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Motivation: Maintenance Issues
oMaintenance: Update to an existing software 

- Need to understand how a software behaves
oSpecification: Description on what a software is 
supposed to behave 
- Locking Protocol: <mutex_lock, mutex_unlock>
- JTA Protocol [JTA]: <TxManager.begin, TxManager.commit>, etc.
- Telecommunication Protocol [ITU]:

<off_hook, dial_tone_on, dial_tone_off, seizure_int, ring_tone, 
answer, connection_on>
– JAAS Authentication Enforcer Strategy Pattern [SNL06]:

<Subject.getPrincipal, PriviligedAction.create, 
Subject.doAsPrivileged, JAAS_Module.invoke, Policy.getPermission, 
Subject.getPublicCredential, PrivilegedAction.Run>



Motivation: Maintenance Issues

oExisting problems in specification: Lack, incomplete 
and outdated specifications [LK06,ABL02,YEBBD06, DSB04, 
etc.]

oCause difficulty in understanding an existing system
oContributes to high software cost

– Prog. maintenance : 90% of soft. cost [E00,CC02]
– Prog. understanding : 50% of maint. cost [S84,CC02]
– US GDP software component: $214.4 billion [US BEA]

oSolution: Specification Discovery



Motivation: Reliability Issues
o We depends on correct working of software systems

– Banking application, control systems, etc
o Software bugs have caused a lot of issues

– 59.5 billion dollars lost to US economy annually [NIST’2002]
– Privacy & security issues

o Much savings could be made by either
– Preventing bugs
– Detecting failures
– Localizing bugs
– Suggesting fix
– Guaranteeing no bugs could ever exists
– Healing failures (e.g., Microsoft Shims), etc.



Can Data Mining Help ?

YES !



Outline

o Software Specification Discovery
– Semantics based on standard software specifications
– Closed pattern mining strategy
– Performance study and case study
– Addressing “lack of specifications” problem

o Classification of software behaviors
– Sequential pattern-based classification
– Improving efficiency & accuracy
– Application to detect failures from software data
– Addressing reliability of systems
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Our Specification Discovery Approach

o Analyze program execution traces
o Discover patterns of program behavior, e.g.:

–Locking Protocol [YEBBD06]: <lock, unlock>
–Telecom. Protocol [ITU], etc.

o Address unique nature of prog. traces:
– Pattern is repeated across a trace
– A program generates different traces
– Interesting events might not occur close together



Need for a Novel Mining Strategy
o Sequential Pattern Mining [AS95,YHA03,WH04] - A 

series of events (itemsets) supported by (i.e. sub-
sequence of) a significant number of sequences.

o Episode Mining [MTV97,G03] - A series of closely-
occurring events recurring frequently within a 
sequence

Required Extension: Consider multiple occurrences 
of patterns in a sequence

Required Extension: Consider multiple sequences; 
Remove the restriction of events occurring close 
together.



Iterative Patterns – Semantics
o A series of events supported by a significant 
number of instances:
- Repeated within a sequence 
- Across multiple sequences.

o Follow the semantics of Message Seq. Chart 
(MSC) [ITU] and Live Seq. Chart (LSC) [DH01].

o Describe constraints between a chart and a trace 
segment obeying it:
- Ordering constraint [ITU,KHPLB05]
- One-to-one correspondence [KHPLB05]



Iterative Patterns – Semantics
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Iterative Patterns – Semantics
o Given a pattern P (e1e2…en), a substring SB is an instance of 

P iff 
SB = e1;[-e1,…,en]*;e2;…;[-e1,…,en]*;en

o Pattern:<off_hook, seizure, ring_tone, answer, connection_on>
o S1: off_hook, ring_tone, seizure, answer, connection_on
o S2: off_hook, seizure, ring_tone, answer, answer, answer, 
connection_on

o S3: off_hook, seizure, ev1, ring_tone,  ev1, answer, 
connection_on

o S4: off_hook, seizure, ev1, ring_tone,  ev1, answer, 
connection_on, off_hook, seizure_int, ev2, ring_tone,  ev3, 
answer, connection_on

X X
X XX
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Algorithm



Projected Database Operations
o Projected-all of SeqDB wrt pattern P –
Return: All suffixes of sequences in SeqDB where for 
each, its infix is an instance of pattern P

S1 <A,B,C,A,B,X>

S2 <A,B,B,B,B>

(Seq,Start,End) Sequence
(1,1,2) <C,A,B,X>

(1,4,5) <X>
(2,1,2) <B,B,B>

o Support of a pattern = size of its proj. DB
o SeqDBev is formed by considering occurrences of ev
o SeqDBP++ev can be formed from SeqDBP

all

all all



Pruning Strategies
Apriori Property

If a pattern P is not frequent, P++evs can not be 
frequent.

Closed Pattern
Definition: A frequent pattern P is closed if there exists 

no super-sequence pattern Q where:
P and Q have the same support

and corresponding instances

Sketch of Mining Strategy
1. Depth first search
2. Cut search space of non-frequent and non-closed 

patterns



Closure Checks and Pruning – Definitions
o Prefix, Suffix Extension (PE) (SE)

- An event that can be added as a prefix or suffix (of 
length 1) to a pattern resulting in another with the same 
support

o Infix Extension (IE)
- An event that can be inserted as an infix (one or more 
times) to a pattern resulting in another with the same 
support and corresponding instances

S1 <X,A,B,B,C,D>
S2 <X,A,B,B,C,D,E,F,G >
S3 <B,C,A,D,E,D>

Pattern: <A,C>
Prefix Ext: {<X>}
Suffix Ext: {<D>}
Infix Ext: {<B>}



Closure Checks and Pruning – Theorems

o Closure Checks: If a pattern P has no (PE, IE and 
SE) then it is closed otherwise it is not closed

o InfixScan Pruning Property: If a pattern P has an 
IE and IE ∉ SeqDBP,then we can stop growing P.

S1 <X,A,B,B,C,D>
S2 <X,A,B,B,C,D,E,F,G>
S3 <B,C,A,D,E,D>

Pattern: <A,C>
Prefix Ext: {<X>}
Infix Ext: {<B>}
Suffix Ext: {<D>}

<A,C> is not closed and we can stop growing it. 
No need to check for <A,C,…>

all



Recursive 
Pattern Growth

Closure Checks

InfixScan Pruning

Main Method



Performance & Case

Studies 



Performance Study - I
o Synthetic Dataset

- IBM Simulator : D5C20N10S20
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Performance Study - II
o Dataset Gazelle (KDD Cup – 2000)

- Click stream datasets
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Performance Study - III
o Dataset TCAS

- Program traces from Siemens dataset - commonly used for 
benchmark in error localization
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Case Study
o JBoss App Server – Most widely used J2EE 
server
– A large, industrial program: more than 100 KLOC
– Analyze and mine behavior of transaction component of 
JBoss App Server

o Trace generation
– Weave an instrumentation aspect using AOP
– Run a set of test cases
– Obtain 28 traces of 2551 events and an average of 91 
events

o Mine using min_sup set at 65% of the |SeqDB| -
29s vs >8hrs



Case Study

o Post-processings & Ranking – 44 patterns
o Top-ranked patterns correspond to interesting 
patterns of software behavior:
– <Connection Set Up Evs, Tx Manager Set Up Evs, 
Transaction Set Up Evs, Transaction Commit Evs 
(Transaction Rollback Evs), Transaction Disposal Evs>

– <Resource Enlistment Evs, Transaction Execution Evs, 
Transaction Commit Evs (Transaction Rollback Evs), 
Transaction Disposal Evs>

– <Lock-Unlock Evs>

Top Longest Patterns

Most Observed Pattern
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TxManager.begin 
XidFactory.newXid 
XidFactory.getNextId 
XidImpl.getTrulyGlobalId 
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TxManager.commit 
TransactionImpl.commit 
TransactionImpl.beforePrepare 
TransactionImpl.checkIntegrity 
TransactionImpl.checkBeforeStatus 
TransactionImpl.endResources 
TransactionImpl.completeTransaction 
TransactionImpl.cancelTimeout 
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TransactionImpl.getLocalId 
XidImpl.getLocalId 
LocalId.hashCode 
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 TxManager.releaseTransactionImpl 

TransactionImpl.getLocalId 
XidImpl.getLocalId 
LocalId.hashCode 
LocalId.equals 

 

Longest Iter. Pattern from JBoss Transaction Component
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Library Usage Rules & Bug Detection: 
Windows Application -- Extension
o Collect traces from 10 Windows Application:

- Excell, OneNote, TextPad, VS.Net, Visio, 
WMPlayer, Virtual PC, Movie Maker, WordPad, 
Access

o Collect traces pertaining to:
- Registry, Memory Management, GDI (Device 
Control and UI related API)

- Produces several million events
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Library Usage Rules & Bug Detection: 
Windows Application -- Extension

V HeapAlloc(,,); ->HeapFree(,,V);
V GlobalAlloc(,); -> GlobalFree(V);

V VirtualAlloc(,,); ->VirtualFree (,,V);
….

HeapFree(,,V); -P> V HeapAlloc(,,,);

Detect double free, which is disallowed
“Calling HeapFree twice with the same pointer can cause 

heap corruption, resulting in subsequent calls to 
HeapAlloc returning the same pointer twice.” [MSDN]
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Library Usage & Bug Detection: 
Windows Application -- Extension

RegCreateKeyExA(V,.) ->RegCloseKey(V); 
Not all opened registry need to be closed

Predefined keys need not be closed

V CreateCompatDC(); -> DeleteDC(V);
V CreCompatBmap(,,);->DeleteObj (V);

V CreRectRgn(,,,)-> DeleteObj(V);
DeleteDC(V) –precede-> V CreCompDC()

SetBkColor(,V); -> V SetBkColor (,)
…
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lsc Draw shape

0:Mode 0:PictChat 0:JID 0:PictHistory 0:Backend 0:Connect 0:Output
getMyJID()

toString(…)
draw(…)

addShapeDrawnByMe(…)
send(…)

send(…) send(…)M
in
ed

 L
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s 
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 A
pp

createThread(…)

lsc Start chat

0:RTree 0:Jeti 0:ChatWin 0:JID 0:Backend 0:Connect
chat(…)

getUser()
getMyJID(…)

send(…)
send(…)

1:JID 0:Output

chat(…)
getResource(…)
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LSC Visualization & Scenario-Based Test

E: 1180527437140 75: jabber.Backend.send(Packet) 
B: jeti.msdaspects.MUSDAspectJetiTest01[57] lifeline 1 <- jabber.Backend@2bee2bee
B: jeti.msdaspects.MUSDAspectJetiTest01[57] lifeline 0 <- shapes.PictureChat@2bdc2bdc
C: jeti.msdaspects.MUSDAspectJetiTest01[57] (1,1,0,0) Cold
E: 1180527437140 76: jabber.Backend.send(Packet) 
B: jeti.msdaspects.MUSDAspectJetiTest01[57] lifeline 2 <- shapes.PictureHistory@76687668
C: jeti.msdaspects.MUSDAspectJetiTest01[57] (1,2,1,0) Hot
F: jeti.msdaspects.MUSDAspectJetiTest01[57] Violation

Violation Trace – Scenario Based TestVisualization in IBM RSA
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Software, Its Behaviors and Bugs

o Software is ubiquitous in our daily life
o Many activities depend on correct working of 
software systems

o Program behaviors could be collected
– An execution trace: a sequence of events
– A path that programs take when executed
– A program contains many behaviors
– Some correspond to good ones, others to bad ones

o Bugs have caused the loss of billions of dollars
(NIST report)



Can Data Mining Help ?

o Pattern mining tool for program behaviors
o Recent development of the pattern-based  

classification approach
o In this work, we extend the above work to:

– Propose a new pattern definition which could be more 
efficiently mined (closed unique iterative pattern)

– Develop a new pattern-based classification on 
sequential data (iter. pattern-based classification)

– Apply the above to detection of bad behaviors in 
software traces for failure detection



Our Goal 

“Based on historical data of software and known 
failures, we construct a pattern-based classifier
working on sequential software data to generalize 

the failures and to detect unknown failures.”

o Failure detection is the first step/building block in 
software quality assurance process.

o Could be chained/integrated with other work on:
– Bug localization
– Test case augmentation
– Bug/malware signature generation



Usage Scenarios

Trained
Sequential
Classifier

<e1,e2,e3,e4..,en>

Unknown Trace or
Sequence of Events

Normal

Failure

Failure
Detector

Test Suite
Augmentation Tool

Failure
Detector

Fault
Localization

Discriminative
Features



Related Studies

o Lo et al. has proposed an approach to mine for 
iterative patterns capturing series of events 
appearing within a trace and across many traces. 
(LKL-KDD’07)

o Cheng et al., Yan et al. have proposed a pattern 
based classification method on transaction and graph 
datasets. (CYHH-ICDE’07, YCHY-SIGMOD’08)



Research Questions

o How to build a pattern-based classifier on  
sequential data which contains many repetitions ?

o How to ensure that the classification accuracy is 
good ?

o How to improve the efficiency of the classifier 
building process ?



Software Behaviors & Traces

o Each trace can be viewed as a sequence of events
o Denoted as <e1,e2,e3,…,en> 
o An event, is a unit behavior of interest

– Method call
– Statement execution
– Basic block execution in a Control Flow Graph (CFG)

o Input traces -> a sequence database



Overall View of The Pattern-Based 
Classification Framework

Iterative
Pattern Mining
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Iterative Patterns

o A pattern is a series of events  (P=<p1,p2,..,pn>)
o Given a pattern P and a sequence database DB, 
instances of P in DB could be computed

o Based on MSC & LSC (software spec. formalisms)
o Given a pattern P (e1e2…en), a substring SB is an 
instance of P iff

SB = e1;[-e1,…,en]*;e2;…;[-e1,…,en]*;en
oGoal: Find patterns whose instances appear often 
within a sequence and across multiple sequences 
(above a min_sup threshold)



Iterative Patterns

Ident i¯er Sequence
S1 hD ; B ; A ; F; B ; A ; F; B ; C; E i
S2 hD ; B ; A ; D ; B ; B ; B ; A ; B i

o Consider the pattern P = <A,B>
o The set of instances of P

– (seq-id, start-pos, end-pos)
– {(1,3,5), (1,6,8), (2,3,5), (2,8,9)}
– The support of P is 4
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Closed Unique Iterative Patterns

o |closed patterns| could be too large
– Due to “noise” in the dataset (e.g., the As in the DB)

o At min_sup = 2, patterns <A,C>, <A,A,C>, 
<A,A,A,C> and <A,A,A,A,C> would be reported.

o Due to random interleavings of different noise, 
number of closed patterns at times is too large

Ident i¯er Sequence
S1 hA; C; A ; A ; A ; C; A ; A ; A ; Ci
S2 hA; A ; A ; A ; C; A ; A ; A ; A ; Ci



o <A,B> is a closed unique pattern.
o <C,D> is unique but not closed due to <C,E,D>

Ident i¯er Sequence
S1 hA; B ; B ; B ; B ; C; E ; D ; A ; B ; B i
S2 hC; E ; D ; A ; B ; B ; B ; B ; B i
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Patterns As Features

o Software traces do not come with pre-defined 
feature vectors

o One could take occurrences of every event as a 
feature 

o However, this would not capture:
– Contextual relationship
– Temporal ordering

o We could use mined closed unique patterns as 
features



Feature Selection

o Select good features for classification purpose
o Based on Fisher score

– ni  = number of traces in class i (normal/failure)
– μi = average feature value in class i
– σi = std. deviation of the feature value in class i
– the value of a feature in a trace/sequence is its num. of 
instances

F r =
P c

i = 1
n i ( ¹ i ¡ ¹ ) 2

P c
i = 1

n i ¾2
i

2
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o Strategy: Select top features so that all traces or  
sequences are covered at least δtimes.



Classifier Building

o Based on the selected discriminative features
o Each trace or sequence is represented as:

– A feature vector (x1,x2,x3,…)
– Based on selected iterative patterns
– The value of xi is defined as 

o Train an SVM model
– Based on two contrasting sets of feature vectors

xi =

(
sup(f i ; S); i f S contains f i

0; other wise:
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o Synthetic Datasets
– Trace generators QUARK [LK-WCRE’06]
– Input software models with injected errors
– Output a set of traces with labels

o Real traces (benchmark programs)
– Siemens dataset (4 largest programs)
– Used for test-adequacy study – large number of test 
cases, with injected bugs, correct output available

– Inject multiple bugs, collect labeled traces

o Real traces (real program, real bug)
– MySQL dataset
– datarace bug



Ex
pe

ri
m
en

ts
: 
Ev

al
. 
D
et

ai
ls o Performance measures used

– Classification accuracy
– Area under ROC curve

o 5 Fold-Cross Validation
– Mining, feature selection and model building done 
for each fold separately

– Prevent information leak
o Handling skewed distribution

– Failure training data is duplicated many times
– Test set distribution is retained

o Three types of bugs
– Addition, omission and ordering



Experimental Results: Synthetic

D at aset C or r ect E r r or ( jt r acesj)
( jt r acesj) A dd/ O m is. O r der

X11 125 125 0
CVS Omission 170 170 0
CVS Ordering 180 0 180

CVS Mix 180 90 90

D at aset A ccur acy A U C
Evt Pat Evt Pat

X11 96:40 § 4:10 97.20 § 3.35 0:97 § 0:04 1.00 § 0.00
CVS Omission 95:29 § 1:61 100.00 § 0.00 0:96 § 0:03 1.00 § 0.00
CVS Ordering 50:00 § 0:00 85.28 § 2.71 0:50 § 0:00 0.82 § 0.08

CVS Mix 66:39 § 15:63 93.89 § 5.94 0:65 § 0:17 0.95 § 0.06



Experimental Results: Siemens & MySQL
D at aset Cor rect Er r or ( jt r acesj)

( jt r acesj) A dd/ Omis Or der
tot info 302 208 94
schedule 2140 289 1851

print tokens 3108 187 187
replace 1259 269 269
MySQL 51 0 51

D at aset A ccur acy A U C
Evt Pat Evt Pat

tot info 77:33 § 2:31 90.67 § 5.82 0:90 § 0:03 0.94 § 0.03
schedule 52:83 § 19:27 86.26 § 14.90 0:57 § 0:25 0.88 § 0.16

print tokens 72:60 § 26:33 99.94 § 0.08 0:64 § 0:17 1.00 § 0.00
replace 61:12 § 9:25 90.84 § 2.54 0:63 § 0:15 0.93 § 0.05
MySQL 50:00 § 0:00 100.00 § 0.00 0:50 § 0:00 1.00 § 0.00



Experimental Results: Varying Min-Sup

min sup A ccur acy A U C
0.05 90:9497 § 2:9203 0:9344 § 0:0454
0.10 90:9497 § 2:9203 0:9344 § 0:0454
0.15 90:9004 § 2:5949 0:9323 § 0:0509
0.20 90:8939 § 2:5949 0:9321 § 0:0499
0.25 90:8380 § 2:5402 0:9318 § 0:0506
0.30 90:7263 § 2:5555 0:9310 § 0:0501
0.35 90:2794 § 2:8650 0:9261 § 0:0545
0.40 90:2794 § 2:8650 0:9261 § 0:0545
0.45 90:2794 § 2:8650 0:9261 § 0:0545
0.50 90:2794 § 2:8650 0:9261 § 0:0545

Replace dataset



Experimental Results: Mining Time

Replace dataset
Mining Closed Unique Iterative Patterns

Mining Closed Patterns: Cannot run at support 100% 
(Out of memory exception, 1.7GB memory, 4 hours)
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o Pattern-based classification 
– Itemsets: Cheng et al. [ICDE’07, ICDE’08]
– Graphs: Yan et al. [SIGMOD’08] 

o Mining episodes 
– Mannila et al. [DMKD’97]

o Mining repetitive sub-sequences
– Ding et al. [ICDE’09]

o Dickinson et al. [ICSE’01]
– Clustering program behaviors
– Detection of failures by looking for small clusters

o Bowring et al. [ISSTA’04]
– Model failing trace and correct trace as first order 
Markov model to detect failures
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o New pattern-based classification approach
– Working on repetitive sequential data
– Applied for failure detection

o Classification accuracy improved by 24.68%
– Experiments on different datasets
– Different bug types: omission, addition, ordering

o Future work
– Direct mining of discriminative iterative patterns
– Application of the classifier to other form of 
sequential data:
• Textual data, genomic & protein data 
• Historical data

– Pipelining to SE tools: fault localization tools, test suite 
augmentation tools



Questions, Comments, Advice ?

Thank You
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