Mining Patterns and Building

Classifiers From Software Data:
Addressing Soft. Maintenance & Reliability Issues

David Lo
School of Information Systems
Singapore Management University

Presentation at UTUC
July 31, 2009

e
Motivation: Maintenance Issues

oMaintenance: Update to an existing software
- Need to understand how a software behaves

oSpecification: Description on what a software is
supposed to behave

- Locking Protocol: <mutex_lock, mutex_unlock>
- JTA Protocol [JTA]: <TxManager.begin, TxManager.commit>, etc.
- Telecommunication Protocol [ITU]:
<off_hook, dial_tone_on, dial_tone_off, seizure_int, ring_tone,
answer, connection_on>
- JAAS Authentication Enforcer Strategy Pattern [SNLO6]:
<Subject.getPrincipal, PriviligedAction.create,

Subject.doAsPrivileged, TAAS_Module.invoke, Policy.getPermission,
Subject.getPublicCredential, PrivilegedAction.Run>

e
Motivation: Maintenance Issues

oExisting problems in specification: Lack, incomplete

and outdated specifications [LKO6,ABLO2,YEBBDO6, DSBO4,
etc.]

oCause difficulty in understanding an existing system

oContributes to high software cost
- Prog. maintenance : 90% of soft. cost [E0O,CC02]
- Prog. understanding : 50% of maint. cost [S84,CC02]
- US GDP software component: $214.4 billion [US BEA]

o Solution: Specification Discovery

Motivation: Reliability Issues

o We depends on correct working of software systems
- Banking application, control systems, etc

o Software bugs have caused a lot of issues
- 59.5 billion dollars lost to US economy annually [NIST2002]
- Privacy & security issues
o Much savings could be made by either
- Preventing bugs
- Detecting failures
- Localizing bugs
- Suggesting fix
- Guaranteeing no bugs could ever exists
- Healing failures (e.g., Microsoft Shims), etc.

-

Can Data Mining Help ?
YES |

Outline

o Software Specification Discovery
- Semantics based on standard software specifications
- Closed pattern mining strategy
- Performance study and case study
- Addressing “lack of specifications” problem

o Classification of software behaviors
- Sequential pattern-based classification
- Improving efficiency & accuracy
- Application to detect failures from software data
- Addressing reliability of systems

Efficient Mining of Iterative Patterns for
Software Specification Discovery

David Lot
Joint work with: Siau-Cheng Khoo' and Chao Liut

Prog. Lang. & Sys. Lab *Data Mining Group
Department of Computer Department of Computer
Science Science
National Uni. of Singapore Uni. of Illinois at Urbana-

Champaign

R EEEEEEEEm————
Our Specification Discovery Approach

0 Analyze program execution traces

o Discover patterns of program behavior, e.g.:
-Locking Protocol [YEBBDO6]: <lock, unlock>
-Telecom. Protocol [ITU], etc.

o Address unique nature of prog. traces:
- Pattern is repeated across a trace
- A program generates different traces
- Interesting events might not occur close together

Need for a Novel Mining Strategy

o Sequential Pattern Mining [AS95,YHAO3,WHO04] - A
series of events (itemsets) supported by (i.e. sub-
sequence of) a significant number of sequences.

Required Extension: Consider multiple occurrences
of patterns in a sequence

o Episode Mining [MTV97,603] - A series of closely-

occurring events recurring frequently within a
sequence

¢ : : : :
Required Extension: Consider multiple sequences:
Remove the restriction of events occurring close

\‘ogether.)
D

e
Iterative Patterns - Semantics

o A series of events supported by a significant
number of instances:
- Repeated within a sequence
- Across multiple sequences.

o Follow the semantics of Message Seq. Chart
(MSC) [ITU] and Live Seq. Chart (LSC) [DHO1].

o Describe constraints between a chart and a trace
segment obeying it:
- Ordering constraint [ITU ,KHPLBO5S]
- One-to-one correspondence [KHPLBObS]

e
Iterative Patterns - Semantics

Switching Sys

=

Calling
Party

Called
Party

off hook J
dial tone on

aial_tone_dff
P .

ring tone
4 g_— !

c{onnection E

seizure,!

! ackE

ignswer

[ITU]

o TS1: off_hook, seizure, ack,
ring_tone, answer, ripg_tone, X
conhnection_on

o0 TS2: off_hook, seizure, ack,
ring_tone, answer, ans¥er,
ansyeer., connection_on X

0 TS3: off_hook, seizure, ack,

evl, ring_tone, evl, answer,
conhnection_on

Iterative Patterns - Semantics
0 Given a pattern P (e,e,..e,), a substring SB is an instance of

P iff

SB = e;:[-eq,...e,)" e,;...[-e4,...e,]".e,

o Pattern: <off_hook, seizure, ring_tone, answer, connection_on>

0 S1: off hook, r'ingxone, seizure, answer, connection_on X

0 S2: off_hook, seizure, ring_tone, answer, anyfer, anyfver, X
connection_on

0 S3: off_hook, seizure, evl, ring_tone, evl, answer,
connection_on

0 S4:|off_hook, seizure, evl, ring_tone, evl, answer,
connec’rion_on,"off_hook, seizure_int, ev2, ring_tone, ev3,
answer, connection_on|

Mining

Algorithm

Projected Database Operations

o Projected-all of SeqDB wrt pattern P - SeqDBE'
Return: All suffixes of sequences in SeqDB where for
each, its infix is an instance of pattern P

SeqDB
sl @c l X > (Seq, Start,End) Sequence
/ : I (1,1,2) <C,A,B X>
S2 A,B)B,B,B>
’ (10405) (X)
[l
SeaDBY py (2.1,2) <B.B.B>

0 Suppor"{I of a pattern = size of its proj. DB

o SeqDB,, is formed by considering occurrences of ev

all

0 SquBSLeV can be formed from SeqDB,

Pruning Strategies

Apriori Property
If a pattern P is not frequent, P++evs can not be
frequent.

Closed Pattern
Definition: A frequent pattern P is closed if there exists
no super-sequence pattern Q where:
P and Q have the same support
and corresponding instances

Sketch of Mining Strategy
1. Depth first search
2. Cut search space of non-frequent and non-closed
patterns

Closure Checks and Pruning - Definitions

o Prefix, Suffix Extension (PE) (SE)

- An event that can be added as a prefix or suffix (of
length 1) to a pattern resulting in another with the same

support

0 Infix Extension (IE)

- An event that can be inserted as an infix (one or more
times) to a pattern resulting in another with the same
support and corresponding instances

S1

<X@A,B,B,C)D>

S2

<X4.B,B.C.DEF.G >

S3

<B,C,A,D ,E,D>

Pattern: <A,C>
Prefix Ext: {<X>}
Suffix Ext: {<D>}
Infix Ext: {}

Closure Checks and Pruning - Theorems

0 Closure Checks: If a pattern P has no (PE, IE and
SE) then it is closed otherwise it is not closed

o InfixScan Pruning Property: If a pattern P has an
IE and IE ¢ SquBP,Then we can stop growing P.

S1

<X,A,B,B,C,D>

S2

<X,A,B,B,C,D,EF,G>

S3

<B,C,A,D ,E,D>

Pattern: <A,C>
Prefix Ext: {<X>}
Infix Ext: {}
Suffix Ext: {<D>}

<A,C> is not closed and we can stop growing it.
No need to check for <A,C,..>

Procedure MinePatterns Main Method
Inputs:

SeqDB . Sequence DB, min_sup: Min. Sup. Thresh.
Methods:

1: Let Freq = Frequent length-1 patterns
2. For every f_ev in Freq
3: Call MineRecurse (f_ev,SeqDB¥* min_sup,Closed, Freq)

f_ev?

Procedure MineRecurse Recursive
Inputs: PC(‘H'er'n GPOWﬂ"I

Pat : Pattern so far, SeqDB%! : Sequence DB
min_sup. Min. Sup. Thresh., EV:.: Frequent Events

Methods: | ___——"| Closure Checks
4: If (Pat has no extensions)
5. Output Pat InfixScan Pruning

6: For every fevin {ele € EV A (sup(Pa e) > min_sup)
7. Let NxtPat = Pat4+f_ev

8: If (Ae. (e € InfixExt(NxtPat) N'e & SeqDB .)
9-

X

Call MineRecurse (NxtPat,ProjDB,min_sup,Closed, EV)
e

Performance & Case
Studies

Performance Study - I

o Synthetic Dataset
- IBM Simulator : D5C20N10520

10* | 10’ g ‘\‘\‘\

(Y
o
o
|
\

|_\
o
w
|Patterns| - (log-scale)
|_\
o
(6]

Runtime(s) - (log-scale)
H
@)

104 a
101 E 3 L
- —e— Full 10 —e— Full
| —A— Closed

! —&— Closed

=
o
N

0.25 0.28 0.31 0.34

0.1 ==+ 025 0.28 0.31 0.34 0.1 " _
min_sup (%) min_sup (%)

Performance Study - IT

0 Dataset Gazelle (KDD Cup - 2000)
- Click stream datasets

8
— —a— Closed —4— Closed
Q@ @ 10"
© ©
2 2
g 8
- —10° |
2) n -
() = i
S Q i
Dg: i 10° i\‘\‘\‘
10 ‘ ‘ 10* ‘ ‘
0.023 0.026 0.029 0.032 0.023 0.026 0.029 0.032
min_sup (%) min_sup (%)

Performance Study - III

0 Dataset TCAS
- Program traces from Siemens dataset - commonly used for
benchmark in error localization

10° F
: —e— Full i —e— Full
10°
: —4— Closed
105 |

|Patterns| - (log-scale)

Runtime(s) - (log-scale)

0.1 ==- 55 70 85 100 0.1 e 55 70 85 100
min_sup (%)

min_sup (%)

Case Study

0 JBoss App Server - Most widely used J2EE
server
- A large, industrial program: more than 100 KLOC

- Analyze and mine behavior of transaction component of
JBoss App Server

0 Trace generation

- Weave an instrumentation aspect using AOP
- Run a set of test cases

- Obtain 28 traces of 2551 events and an average of 91
events

0 Mine using min_sup set at 65% of the |SeqDB| -

29s vs >8hrs
e

R EEEEEE—————————
Case Study

0 Post-processings & Ranking - 44 patterns

o Top-ranked patterns correspond to interesting
patterns of software behavior:

- <Connection Set Up Evs, Tx Manager Set Up Evs,
Transaction Set Up Evs, Transaction Commit Evs
(Transaction Rollback Evs), Transaction Disposal Evs>

Top Longest Patterns

- <Resource Enlistment Evs, Transaction Execution Evs,
Transaction Commit Evs (Transaction Rollback Evs),
Transaction Disposal Evs>

- <Lock-Unlock Evs> Most Observed Pattern
e

- TransactionManagerLocator.getinstance TxManager.commit
.2 o [TransactionManagerLocator.locate — |Transactionimpl.commit
é 2 TransactionManagerLocator.tryJNDI ‘e [Transactionlmpl.beforePrepare
S & [TransactionManagerLocator.usePrivate APl cE> Transactionlmpl.checklntegrity
O O [Transactionlmpl.checkBeforeStatus
TxManager .begin 5 Transact!onImpl.endResources _
g XidFactory.neWXid § Transact!onImpI.compIet_eTransactlon
S S WidEactor ' etNextld 22 Transact!onImpI.canceITlmeout _
= 2 [xidimol yt% VGloballd © [Transactionlmpl.doAfterCompletion
2 o [IAIMPLEELTTULY,SIoha = [Transactionlmpl.instanceDone
|_
Transactionlmpl.associateCurrentThread — |TxManager.releaseTransactionimpl
o . © .
S Transactionlmpl.getLocalld 8 [Transactionlmpl.getLocalld
© XidImpl.getLocalld & XidImpl.getLocalld
p Localld.hashCode O |Localld.hashCode
2 Transactionlmpl.equals S |Localld.equals
§ Transactionlmpl.getLocalldValue g
= Xidlmpl.getLocalldValue L2
= Transactionlmpl.getLocalldValue o
Xidlmpl.getLocalldValue =

Longest Iter. Pattern from JBoss Transaction Component
e

R EEEEEEEEm————
Library Usage Rules & Bug Detection:

Windows Application -- Extension

o Collect traces from 10 Windows Application:

- Excell, OneNote, TextPad, VS.Net, Visio,
WMPlayer, Virtual PC, Movie Maker, WordPad,
Access

o Collect traces pertaining to:

- Registry, Memory Management, GDI (Device
Control and UI related API)

- Produces several million events

R EEEEEEEEm———S
Library Usage Rules & Bug Detection:
Windows Application -- Extension

V HeapAlloc(,,): ->HeapFree(,,V):
V GlobalAlloc(,). -> GlobalFree(V):;
V VirtualAlloc(,,); ->VirtualFree (,,V):

HeapFree(,,V): -l5> V HeapAlloc(, ,,):

Detect double free, which is disallowed
"Calling HeapFree twice with the same pointer can cause
heap corruption, resulting in subsequent calls to
HeapAlloc returning the same pointer twice.” [MSDN]

28

Library Usage & Bug Detection:
Windows Application -- Extension

RegCreateKeyExA(V,.) - >RegCloseKey(V):
Not all opened registry need to be closed
Predefined keys need not be closed

V CreateCompatDC(); -> DeleteDC(V):
V CreCompatBmap(, ,).->DeleteObj (V):
V CreRectRgn(,,,)-> DeleteObj(V):
DeleteDC(V) -precede-> V CreCompDC()
SetBkColor(,V); -> V SetBkColor (,)

Isc Start chat

Ic:hat

I_ -L>|m{§l getRe ulce(...) I I I
| | create reladg...z ! ; |
I ! I
l l
l

| lgetMyJIDSI..) ;
| LgetUser()] ; |
send(...
| | l IA—)é

Isc Draw shape
O:PictChatj 0:JID |} |O:PictHistor 0:Backend§O:Connectj J0:Output

getMyJl

I_olraw(l

| ltoStrm%l |

I addShafielgrawnBy
|_[i4ﬁ send(.

Mined LSCs -Jeti Mess. App

L
LSC VISLIC(lIZCl'l‘IOﬂ & Scenario-Based Test

Delect
= F JetiTest £'| Drawing +l% e —
=-(22 Diagrams S III NN I I IIE DI BEE IEE BEE BEE B B . l i
- - Mok -
=I-E21 JetiTestModel [PictureChat:«Tes... = be:«TestModes»Badend O phi«TestModessR.,, | [connect:«Test.. bl
E Zollaboration: I [~ ML Commaon
) Collaboration: I [Sequence e
T collabaoration: «Modass = Lieli
T Collaboration: I 1: getMyJID) : 1D rEne
5CB Models aModass I & Synchronous
21 Send (Pararmeterl : Packet) Message
=[5 JetiTestModel - [@ Behavior Execution
+ Q g¢TestModess: I aModes: Specification
+-7T gTestMadass 2! Send (F‘arameterl Packet) spt| Option Combined
=20 g TestModess L s ,—.—.Fragmer.lt
5] aTestMod I I I S IS B B B B B B e e | | B2 Inkerackan U
E JekiTe £ 3 [~ Geometric Shapes
5 b =
o be = Properties &3 Tasks | Console | Bookmarks ¥ =0
[Eg connect
"
P’ 5 me? s General B <Message> «Modes» JetiTestModel: :Collaboration2::Drawing: :Send
= Skerecktypes
o= Outine 52 Inheri... |~ O ; L 5
Dacurnentation = Modes
- [=E
= Conskraints I execution 0 - Monitared I
temperature 1 - Hot

[I I I T
[= [ADDearance
I I IS I IS S S S .

Vlsuallzahon in IBM RSA AV Violation Trace - Scenario Based Test

E: 1180527437140 75: jabber.Backend.send(Packet)

B: jeti.msdaspects. MUSDAspectJetiTest01[57] lifeline 1 <- jabber.Backend@2bee2bee

B: jeti.msdaspects. MUSDAspectJetiTest01[57] lifeline O <- shapes.PictureChat@2bdc2bdc

C: jeti.msdaspects. MUSDAspectJetiTest01[57] (1,1,0,0) Cold

E: 1180527437140 76: jabber.Backend.send(Packet)

B: jeti.msdaspects. MUSDAspectJetiTestO01[57] lifeline 2 <- shapes.PictureHistory@76687668
C

: jeti.msdaspects. MUSDAspectJetiTest01[571(1.2,1.9) Hot

Classification of Software Behaviors for
Failure Detection: A Discriminative
Pattern Mining Approach

David Lo!- Hong Cheng?, Jiawei Han3, Siau-Cheng
Khoo?, and Chengnian Sun*

1Singapore Management University, 2Chinese University of Hong
Kong, 3University of Illinois at Urbana-Champaign, “National
University of Singapore

Software, Its Behaviors and Bugs

o Software is ubiquitous in our daily life

o Many activities depend on correct working of

software systems
o Program behaviors could be collected

- An execution trace: a sequence of events

- A path that programs take when executed

- A program contains many behaviors

- Some correspond to good ones, others to bad ones
o Bugs have caused the loss of billions of dollars

(NIST report)

R EEEEEEEEm————
Can Data Mining Help ?

o Pattern mining tool for program behaviors

o Recent development of the pattern-based
classification approach
o In this work, we extend the above work to:

- Propose a new pattern definition which could be more
efficiently mined (closed unique iterative pattern)

- Develop a new pattern-based classification on
sequential data (iter. pattern-based classification)

- Apply the above to detection of bad behaviors in
software traces for failure detection

e
Our Goal

“"Based on historical data of software and known

failures, we construct a pattern-based classifier

working on sequential software data to generalize
the failures and to detect unknown failures.”

o Failure detection is the first step/building block in
software quality assurance process.

o Could be chained/integrated with other work on:

- Bug localization
- Test case augmentation
- Bug/malware signature generation

Usage Scenarios

<ele2,e3e4d. en

Unknown Trace or
Sequence of Events

Test Suite
Augmentation Tool

Trained
—> Sequential
Classifier

v

Discriminative
Features

Failure
Detector

Failure
Detector

Fault
Localization

e
Related Studies

o Lo et al. has proposed an approach to mine for
iterative patterns capturing series of events
appearing within a trace and across many traces.
(LKL-KDD'07)

o Cheng et al., Yan et al. have proposed a pattern
based classification method on transaction and graph

datasets. (CYHH-ICDE'O7, YCHY-SIGMOD'08)

Research Questions

o How to build a pattern-based classifier on
sequential data which contains many repetitions ?

o How to ensure that the classification accuracy is
good ?

o How to improve the efficiency of the classifier
building process ?

Software Behaviors & Traces

o Each trace can be viewed as a sequence of events
o Denoted as <e;,e,,e;,..,e,>
o An event, is a unit behavior of interest

- Method call

- Statement execution
- Basic block execution in a Control Flow Graph (CFG)

o Input traces -> a sequence database

Overall View of The Pattern-Based
Classification Framework

Sequence Tterative
Database Pattern Mining

1l

Feature
Selection

1l

Clasifizr j> Classifier j> Failure
Building Detection

Iterative Patterns

o A pattern is a series of events (P=<p;,p,....pn>)

o Given a pattern P and a sequence database DB,
instances of P in DB could be computed

o Based on MSC & LSC (software spec. formalisms)

o Given a pattern P (e;e,..e,), a substring SB is an
instance of P iff

SB = e;:[-eq,...e,]" e,[-e4,..,.e,])" e,
06oal: Find patterns whose instances appear often

within a sequence and across multiple sequences
(above a min_sup threshold)

Iterative Patterns

Identi er | Sequence
S1
S2

o Consider the pattern P = <A, B>

o The set of instances of P
- (seq-id, start-pos, end-pos)
-{(1.3.5), (1,6.,8), (2,3,5), (2,8,9)}
- The support of P is 4

Frequent Iterative Pattern. For a trace (se-
quence) dataset T DB, an iterative pattern P is fre-
quent if its instances occur above a certain threshold
of min_sup in T'DB.

Closed Iterative Pattern. A frequent iterative
pattern P is closed if there exists no super-sequence

() s.t.:
1. P and () have the same support;
2. Every instance of P corresponds to a unique ins-

tance of (), denoted as Inst(P) ~ Inst(Q).
An instance of P (seqp, startp,endp) corresponds to
an instance of Q) (seqq, startg, endq) iff seqp = seqq
and startp > startg and endp < endg.

Frequent vs. Closed Patterns

Closed Unique Iterative Patterns

o |closed patterns| could be too large
- Due to "noise” in the dataset (e.g., the As in the DB)

ldenti er

Sequence

S1

hA:C:A:A:A:C: A A

S2

hA: A:A:A:C:A:A: A

A
A

C
C

o At min_sup = 2, patterns <A,C>, <A ,A,C>,
<A,A,A,C> and <A ,A,A,A,C> would be reported.

o Due to random interleavings of different noise,
number of closed patterns at times is too large

Closed Unique Pattern. A frequent pattern P is a

closed unique pattern if P contains no repeated con-

stituent events, and there exists no super-sequence () s.t.:
1. P and () have the same support;

2. Every instance of P corresponds to a unique
instance of Q);
3. () contains no constituent events that repeat.

ldenti er | Sequence
S1 hMA:B:B:B:B:C:E:D:A;
S2 hC:E:D:A:B:B:B:B:Bi

B:Bi

0 <A,B> is a closed unique pattern.
o <C,D> is unique but not closed due to <C,E,D>

———————————————————————
Algorithm 1 Mining Closed Unique Iterative Pa Main Method

Procedure: Mine Closed Unique Pat.
Inputs: T'DB: Trace database, min_sup: Minimum support

1: Let FqgEv = {p|(|p| = 1) A (sup(p) > min_sup)}

2: for every e in FqgEv

3: Call GrowRec (e, TDB, min_sup, FqEv) Recursive
Pattern Growth

Procedure GrowRec

_g Inputs: Pat: Pattern so far, T'DB: Trace database,

4= min_sup: Minimum support, FgEv: Set of frequent events

L 4: Let FglLoc = {e € FqEv|sup(Pat++e) > min_sup)}

81 5: if (Pat is closed unique) A

=" 6 0O < Closure &
: utput Pat .

< . . Uniqueness Checks
7: if (Pat is unique)

g 8: for every f & Pat in FqLoc Pruning

= ¥ Let NPt = Pat+f

= 10: if NPt doesn’t satisfy the InfixScan cond. in [LKL-KDD'07]

E 11: Call GrowRec(N Pt, TDB, min_sup, FqFEv)

Patterns As Features

o Software traces do not come with pre-defined
feature vectors

o One could take occurrences of every event as a
feature

o However, this would not capture:
- Contextual relationship
- Temporal ordering

o We could use mined closed unique patterns as
features

Feature Selection

o Select good features for classification purpose
o Based on Fisher score

C

Er = Plni(lii

- n. = number of traces in class i (normal/failure)
- H; = average feature value in class i

2
- 0,"= std. deviation of the feature value in class i

- the value of a feature in a trace/sequence is its num. of
instances

-
o Strategy: Select top features so that all traces or

sequences are covered at least dtimes.

Algorithm 2 Feature Selection on lterative Patterns

Procedure: Feature selection

Inputs: F: Closed Unique Pat., T'DB: Trace DB, o: Coverage thresh.
Output: F;: A selected set of iterative patterns

1: Sort iterative patterns in F in decreasing order of Fisher score;

2: Start with the first pattern fy in F;

3: while ({rue)

if a sequence S in T'DB is covered § times
TDB=TDB —{S},

10: if all sequences are covered o times or F = ¢

11: break;

12: return F*,

4: Find the next pattern f;

5: if _f covers at least one sequence in T'DB
6: Fs=Fs U{fF

o F=F-Afh

8:

9:

Feature Selection

Classifier Building

o Based on the selected discriminative features

o Each trace or sequence is represented as:
- A feature vector (x;,X,,Xs,...)
- Based on selected iterative patterns
- The value of x; is defined as
) sup(fi;S); If S contains f;
0; otherwise:

o Train an SVM model

- Based on two contrasting sets of feature vectors

o Synthetic Datasets
- Trace generators QUARK [LK-WCRE'06]
- Input software models with injected errors
- Output a set of traces with labels

o Real traces (benchmark programs)
- Siemens dataset (4 largest programs)

- Used for test-adequacy study - large number of test
cases, with injected bugs, correct output available

- Inject multiple bugs, collect labeled traces

o Real traces (real program, real bug)
- MySQL dataset
- datarace bug

Experiment: Datasets

o Performance measures used
- Classification accuracy
- Area under ROC curve

o 5 Fold-Cross Validation

- Mining, feature selection and model building done
for each fold separately

- Prevent information leak

o Handling skewed distribution
- Failure training data is duplicated many times
- Test set distribution is retained

o Three types of bugs

- Addition, omission and ordering

Experiments: Eval. Details

R EEEEEEEEm————
Experimental Results: Synthetic

D ataset Correct Error (jtracesj)
(jtraces]) | Add/ Omis. | Order
X11 125 125 0

CV S Omission 170 170 o)
CV S Ordering 180 o) 180

CVS Mix 180 90 90

D at aset A ccuracy AUC
Evt P at Evt P at
X11 96:408 410 |(97.20§ 3.35)| 0:97§ 0:04 [1.00§ 0.00

CVS Omission | 95:29§ 1:61 | [100.00 § 0.00|| 0:96§ 0:03 | 1.00 § 0.00
CVS Ordering | 50:00§ 0:00 ||85.28§ 2.71 || 0:50§ 0:00 | 0.82§ 0.08
CVSMix | 66:398 15:63 | |93.89§ 5.94)| 0:65§ 0:17 | 0.95§ 0.06

R EEEEEEEEm————
Experimental Results: Siemens & MySQL

D ataset Correct Error (jtraces))
(jtraces]) | Add/ Omis | Order
tot_info 302 208 94
schedule 2140 289 1851
print _tokens 3108 187 187
replace 1259 269 269
MySQL 51 0 51
D at aset A ccuracy AUC
Evt P at Evt P at
tot_info 77:338 2:31 [/90.67 8§ 5.82\| 0:908 0:03 £ 0.94 8§ 0.03 Y}
schedule 52:838 19:27 ||86.26 8 14.90|| 0:578 0:25|| 0.88 § 0.16
print tokens | 72:608 26:33 || 99.94 8§ 0.08 || 0:648 0:17|| 1.00 8 0.00
replace 61:128 9:25 || 90.84 8§ 2.54 || 0:638 0:15|| 0.93 8§ 0.05
MySQL 50:008 0:00 |\100.008 0.00)| 0:508 0:00 1.00 § 0.00

R EEEEEEEEm————
Experimental Results: Varying Min-Sup

min_sup A ccuracy AUC
0.05 90:9497 8§ 2:9203 | 0:9344 § 0:0454
0.10 90:9497 § 2:9203 | 0:9344 § 0:0454
0.15 90:9004 § 2:5949 | 0:9323 § 0:0509
0.20 90:8939 § 2:5949 | 0:9321 8§ 0:0499
0.25 90:8380 § 2:5402 | 0:9318 § 0:0506
0.30 90:7263 § 2:5555 | 0:93108 0:0501
0.35 90:2794 § 2:8650 | 0:9261 8§ 0:0545
0.40 90:2794 § 2:8650 | 0:9261 8§ 0:0545
0.45 90:2794 § 2:8650 | 0:9261 8§ 0:0545
0.50 90:2794 § 2:8650 | 0:9261 8§ 0:0545

Replace dataset

R EEEEEE—————————
Experimental Results: Mining Time

85 - - - - - - -
) s lterative
a0 _E_::’[,E.-Edatlvem : Pattern Mining
attern Mining 400
B 75 g
: s
Ei] 70l | g 300
Z =,
= £
= 65 = 200
S =
T 60} |2
100
551
50 : : : ' ' ' ' ' :
0.10 0.20 0.3 0.4 0.5 2000 4000 6000 8000 10000
Minimum Support Mumber of Traces

Replace dataset
Mining Closed Unique Iterative Patterns
Mining Closed Patterns: Cannot run at support 100%
(Out of memory exception, 1.76B memory, 4 hours)

Related Work

o Pattern-based classification

- I'temsets: Cheng et al. [ICDE'O7, ICDE'08]
- 6raphs: Yan et al. [SIGMOD'08]

Mining episodes

- Mannila et al. [DMKD'97]

Mining repetitive sub-sequences

- Ding et al. [ICDE'09]

Dickinson et al. [ICSE'01]

- Clustering program behaviors
- Detection of failures by looking for small clusters

Bowring et al. [ISSTA'04]

- Model failing trace and correct trace as first order
Markov model to detect failures

o New pattern-based classification approach
- Working on repetitive sequential data
- Applied for failure detection

o Classification accuracy improved by 24.68%
- Experiments on different datasets
- Different bug types: omission, addition, ordering

o Future work
- Direct mining of discriminative iterative patterns
- Application of the classifier to other form of
sequential data:
- Textual data, genomic & protein data
- Historical data

- Pipelining to SE tools: fault localization tools, test suite
augmentation tools

Conclusion & Future Work

Thank You

Questions, Comments, Advice ?

	Slide Number 1
	Motivation: Maintenance Issues
	Motivation: Maintenance Issues
	Motivation: Reliability Issues
	Slide Number 5
	Outline
	Slide Number 7
	Our Specification Discovery Approach
	Need for a Novel Mining Strategy
	Iterative Patterns – Semantics
	Iterative Patterns – Semantics
	Iterative Patterns – Semantics
	Slide Number 14
	Projected Database Operations
	Pruning Strategies
	Closure Checks and Pruning – Definitions
	Closure Checks and Pruning – Theorems
	Slide Number 19
	Slide Number 20
	Performance Study - I
	Performance Study - II
	Performance Study - III
	Case Study
	Case Study
	Longest Iter. Pattern from JBoss Transaction Component
	Library Usage Rules & Bug Detection: Windows Application -- Extension
	Library Usage Rules & Bug Detection: Windows Application -- Extension
	Library Usage & Bug Detection: Windows Application -- Extension
	Slide Number 30
	LSC Visualization & Scenario-Based Test
	Slide Number 32
	Software, Its Behaviors and Bugs
	Can Data Mining Help ?
	Our Goal
	Usage Scenarios
	Related Studies
	Research Questions
	Software Behaviors & Traces
	Overall View of The Pattern-Based Classification Framework
	Iterative Patterns
	Iterative Patterns
	Frequent vs. Closed Patterns
	Closed Unique Iterative Patterns
	Slide Number 45
	Mining Algorithm
	Patterns As Features
	Feature Selection
	Feature Selection
	Classifier Building
	Experiment: Datasets
	Experiments: Eval. Details
	Experimental Results: Synthetic
	Experimental Results: Siemens & MySQL
	Experimental Results: Varying Min-Sup
	Experimental Results: Mining Time
	Related Work
	Conclusion & Future Work
	Slide Number 61

