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Automated Debugging

o Bugs part of day-to-day software development
o Bugs caused the loss of much resources 

– NIST report 2002
– 59.5 billion dollars/annum 

o Much time is spent on debugging
– Need support for debugging activities
– Automate debugging process

o Problem description
– Given labeled correct and faulty execution traces
– Make debugging an easier task to do



Bug Localization and Signature 
Identification

oBug localization
– Pinpointing a single statement or location which is likely 
to contain bugs

– Does not produce the bug context

oBug signature mining [Hsu et al., ASE’08]
– Provides the context where a bug occurs
– Does not assume “perfect bug understanding”
– In the form of sequences of program elements
– Occur when the bug is manifested
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Pioneer Work on Bug Signature Identification

oRAPID [Hsu et al., ASE’08]
–Identify relevant suspicious program elements via 
Tarantula

–Compute the longest common subsequences that appear 
in all faulty executions with a sequence mining tool 
BIDE [Wang and Han, ICDE’04]
–Sort returned signatures by length 
–Able to identify a bug involving path-dependent fault



Software Behavior Graphs
o Model software executions as behavior graphs

–Node: method or basic block
–Edge: call or transition (basic block/method) or return
–Two levels of granularities: method and basic block

o Represent signatures as discriminating subgraphs

oAdvantages of graph over sequence representation
–Compactness: loops  mining scalability
–Expressiveness: partial order and total order



Example: Software Behavior Graphs

Two executions from  
Mozilla Rhino with a bug of 
number 194364

Solid edge: function call

Dashed edge: function 
transition



Bug Signature: Discriminative Sub-Graph

o Given two sets of graphs: correct and failing
o Find the most discriminative subgraph
o Information gain: IG(c|g) = H(c) – H(c|g)

– Commonly used in data mining/machine learning
– Capacity in distinguishing instances from different classes
– Correct vs. Failing

o Meaning:
– As frequency difference of a subgraph g in faulty 
and correct executions increases

– The higher is the information gain of g
o Let F be the objective function (i.e., information gain), 

compute: ar g maxg F (g)



Bug Signature: Discriminative Sub-Graph

oThe discriminative subgraph mined from 
behavior graphs contrasts the program flow of 
correct and failing executions and provides 
context for understanding the bug

oDifferences with RAPID:
–Not only element-level suspiciousness, signature-level 
suspiciousness/discriminative-ness

–Does not restrict that the signature must hold across 
all failing executions

–Sort by level of suspiciousness
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o Step 1
– Trace is “coiled” to form behavior graphs
– Based on transitions, call, and return relationship
– Granularity: method calls, basic blocks

o Step 2
–Filter off non-suspicious edges
–Similar to Tarantula suspiciousness
–Focus on relationship between blocks/calls

o Step 3
–Mine top-k discriminating graphs
–Distinguishes buggy from correct executions

System Framework (2)
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Four test cases Generated traces

1: void replaceFirstOccurrence (char arr [], int len, char cx, 
char cy, char cz) {

int i;
2:        for (i=0;i<len;i++) {
3:            if (arr[i]==cx){
4:                arr[i] = cz;
5:                // a bug, should be a break;
6:             }
7:             if (arr[i]==cy)){
8:                 arr[i] = cz;
9:               // a bug, should be a break;
10:           }
11:       }}

N o Tr ace
1 h1, 2, 3, 4, 7, 10, 2, 3, 7, 10, 11i
2 h1, 2, 3, 7, 10, 2, 3, 7, 8, 10, 11i
3 h1, 2, 3, 4, 7, 10, 2, 3, 7, 8, 10, 11i
4 h1, 2, 3, 7, 8, 10, 2, 3, 4, 7, 10, 11i



An Example (2)
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Behavior Graphs for Trace 1, 2, 3 & 4
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An Example (3)



Challenges in Graph Mining: 
Search Space Explosion

o If a graph is frequent, all its subgraphs are frequent 
– the Apriori property

o An n-edge frequent graph may have up to 2n subgraphs 
which are also frequent

o Among 423 chemical compounds which are confirmed to 
be active in an AIDS antiviral screen dataset, there are 
around 1,000,000 frequent subgraphs if the minimum 
support is 5%



Traditional Frequent Graph Mining 
Framework

Exploratory task

Graph clustering

Graph classification

Graph index

Objective functions: 
discrimininative,
selective
clustering tendency

Graph Database Frequent Patterns Optimal Patterns

1. Computational bottleneck : millions, even billions of patterns

2. No guarantee of quality



Leap Search for Discriminative 
Graph Mining
oYan et al. proposed a new leap search mining 
paradigm in SIGMOD’08
–Core idea: structural proximity for search space 
pruning

oDirectly outputs the most discriminative 
subgraph, highly efficient!



Core Idea: Structural Similarity

Sibling

Structural similarity 
Significance similarity

Mine one branch and skip 
the other similar branch!

)'(~)('~ gFgFgg ⇒
Size-4 graph

Size-5 graph

Size-6 graph



Skip g’ subtree if

: tolerance of frequency 
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Extending LEAP to Top-K LEAP

oLEAP returns the single most discriminative 
subgraph from the dataset

oA ranked list of k most discriminative subgraphs 
is more informative than the single best one

oTop-K LEAP idea
–The LEAP procedure is called for k times
–Checking partial result in the process
–Producing k most discriminative subgraphs



Experimental Evaluation
oDatasets

– Siemens datasets: All 7 programs, all versions
oMethods

– RAPID [Hsu et al., ASE’08] 
– Top-K LEAP: our method

oMetrics
– Recall and Precision from top-k returned signatures
– Recall = proportion of the bugs that could be found 
by the bug signatures
– Precision = proportion of the returned results that 
highlight the bug
– Distance-based metric to exact bug location penalize
the bug context



Experimental Results (Top 5)

Result - Method Level



Experimental Results (Top 5)

Result – Basic Block Level



Experimental Results (2) - Schedule

Precision Recall



Efficiency Test

oTop-K LEAP finishes mining on every dataset 
between 1 and 258 seconds

oRAPID cannot finish running on several datasets 
in hours
–Version 6 of replace dataset, basic block level
–Version 10 of print_tokens2, basic block level 



Experience (1)

Version 7 of schedule
Top-K LEAP finds the bug, while RAPID fails



Experience (2)

Version 18 of tot_info

if ( rdf <=0 || cdf <= 0)

Our method finds a 
graph connecting block 

3 with block 5 with a 
transition edge

For rdf<0, cdf<0 
bb1bb3bb5



Threat to Validity

o Human error during the labeling process
– Human is the best judge to decide whether a 
signature is relevant or not.

o Only small programs
– Scalability on larger programs

o Only c programs
– Concept of control flow is universal



Related Work

o Bug Signature Mining: RAPID [Hsu et al., ASE’08]
o Bug Predictors to Faulty CF Path [Jiang et al., ASE’07]

– Clustering similar bug predictors and inferring approximate 
path connecting similar predictors in CFG.

– Our work: finding combination of bug predictors that are 
discriminative. Result guaranteed to be feasible paths.

o Bug Localization Methods
–Tarantula [Jones and Harrold, ASE’05], WHITHER [Renieris 
and Reiss, ASE’03], Delta Debugging [Zeller and Hildebrandt, 
TSE’02], AskIgor [Cleve and Zeller, ICSE’05], Predicate 
evaluation [Liblit et al., PLDI’03, PLDI’05], Sober [Liu et al., 
FSE’05], etc.



Related Work on Graph Mining
oEarly work 

–SUBDUE [Holder et al., KDD’94], WARMR [Dehaspe et 
al., KDD’98]

o Apriori-based approach
•AGM [Inokuchi et al., PKDD’00]
•FSG [Kuramochi and Karypis, ICDM’01]

oPattern-growth approach– state-of-the-art 
•gSpan [Yan and Han, ICDM’02]
•MoFa [Borgelt and Berthold, ICDM’02]
•FFSM [Huan et al., ICDM’03]
•Gaston [Nijssen and Kok, KDD’04]



Conclusions

oA discriminative graph mining approach to 
identify bug signatures
–Compactness, Expressiveness, Efficiency

oExperimental results on Siemens datasets 
–On average, 18.1% higher precision, 32.6% higher 
recall (method level)
–On average, 1.8% higher precision, 17.3% higher 
recall (basic block level)
–Average signature size of 3.3 nodes (vs. 4.1) (method 
level) or 3.8 nodes (vs 10.3) (basic block level)
–Mining at basic block level is more accurate than 
method level - (74.3%,91%) vs (58.5%,73%)



Future Extensions

o Mine minimal subgraph patterns
– Current patterns may contain irrelevant nodes and 
edges for the bug

o Enrich software behavior graph representation
– Currently only captures program flow semantics
– May attach additional information to nodes and edges 
such as program parameters and return values



Thank you for your attention

Questions? Comments? Advice?

hcheng@se.cuhk.edu.hk davidlo@smu.edu.sg

mailto:hcheng@se.cuhk.edu.hk
mailto:davidlo@smu.edu.sg


Bug Signature: Discriminative Sub-Graph

o Given graphs labeled as correct or failing
o Find the most discriminative subgraph
o Information gain: IG(c|g) = H(c) – H(c|g)

c – class label, g – subgraph
p(c1) – proportion of faulty traces
p(g1) – prop. of traces containing the sub-graph
p(c1|g1) – proportion of the traces that are faulty given 

that the graph is exhibited in the trace.

H (c) = ¡ i 2 f 0;1g p(ci ) logp(ci )

H (cjg) = ¡ i 2 f 0;1g p(gi ) j 2 f 0;1g p(cj jgi ) logp(cj jgi )



Other Related Work
o Chao et al. Mining Behavior Graphs [SDM’05]

– Their work detect if a trace is erroneous or not. We 
find the discriminating signature from two sets of traces. 
- They mine for all closed patterns and then use them as 
features for the classification of two sets of traces. Our 
approach directly mine for top-k discriminative graphs.

o Chang et al. Neglected Conditions [ISSTA’07]
– Their work mine patterns from code rather than traces. 
- Used for bug finding rather than for finding bug 
signatures. 

- They find frequent graphs, while we find discriminating 
graphs.



Other Related Work
o Christodorescu et al. Mining Specifications of 
Malicious Behaviors [FSE’07]
- Detect only if a graph appear in malware but never in 

normal.
– We detect discriminating features, including cases where 
a graph pattern appear 500 times in faulty, 1 time in 
normal

- At times we only have partial information unless we 
model everything about software systems. Due to this 
often we do not have a perfectly discriminating feature.
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