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ABSTRACT
Specification mining is a process of extracting specifications, often
from program execution traces. These specifications can in turn
be used to aid program understanding, monitoring and verification.
There are a number of dynamic-analysis-based specification min-
ing tools in the literature, however none so far extract past time tem-
poral expressions in the form of rules stating: “whenever a series of
events occurs, previously another series of events has happened”.
Rules of this format are commonly found in practice and useful for
various purposes. Most rule-based specification mining tools only
mine future-time temporal expression. Many past-time temporal
rules like “whenever a resource is used, it was allocated before” are
asymmetric as the other direction does not holds. Hence, there is a
need to mine past-time temporal rules.

In this paper, we describe an approach to mine significant rules
of the above format occurring above a certain statistical thresholds
from program execution traces. The approach start from a set of
traces, each being a sequence of events (i.e., method invocations)
and resulting in a set of significant rules obeying minimum thresh-
olds of support and confidence. A rule compaction mechanism is
employed to reduce the number of reported rules significantly. Ex-
periments on traces of JBoss Application Server shows the utility
of our approach in inferring interesting past-time temporal rules.

Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing] :Requirements/Specifications – Tools; D.2.7 [Software Engi-
neering]:Distribution, Maintenance and Enhancement – Restruc-
turing, reverse engineering and reengineering
General Terms: Algorithms, Design, Experimentation
Keywords: Specification Mining, Dynamic Analysis, Past-Time
Temporal Rules, Data Mining

1. INTRODUCTION
Different from many engineering products that rarely change,

software changes often throughout its lifespan. This phenomenon
has been well studied under the umbrella notion of software evo-
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lution. Software maintenance effort deals with the management of
such changes, ensuring that the software remains correct while ad-
ditional features are incorporated. Maintenance cost can contribute
up to 90% of software development cost [10]. Reducing mainte-
nance cost and ensuring a program remains correct during evolu-
tion are certainly two worthwhile goals to pursue.

A substantial portion of maintenance cost is due to the diffi-
culty in understanding an existing code base. Studies show that
program comprehension can contribute up to 50% of the mainte-
nance cost [13, 32]. A challenge to software comprehension is the
maintenance of an accurate and updated specification as program
changes. As a study shows, documented specifications often re-
main unchanged during program evolution [7]. One contributing
factor is the short time-to-market requirement of software prod-
ucts. Multiple cycles of software evolution can potentially render
the outdated specification invalid or even misguiding.

To ensure correctness of a software system, model checking [6]
has been proposed. It accepts a model and a set of formal proper-
ties to check. Unfortunately, difficulty in formulating a set of for-
mal properties has been a barrier to its wide-spread adoption [3].
Adding software evolution to the equation, the verification pro-
cess is further strained. First, ensuring correctness of software as
changes are made is not a trivial task: a change in one part of a code,
might induce unwanted effects resulting in bugs in other parts of
the code. Furthermore, as a system changes and features are added,
there is a constant need to add new properties or modify outdated
properties to render automated verification techniques effective in
detecting bugs and ensuring the correctness of the system.

Addressing the above problems, there is a need for techniques to
automatically reverse engineer or mine formal specifications from
program. Recently, there has been a surge in software engineering
research to adopt machine learning and statistical approaches to ad-
dress these problems. One active area is specification discovery [3,
29, 1, 23], where software specification is reverse-engineered from
program traces. Employing these techniques ensures specifications
remain updated; also it provides a set of properties to verify via
formal verification tools like model checking.

Most specification miners extract specifications in the form of
automata [23, 3, 29, 1] or temporal rules [34, 26]. Usually a mined
automata express the whole behavior of a system under analysis.
Mined rules express strongly-observed constraints each expressing
a property which holds with certain statistical significance.

Rules mined in [34, 25, 26] express future-time temporal expres-
sions. Yang et al. mine two event rules of the form: “Whenever a
event occur, eventually another event occur in the future” [34]. Lo
et al. mine temporal rules of arbitrary length of the form: “When-
ever a series of event occur, eventually another series of event occur
in the future” [25, 26]. In this work, we extend the above work by



mining past-time temporal expressions of this format:

“Whenever a series of events pre occurs, previously,
another series of events post has happened”

The above rule is denoted by pre ↪→P post, where pre and post
corresponds respectively to the premise (pre-condition) and conse-
quent (post-condition) of the rule. These set of rules can be ex-
pressed in past-time temporal logic (Linear Temporal Logic (LTL)
+ past time operators [19]) and belong to two of the most used fam-
ilies of temporal logic expressions for verification (i.e., precedence
and chain-precedence) according to a survey by Dwyer et al. [8].
Some example specifications of the above format are as follows:

1. Whenever a file is used, it was opened before.

2. Whenever a socket is written, it was initialized before.

3. Whenever SSL read is performed, SSL init was invoked be-
fore.

4. Whenever a client request a resource and the resource is not
granted, previously, the resource had been allocated to an-
other client that requested it.

5. Whenever money is dispensed in an Automated Teller Ma-
chine (ATM), previously, card was inserted, pin was entered,
user was authenticated and account balance was checked.

It has been shown that past-time LTL can express temporal prop-
erties more succinctly than (pure) future-time LTL [18, 22]. Sim-
ple past-time LTL can correspond to more complicated equivalent
future-time LTL, many of which are not minable by existing tech-
niques mining for future-time LTL rules from traces [34, 26]. The
subset of the past-time LTL mined by the approach presented in
this paper is not minable by previous approach in [34, 26]. Also,
for some past-time temporal rules, the corresponding future-time
rules do not hold. Consider the first and second example above; it
is not the case that when a file is opened or a socket is initialized,
the file need to be eventually used or the socket need to be eventu-
ally written, respectively. Thus, our work is not meant to replace,
but rather to complement mining future-time temporal rules.

In static inference of specification, Ramanathan et al. [31] mine
specifications from program source code of the form: ‘Whenever
an event occurs, previously, another series of events has happened”.
Different from Ramanathan et al. we analyze program traces and
we need to address the issue of repeated behaviors within program
traces (due to loops and recursions). Ramanathan et al. uses an
off-the-shelf data mining algorithm [2] which ignores repetitions
within a sequence. Static analysis has a different set of issues re-
lated to difficulty in analyzing pointers & references [5] and the
number of infeasible paths [4]. Also, our target specification for-
mat is more general in that it captures pre-conditions of multiple
event length, hence enabling user to mine for more complex tempo-
ral properties. Also, as will be described later, we present a method
that compacts significant rules by ‘early’ pruning of redundant rules
resulting in a potentially combinatorial speed-up and reduction in
the set of mined rules. In [31], all significant rules are first gen-
erated before redundant ones are removed. The large number of
intermediary rules (exponential to the length of the longest rule)
might make the algorithm not scalable enough to mine for rules of
long length.

Our mining algorithm models mining as a search space explo-
ration process. The input is a set of sequences of events, where an

event corresponds to an interesting method invocation to be ana-
lyzed. The output is a set of significant rules that obeys the mini-
mum thresholds of support and confidence – which are commonly
used statistics in data mining [14]. We define the support of a rule
to be the number of traces where the rule’s premise is observed. We
define the confidence of a rule to be the likelihood that the rule’s
premise is preceded by the consequent. The algorithm first con-
structs rule of short length, and utilizes several properties to throw
away sub-search space not yet traversed if a short-length rule is not
significant.

In addition, we observe that some rules are redundant. To ad-
dress this, we employ additional pruning strategies to throw away
these redundant rules. We kept the more comprehensive longer
rules that capture more information and hence subsume the shorter
ones.

We guarantee that all mined rules are significant and non-redun-
dant. Also, all significant and non-redundant rules are mined. In
data mining, an algorithm meeting the first and second criteria above
is referred to as being correct (sound) and complete respectively
(c.f., [14, 20]). In this paper, we refer to the above criteria as statis-
tical soundness and completeness.

To demonstrate our ideas, in this paper, we experimented with
traces from components of JBoss Application Server [16]. The ex-
periments show the utility of our approach in mining specifications
of an industrial program.

The paper is organized as follows. In Section 2, we discuss the
semantics of mined rules. Section 3 describes our mining algo-
rithm. Section 4 describes the experiments performed. Section 5
describes related work. Section 6 discusses some future work and
we finally conclude in Section 7.

2. CONCEPTS AND DEFINITIONS
This section introduces preliminaries on past-time LTL and for-

malize the scope of rules minable by our approach. Also, notations
used in this paper are described.
Past-Time Linear-time Temporal Logic Our mined rules can be
expressed in past-time Linear Temporal Logic (LTL) [18, 19, 22].
Past-time temporal logic is an extension of (future-time) LTL [30,
15]. LTL is a logic that works on possible program paths. A pos-
sible program path corresponds to a program trace. A path can be
considered as a series of events, where an event is a method invo-
cation. For example, (file open, file read, file write, file close), is
a 4-event path.

There are a number of LTL operators, among which we are only
interested in the operators ‘G’,‘F’ and ‘X’ and some of their past-
time counterparts ‘F−1’ and ‘X−1’ . The operator ‘G’ specifies
that globally at every point in time a certain property holds. The
operator ‘F’ specifies that a property holds at that point in time or
at a time in the future. The operator ‘X’ specifies that a property
holds at the next event.

The operator ‘F−1’ specifies that a property holds at that point
in time or at a time in the past. The operator ‘X−1’ specifies that a
property holds at the previous event.

Let us consider three examples listed in Table 1.
Our mined rules state whenever a series of premise events occurs

it was preceded by another series of consequent events. A mined
rule denoted as pre ↪→P post, can be mapped to its corresponding
LTL expression. Examples of such correspondences are shown in
Table 2.

Mapping to common English language expressions and for uni-
formity purpose, in both the premise and consequent of the rule the
time goes forward to the future (e.g., a is followed by b, is pre-
ceded by, c is followed by d). In the corresponding past-time LTL



X−1F−1(file open)
Meaning: At a time in the past file is opened

G(file read → X−1F−1(file open))
Meaning: Globally whenever file is read, at a time in the past file is opened

G((account deducted ∧XF (money dispensed)) →
(X−1F−1(balance suffice ∧ (X−1F−1(cash requested ∧ (X−1F−1(correct pin ∧ (X−1F−1(insert debit card)))))))))
Meaning: Globally whenever one’s bank account is deducted and money is dispensed (from an ATM), previously user inserted

debit card, entered correct pin, requested for cash to be dispensed and account balance was checked and it sufficed.
Table 1: Past-time LTL Expressions and their Meanings

Notation LTL Notation
a ↪→P b G(a → X−1F−1b)

〈a, b〉 ↪→P c G((a ∧XFb) → (X−1F−1c))
a ↪→P 〈b, c〉 G(a → X−1F−1(c ∧X−1F−1b))

〈a, b〉 ↪→P 〈c, d〉 G((a ∧XFb) → (X−1F−1(d ∧X−1F−1c)))

Table 2: Rules and their Past-time LTL Equivalences

expression we need to reverse the order of c and d. Also note that
although the operator ‘X’ might seem redundant, it is needed to
specify rules such as 〈a〉↪→P 〈b, b〉 where the ‘b’s refer to differ-
ent occurrences of ‘b’. The set of LTL expressions minable by our
mining framework is represented in the Backus-Naur Form (BNF)
as follows1:

rules := G(pre → post)
pre := (event)|(event ∧XF (pre))

post := (event)|(event ∧X−1F−1(post))

Basic Notations Let I be a set of distinct events considered in
which an event corresponds to a behavior of interest, e.g. method
call. Input to our mining framework is a set of traces. A trace cor-
responds to a sequence or an ordered list of events from I . For for-
mality, we refer to this set of traces as a sequence database denoted
by SeqDB. Each trace or sequence is denoted by 〈e1, e2, . . . , eend〉
where ei ∈ I .

We define a pattern P to be a series of events. We use first(P )
to denote the first event of P . A pattern P1++P2 denotes the con-
catenation of patterns P1 and P2. A pattern P1 (〈e1, e2, . . . , en〉) is
considered a subsequence of another pattern P2 (〈f1, f2, . . .,fm〉)
denoted as P1 v P2 if there exist integers 1 ≤ i1 < i2 < . . . <
in ≤ m such that e1 = fi1 , e2 = fi2 , · · · , en = fin .

3. MINING PAST TIME TEMPORAL RULES
Each temporal rule of interest has the form P1 ↪→P P2, where

P1 and P2 are two series of events. P1 is referred to as the premise
or pre-condition of the rule, while P2 is referred to as the conse-
quent or post-condition of the rule. The rules correspond to tempo-
ral constraints expressible in past-time LTL notations. Some exam-
ples are shown in Table 2.

In this paper, since a trace is a series of events, where an event
corresponds to a software behavior of interest, e.g., method call,
we formalize a trace as a sequence and a set of input traces as a
sequence database. We use the sample trace or sequence database
in Table 3 as our running example to illustrate the concepts behind
generation of temporal rules.

3.1 Concepts & Definitions
Mined rules are formalized as past-time Linear Temporal Logic

expressions with the format: G( . . .→X−1F−1. . .). The semantics
of past-time LTL described in Section 2 will dictate the semantics

1post is in reversed order

Identifier Trace/Sequence
S1 〈c, b, a, e, b, a〉
S2 〈c, b, e, a, e, b, c, a〉
S3 〈d, a〉

Table 3: Example Database – DBX

of temporal rules described here. Noting the meaning of the tempo-
ral operators illustrated in Table 1, to be precise, a mined past-time
temporal rule expresses:

“Whenever a series of events occurs starting at a point in time (i.e.
a temporal point), previously, another series of events has

happened.”

From the above definition, to generate temporal rules, we need
to “peek” at interesting temporal points and “see” what series of
events are likely to occur before. We first formalize the notion of
temporal points and the related notion of occurrences.

DEFINITION 3.1 (Temporal Points). Consider a sequence S
of the form 〈a1, a2, . . . , aend〉. All events in S are indexed by
their positions in S, starting at 1 (e.g., aj is indexed by j). These
positions are called temporal points in S. For a temporal point j
in S = 〈a1, . . . , an〉, the suffix 〈aj , . . . , an〉 is called the j-suffix of
S.

DEFINITION 3.2 (Occurrences & Instances). Given a pattern
P and a sequence S, the occurrences of P in S are defined by a set
of temporal points T in S such that for each j ∈ T , the j-suffix of
S is a super-sequence of P and first(P ) is indexed by j. The set
of instances of pattern P in S is defined as the set of j-suffixes of
S, for each j ∈ T .

Example. Consider a pattern P 〈b, a〉 and the sequence S1 in Ta-
ble 3 (i.e., 〈c, b, a, e, b, a〉). The occurrences of P in S1 form the
set of temporal points {2,5}, and the corresponding set of instances
are {〈b, a〉, 〈b, a, e, b, a〉}.

We define database projection operations to capture events oc-
curring before specified temporal points. The following are two
different types of projections and their associated support notions.

DEFINITION 3.3 (Projected-past & Sup-past). A database
projected-past on a pattern p is defined as:

SeqDBpast
P = {(j, px) | the jth sequence in SeqDB is s, where

s = px++sx, and sx is the minimum suffix of s containing p}
Given a pattern PX , we define suppast(PX ,SeqDB) to be the

size of SeqDBpast
PX

(i.e., the number of sequences in SeqDB con-
taining PX ). Reference to the database is omitted, i.e., we write it



(a)
Identifier. Trace/Sequence
S1 (1,〈c, b, a, e〉)
S2 (2,〈c, b, e, a, e〉)

(b)

Identifier Trace/Sequence
S11 (1,〈c, b, a, e〉)
S12 (1,〈c〉)
S21 (2,〈c, b, e, a, e〉)
S22 (2,〈c〉)

Table 4: (a); DBXpast
〈b,a〉 & (b); DBXpast−all

〈b,a〉

as sup(PX), if the database is clear from the context, e.g., it refers
to input sequence database SeqDB.

DEFINITION 3.4 (Projected-past-all & Sup-past-all). A data-
base projected-past-all on a pattern p is defined as: SeqDBpast−all

P

= {(j, px) | the jth sequence in SeqDB is s, where s = px++sx,
and sx is an instance of p in s and first(sx) = first(p)}

Given a pattern PX , we define suppast−all(PX , SeqDB) to be
the size of SeqDBpast−all

PX
. Reference to the database is omitted if

it is clear from the context.

Definition 3.3 captures events occurring before the last temporal
point. Definition 3.4 captures events occurring before each tempo-
ral point.
Example. To illustrate the above concepts, we project and project-
all the example database DBX with respect to the pattern 〈b, a〉.
The results are shown in Table 4 (a) & (b) respectively.

The two projection methods’ associated notions of suppast and
suppast−all are different. Specifically, suppast−all reflects the num-
ber of occurrences of PX in SeqDB rather than the number of
sequences in SeqDB supporting PX .
Example. Consider the example database, suppast(〈b, a〉, DBX)

= |DBXpast
〈b,a〉|= 2. On the other hand, suppast−all(〈b, a〉, DBX)

= |DBXpast−all
〈b,a〉 | = 4.

From the above notions of temporal points, projected databases
and pattern supports, we can define the support and confidence of
temporal rules.

DEFINITION 3.5 (Support & Confidence). Consider a tem-
poral rule RX (preX ↪→P postX ). The support of RX is defined as
the number of sequences in SeqDB where preX occurs, which is
equivalent to suppast(preX , SeqDB). The confidence of RX is
defined as the likelihood of postX happening before preX . This is
equivalent to the ratio of suppast(postX ,SeqDBpast−all

preX
) to the

size of SeqDBpast−all
preX

.

Example. Consider DBX and a temporal rule RX , 〈b, a〉 ↪→P 〈c〉.
From the database, the support of RX is the number of sequences
in DBX supporting (or is a super-sequence of) the rule’s pre-
condition – 〈b, a〉. There are 2 of them – see Table 4 (a). Hence sup-
port of RX is 2. The confidence of the rule RX (〈b, a〉 ↪→P 〈c〉) is
the likelihood of 〈c〉 occurring before each temporal point of 〈b, a〉.
Referring to Table 4(b), we see that there is a 〈c〉 occurring before
each temporal point of 〈b, a〉. Hence, the confidence of RX is 1.

Significant rules to be mined must have their supports greater
than the min sup threshold, and their confidences greater than the
min conf threshold.

In mining program properties, the confidence of a rule (or prop-
erty), which is a measure of its certainty, matters the most (c.f., [34]).
Support values are considered to differentiate high confidence rules
from one another according to the frequency of their occurrences

in the traces. Rules with confidences less than 100% are also of in-
terest due to the imperfect trace collection and the presence of bugs
and anomalies [34]. Similar to the assumption made by work in
statistical debugging (e.g., [9]), simply put, if a program behaves in
one way 99% of the time, and the opposite 1% of the time, the latter
likely corresponds to a possible bug. Hence, a high confidence and
highly supported rule is a good candidate for bug detection using
program verifiers or runtime monitors.

We add the notions of support and confidence to past-time tem-
poral rules. The formal notation of past-time temporal rules is de-
fined below.

DEFINITION 3.6 (Past-Time Temporal Rules). A temporal
rule RX is denoted by pre ↪→P post (sup,conf ). The series of
events pre and post represent the rule’s pre- and post-condition
and are denoted by RX .Pre and RX .Post respectively. The no-
tions sup, and conf represent the support, and the confidence of
RX respectively. They are denoted by sup(RX) and conf (RX)
respectively.

Example. Consider DBX and the rule RX , 〈b, a〉 ↪→P 〈c〉 shown
in the previous example. It has support of 2 and confidence of 1. It
is denoted by 〈b, a〉 ↪→P 〈c〉(2, 1).

3.2 Monotonicity and Non-Redundancy
Our algorithm is a member of the family of pattern mining algo-

rithms, e.g. [2, 33]. Monotonicity (a.k.a. apriori) properties have
been widely used to ensure efficiency of many pattern mining tech-
niques (e.g., [2, 33]). Different mining algorithm often require new
or additional apriori property. Fortunately, past-time temporal rules
obey the following apriori properties:

THEOREM 1 (Monotonicity Property – Support). If a rule
evsP ↪→P evsC does not satisfy the min sup threshold, neither
will all rules evsQ ↪→P evsC where evsQ is a super-sequence of
evsP .

THEOREM 2 (Monotonicity Property – Confidence). If a rule
evsP ↪→P evsC does not satisfy the min conf threshold, neither
will all rules evsP ↪→P evsD where evsD is a super-sequence of
evsC .

To reduce the number of rules and improve efficiency, we de-
fine a notion of rule redundancy defined based on super-sequence
relationship among rules having the same support and confidence
values. This is similar to the notion of closed patterns applied to
sequential patterns [33].

DEFINITION 3.7 (Rule Redundancy). A rule RX (preX ↪→P

postX ) is redundant if there is another rule RY (preY ↪→P postY )
where:
(1) RX is a sub-sequence of RY (i.e., postX++preX v postY ++

preY )
(2) Both rules’ support and confidence are the same

Also, in the case that the concatenations are the same (i.e., postX

++preX = postY ++preY ), to break the tie, we call the one with
the longer premise as being redundant (i.e., we wish to retain the
rule with a shorter premise and longer consequent).

To illustrate redundant rules, consider the following set of rules
describing an Automated Teller Machine (ATM):

R1 money dispensed ↪→P card inserted, enter pin, pin correct
cash request

R2 money dispensed ↪→P card inserted
R3 money dispensed ↪→P enter pin
R4 money dispensed ↪→P card inserted, enter pin
R5 money dispensed ↪→P enter pin, cash request



If all of the above rules have the same support and confidence
values, rules R2-R5 are redundant since they are represented by
rule R1. To keep the number of mined rules manageable, we re-
move redundant rules. Noting the combinatorial nature of redun-
dant rules, removing redundant rules can drastically reduces the
number of reported rules.

A simple approach to reduce the number of rules is to first mine
a full-set of rules and then remove redundant ones. However, this
“late” removal of redundant rules is inefficient due to the exponen-
tial explosion of the number of intermediary rules that need to be
checked for redundancy. To improve efficiency, it is therefore nec-
essary to identify and prune a search space containing redundant
rules “early” during the mining process. The following two theo-
rems are used for ‘early’ pruning of redundant rules. The proofs
are available in our technical report [27].

THEOREM 3 (Pruning Redundant Pre-Conds). Given two
pre-conditions PX and PY where PX < PY , if SeqDBpast

PX
=

SeqDBpast
PY

then for all sequences of events post, rules PX ↪→P

post is rendered redundant by PY ↪→P post and can be pruned.

THEOREM 4 (Pruning Redundant Post-Conds). Given two
rules RX (pre ↪→P PX ) and RY (pre ↪→P PY ) if PX < PY and
(SeqDBpast−all

pre )past
PX

= (SeqDBpast−all
pre )past

PY
then RX is ren-

dered redundant by RY and can be pruned.

Utilizing Theorems 3 & 4, many redundant rules can be pruned
‘early’. However, the theorems only provide sufficient conditions
for the identification of redundant rules – there are redundant rules
which are not identified by them. To remove remaining redun-
dant rules, we perform a post-mining filtering step based on Defi-
nition 3.7.

3.3 Mining Steps
Our approach to mining a set of non-redundant rules satisfying

the support and confidence thresholds is as follows:

Step 1 Leveraging Theorems 1 & 3, we generate a pruned set
of pre-conditions satisfying min sup.

Step 2 For each pre-condition pre, we create a projected-
past-all database SeqDBpast−all

pre .
Step 3 Leveraging Theorems 2 & 4, for each

SeqDBpast−all
pre , we generate a pruned set con-

taining post-condition post, such that the rule
pre ↪→P post satisfies min conf.

Step 4 Using Definition 3.7, we filter any remaining redun-
dant rules.

At Step 1, the pruned set of pre-conditions contains those fre-
quent pre-conditions that obey min sup threshold (following The-
orem 1) and are without any super-sequence having the same pro-
jected database (following Theorem 3). At Step 3, the pruned set of
post-conditions associated with a pre-condition pre contains those
post-conditions post where pre ↪→P post obeys min conf thresh-
old (following Theorem 2) and are without any super-sequence
having the same projected database (following Theorem 4).

In this work, we guarantee that all mined rules are significant
and non-redundant and all significant and non-redundant rules are
mined (i.e., statistical soundness and completeness). The first claim
is true, due to the fact that we verify each rule’s significance and
non-redundancy before outputting it. The second claim is true, due
to the fact that the mining process traverses the search space of all
possible rules and will only prune those sub-search spaces which
are flagged by the four pruning theorems. These sub-search spaces
only contain insignificant and redundant rules.

4. EXPERIMENTS
In this section we discuss our experiments on mining past-time

temporal rules from traces of JBoss Application Server. It shows
the utility of our method in recovering specifications of an indus-
trial system.

JBoss AS is the most widely used J2EE application server. It
contains over 100,000 lines of code and comments. The purpose of
this study is to show the usefulness of the mined rules to describe
the behavior of a real software system.
Case 1: JBoss AS Security Component. We instrumented the
security component of JBoss-AS using JBoss-AOP and generated
traces by running the test suite that comes with the JBoss-AS dis-
tribution. In particular, we ran the regression tests on Enterprise
Java Bean (EJB) security implementation of JBoss-AS. Twenty-
three traces of a total size of 4115 events, with 60 unique events,
were generated. Running the algorithm on the traces with the min-
imum support and confidence thresholds set at 15 and 90% respec-
tively, 4 non-redundant rules were mined. The algorithm completed
within 2.5 seconds.

A sample of the mined rules is shown in Figure 1 (left). It de-
scribes authentication using Java Authentication and Authorization
Service (JAAS) for EJB within JBoss-AS. Roughly it describes a
rule that states: “Whenever principal and credential information is
required (the premise of the rule), previously configuration infor-
mation is checked to determine authentication service availability
(event 1-5 in the consequent), actual authentication events are in-
voked (event 6-8) and principal information is bound to the subject
being authenticated (event 9-12)”.
Case 2: JBoss AS Transaction Component. We instrumented the
transaction component of JBoss-AS using JBoss-AOP and gener-
ated traces by running the test suite that comes with the JBoss-
AS distribution. In particular, we ran a set of transaction man-
ager regression tests of JBoss-AS. Each trace is abstracted as a
sequence of events, where an event corresponds to a method in-
vocation. Twenty-eight traces with a total size of 2551 events con-
taining 64 unique events, were generated. Running the algorithm
on the traces with the minimum support and confidence thresholds
set at 25 traces and 90% respectively, 36 non-redundant rules were
mined. The algorithm completed within 30 seconds.

A sample of the mined rules is shown in Figure 1 (right). The
rule describes that: “Whenever a check is performed on whether
transaction is completed (the premise of the rule), previously con-
nection to a server instance (event 1-4 in the consequent), initial-
ization and utilization of transaction manager and implementation
(event 5-6,10-12), acquiring of ids (event 7-9,13-15) and obtaining
of transaction from the manager (event 16) are performed before.”

5. RELATED WORK
One of the most well-known specification mining tool is Daikon

[12]. It returns value-based invariants (e.g., x > 5, etc.) by moni-
toring a fixed set of templates as a program is run. Different from
Daikon, in this work, we consider temporal invariants capturing or-
dering constraint among events.

Most specification mining tools mine temporal specifications in
the form of automata [29, 1, 23]. An automata specify a global be-
havior of a system. Different from work mining automata, mined
rules describe strongly observed sub-behaviors of a system or prop-
erties that occur with statistically significance (i.e., appear with
enough support and confidence).

In [34], Yang et al. present an interesting work on mining two-
event future-time temporal logic rules (i.e., of the form G(a →
XF (b)), where G, X , and F are LTL operators [15]), which are



Premise Consequent 
SimplePrincipal.toString()  
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 
SecAssoc.getPrincipal() 
SecAssoc.getCredential() 

XLoginConfImpl.getConfEntry() 
PolicyConfig.get() 
XLoginConfImpl$1.run() 
AuthenticationInfo.copyAppConfEntry() 
AuthenticationInfo.getName() 
ClientLoginModule.initialize() 
ClientLoginModule.login() 
ClientLoginModule.commit() 
SecAssocActs.setPrincipalInfo() 
SetPrincipalInfoAction.run() 
SecAssocActs.pushSubjectContext() 
SubjectThreadLocalStack.push() 
 

P

PPremise Consequent 
TransactionImpl.isDone() TransManLocator.getInstance()  

TransManLocator.locate() 
TransManLocator.tryJNDI() 
TransManLocator.usePrivateAPI() 
TxManager.getInstance() 
TxManager.begin() 
XidFactory.newXid() 
XidFactory.getNextId() 
XidImpl.getTrulyGlobalId() 
TransImpl.assocCurrentThread() 
TransImpl.lock() 
TransImpl.unlock() 
TransImpl.getLocalId() 
XidImpl.getLocalId() 
LocalId.hashCode() 
TxManager.getTransaction() 

Figure 1: A sample rule from JBoss-Security (left) and another from JBoss-Transaction (right). Each of the rules are read from top
to bottom, left to right.

statistically significant with respect to a user-defined ‘satisfaction
rate’. These rules express: “whenever an event occurs, eventually
in the future another event occurs”. The algorithm presented, how-
ever, does not scale to mine multi-event rules of arbitrary length.
To handle longer rules, Yang et al. suggest a partial solution based
on concatenation of mined two-event rules. Yet, the method pro-
posed might miss some multi-event rules or introduce additional
rules that are not statistically significant – it is neither statistically
sound nor complete.

In [25, 26], Lo et al. extended the work by Yang et al. to mine
future-time temporal rules of arbitrary lengths. The algorithm is
statistically sound and complete. Rules of arbitrary lengths is able
to capture more complex temporal properties. Often, simple prop-
erties are already known by the programmers while complex prop-
erties might be missed or might be an emergent behavior.

In [28], Lo et al. mine Live Sequence Chart (LSC) from pro-
gram execution traces. LSC can be viewed as a formal form of
a sequence diagram. In [28], the LSCs mined are of the format:
“whenever a chart pre is satisfied, eventually another chart main
is satisfied”. Different from standard temporal rules, LSCs im-
pose specific constraints on the satisfaction of a chart (pre or main).
When translated to LTL, LSC corresponds to a rather complex tem-
poral expressions [17]. Also, different from this work, the work
in [28] only mine LSC that express future time temporal expres-
sions.

In [24], we proposed iterative patterns to mine frequent patterns
of program behavior. Different from rules, patterns do not express
any constraints. A rule on the other hand expresses a constraint
that state when its premise is satisfied, its consequent is satisfied
as well. For monitoring and verification purposes, constraints are
needed.

There are several studies on extracting specifications from code
(e.g. [21, 31]). The above techniques belong to the static analysis
family. In contrast, we adopt a dynamic analysis approach in ex-
tracting specifications from execution traces. Static and dynamic
analyses complement each other (c.f., [11]). Their pros and cons
have been discussed in the literature [11, 5]. With dynamic analy-
sis, even with the best algorithms, the quality of specification mined
is only as good as the quality of traces. With static analysis, one is
faced with the problem of pointers and infeasible paths. Some spec-
ifications pertaining to the dynamic behavior of a system can only
be mined (or are much easier to mine) via dynamic analysis.

6. DISCUSSION
In this section, we discuss some related issues and potential fu-

ture work.
Similar to pattern mining algorithms (e.g., [2]), one issue is in

setting suitable minimum support threshold. It is less straightfor-
ward than setting appropriate minimum confidence threshold. In
our experiments, we used two different minimum support thresh-
olds: one at 15 (65% of the number of traces), another at 25 (90%
of the number of traces). When setting minimum support threshold
at 21 (90% of the number of traces) for analyzing traces from the
first experiment, we find no significant rules. In general, the more
diverse the trace set is, the lower the minimum support threshold
needs to be set. Similar to many data mining processes, we view
our mining strategy to be an iterative process; at each step, user
provides a set of thresholds, runs the miner and evaluates the mined
result to decide whether another refinement, by mining at lower or
higher thresholds, is needed. As a future work, we plan to formal-
ize and provide tool support to this iterative process to help users
decide on a suitable minimum support threshold.

In this work, we guarantee statistical soundness and complete-
ness. Hypothetically, if the input trace set is sound and complete,
we will mine a sound and complete set of specifications. Admit-
tedly, traces generated by running a program are generally not com-
plete. As with other dynamic analysis techniques, the effective-
ness of the proposed technique is dependent on the quality and
sufficiency of the input traces. For example, the pre-conditions
of the rule shown in Figure 1 (left) involve multiple occurrences
of SecAssoc.getPrinciple() and SecAssoc.getCredential().
This is the case, as within each trace, in the input trace set, the
two methods are called two or more times in tandem. As a future
work, we plan to look into employing a synergy of static and dy-
namic analysis techniques to allow generation of more complete
trace set as input to the mining process.

In this study, we use only traces of a few thousand events. In
future, we will experiment with traces of longer lengths obtained
from a wider variety of software systems. In general, our algorithm
will work better with many traces of shorter length, than few very
long traces. Employing scenario extraction technique (c.f., [3]) will
convert trace of long length to sub-traces of shorter lengths. We
plan to employ this and use the modified techniques to mine rules
from longer traces. The rules will be fewer as a scenario extrac-
tion technique usually employs additional constraints to decide on
which events are related to another aside from temporal ordering
observed in the traces alone. Also, to handle longer traces, user can
provide additional constraints to guide the mining process further.
We plan to experiment with these options as a future work.

Also, as a future work, we plan to integrate the proposed mining



technique into automated processes, for example, software verifi-
cation, runtime monitoring or anomaly detection.

7. CONCLUSION
In this paper, we propose a technique to mine past-time tempo-

ral rules from program execution traces. The rules state: “When-
ever a series of events occurs, previously another series of events
has happened”. These rules capture important properties useful for
verification, monitoring and program understanding.

Existing work on mining temporal rules focuses on future-time
temporal expressions. Past-time temporal logic is more intuitive
and compact to express some class of important properties. We
consider our work to complement existing techniques mining future-
time temporal expressions. To the best of our knowledge, this is the
first work on mining past-time temporal rules from program execu-
tion traces where repetitions due to loop and recursion need to be
considered. Our rule format is also more general than the prece-
dence rule mined by static-analysis-based approach in [31].

Also, the problems of a potentially exponential runtime cost and
a huge number of reported rules have been effectively mitigated by
employing search space pruning strategies and elimination of re-
dundant rules. Experiments on JBoss Application Server show the
utility of our technique in recovering specifications of an industrial
program.
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