to generate a word, a sequence of 

words, etc.
 Topic Model
 Model documents and queries by a set of topics, 

where a topic is a set of words
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Evaluation Metrics - 1
 Unranked evaluation
 Precision (P) is the fraction of retrieved documents 

that are relevant

 Recall (R) is the fraction of relevant documents 
that are retrieved

237



Evaluation Metrics - 2
 Ranked evaluation
 P-R Curve
 Compute precision and recall for each “prefix”
 top 1, top 2, top 3, top 4 etc results

 Produces a precision-recall curve.
 Mean Average Precision (MAP)
 Average precision for the top k documents
 each time a relevant doc is retrieved

 Averaged over all queries
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Identifier Expansion

I(C): Recent Studies in SE
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Recent Studies in SE
 Dawn Lawrie, David Binkley: Expanding identifiers 

to normalize source code vocabulary. ICSM 2011: 
113-122

 Dave Binkley, Dawn Lawrie, Christopher Uehlinger: 
Vocabulary normalization improves IR-based 
concept location. ICSM 2012: 588-591

240



Expanding Identifiers: Introduction
 Language used in code and other documents must 

be standardized for effective retrieval.
 A significant proportion of invented vocabulary.
 To standardize:
 Split an identifier into parts
 Expand the identifier into a word

 Closer to queries expressed in human language
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Expanding Identifiers: Approach (Nutshell)
 Break an identifiers into many possible splits
 For each possible split, expand the identifier parts
 Expand each part by adding wildcard characters 
 See if any of the resultant regular expression match 

any dictionary word surrounding the identifier
 Find the best possible split and expansion
 Criterion: Maximize similarity of expanded parts
 Measure word-similarity based on co-occurrence
 Trained on a dataset of over one trillion words 

collected by Google
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Expanding Identifiers: Accuracy
 Compared with manual expansion of identifiers
 Variants: Top-1 or Top-10 splits
 Accuracy criteria: 
 Identifier match: % of identifiers correctly expanded
 Word match: % of identifier parts correctly expanded
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Expanding Identifiers: Application in Retrieval

Feature Location: 
Queries (Feature Description) -> Relevant Code Units
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Expanding Identifiers: Application in Retrieval
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Summary: Retrieval Process

Document Preprocessing

Retrieval Model

Indexed Corpus

Query

Results
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Part II - Vector Space Model (VSM)
 Model documents and queries as a vector of values
 Retrieval is done by computing similarities of:
 Document and queries
 In the vector space

 Questions:
 What are the appropriate vectors of values that 

represent documents?
 How to compute similarities between two vector-

based representations of documents?
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Structure
 Techniques
 Document Representation
 Bag-of-Word Model
 Term Frequency (TF)
 Inverse Document Frequency (IDF)
 Other TF-IDF Variants

 Retrieval using VSM 
 Applications
 Duplicate Bug Report Detection
 Other Applications
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Bag-of-Word Model
Term Frequency (TF)

Inverse Document Frequency (IDF)
Other TF-IDF Variants
Retrieval using VSM

II(A): Techniques
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Bag of Words Consideration
 It considers a document as a multi-set of its 

constituent words (or terms).
 We do not consider the order of words in a 

document.
 John is quicker than Mary, and 
 Mary is quicker than John 
are represented the same way.
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VSM: Term Weighting (TF)
 Not all words/terms equally characterize a 

document.
 If term t appears more times in a document d, that 

term is more relevant to d
 We denote the number of times that a term t 

occurs in a document d as tft,d
 We refer to this as term frequency (TF)
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VSM: Term Weighting (IDF)
 Rare terms are more informative than frequent 

terms
 Recall stop words

 We want a high weight for rare terms
 Consider a term in the query that is rare in the 

collection (e.g., arachnocentric)
 A document containing this term is very likely to be 

relevant to the query arachnocentric
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VSM: Term Weighting (IDF)

 To do this we make use of inverse document 
frequency (IDF):

 N is the total number of documents in the corpus
 dft is the document frequency of t
 the number of documents that contain t
 dft is an inverse measure of the informativeness of t
 dft ≤ N

tt N/df  idf =

253



VSM: Term Weighting (TF-IDF)
 The tf-idf weight of a term is the product of its tf

weight and its idf weight.

 Increases with the number of occurrences within a 
document
 Increases with the rarity of the term in the 

collection

tdtdt
idftfw ,,

×=

254



VSM: Document Representation
 Each document and each query is characterized as 

a vector of terms weights
 So we have a |V|-dimensional vector space
 V = set of all terms
 Terms are dimensions of the space
 Documents are points in this space
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VSM: TF-IDF Variants
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VSM: Retrieval

 Represent documents and queries as vectors
 Compute the similarity between the vectors
 Cosine similarity is normally used:

 Return top-k most similar documents
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∑
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qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document
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An Approach to Detecting Duplicate 
Bug Reports using Natural Language 

and Execution Information

II(B): Applications
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Duplicate Bug Report Detection
 Xiaoyin Wang, Lu Zhang, Jiasu Sun, Peking 

University, China
 Tao Xie, North Carolina State University, USA
 John Anvik, University of Victoria, Canada

 Published in ACM/IEEE International Conference on 
Software Engineering (ICSE), 2008
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Duplicate Bug Reports: Motivation
 To improve quality of software systems, often 

developers allow users to report bugs.
 Bug reporting is inherently an uncoordinated 

distributed process.
 A number of reports of the same defect/bug are often 

made by different users.
 This lead to a problem of duplicate bug reports.
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Duplicate Bug Reports: Motivation
 In practice, a special developer (a triager) is often 

assigned to detect duplicate reports.
 Number of bug reports are often too many for 

developers to handle.
 A (semi) automated solution is needed.
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Duplicate Bug Reports: Dataset
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Duplicate Bug Reports: Dataset
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Duplicate Bug Reports: Dataset
 Text Data
 Summary
 Concise text

 Description
 Longer text

 Execution Traces
 One execution trace for each bug that exhibits the 

error
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Duplicate Bug Reports: Technique
 Modeling text information
 Take summary and description of bug reports
 Perform preprocessing
 Tokenization
 Stemming
 Stop-word removal

 Create a vector of term weights using:

Dsum = Total number of documents
Dwi = Number of documents containing term i
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Duplicate Bug Reports: Technique
 Modeling trace information
 Take method calls that appear in the execution 

trace
 Treat each method as a word
 Use canonical signature of a method

 Differentiate overloaded methods
 Model it in similar way as text information
 Each method tf is either 0 or 1

 Ignore repeated method calls
 At the end, we have a vector of method weights
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Duplicate Bug Reports: Technique
 Computing similarity
 Use cosine similarity of two vectors:

 Need to combine textual and trace information:

267



Duplicate Bug Reports: Technique
 Given a new bug report
 Return the top-k most similar bug reports that 

have been reported before
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Duplicate Bug Reports: Experiments

 Nrecalled = Number of duplicate reports whose 
duplicate is detected in the top-k list

 Ntotal = Number of duplicate reports considered
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Duplicate Bug Reports: Experiments

Consider Ex. 
Trace Info
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Other Applications
 Finding buggy files given bug descriptions
 Shaowei Wang, David Lo: Version history, similar 

report, and structure: putting them together for 
improved bug localization. ICPC 2014: 53-63

 Tracing high-level to low-level requirements
 Jane Huffman Hayes, Alex Dekhtyar, Senthil

Karthikeyan Sundaram, Sarah Howard: Helping 
Analysts Trace Requirements: An Objective Look. RE 
2004: 249-259
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Other Applications
 Recommending relevant methods to use
 Ferdian Thung, Shaowei Wang, David Lo, Julia L. 

Lawall: Automatic recommendation of API methods 
from feature requests. ASE 2013: 290-300

 Locating code that corresponds to a particular 
feature
 Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, Fuqing

Yang: SNIAFL: Towards a static noninteractive
approach to feature location. ACM Trans. Softw. 
Eng. Methodol. 15(2): 195-226 (2006)
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Other Applications
 Semantic search engine to find answers from 

software forums
 Swapna Gottipati, David Lo, Jing Jiang: Finding 

relevant answers in software forums. ASE 2011: 
323-332
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Part III - Language Model
 Model a document as a probability distribution
 Able to compute the probability of a query to belong 

to the document
 Rank document based on the probability of the 

query to belong to the document
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Structure
 Techniques
 Unigram Language Model
 Language Model for IR
 Parameter Estimation
 Smoothing

 Applications
 Code Auto-Completion
 Other Applications
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Unigram Language Model
Language Model for IR
Parameter Estimation

Smoothing

III(A): Techniques
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 One-state probabilistic finite-state automaton 
 State emission distribution for its one state q1 
 STOP is a special symbol indicating that the 

automaton stops
 string = “frog said that toad likes frog STOP”

P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 
0.02 = 0.0000000000048

Unigram Language Model
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string = “frog said that toad likes frog STOP “
P(string|Md1 ) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.02 = 4.8 · 10-12

P(string|Md2 ) = 0.01 · 0.03 · 0.05 · 0.02 · 0.02 · 0.01 · 0.02 = 12 · 10-12

P(string|Md1 ) <  P(string|Md2 )
Thus, document d2 is “more relevant” to the string than d1 is.

A different language model for each document
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 Each document d is represented by a language 
model Md

 Given a query q
 Rank documents based on P(q|Md)

 How do we compute P(q|Md)?

Using language models in IR 
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280

 Make conditional independence assumption:

(|q|: length of q; tk : the token occurring at position 
k in q)

 This is equivalent to:

 tft,q: term frequency (# occurrences) of t in q

How to compute P(q|Md) 
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281

 Missing piece: Where do the parameters P(t|Md) come from?
 Use the following estimate:

(|d|: length of d; tft,d : # occurrences of t in d)

 We have a problem with zeros
 A single t with P(t|Md) = 0 will make                                     

zero
 We would give a single term “veto power”

 We need to smooth the estimates to avoid zeros

Parameter estimation
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 Key intuition: A non occurring term is possible (even 
though it didn’t occur), . . . 

 . . . but no more likely than would be expected by chance 
in the collection

 We will use                 to “smooth” P(t|Md) away from 
zero

 Mc: the collection model; 
 cft: the number of occurrences of t in the collection; 
 : the total number of tokens in the 

collection

= cft/T

Smoothing
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 Pmix(t|Md) = λP(t|Md) + (1 - λ)P(t|Mc)
 Mixes the probability considering the document with 

the probability considering the collection.

 High value of λ: “conjunctive-like” search – tends to 
retrieve documents containing all query words.

 Low value of λ: more disjunctive, suitable for long queries
 Correctly setting λ is very important for good performance.

Mixture Model
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 Collection: d1 and d2
 d1 : Jackson was one of the most talented entertainers of all time
 d2 : Michael Jackson anointed himself King of Pop 

 Query q: Michael Jackson 

 Use mixture model with λ = 1/2
 P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003
 P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

 Ranking:  d2 > d1

Example
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Other Models
 Bigram model
 K-L model
 Other models
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On the Naturalness of Software

III(B): Applications
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Code Auto-Completion
 Abram Hindle, Earl T. Barr, Zhendong Su, Mark 

Gabel, Premkumar T. Devanbu, University of 
California, Davis, USA

 Published in ACM/IEEE International Conference on 
Software Engineering (ICSE), 2012
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Naturalness of Software: Introduction
 Natural language is often repetitive and predictable
 Can be modeled by a language model

 Is software code like natural language?
 If it is could we exploit the naturalness of code?
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Naturalness of Software: Technique
 k-gram language model:
 Token occurrences are influenced only by the 

previous k-1 tokens

 For a 4-gram language model:

 Maximum Likelihood Estimate (MLE):
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Naturalness of Software: Dataset
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Naturalness of Software: Dataset

291



Naturalness of Software: Experiments
 Cross Entropy
 Captures how bad a language model in modeling a 

new document.
 Considering a document s (i.e.,  a1…an) and a model 

M, the cross entropy of s wrt. model M:

 PM(ai|a1…ai-1) = probability of ai happening 
considering model M

 The lower the cross entropy score, the better a 
language model is.
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Is Software Natural ?

English Text

Code
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Could it be used for auto-completion?
 Extend Eclipse IDE auto-completion function
 Use Eclipse if at least 1 recommended tokens is long
 Otherwise use both Eclipse and Language Model

 Uses a trigram model
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Could it be used for auto-completion?
 Use a test set of 200 files to see how good is the 

auto-complete.
 Keystrokes saved:
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Other Applications
 Code auto-completion
 Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh

Nguyen, Tien N. Nguyen: A statistical semantic 
language model for source code. ESEC/SIGSOFT 
FSE 2013: 532-542

 Finding buggy files from bug descriptions
 Shivani Rao, Avinash C. Kak: Retrieval from 

software libraries for bug localization: a comparative 
study of generic and composite text models. MSR 
2011: 43-52
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Part IV: Topic Model
 Model a group of words as a topic
 Typically in a probabilistic sense

 Many recent SE papers use topic models
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Structure
 Techniques
 Topic Modeling: Black-Box View
 Using Topic Modeling for IR
 Algorithms

 Applications
 Bug Localization
 Other Applications
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Topic Modeling: A Black-Box View
Using Topic Modeling for IR

Algorithms

IV(A): Techniques
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Topic Modeling: Black-Box View
 Model a document as a probability distribution of 

topics
 A topic is a probability distribution of words

 Dimensionality reduction: words -> topics
 Benefit: Able to link a document and a query
 Do not share any words
 Share related words of the same topics
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IR using Topic Model (VSM Like)
 Create topic model for a training set of documents
 Infer topic distributions of all documents in the 

training set
 Infer topic distributions of new, unseen document 

(query)
 Compute similarity between two distributions
 Kullback Leibner (KL) divergence
 Jensen Shannon (JS) divergence
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IR using Topic Model (Language Model Like)

 Training a topic model computes:

 With the above we can compute:
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 Extending to query level, we can compute:
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 We can use the query likelihood model
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Algorithms
 Probabilistic Latent Semantic Analysis (pLSA)
 Latent Dirichlet Allocation (LDA)
 Many more
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A Topic-Based Approach for 
Narrowing the Search Space of Buggy 

Files from a Bug Report

IV(B): Applications
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Bug Localization
 Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar M. 

Al-Kofahi, Hung Viet Nguyen, Tien N. Nguyen, 
Iowa State University, USA

 Published in IEEE/ACM International Conference on 
Automated Software Engineering (ASE), 2011
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Bug Localization: Introduction
 Program is often large with hundreds/thousands of 

files.
 Given a bug report, how to locate files responsible 

for the bug?
 A (semi) automated solution is needed.
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Bug Localization: Technique
 Model the similarity of bug reports and files
 At topic level

 Model the bug proneness of files
 Number of bugs in a file (based on its history)
 Size of the file
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Bug Localization: Technique
 Computing topic similarity:
 Learn a topic model
 Find the topic distribution of a bug report
 Find the topic distribution of a source code file
 Compute the similarity using cosine similarity

 Combine topic similarity and bug proneness:

 P(s) = bug proneness score of file s
 sim(s,b) = similarity between file s and bug report b
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Bug Localization: Experiments
 Subjects

 Accuracy
 Return top-k most likely files
 If at least one matches, then a recommendation is a 

hit
 Accuracy = proportion of recommendations which 

are hits
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Bug Localization: Experiments

310



Other Applications
 Recovering links from code to documentation
 Andrian Marcus, Jonathan I. Maletic: Recovering 

Documentation-to-Source-Code Traceability Links 
using Latent Semantic Indexing. ICSE 2003: 125-
137

 Black-box test case prioritization
 Stephen W. Thomas, Hadi Hemmati, Ahmed E. 

Hassan, Dorothea Blostein: Static test case 
prioritization using topic models. Empirical Software 
Engineering 19(1): 182-212 (2014)
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Other Applications
 Duplicate bug report detection
 Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. 

Nguyen, David Lo, Chengnian Sun: Duplicate bug 
report detection with a combination of information 
retrieval and topic modeling. ASE 2012: 70-79

 Predicting affected components from bug reports
 Kalyanasundaram Somasundaram, Gail C. Murphy: 

Automatic categorization of bug reports using latent 
Dirichlet allocation. ISEC 2012: 125-130
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Other Applications
 Recovering links from feature description to source 

code implementing it
 Annibale Panichella, Bogdan Dit, Rocco Oliveto, 

Massimiliano Di Penta, Denys Poshyvanyk, Andrea 
De Lucia: How to effectively use topic models for 
software engineering tasks? an approach based on 
genetic algorithms. ICSE 2013: 522-531
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Part V - Text Classification
 Consider a set of textual documents that are 

assigned some class labels as a training dataset.
 Create a model that differentiates documents of 

one class from other class(es).
 Use this model to label textual documents with 

unknown labels.
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Structure
 Techniques
 Vector space representation
 Vector space classification
 Feature selection

 Applications
 Defect Categorization
 Other Applications
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Vector space representation
Vector space classification

Feature selection

V(A): Techniques
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 Each document is a vector 
 One element for each term/word
 Value of each element:
 Number of times that word appear

 Normalize each vector (document) to unit length
 High dimensionality: 100,000s of dimensions
 Terms/words are dimensions

Vector Space Representation
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 The training set of documents with known class 
labels.
 Labeled set of points in a high dimensional space

 We define lines, surfaces, hypersurfaces to divide 
regions.

 Use classification algorithms to divide the training 
sets into regions
 E.g., SVM

Vector Space Classification
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 Many dimensions correspond to rare words.
 Rare words can mislead the classifier.
 Rare misleading features are called noise features.

 Eliminating noise features from the representation
 Increases efficiency and effectiveness
 Called feature selection.

Feature Selection
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 A rare term ARACHNOCENTRIC happens to occur 
in China documents in our training data.
 Then we may learn a classifier that incorrectly

interprets ARACHNOCENTRIC as evidence for the class 
China.

 Such an incorrect generalization from an 
accidental property of the training set is called 
overfitting.

 Feature selection reduces overfitting and improves 
the accuracy of the classifier.

Example of a Noise Feature

320



AutoODC: Automated Generation of 
Orthogonal Defect Classifications

V(B): Applications
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Defect Categorization
 LiGuo Huang, Ruili Geng, Xu Bai, Jeff Tian, 

Southern Methodist University, USA
 Vincent Ng, Isaac Persing, University of Texas at 

Dallas, USA

 Published in IEEE/ACM International Conference on 
Automated Software Engineering (ASE), 2011
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AutoODC: Introduction
 Developers often analyze and categorize bugs for 

post-mortem investigation
 This process is often done manually
 One commonly used categorization is Orthogonal 

Defect Categorization (ODC)
 Class Labels: Reliability, Capability, Security, 

Usability, Requirements.
 Huang et al. would like to automate the process.
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AutoODC: Approach
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AutoODC: Preprocessing
 Tokenization
 Stemming
 No removal of stop words
 Normalize each vector
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AutoODC: Learning
 Use Support Vector Machine (SVM)
 Train one SVM per class
 One-versus-others training
 Assign class of highest probability value

 Incorporation of user annotations
 User highlights part of the defect report that are 

useful for classification
 Used to generate more instances (pseudo +ve/-ve)
 Used as “k-gram” like features (new features)

 Use manually constructed dictionary that define 
synonymous phrases that are mapped to a common 
representation (new features)
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AutoODC: Results

Reliability Capability Security Usability Require-
ments

F-Measure 22.2% 88.5% 70.0% 62.9% 39.3%

327



Other Applications
 Predicting severity of bug reports
 Tim Menzies, Andrian Marcus: Automated severity 

assessment of software defect reports. ICSM 2008: 
346-355

 Predicting priority of bug reports
 Yuan Tian, David Lo, Chengnian Sun: DRONE: 

Predicting Priority of Reported Bugs by Multi-factor 
Analysis. ICSM 2013: 200-209
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Other Applications
 Content categorization in software forums
 Daqing Hou, Lingfeng Mo: Content Categorization of 

API Discussions. ICSM 2013: 60-69

 Filtering software microblogs
 Philips Kokoh Prasetyo, David Lo, Palakorn

Achananuparp, Yuan Tian, Ee-Peng Lim: Automatic 
classification of software related microblogs. ICSM 
2012: 596-599
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Other Applications
 Recommending a developer to fix a bug report
 John Anvik, Gail C. Murphy: Reducing the effort of 

bug report triage: Recommenders for development-
oriented decisions. ACM Trans. Softw. Eng. 
Methodol. 20(3): 10 (2011)
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Conclusion
 Part I: Preliminaries
 Tokeniz., Stop Word Removal, Stemming, Indexing, etc.

 Part II: Vector Space Modeling
 Model a document as a vector of term weights

 Part III: Language Model
 Model a document as a probability distribution of terms
 Query likelihood model

 Part IV: Topic Model
 Model a document as a probability distribution of topics
 Model a topic as a probability distribution of words

 Part V: Text Classification
 Convert to VSM representation
 Use standard classifiers (e.g., SVM)
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Thank you!

Questions? Comments? 
davidlo@smu.edu.sg
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