
Identifying Bug Signatures Using
Discriminative Graph Mining

Hong Cheng1, David Lo2,
Yang Zhou1, Xiaoyin Wang3,

and Xifeng Yan4

1Chinese University of Hong Kong
2Singapore Management University

3Peking University
4University of California at Santa Barbara

ISSTA’09

Automated Debugging

o Bugs part of day-to-day software development
o Bugs caused the loss of much resources

– NIST report 2002
– 59.5 billion dollars/annum

o Much time is spent on debugging
– Need support for debugging activities
– Automate debugging process

o Problem description
– Given labeled correct and faulty execution traces
– Make debugging an easier task to do

Bug Localization and Signature
Identification

oBug localization
– Pinpointing a single statement or location which is likely
to contain bugs

– Does not produce the bug context

oBug signature mining [Hsu et al., ASE’08]
– Provides the context where a bug occurs
– Does not assume “perfect bug understanding”
– In the form of sequences of program elements
– Occur when the bug is manifested

Outline
oMotivation: Bug Localization and Bug Signature
oPioneer Work on Bug Signature Mining
oIdentifying Bug Signatures Using Discriminative
Graph Mining

oExperimental Study
oRelated Work
oConclusions and Future Work

Pioneer Work on Bug Signature Identification

oRAPID [Hsu et al., ASE’08]
–Identify relevant suspicious program elements via
Tarantula

–Compute the longest common subsequences that appear
in all faulty executions with a sequence mining tool
BIDE [Wang and Han, ICDE’04]
–Sort returned signatures by length
–Able to identify a bug involving path-dependent fault

Software Behavior Graphs
o Model software executions as behavior graphs

–Node: method or basic block
–Edge: call or transition (basic block/method) or return
–Two levels of granularities: method and basic block

o Represent signatures as discriminating subgraphs

oAdvantages of graph over sequence representation
–Compactness: loops  mining scalability
–Expressiveness: partial order and total order

Example: Software Behavior Graphs

Two executions from
Mozilla Rhino with a bug of
number 194364

Solid edge: function call

Dashed edge: function
transition

Bug Signature: Discriminative Sub-Graph

o Given two sets of graphs: correct and failing
o Find the most discriminative subgraph
o Information gain: IG(c|g) = H(c) – H(c|g)

– Commonly used in data mining/machine learning
– Capacity in distinguishing instances from different classes
– Correct vs. Failing

o Meaning:
– As frequency difference of a subgraph g in faulty
and correct executions increases

– The higher is the information gain of g
o Let F be the objective function (i.e., information gain),

compute: ar g maxg F (g)

Bug Signature: Discriminative Sub-Graph

oThe discriminative subgraph mined from
behavior graphs contrasts the program flow of
correct and failing executions and provides
context for understanding the bug

oDifferences with RAPID:
–Not only element-level suspiciousness, signature-level
suspiciousness/discriminative-ness

–Does not restrict that the signature must hold across
all failing executions

–Sort by level of suspiciousness

Sy
st

em
 F

ra
m
ew

or
k

Traces

Build Behavior
Graphs

Remove Non-Suspicious
Edges

Mine Top-K
Discriminative Graphs

Bug Signatures

STEP 1

STEP 2

STEP 3

o Step 1
– Trace is “coiled” to form behavior graphs
– Based on transitions, call, and return relationship
– Granularity: method calls, basic blocks

o Step 2
–Filter off non-suspicious edges
–Similar to Tarantula suspiciousness
–Focus on relationship between blocks/calls

o Step 3
–Mine top-k discriminating graphs
–Distinguishes buggy from correct executions

System Framework (2)

A
n

Ex
am

pl
e

Four test cases Generated traces

1: void replaceFirstOccurrence (char arr [], int len, char cx,
char cy, char cz) {

int i;
2: for (i=0;i<len;i++) {
3: if (arr[i]==cx){
4: arr[i] = cz;
5: // a bug, should be a break;
6: }
7: if (arr[i]==cy)){
8: arr[i] = cz;
9: // a bug, should be a break;
10: }
11: }}

N o Tr ace
1 h1, 2, 3, 4, 7, 10, 2, 3, 7, 10, 11i
2 h1, 2, 3, 7, 10, 2, 3, 7, 8, 10, 11i
3 h1, 2, 3, 4, 7, 10, 2, 3, 7, 8, 10, 11i
4 h1, 2, 3, 7, 8, 10, 2, 3, 4, 7, 10, 11i

An Example (2)

1

2 11

3

4
7

10

8

1

2 11

3

4
7

10

1

2 11

3

7

10

8

Behavior Graphs for Trace 1, 2, 3 & 4

1

2 11

3

4
7

10

8

Normal Buggy

An Example (3)

Challenges in Graph Mining:
Search Space Explosion

o If a graph is frequent, all its subgraphs are frequent
– the Apriori property

o An n-edge frequent graph may have up to 2n subgraphs
which are also frequent

o Among 423 chemical compounds which are confirmed to
be active in an AIDS antiviral screen dataset, there are
around 1,000,000 frequent subgraphs if the minimum
support is 5%

Traditional Frequent Graph Mining
Framework

Exploratory task

Graph clustering

Graph classification

Graph index

Objective functions:
discrimininative,
selective
clustering tendency

Graph Database Frequent Patterns Optimal Patterns

1. Computational bottleneck : millions, even billions of patterns

2. No guarantee of quality

Leap Search for Discriminative
Graph Mining
oYan et al. proposed a new leap search mining
paradigm in SIGMOD’08
–Core idea: structural proximity for search space
pruning

oDirectly outputs the most discriminative
subgraph, highly efficient!

Core Idea: Structural Similarity

Sibling

Structural similarity 
Significance similarity

Mine one branch and skip
the other similar branch!

)'(~)('~ gFgFgg ⇒
Size-4 graph

Size-5 graph

Size-6 graph

Skip g’ subtree if

: tolerance of frequency
dissimilarity

Structural Leap Search Criterion

σ≤
+

∆

−−

−

)'(sup)(sup
)',(2

gg
gg

Mining Part Leap Part

σ≤
+

∆

++

+

)'(sup)(sup
)',(2

gg
gg

σ

g : a discovered graph

g’: a sibling of g

g g’

Extending LEAP to Top-K LEAP

oLEAP returns the single most discriminative
subgraph from the dataset

oA ranked list of k most discriminative subgraphs
is more informative than the single best one

oTop-K LEAP idea
–The LEAP procedure is called for k times
–Checking partial result in the process
–Producing k most discriminative subgraphs

Experimental Evaluation
oDatasets

– Siemens datasets: All 7 programs, all versions
oMethods

– RAPID [Hsu et al., ASE’08]
– Top-K LEAP: our method

oMetrics
– Recall and Precision from top-k returned signatures
– Recall = proportion of the bugs that could be found
by the bug signatures
– Precision = proportion of the returned results that
highlight the bug
– Distance-based metric to exact bug location penalize
the bug context

Experimental Results (Top 5)

Result - Method Level

Experimental Results (Top 5)

Result – Basic Block Level

Experimental Results (2) - Schedule

Precision Recall

Efficiency Test

oTop-K LEAP finishes mining on every dataset
between 1 and 258 seconds

oRAPID cannot finish running on several datasets
in hours
–Version 6 of replace dataset, basic block level
–Version 10 of print_tokens2, basic block level

Experience (1)

Version 7 of schedule
Top-K LEAP finds the bug, while RAPID fails

Experience (2)

Version 18 of tot_info

if (rdf <=0 || cdf <= 0)

Our method finds a
graph connecting block

3 with block 5 with a
transition edge

For rdf<0, cdf<0
bb1bb3bb5

Threat to Validity

o Human error during the labeling process
– Human is the best judge to decide whether a
signature is relevant or not.

o Only small programs
– Scalability on larger programs

o Only c programs
– Concept of control flow is universal

Related Work

o Bug Signature Mining: RAPID [Hsu et al., ASE’08]
o Bug Predictors to Faulty CF Path [Jiang et al., ASE’07]

– Clustering similar bug predictors and inferring approximate
path connecting similar predictors in CFG.

– Our work: finding combination of bug predictors that are
discriminative. Result guaranteed to be feasible paths.

o Bug Localization Methods
–Tarantula [Jones and Harrold, ASE’05], WHITHER [Renieris
and Reiss, ASE’03], Delta Debugging [Zeller and Hildebrandt,
TSE’02], AskIgor [Cleve and Zeller, ICSE’05], Predicate
evaluation [Liblit et al., PLDI’03, PLDI’05], Sober [Liu et al.,
FSE’05], etc.

Related Work on Graph Mining
oEarly work

–SUBDUE [Holder et al., KDD’94], WARMR [Dehaspe et
al., KDD’98]

o Apriori-based approach
•AGM [Inokuchi et al., PKDD’00]
•FSG [Kuramochi and Karypis, ICDM’01]

oPattern-growth approach– state-of-the-art
•gSpan [Yan and Han, ICDM’02]
•MoFa [Borgelt and Berthold, ICDM’02]
•FFSM [Huan et al., ICDM’03]
•Gaston [Nijssen and Kok, KDD’04]

Conclusions

oA discriminative graph mining approach to
identify bug signatures
–Compactness, Expressiveness, Efficiency

oExperimental results on Siemens datasets
–On average, 18.1% higher precision, 32.6% higher
recall (method level)
–On average, 1.8% higher precision, 17.3% higher
recall (basic block level)
–Average signature size of 3.3 nodes (vs. 4.1) (method
level) or 3.8 nodes (vs 10.3) (basic block level)
–Mining at basic block level is more accurate than
method level - (74.3%,91%) vs (58.5%,73%)

Future Extensions

o Mine minimal subgraph patterns
– Current patterns may contain irrelevant nodes and
edges for the bug

o Enrich software behavior graph representation
– Currently only captures program flow semantics
– May attach additional information to nodes and edges
such as program parameters and return values

Thank you for your attention

Questions? Comments? Advice?

hcheng@se.cuhk.edu.hk davidlo@smu.edu.sg

mailto:hcheng@se.cuhk.edu.hk
mailto:davidlo@smu.edu.sg

Bug Signature: Discriminative Sub-Graph

o Given graphs labeled as correct or failing
o Find the most discriminative subgraph
o Information gain: IG(c|g) = H(c) – H(c|g)

c – class label, g – subgraph
p(c1) – proportion of faulty traces
p(g1) – prop. of traces containing the sub-graph
p(c1|g1) – proportion of the traces that are faulty given

that the graph is exhibited in the trace.

H (c) = ¡ i 2 f 0;1g p(ci) logp(ci)

H (cjg) = ¡ i 2 f 0;1g p(gi) j 2 f 0;1g p(cj jgi) logp(cj jgi)

Other Related Work
o Chao et al. Mining Behavior Graphs [SDM’05]

– Their work detect if a trace is erroneous or not. We
find the discriminating signature from two sets of traces.
- They mine for all closed patterns and then use them as
features for the classification of two sets of traces. Our
approach directly mine for top-k discriminative graphs.

o Chang et al. Neglected Conditions [ISSTA’07]
– Their work mine patterns from code rather than traces.
- Used for bug finding rather than for finding bug
signatures.

- They find frequent graphs, while we find discriminating
graphs.

Other Related Work
o Christodorescu et al. Mining Specifications of
Malicious Behaviors [FSE’07]
- Detect only if a graph appear in malware but never in

normal.
– We detect discriminating features, including cases where
a graph pattern appear 500 times in faulty, 1 time in
normal

- At times we only have partial information unless we
model everything about software systems. Due to this
often we do not have a perfectly discriminating feature.

	Identifying Bug Signatures Using Discriminative Graph Mining
	Automated Debugging
	Bug Localization and Signature Identification
	Outline
	Pioneer Work on Bug Signature Identification
	Software Behavior Graphs
	Example: Software Behavior Graphs
	Bug Signature: Discriminative Sub-Graph
	Bug Signature: Discriminative Sub-Graph
	System Framework
	System Framework (2)
	An Example
	An Example (2)
	An Example (3)
	Challenges in Graph Mining: Search Space Explosion
	Traditional Frequent Graph Mining Framework
	Leap Search for Discriminative Graph Mining
	Core Idea: Structural Similarity
	Structural Leap Search Criterion
	Extending LEAP to Top-K LEAP
	Experimental Evaluation
	Experimental Results (Top 5)
	Experimental Results (Top 5)
	Experimental Results (2) - Schedule
	Efficiency Test
	Experience (1)
	Experience (2)
	Threat to Validity
	Related Work
	Related Work on Graph Mining
	Conclusions
	Future Extensions
	Thank you for your attention��Questions? Comments? Advice?
	Bug Signature: Discriminative Sub-Graph
	Other Related Work
	Other Related Work

