

Mining Closed Discriminative Dyadic Sequential Patterns

David Lo¹, Hong Cheng², and Lucia¹

¹Singapore Management University ²Chinese University of Hong Kong

Motivation: Sequence Pairs

- Much data is in sequential formats
 - Sequence of words in a document
 - Nucleotides in a DNA
 - Program events in a trace, etc
- Focus: sequence pairs
 - Each data unit is composed of 2 sequences
 - Each data unit is given a label: +ve or -ve
- Mine discriminative patterns that distinguishes +ve pairs from –ve pairs

Presentation at EDBT 2011 – Uppsala, Sweden

Motivation: Sequence Pairs

- NLP: Language translation
 - Original-translated text = pair of sequences of tokens
 - Label: Good vs. bad translations
- Software Engineering: Duplicate bug reports
 - Users report bugs in an uncoordinated fashion
 - Painstaking manual detection process
 - Two bug reports = a pair of sequences of tokens
 - Label: Duplicates vs. non-duplicates
- Fraud
 - Sequence of actions performed by two accomplices

Outline

- Motivation
- Definitions
- Mining Approach
 - Search Space Traversal
 - Tandem Projected Database
 - Pruning Strategies
 - Algorithms
- Experiments and Case Studies
- Conclusion and Future Work

Definitions

Labeled Sequence Pairs DB

- Labeled Sequence Pairs
 - Two series of events from an alphabet
 - With assigned label: +ve or -ve
- Example of a DB:

Idx	Sequence Pair	Label
1	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
2	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
3	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
4	$\langle a, a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
5	$\langle b, c, d, d angle - \langle e, f, g angle$	+ve
6	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	-ve
7	$\langle a, b, d, d \rangle - \langle e, d, c, d, e \rangle$	-ve
8	$\langle a, b, d, d angle - \langle c, d, d angle$	-ve
9	$\langle a, d, d \rangle - \langle e, c, d, e, d \rangle$	-ve

Dyadic Sequential Patterns

- Dyadic sequential pattern: Two sequences
- Support of pattern P=p1-p2
 - # of sequence pairs S=s1-s2 in DB, where:
 - p1 is a subsequence of s1 (or s2)
 - p2 is a subsequence of s2 (or s1)
 - sup_{+ve}/sup_{-ve}
- Discriminative score of P=p1-p2
 - Use information gain: IG(c|p) = H(c) H(c|p)
 - A function of sup_{+ve} and sup_{-ve}

Dyadic Sequential Patterns

Idx Sequence Pair Label	
-	
$1 \qquad \langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle \qquad + \mathrm{ve} \gamma$	
2 $\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$ +ve	
3 $\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$ +ve	
4 $\langle a, a, b, d, d \rangle - \langle e, c, d, d, e \rangle$ +ve	
5 $\langle b, c, d, d \rangle - \langle e, f, g \rangle$ +ve	
6 $\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$ -ve \neg	
7 $\langle a, b, d, d \rangle - \langle e, d, c, d, e \rangle$ -ve	
8 $\langle a, b, d, d \rangle - \langle c, d, d \rangle$ -ve	
9 $\langle a, d, d \rangle - \langle e, c, d, e, d \rangle$ -ve \checkmark	
Num Pattern P $sup(P)$ d	$\operatorname{disc}(\mathbf{P})$
$\begin{pmatrix} 1 & \langle a \rangle - \langle d \rangle & 8 & 0 \end{pmatrix}$	J.102
$ 2 \qquad \langle a, d \rangle - \langle d \rangle \qquad 8 \qquad 0 $	0.102
$\underset{\text{university}}{\text{SMU}} 3 \qquad \langle a, d, d \rangle - \langle d \rangle \qquad 8$	0.102

Closed Patterns

DEFINITION 3.12 (Closed Pattern). A pattern p1 is closed if there <u>does not exist another pattern</u> p2 with the <u>same support</u> and <u>discriminative score</u>, where either one of the following conditions holds:

 $(Cond~1)~p1.Left\sqsubseteq p2.Left \land p1.Right\sqsubseteq p2.Right$

 $(Cond~2)~p1.Left\sqsubseteq p2.Right \wedge p1.Right\sqsubseteq p2.Left$

Problem Statement

- Given:
 - A dataset of labeled sequence pairs
 - Minimum support threshold
 - Minimum discriminative threshold
- Find a set of patterns which are:
 - Frequent
 - Discriminative
 - Closed

Mining Approach

Overall Strategy

- Traverse the search space of possible patterns
 - Ensure no important patterns are missed
 - Ensure no redundant visit
- Efficiently compute some statistics during traversal using a <u>supporting data structure</u>
 - Tandem projected database
- Prune search spaces containing:
 - Infrequent patterns
 - Non-discriminative patterns
 - Non-closed patterns

A. Search Space Traversal

13

Basic Search Space Traversal

- Start with base patterns (size=2)
- Grow base patterns
 - Append events to the left and right sequences
 - In depth first search fashion

Froblem: Redundant visits, e.g., <a,a>-<b,a>

Handling redundant visits

- Definition: Left (right) extension of a pattern
 - Append an event to the left (right) sequence
- Label edges in the search lattice by L & R
- Prevent redundant visit
 - For every node visited via an L edge
 - Only L edges are traversed in subsequent growth operations

Presentation at EDBT 2011 – Uppsala, Sweden

Handling redundant visits

- Why it works?
 - Every pattern could be formed,
 - by first performing right extensions,
 - followed by left extensions

Handling pattern isomorphism

- Some patterns are isomorphic
 - <a,b> <c,d> is isomorphic to <c,d> <a,b>
- Solution: introduce canonical patterns
 - Canonical: Left sequence <= right sequence</p>
 - Based on a total ordering among events

PROPERTY 1 (Canonical Pruning). A <u>canonical</u> leftextension pattern can only be grown from a <u>canonical</u> left- or right- extension pattern. A <u>canonical</u> right-extension pattern can only be grown from a <u>canonical</u> right-extension pattern.

Overall Traversal Strategy

- Grow left-extension patterns leftwards
- Grow right-extension patterns in both directions
- Only output canonical patterns
- We do not need to grow non canonical patterns further

B. Tandem Projected DB

Tandem Projected Database

- Defined with respect to a dyadic pattern
- Suffixes of the pairs of sequences in DB whose prefixes match the pattern
- Represented as a set of 4 numbers [(a,b),(c,d)]
 - a & b represent the 2 suffixes when: L -> L & R -> R
 - c & d represent the 2 suffixes when: L -> R & R -> L
- Implemented as a set of 2 simple PDB entries
 - One representing (a,b) and another representing (c,d)
 - Tied one after another (in tandem)

Tandem Projected Database

Idx	Sequence Pair	Label
1	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
2	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
3	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
4	$\langle a, a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
5	$\langle b, c, d, d angle - \langle e, f, g angle$	+ve
6	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	-ve
7	$\langle a, b, d, d \rangle - \langle e, d, c, d, e \rangle$	-ve
8	$\langle a, b, d, d angle - \langle c, d, d angle$	-ve
9	$\langle a, d, d \rangle - \langle e, c, d, e, d \rangle$	-ve

- Projected database of <a,d>-<c,d> in sequence 1 above, i.e., <a,b,d,d>-<e,c,d,d,e> is:
 - [(<d>,<d,e>),(ε, ε)]

C. Pruning Properties

PROPERTY 2 (Anti-Monotonicity of Support). The support of a pattern P is always greater than or equal to the support of its descendants.

PROPERTY 3 (Upper Bound of Discrimin. Score). For pattern P and database DB, disc(P,DB) is bounded by:

 $disc_{ub}(P) = \max(IG(sup_{+ve}(P), 0), IG(0, sup_{-ve}(P)))$

We denote the upper bound on the discriminative score of a pattern P as $disc_{ub}(P)$.

PROPERTY 4 (Anti-Monotonicity of Disc. Bound). For pattern P and its descendant P', $disc_{ub}(P) \ge disc_{ub}(P')$.

In-Between Event Sets

- Consider a pattern P=p1-p2 and a sequence pair S containing it.
- There are |p1|+|p2| in-between event sets.
- Informally, they are:
 - Events in s which appear between the occurrences of two consecutive events in P
 - Or before the occurrences of the first events of P
- Two variants:
 - (Regular) In-Between Event Sets
 - Strict In-Between Event Sets

Presentation at EDBT 2011 – Uppsala, Sweden

In-Between Event Sets

Idx	Sequence Pair	Label
1	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
2	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
3	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
4	$\langle a, a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
5	$\langle b, c, d, d angle - \langle e, f, g angle$	+ve
6	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	-ve
7	$\langle a, b, d, d \rangle - \langle e, d, c, d, e \rangle$	-ve
8	$\langle a,b,d,d angle - \langle c,d,d angle$	-ve
9	$\langle a, d, d \rangle - \langle e, c, d, e, d \rangle$	-ve

Consider pattern <a>-<e,c,e> and the 1st sequence

- Event d could be inserted in-between c & e
- d is in the in-between event set R₃ for S1

DEFINITION 6.5 (Forward Extension). A forward extension event of a pattern P is an <u>event</u> that could be <u>ap-</u> <u>pended to P (i.e., any sequence of P) resulting in another</u> pattern with the same support.

DEFINITION 6.6 (Backward Extension). A backward extension of a pattern P is an event that could be <u>inserted</u> to P (i.e., any sequence of P) resulting in another pattern with the same support.

PROPERTY 6 (Backward Extension Set). The backward extension set of a pattern P are <u>events</u> appearing in <u>one of the in-between event sets</u> of P in <u>all sequence pairs</u> supporting P in the database. Mathematically, this is the set:

$$\{e|\exists x \in \{L_1, \dots, L_{|P.Left|}, R_1, \dots, R_{|P.Right|}\}.\ \forall_{(S \in DB) \land (P \sqsubseteq S)}. e \in x(P, S)\}$$

PROPERTY 8 (Closure Check). If a pattern has <u>no for</u>ward extension and <u>no backward extension</u>, then it is <u>closed</u>.

Idx	Sequence Pair	Label
1	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
2	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
3	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
4	$\langle a, a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
5	$\langle b, c, d, d angle - \langle e, f, g angle$	+ve
6	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	-ve
7	$\langle a, b, d, d \rangle - \langle e, d, c, d, e \rangle$	-ve
8	$\langle a, b, d, d \rangle - \langle c, d, d \rangle$	-ve
9	$\langle a, d, d \rangle - \langle e, c, d, e, d \rangle$	-ve

- Consider pattern P = <a,b,d,d>-<e,c,d,d,e>
 - It has no forward or backward extension
 - It is closed

PROPERTY 9 (Non-Closedness Pruning). If there is an event in one of P strict in-between event sets for all sequences containing P in DB, then P and all descendants of P are not closed.

Closed Pattern Properties

Idx	Sequence Pair	Label
1	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
2	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
3	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
4	$\langle a, a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	+ve
5	$\langle b, c, d, d \rangle - \langle e, f, g \rangle$	+ve
6	$\langle a, b, d, d \rangle - \langle e, c, d, d, e \rangle$	-ve
7	$\langle a, b, d, d \rangle - \langle e, d, c, d, e \rangle$	-ve
8	$\langle a, b, d, d \rangle - \langle c, d, d \rangle$	-ve
9	$\langle a, d, d \rangle - \langle e, c, d, e, d \rangle$	-ve

- Consider pattern P = <a>-<e,c,e>
 - Event d could be inserted in-between c & e
 - For all sequence pairs supporting P
 - P and all its descendants are not closed

D. Algorithms

- 1. Consider the left & right sequences of the pairs separately. Create a standard sequence DB.
- 2. Mine standard frequent sequential patterns.
- 3. Pair up all mined frequent sequential patterns.
- 4. Compute the support and discriminative score of each of the resultant pairs.
- 5. Output those that are frequent and discriminative.

Procedure MineAllFrequent Inputs:

DB : Database of sequence pairs

- min_sup : Minimum support threshold
- *min_disc*: Minimum discriminative threshold **Output:**

All patterns that are frequent and discriminative **Methods**:

- 1: Let Base = Canonical & frequent base patterns with $disc_{ub} \ge min_disc$
- 2: Compute tandem projected db for patterns \in Base
- 3: For each p in Base
- 4: Grow(p, "LR", min_sup , min_disc)

Procedure Grow (pattern p, L/LR ext. Dir, thresh.)

6: If
$$(\operatorname{disc}(p) \ge \min_{disc})$$

7: Output p
8: Let PDB = projected database of p
// Grow Left
9: Let $LFE_L = \{\operatorname{ev} | \operatorname{exists} \ge \min_{sup} \operatorname{entries} [(a,b),(c,d)] \\ \quad \operatorname{in} PDB \text{ with } \operatorname{ev} \in a \text{ or } ev \in c \}$
10: For each event e_L in LFE_L
11: Let $p' = (p1 + e_L) - p2$
12: If p' is canonical
13: Compute projected database of p' from PDB
14: If $(\sup(p') \ge \min_{sup} \land \operatorname{disc}_{ub}(p') \ge \min_{disc})$
15: Grow $(p', "L", \min_{sup}, \min_{disc})$
// Grow Right
16: If $(\operatorname{Dir}="LR")$

$$23: \qquad \text{Grow}(p', \text{``LR''}, \min_sup, \min_disc)$$

Algorithm 3: Mine Closed Patterns

6: If $(\operatorname{disc}(p) \ge \min_{disc} \land p \text{ satisfies Property 8})$
7: Output p
 // Grow Left
$14: \qquad \text{If } (\sup(\mathbf{p}') \ge \min_\sup \land \operatorname{disc}_{ub}(\mathbf{p}') \ge \min_disc)$
c1:If (p' is not prunable by Property 9)15: $Grow(p', "L", min_sup, min_disc)$
// Grow Right
$22: \qquad \text{If } (\sup(\mathbf{p}') \ge \min_sup \land \text{disc}_{ub}(\mathbf{p}') \ge \min_disc)$
c2:If (p' is not prunable by Property 9)23:Grow(p', "LR", min_sup, min_disc)
$23: \qquad \text{Grow}(p', \text{``LR''}, \min_sup, \min_disc)$

Experiments and Case Studies

[Synthetic Data] D = 10k, PNum = 10, PSize = 30

SINGAPORE MANAGEMENT UNIVERSITY Presentation at EDBT 2011 – Uppsala, Sweden

[Synthetic Data] D = 25k, PNum = 30, PSize = 30

SINGAPORE MANAGEMENT UNIVERSITY Presentation at EDBT 2011 – Uppsala, Sweden

[Synthetic Data] min_sup = 60, PNum = 30, PSize = 30

Presentation at EDBT 2011 – Uppsala, Sweden

MANAGEMENT

- Raw bug reports
 - 12,732 bug reports from OpenOffice
 - 44,652 bug reports from Eclipse
 - 47,704 bug reports from Firefox
- Find historical bug report duplicate pairs
 - 5,949 duplicate pairs
- Create non duplicate bug report pairs
 - 5,949 non duplicate pairs
- Total
 - 11,898 pairs with 8,601 different events

• Average size: 13.75 events; Largest: 62 events

[Real Dataset: Bug Reports Data]

Presentation at EDBT 2011 – Uppsala, Sweden

Case Study

- Task: Predict if a pair of bug reports are duplicates of each other or not.
- Settings:
 - Use LibSVM as a classification engine
 - Single tokens: Set of tokens appearing in a pair.
 - Dyadic patterns: Mined patterns (min_sup=2, min_disc=0.0001)

Configuration	Accuracy	AUC
Single Tokens	60.38%	0.65
Dyadic Patterns	82.86%	0.90
Both	81.23%	0.89

Table 4: Accuracy: Duplicate Bug Report Detection

INGAPORE MANAGEMENT

Conclusion

- Propose a new problems of mining dyadic sequential patterns
 - Frequent, closed, discriminative
- Employ new:
 - Search space traversal strategy
 - Data structure
 - Pruning properties
- Achieve more than 2 orders of magnitude faster
- Increase accuracy from 60% to 82% and AUC from 0.65 to 0.90 on a real bug report dataset.

Presentation at EDBT 2011 – Uppsala, Sweden

Future Work

- Experiment on more datasets
 - Further demonstrate the power of dyadic patterns,
 - as good features for classification purpose
- Improve the efficiency further
- Improve the expressiveness of the patterns
 - Triadic sequential patterns
 - Multi-adic sequential patterns
 - Pairs of sequences of sets

Presentation at EDBT 2011 – Uppsala, Sweden

Acknowledgement

 We would like to thank the anonymous reviewers for their valuable comments and advice.

Thank You

Questions, Comments, Advice ?

