

Mining Patterns and Building Classifiers From Software Data: Addressing Soft. Maintenance & Reliability Issues

David Lo School of Information Systems Singapore Management University

Presentation at UIUC July 31, 2009

Motivation: Maintenance Issues

oMaintenance: Update to an existing software

- Need to understand how a software behaves

o Specification: Description on what a software is supposed to behave

- Locking Protocol: <mutex_lock, mutex_unlock>
- JTA Protocol [JTA]: <TxManager.begin, TxManager.commit>, etc.
- Telecommunication Protocol [ITU]:

 JAAS Authentication Enforcer Strategy Pattern [SNL06]:
 Subject.getPrincipal, PriviligedAction.create,
 Subject.doAsPrivileged, JAAS_Module.invoke, Policy.getPermission,
 Subject.getPublicCredential, PrivilegedAction.Run>

Motivation: Maintenance Issues

- o Existing problems in specification: Lack, incomplete and outdated specifications [LK06, ABL02, YEBBD06, DSB04, etc.]
- oCause difficulty in understanding an existing system
 oContributes to high software cost
 - Prog. maintenance : 90% of soft. cost [E00,CC02]
 - Prog. understanding : 50% of maint. cost [S84,CC02]
 - US GDP software component: \$214.4 billion [US BEA]

o Solution: Specification Discovery

Motivation: Reliability Issues

- o We depends on correct working of software systems
 - Banking application, control systems, etc
- o Software bugs have caused a lot of issues
 - 59.5 billion dollars lost to US economy annually [NIST'2002]
 - Privacy & security issues
- o Much savings could be made by either
 - Preventing bugs
 - Detecting failures
 - Localizing bugs
 - Suggesting fix
 - Guaranteeing no bugs could ever exists
 - Healing failures (e.g., Microsoft Shims), etc.

Can Data Mining Help ? YES !

Outline

o Software Specification Discovery

- Semantics based on standard software specifications
- Closed pattern mining strategy
- Performance study and case study
- Addressing "lack of specifications" problem
- o Classification of software behaviors
 - Sequential pattern-based classification
 - Improving efficiency & accuracy
 - Application to detect failures from software data
 - Addressing reliability of systems

Efficient Mining of Iterative Patterns for Software Specification Discovery

David Lo⁺

Joint work with: Siau-Cheng Khoo[†] and Chao Liu[‡]

[†]Prog. Lang. & Sys. Lab Department of Computer Science National Uni. of Singapore

[‡]Data Mining Group Department of Computer Science Uni. of Illinois at Urbana-Champaign

Our Specification Discovery Approach

- **O** Analyze program execution traces
- o Discover patterns of program behavior, e.g.:
 - -Locking Protocol [YEBBD06]: <lock, unlock>
 - -Telecom. Protocol [ITU], etc.
- o Address unique nature of prog. traces:
 - Pattern is repeated across a trace
 - A program generates different traces
 - Interesting events might not occur close together

Need for a Novel Mining Strategy

Sequential Pattern Mining [AS95,YHA03,WH04] - A series of events (itemsets) supported by (i.e. sub-sequence of) a significant number of sequences.

Required Extension: Consider multiple occurrences of patterns in a sequence

 Episode Mining [MTV97,G03] - A series of closelyoccurring events recurring frequently within a sequence

Required Extension: Consider multiple sequences; Remove the restriction of events occurring close together.

Iterative Patterns - Semantics

- A series of events supported by a significant number of instances:
 - Repeated within a sequence
 - Across multiple sequences.
- Follow the semantics of Message Seq. Chart (MSC) [ITU] and Live Seq. Chart (LSC) [DH01].
- o Describe constraints between a chart and a trace segment obeying it:
 - Ordering constraint [ITU,KHPLB05]
 - One-to-one correspondence [KHPLB05]

Iterative Patterns - Semantics

[ITU]

oTS1: off_hook, seizure, ack, ring_tone, answer, ring_tone, x connection_on oTS2: off_hook, seizure, ack, ring_tone, answer, answer, answer, connection_on oTS3: off_hook, seizure, ack, ev1, ring_tone, ev1, answer, 🦯 connection on

Iterative Patterns - Semantics

O Given a pattern P (e₁e₂...e_n), a substring SB is an instance of P iff

SB = e_1 ; $[-e_1, ..., e_n]^*$; e_2 ; ...; $[-e_1, ..., e_n]^*$; e_n

- o Pattern: <off_hook, seizure, ring_tone, answer, connection_on>
- o S1: off_hook, ring_tone, seizure, answer, connection_on
- o S2: off_hook, seizure, ring_tone, answer, answer,
- o S3: off_hook, seizure, ev1, ring_tone, ev1, answer, connection_on
- o S4: off_hook, seizure, ev1, ring_tone, ev1, answer, connection_on, off_hook, seizure_int, ev2, ring_tone, ev3, answer, connection_on

Х

X

Projected Database Operations

o Projected-all of SeqDB wrt pattern P - SeqDB^{all}
 <u>Return</u>: All suffixes of sequences in SeqDB where for each, its infix is an instance of pattern P

- Support of a pattern = size of its proj. DB
- SeqDB_{ev} is formed by considering occurrences of ev
- o SeqDB^{all}_{P++ev} can be formed from SeqDB^a_P

Pruning Strategies

Apriori Property If a pattern P is not frequent, P++evs can not be

frequent.

Closed Pattern

Definition: A frequent pattern P is closed if there exists no super-sequence pattern Q where: P and Q have the same support and corresponding instances

Sketch of Mining Strategy

1. Depth first search

2. Cut search space of non-frequent and non-closed patterns

Closure Checks and Pruning - Definitions

o Prefix, Suffix Extension (PE) (SE)

- An event that can be added as a prefix or suffix (of length 1) to a pattern resulting in another with the same support

o Infix Extension (IE)

- An event that can be inserted as an infix (one or more times) to a pattern resulting in another with the same support and corresponding instances

S1	<x, a,="" b,="" c,="" d=""></x,>
S2	<x,a,b,b,c,d,e,f,g></x,a,b,b,c,d,e,f,g>
53	<b,c,a,d,e,d></b,c,a,d,e,d>

Pattern: <A,C> Prefix Ext: {<X>} Suffix Ext: {<D>} Infix Ext: {}

Closure Checks and Pruning - Theorems

O Closure Checks: If a pattern P has no (PE, IE and SE) then it is closed otherwise it is not closed
O InfixScan Pruning Property: If a pattern P has an IE and IE ∉ SeqDB_P, then we can stop growing P.

S1	<x,a,b,b,c,d></x,a,b,b,c,d>
S 2	<x,a,b,b,c,d,e,f,g></x,a,b,b,c,d,e,f,g>
S 3	<b,c,a,d,e,d></b,c,a,d,e,d>

Pattern: <A,C> Prefix Ext: {<X>} Infix Ext: {} Suffix Ext: {<D>}

<A,C> is not closed and we can stop growing it. No need to check for <A,C,...>

Procedure MinePatterns Inputs:

Main Method

SeqDB: Sequence DB, min_sup : Min. Sup. Thresh. Methods:

- 1: Let Freq = Frequent length-1 patterns
- 2: For every $f_{-}ev$ in Freq
- Call MineRecurse $(f_{ev}, SeqDB_{f_{ev}}^{all}, min_{sup}, Closed, Freq)$ 3:

Procedure MineRecurse Inputs:

Pat : Pattern so far, $SeqDB_{Pat}^{all}$: Sequence DB min_sup : Min. Sup. Thresh., EV: Frequent Events **Methods: Closure Checks**

- 4: If (*Pat* has no extensions)
- 5: **Output** *Pat*
- 5: Output Pat6: For every f_ev in $\{e|e \in EV \land (\sup(Pat + e) \ge min_sup)\}$
- 7: Let $NxtPat = Pat + f_ev$
- 8: If $(\not\exists e. (e \in InfixExt(NxtPat) \land e \notin SeqDB^{all}_{N_{rt}Pat}))$
- Call MineRecurse (*NxtPat*, *ProjDB*, *min_sup*, *Closed*, *EV*) 9:

Performance & Case Studies

Performance Study - I

o Synthetic Dataset

- IBM Simulator : D5C20N10S20

Performance Study - II

o Dataset Gazelle (KDD Cup - 2000)

- Click stream datasets

Performance Study - III

o Dataset TCAS

- Program traces from Siemens dataset - commonly used for benchmark in error localization

Case Study

o JBoss App Server - Most widely used J2EE server

- A large, industrial program: more than 100 KLOC
- Analyze and mine behavior of transaction component of JBoss App Server

o Trace generation

- Weave an instrumentation aspect using AOP
- Run a set of test cases
- Obtain 28 traces of 2551 events and an average of 91 events

0 Mine using min_sup set at 65% of the |SeqDB| -29s vs >8hrs

Case Study

- 0 Post-processings & Ranking 44 patterns
- o Top-ranked patterns correspond to interesting patterns of software behavior:
 - «Connection Set Up Evs, Tx Manager Set Up Evs, Transaction Set Up Evs, Transaction Commit Evs (Transaction Rollback Evs), Transaction Disposal Evs» Top Longest Patterns

- <Resource Enlistment Evs, Transaction Execution Evs, Transaction Commit Evs (Transaction Rollback Evs), Transaction Disposal Evs>

- <Lock-Unlock Evs> Most Observed Pattern

TxManagerConnectionSet UpSet Up	TransactionManagerLocator.getInstance TransactionManagerLocator.locate TransactionManagerLocator.tryJNDI TransactionManagerLocator.usePrivateAPI TxManager.begin XidFactory.newXid XidFactory.getNextId XidImpl.getTrulyGlobalId	Transaction Commit	TxManager.commit TransactionImpl.commit TransactionImpl.beforePrepare TransactionImpl.checkIntegrity TransactionImpl.checkBeforeStatus TransactionImpl.endResources TransactionImpl.completeTransaction TransactionImpl.cancelTimeout TransactionImpl.doAfterCompletion TransactionImpl.instanceDone
Transaction Set Up	TransactionImpl.associateCurrentThread TransactionImpl.getLocalId XidImpl.getLocalId LocalId.hashCode TransactionImpl.equals TransactionImpl.getLocalIdValue XidImpl.getLocalIdValue TransactionImpl.getLocalIdValue XidImpl.getLocalIdValue	Transaction Disposal	TxManager.releaseTransactionImpl TransactionImpl.getLocalId XidImpl.getLocalId LocalId.hashCode LocalId.equals

Longest Iter. Pattern from JBoss Transaction Component

Library Usage Rules & Bug Detection: Windows Application -- Extension

- o Collect traces from 10 Windows Application:
 - Excell, OneNote, TextPad, VS.Net, Visio, WMPlayer, Virtual PC, Movie Maker, WordPad, Access
- o Collect traces pertaining to:
 - Registry, Memory Management, GDI (Device Control and UI related API)
 - Produces several million events

Library Usage Rules & Bug Detection: Windows Application -- Extension

V HeapAlloc(,,); ->HeapFree(,,V); V GlobalAlloc(,); -> GlobalFree(V); V VirtualAlloc(,,); ->VirtualFree (,,V);

HeapFree(,,V); -P> V HeapAlloc(,,,);

Detect double free, which is disallowed "Calling HeapFree twice with the same pointer can cause heap corruption, resulting in subsequent calls to HeapAlloc returning the same pointer twice." [MSDN]

Library Usage & Bug Detection: Windows Application -- Extension

RegCreateKeyExA(V,.) ->RegCloseKey(V); Not all opened registry need to be closed Predefined keys need not be closed

V CreateCompatDC(); -> DeleteDC(V); V CreCompatBmap(,,);->DeleteObj (V); V CreRectRgn(,,,)-> DeleteObj(V); DeleteDC(V) -precede-> V CreCompDC() SetBkColor(,V); -> V SetBkColor (,)

. . .

LSC Visualization & Scenario-Based Test

Visualization in IBM RSA 🛕 🗸 Violation Trace - Scenario Based Test

- E: 1180527437140 75: jabber.Backend.send(Packet)
- B: jeti.msdaspects.MUSDAspectJetiTest01[57] lifeline 1 <- jabber.Backend@2bee2bee
- B: jeti.msdaspects.MUSDAspectJetiTest01[57] lifeline 0 <- shapes.PictureChat@2bdc2bdc
- C: jeti.msdaspects.MUSDAspectJetiTest01[57] (1,1,0,0) Cold
- E: 1180527437140 76: jabber.Backend.send(Packet)
- B: jeti.msdaspects.MUSDAspectJetiTest01[57] lifeline 2 <- shapes.PictureHistory@76687668
- C: jeti.msdaspects.MUSDAspectJetiTest01[57](1,2,1,0) Hot
- F: jeti.msdaspects.MUSDAspectJetiTest01[571_Violation

Classification of Software Behaviors for Failure Detection: A Discriminative Pattern Mining Approach

David Lo^{1,} Hong Cheng², Jiawei Han³, Siau-Cheng Khoo⁴, and Chengnian Sun⁴

¹Singapore Management University, ²Chinese University of Hong Kong, ³University of Illinois at Urbana-Champaign, ⁴National University of Singapore

Software, Its Behaviors and Bugs

- o Software is ubiquitous in our daily life
- Many activities depend on correct working of software systems
- o Program behaviors could be collected
 - An execution trace: a sequence of events
 - A path that programs take when executed
 - A program contains many behaviors
 - Some correspond to good ones, others to bad ones
- Bugs have caused the loss of billions of dollars (NIST report)

Can Data Mining Help ?

- o Pattern mining tool for program behaviors
- Recent development of the pattern-based classification approach
- o In this work, we extend the above work to:
 - Propose a new pattern definition which could be more efficiently mined (closed unique iterative pattern)
 - Develop a new pattern-based classification on sequential data (iter. pattern-based classification)
 - Apply the above to detection of bad behaviors in software traces for failure detection

Our Goal

"Based on historical data of software and known failures, we construct a pattern-based classifier working on sequential software data to generalize the failures and to detect unknown failures."

- Failure detection is the first step/building block in software quality assurance process.
- o Could be chained/integrated with other work on:
 - Bug localization
 - Test case augmentation
 - Bug/malware signature generation

Related Studies

- Lo et al. has proposed an approach to mine for iterative patterns capturing series of events appearing within a trace and across many traces. (LKL-KDD'07)
- O Cheng et al., Yan et al. have proposed a pattern based classification method on transaction and graph datasets. (CYHH-ICDE'07, YCHY-SIGMOD'08)

Research Questions

- o How to build a pattern-based classifier on sequential data which contains many repetitions ?
- o How to ensure that the classification accuracy is good ?
- o How to improve the efficiency of the classifier building process ?

Software Behaviors & Traces

- o Each trace can be viewed as a sequence of events
- o Denoted as $\langle e_1, e_2, e_3, ..., e_n \rangle$
- o An event, is a unit behavior of interest
 - Method call
 - Statement execution
 - Basic block execution in a Control Flow Graph (CFG)
- o Input traces -> a sequence database

Overall View of The Pattern-Based Classification Framework

Iterative Patterns

- A pattern is a series of events (P=<p1,p2,...,pn>)
- Given a pattern P and a sequence database DB, instances of P in DB could be computed
- o Based on MSC & LSC (software spec. formalisms)
- o Given a pattern P (e₁e₂...e_n), a substring SB is an instance of P iff

SB = e_1 ; $[-e_1, ..., e_n]^*$; e_2 ; ...; $[-e_1, ..., e_n]^*$; e_n

 oGoal: Find patterns whose instances appear often within a sequence and across multiple sequences (above a min_sup threshold)

Iterative Patterns

Identi ⁻ er	Sequence
S1	hD;B;A;F;B;A;F;B,C;Ei
S2	hD;B;A;D;B;B;B;A;B

- o Consider the pattern P = <A,B>
- o The set of instances of P
 - (seq-id, start-pos, end-pos)
 - {(1,3,5), (1,6,8), (2,3,5), (2,8,9)}
 - The support of P is 4

Frequent Iterative Pattern. For a trace (sequence) dataset TDB, an iterative pattern P is frequent if its instances occur above a certain threshold of min_sup in TDB.

Closed Iterative Pattern. A frequent iterative pattern P is *closed* if there exists no super-sequence Q s.t.:

- 1. P and Q have the same support;
- 2. Every instance of \overline{P} corresponds to a unique instance of Q, denoted as $\underline{\mathrm{Inst}(P)} \approx \underline{\mathrm{Inst}(Q)}$. An instance of P $(seq_P, start_P, end_P)$ corresponds to an instance of Q $(seq_Q, start_Q, end_Q)$ iff $seq_P = seq_Q$ and $start_P \geq start_Q$ and $end_P \leq end_Q$.

Closed Unique Iterative Patterns

- o |closed patterns| could be too large
 - Due to "noise" in the dataset (e.g., the As in the DB)

Identi ⁻ er	Sequence
S1	hA;C;A;A;A;C;A;A;A;Ci
S2	hA;A;A;A;C;A;A;A;A;Ci

- At min_sup = 2, patterns <A,C>, <A,A,C>,
 <A,A,A,C> and <A,A,A,A,C> would be reported.
 Due to random interleavings of different noise,
- number of closed patterns at times is too large

Closed Unique Pattern. A frequent pattern P is a closed unique pattern if \underline{P} contains no repeated constituent events, and there exists no super-sequence Q s.t.:

- 1. P and Q have the same support;
- 2. Every instance of P corresponds to a unique instance of Q;
- 3. Q contains no constituent events that repeat.

Identi ⁻ er	Sequence
S1	hA;B;B;B;B;C;E;D;A;B;Bi
S2	hC;E;D;A;B;B;B;B;Bi

o <A,B> is a closed unique pattern.
o <C,D> is unique but not closed due to <C,E,D>

Algorithm 1 Mining Closed Unique Iterative Pa

Main Method

Procedure: Mine Closed Unique Pat.

Inputs: TDB: Trace database, min_sup: Minimum support

1: Let
$$FqEv = \{p|(|p|=1) \land (sup(p) \ge min_sup)\}$$

- 2: for every e in FqEv
- Call GrowRec $(e, TDB, min_sup, FqEv)$ 3:

Procedure GrowRec Mining Algorithm **Inputs:** Pat: Pattern so far, TDB: Trace database, min_sup : Minimum support, FqEv: Set of frequent events 4: Let $FqLoc = \{e \in FqEv | sup(Pat + e) \ge min_sup)\}$ 5: if $(Pat \text{ is closed unique})_{\leftarrow}$ Closure & **Output** Pat 6: Uniqueness Checks 7: **if** (Pat is unique) for every $f \notin Pat$ in FqLoc8: Pruning Let NPt = Pat + f9: **if** NPt doesn't satisfy the InfixScan cond. in [LKL-KDD'07] 10:Call GrowRec(NPt, TDB, min_sup , FqEv) 11:

Patterns As Features

- Software traces do not come with pre-defined feature vectors
- o One could take occurrences of every event as a feature
- o However, this would not capture:
 - Contextual relationship
 - Temporal ordering
- o We could use mined closed unique patterns as features

Feature Selection

o Select good features for classification purpose
o Based on Fisher score

$$\mathbf{Fr} = \frac{\mathbf{P}_{1}^{c} \mathbf{n}_{i} (\mathbf{1}_{i} \mathbf{i}^{-1})^{2}}{\mathbf{P}_{1}^{c} \mathbf{n}_{i} \mathbf{1}^{3/2}}$$

- n_i = number of traces in class i (normal/failure)
- μ_i = average feature value in class i
- σ_i^2 = std. deviation of the feature value in class i
- the value of a feature in a trace/sequence is its num. of instances

o Strategy: Select top features so that all traces or sequences are covered at least δ times.

Algorithm 2 Feature Selection on Iterative Patterns

Procedure: Feature selection

Inputs: \mathcal{F} : Closed Unique Pat., TDB: Trace DB, δ : Coverage thresh. **Output:** \mathcal{F}_s : A selected set of iterative patterns

1: Sort iterative patterns in \mathcal{F} in decreasing order of Fisher score;

- 2: Start with the first pattern f_0 in \mathcal{F} ;
- 3: while (true)
- Find the next pattern f; 4:

if f covers at least one sequence in TDB5:

$$\mathcal{F}_s = \mathcal{F}_s \cup \{f\};$$

$$\mathcal{F}=\mathcal{F}-\{f\};$$

8: if a sequence
$$S$$
 in TDB is covered δ times
9: $TDB = TDB - \{S\}$;

$$TDB = TDB - \{S\};$$

10: if all sequences are covered
$$\delta$$
 times or $\mathcal{F} = \phi$

12: return
$$\mathcal{F}_s$$

6:

7:

Classifier Building

- o Based on the selected discriminative features
- o Each trace or sequence is represented as:
 - A feature vector $(x_1, x_2, x_3, ...)$
 - Based on selected iterative patterns
 - The value of x_i is defined as

 $x_i = \begin{cases} sup(f_i; S); & if S contains f_i \\ 0; & otherwise: \end{cases}$

o Train an SVM model

- Based on two contrasting sets of feature vectors

o Synthetic Datasets

- Trace generators QUARK [LK-WCRE'06]
- Input software models with injected errors
- Output a set of traces with labels

o Real traces (benchmark programs)

- Siemens dataset (4 largest programs)
- Used for test-adequacy study large number of test cases, with injected bugs, correct output available
- Inject multiple bugs, collect labeled traces

o Real traces (real program, real bug)

- MySQL dataset
- datarace bug

o Performance measures used

- Classification accuracy
- Area under ROC curve
- o 5 Fold-Cross Validation
 - Mining, feature selection and model building done for each fold separately
 - Prevent information leak
- o Handling skewed distribution
 - Failure training data is duplicated many times
 - Test set distribution is retained
- o Three types of bugs
 - Addition, omission and ordering

Experimental Results: Synthetic

D at aset	Correct	Error (jtracesj)	
	(jtracesj)	Add/Omis.	Order
X 11	125	125	0
CVS Omission	170	170	0
CVS Ordering	180	0	180
CVS Mix	180	90	90

D at aset	A ccuracy		A	UC
	Evt	Pat	Evt	Pat
X11	96:40 § 4:10	97.20 § 3.35	0:97 § 0:04	1.00 § 0.00
CVS Omission	95:29 § 1:61	100.00 § 0.00	0:96 § 0:03	1.00 § 0.00
CVS Ordering	50:00 § 0:00	85.28 § 2.71	0:50 § 0:00	0.82 § 0.08
CVS Mix	66:39 § 15:63	93.89 § 5.94	0:65 § 0:17	0.95 § 0.06

Experimental Results: Siemens & MySQL

D at aset	Correct	Error (jtra	Error (jtracesj)	
	(jtracesj)	Add/Omis	Order	
tot_info	302	208	94	
schedule	2140	289	1851	
print_tokens	3108	187	187	
replace	1259	269	269	
MySQL	51	0	51	

Dataset	A ccuracy		A	UC
	Evt	Pat	Evt	Pat
t ot _info	77:33 § 2:31	90.67 § 5.82	0:90 § 0:03	0.94 § 0.03
schedule	52:83 § 19:27	86.26 § 14.90	0:57 § 0:25	0.88 § 0.16
print_tokens	72:60 § 26:33	99.94 § 0.08	0:64 § 0:17	1.00 § 0.00
replace	61:12§9:25	90.84 § 2.54	0:63 § 0:15	0.93 § 0.05
MySQL	50:00 § 0:00	100.00 § 0.00	0:50 § 0:00	1.00 § 0.00

Experimental Results: Varying Min-Sup

min_sup	A ccur acy	AUC
0.05	90:9497 § 2:9203	0:9344 § 0:0454
0.10	90:9497 § 2:9203	0:9344 § 0:0454
0.15	90:9004 § 2:5949	0:9323 § 0:0509
0.20	90:8939 § 2:5949	0:9321 § 0:0499
0.25	90:8380 § 2:5402	0:9318§ 0:0506
0.30	90:7263 § 2:5555	0:9310 § 0:0501
0.35	90:2794 § 2:8650	0:9261 § 0:0545
0.40	90:2794 § 2:8650	0:9261 § 0:0545
0.45	90:2794 § 2:8650	0:9261 § 0:0545
0.50	90:2794 § 2:8650	0:9261 § 0:0545

Replace dataset

Experimental Results: Mining Time

(Out of memory exception, 1.7GB memory, 4 hours)

- o Pattern-based classification
 - Itemsets: Cheng et al. [ICDE'07, ICDE'08]
 - Graphs: Yan et al. [SIGMOD'08]
- o Mining episodes
 - Mannila et al. [DMKD'97]
- o Mining repetitive sub-sequences
 - Ding et al. [ICDE'09]
- o Dickinson et al. [ICSE'01]
 - Clustering program behaviors
 - Detection of failures by looking for small clusters
- o Bowring et al. [ISSTA'04]
 - Model failing trace and correct trace as first order Markov model to detect failures

o New pattern-based classification approach

- Working on repetitive sequential data
- Applied for failure detection
- o Classification accuracy improved by 24.68%
 - Experiments on different datasets
 - Different bug types: omission, addition, ordering
- o Future work
 - Direct mining of discriminative iterative patterns
 - Application of the classifier to other form of sequential data:
 - Textual data, genomic & protein data
 - Historical data
 - Pipelining to SE tools: fault localization tools, test suite augmentation tools

Thank You

Questions, Comments, Advice ?