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Motivation: Sequence Pairs

= Much data is in sequential formats
= Sequence of words in a document
= Nucleotides in a DNA
= Program events in a trace, etc

= Focus: sequence pairs
= Each data unit is composed of 2 sequences
= Each data unit is given a label: +ve or —ve

= Mine discriminative patterns that distinguishes +ve
pairs from —ve pairs
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Motivation: Sequence Pairs

= NLP: Language translation
= Original-translated text = pair of sequences of tokens
= Label: Good vs. bad translations
= Software Engineering: Duplicate bug reports
= Users report bugs in an uncoordinated fashion
= Painstaking manual detection process
= Two bug reports = a pair of sequences of tokens
= Label: Duplicates vs. non-duplicates
* Fraud
= Sequence of actions performed by two accomplices

= FtcC.
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Outline

= Definitions
= Mining Approach
= Search Space Traversal
= Tandem Projected Database
* Pruning Strategies
= Algorithms

= Experiments and Case Studies
= Conclusion and Future Work
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Labeled Sequence Pairs DB

» Labeled Sequence Pairs
= Two series of events from an alphabet
= With assigned label: +ve or —ve

= Example of a DB:
Idx Sequence Pair Label

1 <CL? b7 da d> <€, C, d,d €> +ve

2 (CL, b, d, d> - (6, ¢, d,d, €> +ve

3 <CL7 b, d, d> - <€, c,d,d, €> +ve

4 <CL, a, b, ) d> — <€, C, d, d’ e) +ve

0 (b,c.d,d) — (e, f,g)  +ve

6 {(a,b,d,d) — (e,c,d,d,e)  -ve

7 <CL, b, d, d> — (e, d, ¢, d, €> -ve

8 (a,b,d,d) — {c,d,d) -ve

) a, a, d> _ <€7 ¢, d, e, d) Ve ﬁfc}
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Dyadic Sequential Patterns

= Dyadic sequential pattern: Two sequences
= Support of pattern P=p1l-p2
= # of sequence pairs S=sl1-s2 in DB, where:
= p1 is a subsequence of sl (or s2)
" p2 Is a subsequence of s2 (or sl)
" SUP.e/SUP.ye
= Discriminative score of P=pl-p2
= Use information gain: 1G(c|p) = H(c) — H(c|p)
= A function of sup,,, and sup_,
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Dyadic Sequential Patterns

Idx Sequence Pair Label

1 (a,b,d,d) — (e,c,d,d,e)  +ve ~

2 (a,b,d,d) — (e,c,d,d,e)  +ve

3 (a,b,d,d) — (e,c,d,d,e) +ve ([

4 (a,a,b,d,d) — (e,c,d,d,e) +ve |

D <,C,d,d>—<€,f,g> +ve

6 (a,b,d,d) — (e,c,d,d,e) -ve ~

7 (a,b,d,d) — (e,d,c,d,e)  -ve

8 (a,b,d,d) — (c,d,d) wve (O

9 (a,d,d) — (e, c,d,e,d) -ve
Num Pattern P sup(P) disc(P)
1 ay - (d 8 0.102
y (a, d)- (d) ] 0.102

GSMuU (3 (a,d,d) - (d) ] 0.102 )
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Closed Patterns

DEFINITION 3.12 (Closed Pattern). A pattern pl is
closed if there does not exist another pattern p2 with the
same_support and discriminative score, where either one of
the following conditions holds:

(Cond 1) pl.Left € p2.Left N\ pl.Right C p2.Right

(Cond 2) pl.Left C p2.Right A pl.Right C p2.Left

Num Pattern P sup(P) disc(P)
@ OERC) 3 0.102
g (a, d)- (d) ] 0.102
3 (a,d,d) - (d) ] 0.102

Subsumed By @
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Problem Statement

= Glven:
= A dataset of labeled sequence pairs
= Minimum support threshold
= Minimum discriminative threshold

= Find a set of patterns which are:

" Frequent
= Discriminative
* Closed
< SMU i)
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Mining Approach
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Overall Strategy

* Traverse the search space of possible patterns
= Ensure no important patterns are missed
= Ensure no redundant visit

= Efficiently compute some statistics during traversal
using a supporting data structure

= Tandem projected database
= Prune search spaces containing:
* Infrequent patterns
= Non-discriminative patterns
= Non-closed patterns
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A. Search Space Traversal
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Basic Search Space Traversal

Base Patterns

= Start with base patterns (size=2)

= Grow base patterns
= Append events to the left and right sequences
= |n depth first search fashion

_ = Problem Redundant visits, e.g., <a,a>-<b,a> .
£ SMU A7)
\ MENT *’f

esentation at EDBT 2011 — Uppsala, Sweden Mining Closed Discriminative Dyadic Sequential Patterns




Handling redundant visits

= Definition: Left (right) extension of a pattern
= Append an event to the left (right) sequence

» Label edges in the search lattice by L & R

= Prevent redundant visit
= For every node visited via an L edge

= Only L edges are traversed in subsequent growth
operations
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Handling redundant visits

= Why It works?
= Every pattern could be formed,
= py first performing right extensions,
= followed by left extensions

Base Patterns

—
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Handling pattern isomorphism

= Some patterns are isomorphic

» <a,b> - <c,d> is iIsomorphic to <c,d> - <a,b>
= Solution: introduce canonical patterns

= Canonical: Left sequence <= right sequence

= Based on a total ordering among events

PROPERTY 1 (Canonical Pruning). A canonical left-
extension pattern can only be grown from a canonical left- or
right- extension pattern. A canonical right-extension pattern
can only be grown from a canonical rght-extension pattern.
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Overall Traversal Strategy

= Grow left-extension patterns leftwards

= Grow right-extension patterns in both directions
= Only output canonical patterns

= We do not need to grow non canonical patterns
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B. Tandem Projected DB
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Tandem Projected Database

= Defined with respect to a dyadic pattern

= Suffixes of the pairs of sequences in DB whose
prefixes match the pattern

= Represented as a set of 4 numbers [(a,b),(c,d)]
= a & b represent the 2 suffixeswhen: L->L &R ->R
* ¢ & d represent the 2 suffixeswhen: L->R &R -> L

= |Implemented as a set of 2 simple PDB entries
= One representing (a,b) and another representing (c,d)
* Tied one after another (in tandem)
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Tandem Projected Database

Idx Sequence Pair Label
1 (a,b,d,dy — (e,c,d,d,e)  +ve
2 (a,b,d,dy — (e,c,d,d,e)  +ve
3 (a,b,d,dy — {e,c,d,d,e)  +ve
4 (a,a,b,d,d) — (e,c,d,d,e) +ve
5 (b,c,d,dy — (e, f,qg) +ve
6 (a,b,d,dy — (e,c,d,d,e)  -ve

7 (a,b,d,dy — (e,d,c,d,e)  -ve

8 (a,b,d,d)y — (c,d,d) -ve

9 (a,d,d) — (e,c,d, e, d) -ve

* Projected database of <a,d>-<c,d> in sequence 1
above, I.e., <a,b,d,d>-<e,c,d,d,e> is:
" [(<d>,<d,e>),(g, €)]
\g SMU__
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C. Pruning Properties
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Pruning Properties

PROPERTY 2 (Anti-Monotonicity of Support). The
support of a pattern P is always greater than or equal to the
support of its descendants.

PROPERTY 3 (Upper Bound of Discrimin. Score).
For pattern P and database DB, disc(P,DB ) is bounded by:

disc,,(P) = max(IG(supy,e(P),0), IG(0, sup_,.(P)))

We denote the upper bound on the discriminative score of a
pattern P as discus (P ).

PROPERTY 4 (Anti-Monotonicity of Disc. Bound).
For pattern P and its descendant P’, disc,, (P) > discyy (P').

—
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In-Between Event Sets

= Consider a pattern P=p1-p2 and a seqguence pair
S containing It.

= There are |pl]|+]|p2]| in-between event sets.

= Informally, they are:

= Events in s which appear between the
occurrences of two consecutive events in P

= Or before the occurrences of the first events of P

= Two variants:
= (Regular) In-Between Event Sets
= Strict In-Between Event Sets
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In-Between Event Sets

Idx Sequence Pair Label
1 (a,b,d,dy — (e,c,d,d,e)  +ve
2 (a,b,d,d) — (e, c, d, d, e)  +ve
3 (a,b,d,dy — (e,c,d,d,e)  +ve
4 (a,a,b,d,d)y — (e,c,d,d,e) +ve
5 (b,c,d,dy — (e, f,g) +ve
6 (a,b,d,dy — (e,c,d,d,e)  -ve

7 (a,b,d,dy — (e,d,c,d,e)  -ve

8 {(a,b,d,d) — (c,d,d) -ve

9 (a,d,d) — (e,c,d, e, d) -ve

= Consider pattern <a>-<e,c,e> and the 1stsequence
= Event d could be inserted in-between c & e

= d is In the in-between event set R; for S1
\:‘ SMU__
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Closed Pattern Properties

DEFINITION 6.5 (Forward Extension). A forward ez-
tension event of a pattern P 1s an event that could be ap-
pended to P (i.e., any sequence of P) resulting in another
pattern with the same support.

DEFINITION 6.6 (Backward Extension). A backward
extension of a pattern P 1s an event that could be inserted
to P (i.e., any sequence of P) resulting in another pattern
with the same support.
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Closed Pattern Properties

PROPERTY 6 (Backward Extension Set). The back-
ward extension set of a pattern P are events appearing in
one_of the in-between _event sets of P in all sequence pairs
supporting P wn the database. Mathematically, this is the
set:

{e|3x € {L1,...,Lip.pest|, B1, ... Byp.right| }-
V(SEDB)A(PES) S (P S)}

PROPERTY & (Closure Check). If a pattern has no for-
ward extension and no backward extension, then it 1s_closed.
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Closed Pattern Properties

Idx Sequence Pair Label
1 (a,b,d,dy — {e,c,d,d,e)  +ve
2 (a,b,d,dy — {e,c,d,d,e)  +ve
3 (a,b,d,dy — (e,c,d,d,e)  +ve
4 (a,a,b,d,d) — (e,c,d,d,e) +ve
5 (b,c,d,dy — (e, f,g) +ve
6 (a,b,d,dy — {e,c,d,d,e)  -ve

7 (a,b,d,dy — {e,d,c,d,e)  -ve

8 (a,b,d,d) — (c,d,d) -ve

9 (a,d,d) — (e,c,d, e, d) -ve

= Consider pattern P = <a,b,d,d>-<e,c,d,d,e>
= |t has no forward or backward extension
= |t is closed
\:‘ SMU__
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Closed Pattern Properties

PROPERTY 9 (Non-Closedness Pruning). Ifthere is
an event 1 one of P strict in-between event sets for all se-
quences containing P wmn DB, then P and all descendants of
P are not closed.
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Closed Pattern Properties

Idx Sequence Pair Label
1 (a,b,d,d) — (e,c,d,d,e)  +ve
2 (a,b,d,d) — {e,c,d,d,e)  +ve
3 (a,b,d,d) — (e,c, d,d,e) +ve
4 (a,a,b,d,d) — (e,c,d,d, e) +ve
5 < ,C,d,d)—<€,f,g) +ve
6 (a,b,d,d) — (e,c,d,d,e)  -ve

7 (a,b,d,d) — (e,d,c,d,e)  -ve

8 (a,b,d,d)y — (c,d, d) -ve

9 (a,d,d) — (e, c,d, e,d) -ve

= Consider pattern P = <a>-<e,c,e>
= Event d could be inserted in-between ¢c & e
= For all sequence pairs supporting P

= P and all its descendants are not closed
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D. Algorithms
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Algorithm 1: Baseline.

1. Consider the left & right sequences of the pairs
separately. Create a standard sequence DB.

2. Mine standard frequent sequential patterns.
3. Pair up all mined frequent sequential patterns.

4. Compute the support and discriminative score of
each of the resultant pairs.

5. Output those that are frequent and
discriminative.
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Algorithm 2: Mine All Frequent Disc. Patterns

Procedure MineAllFrequent

Inputs:

DB : Database of sequence pairs

man_sup : Minimum support threshold

man_disc: Mimmimum discriminative threshold

Output:

All patterns that are frequent and discriminative
Methods

1: [Let Base = Canonical & frequent base patterns

. with disc,,;, > min_disc )
2: | Compute tandem projected db for patterns € Base
3: For each p in Base

4: | Grow(p, “LR”, min_sup, min_disc)
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Procedure Grow (pattern p, L/LR ext. Dir, thresh.)
6: If (disc(p) > min_disc) ]

7 Output p

3. Let PDbB = projected database ol p

// Grow Left

9: Let LFFE;, = {ev|exists > min_sup entries [(a,b),(c,d)]
in PDB with ev € a or ev € c}

10: For each event ey, in LF E7y,

11:  Let p’ = (pl+H ey, )-p2

12:  If p’ is canonical

13: Compute projected database of p’ from PDB
14: If (sup(p’) = min_sup A disc,p(p’) > min_disc)
15: Grow(p’, “L.”, min_sup, min_disc)

77 Grow Right
16: If (Dir="LR")

23: Grow(p’, “LR”, min_ sup, min_disc)




Algorithm 3: Mine Closed Patterns

[ 6: If (disc(p) > min_disc N\ p satisfies Property 8) ]
7 Output p

// Grow Left

14: If (sup(p’) > min_sup A disc,;,(p’) > min_disc)
[ cl: If (p’ is not prunable by Property 9) ]
15: Grow(p’, “L.”, min_sup, min_disc)

// Grow Right

22: If (sup(p’) > min_sup A disc,;,(p’) > min_disc)
[ c2: If (p’ is not prunable by Property 9) ]
23: Grow(p’, “LR”, min_sup, min_disc)

. — 'p_, Jj’
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Experiments and Case Studies
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Experiments
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= [Synthetic Data] D = 10k, PNum = 10, PSize = 30
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Experiments
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Experiments
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Real dataset

= Raw bug reports
= 12,732 bug reports from OpenOffice
= 44,652 bug reports from Eclipse
= 47,704 bug reports from Firefox
* Find historical bug report duplicate pairs
= 5,949 duplicate pairs
= Create non duplicate bug report pairs
= 5,949 non duplicate pairs
= Total
= 11,898 pairs with 8,601 different events

= Average size: 13.75 events; Largest: 62 events
\;‘ SMU_
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Experiments
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Case Study

= Task: Predict if a pair of bug reports are duplicates
of each other or not.
= Settings:
= Use LIbSVM as a classification engine
= Single tokens: Set of tokens appearing in a pair.
= Dyadic patterns: Mined patterns (min_sup=2,
min_disc=0.0001)

Configuration | Accuracy | AUC
Single Tokens 60.38% 0.65
Dyadic Patterns | 82.86% 0.90
Both 81.23% 0.89

\‘; Table 4: Accuracy: Duplicate Bug Report Detectlon%
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Conclusion

= Propose a nhew problems of mining dyadic
sequential patterns

= Frequent, closed, discriminative
= Employ new:

= Search space traversal strategy

= Data structure

= Pruning properties

= Achieve more than 2 orders of magnitude faster

* |ncrease accuracy from 60% to 82% and AUC from
0.65 to 0.90 on a real bug report dataset.
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Future Work

= Experiment on more datasets
= Further demonstrate the power of dyadic patterns,
= as good features for classification purpose
= I[mprove the efficiency further
* Improve the expressiveness of the patterns
* Triadic sequential patterns
= Multi-adic sequential patterns
= Pairs of sequences of sets
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Thank You

Questions, Comments, Advice ?
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