
Automated Library Recommendation
Ferdian Thung1, David Lo1, and Julia Lawall2

1Singapore Management University, Singapore
2Inria/LIP6-Regal, France

{ferdiant.2013,davidlo}@smu.edu.sg, julia.lawall@lip6.fr

Abstract—Many third party libraries are available to be down-
loaded and used. Using such libraries can reduce development
time and make the developed software more reliable. However,
developers are often unaware of suitable libraries to be used
for their projects and thus they miss out on these benefits. To
help developers better take advantage of the available libraries,
we propose a new technique that automatically recommends
libraries to developers. Our technique takes as input the set of
libraries that an application currently uses, and recommends
other libraries that are likely to be relevant.

We follow a hybrid approach that combines association rule
mining and collaborative filtering. The association rule mining
component recommends libraries based on a set of library usage
patterns. The collaborative filtering component recommends
libraries based on those that are used by other similar projects.
We investigate the effectiveness of our hybrid approach on
500 software projects that use many third-party libraries. Our
experiments show that our approach can recommend libraries
with recall rate@5 of 0.852 and recall rate@10 of 0.894.

I. INTRODUCTION

Third-party libraries are an integral part of many software
projects [3], [11], [26]. For example, we have investigated
1008 projects of substantial size from GitHub. We found that
93.3% of them use third-party libraries, at an average of 28
third-party libraries each. The use of such libraries allows the
developer to write less code and to focus on the parts of the
code that are specific to the project. The use of third-part
libraries also reduces the need for testing.

Today, many third-party libraries are readily available to
software developers, from repositories such as the Maven
repository.1 Still, effectively using these libraries remains a
challenge for developers, because they may not become aware
of these libraries as they are released. Developers may thus be
led to “re-implement the wheel”. An approach is needed to
bridge the gap between the many third-party libraries that are
available and the developers that need to use them.

In this work, we propose a technique that automatically
recommends libraries for a particular project. Given the set of
libraries that the project has used, our technique recommends
other libraries that are potentially useful for it. Our technique
follows a hybrid approach that combines association rule
mining and collaborative filtering. The association rule mining
component extracts libraries that are commonly used together.
The component then rates each of the libraries based on their
likelihood to appear together with the currently used libraries.
The collaborative filtering component works on the assumption

1repo1.maven.org, http://search.maven.org

that similar projects are likely to share similar third party
libraries. The component analyzes the libraries that are used
by the n most similar projects. It then rates each of the
libraries based on how many of the top-n most similar projects
use it. Our technique finally aggregates the recommendations
made by the association rule mining and collaborative filtering
components.

A number of previous studies have proposed approaches to
recommend library methods to be used in a particular context,
e.g., [18], [37]. Our work differs from this previous work in
terms of the level of granularity considered. While previous
approaches recommend a particular method to be used in a
particular context, we target the problem of recommending
an entire library (e.g., an entire jar file in the case of a
Java project). Past approaches assume that the set of relevant
libraries is already known to the developer and it is only
the methods in these libraries that are unknown. Our work
does not make this assumption, and thus complements these
existing studies. Indeed, our approach could be deployed first
to recommend particular libraries that will interest developers.
These results could then be fed to existing approaches to
recommend particular methods to be used in different contexts.

To evaluate the effectiveness of our approach, we have
downloaded a few hundred Java projects of substantial size
(≥ 10,000 lines) from GitHub2 and investigated the libraries
that these projects use. We observe that these projects make
use of a substantial number of third-party libraries and thus
are appropriate subjects of our study. Evaluating our approach
on projects that use many libraries ensures that it is able
to recommend libraries to real projects that need third-party
libraries. We then use ten-fold cross validation to evaluate our
approach. For this, we divide the dataset into ten parts. Nine
parts are used as training data, and one part is used as test data.
The results over the ten iterations are aggregated. To evaluate
our results, we use recall rate@5 and recall rate@10, which
are often used as evaluation measures [22], [30], [36]. In our
experiments we achieve recall rate@5 and recall rate@10 of
0.852 and 0.894, respectively.

The contributions of our work are as follows:
1) We identify a new problem of library recommendation:

Given a set of libraries that a project uses, recommend
other libraries that are potentially useful for it.

2) We propose a hybrid technique based on association rule
mining and collaborative filtering to recommend libraries

2https://github.com/

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

182

that a project can use based on the libraries that the
project already uses.

3) To test the effectiveness of our approach, we investigate
the third-party libraries used by a few hundred projects.
Our experiment shows that our approach is effective and
can achieve recall rate@5 and recall rate@10 of 0.852
and 0.894, respectively.

The structure of this paper is as follows. We formally
define the problem and provide an illustrative example in
Section II. We describe the base algorithms in Section III.
We then present our proposed approach in Section IV. Next,
we describe our experiments in Section V. Related work is
presented in Section VI. We finally conclude and mention
future work in Section VII.

II. PROBLEM DEFINITION & ILLUSTRATIVE EXAMPLE

In this section, we define our problem and illustrate it by a
motivating example.

Problem Definition. We define the library recommendation
problem as follows. Let allLibraries be the set of all libraries
that are available, usedLibraries be the set of libraries that are
currently used in the software project, usefulLibraries be the
set of libraries that are useful for the project, and recLibraries
be the set of libraries that are to be recommended. The goal
of our approach is to find the a set recLibraries that satisfies
the following conditions:

1) recLibraries ⊆ allLibraries
2) recLibraries

⋂
usedLibraries = ∅

3) recLibraries
⋂
usefulLibraries 6= ∅

The recommended set of libraries needs to be a subset of
all available libraries and should not contain any library that is
currently used in the project (there is no need to recommend
a library that is already used). Finally, we want to recommend
libraries that are useful.

Illustrative Example. To illustrate the issues involved, we
provide a motivating example. Consider a project named
openpipe that uses the following libraries: logback-classic,
spring-context, lucene-core, commons-collections, commons-
dbcp. Now, consider the database shown in Table I which
maps a set of projects to the libraries that they use. We want
to recommend libraries to openpipe based on this database.

One approach to recommend libraries is to look for library
usage patterns. From the database, one can see that most
projects that use commons-collections also use commons-
lang libraries - for projects easysoa, red5-mavenized, and
thucydides this is the case. We can thus infer a library usage
pattern: commons-collections→ commons-lang. Based on this
usage pattern, since openpipe uses commons-collections but
does not use commons-lang, we would recommend commons-
lang to openpipe.

Another approach to recommend libraries is to look for
projects that are similar to openpipe in Table I and investigate
the set of libraries that they use. We measure the similarity
of two projects based on the set of libraries that are used in

common between the two projects.3 Comparing the complete
set of libraries already used by openpipe with those of the
projects in database, we find that there are two projects that use
a similar set of librarie: easysoa and fuse. These projects share
the following libraries with openpipe: lucene-core, logback-
classic, and spring-context. Furthermore, easysoa and fuse also
use a library that is not used in openpipe, namely commons-
httpclient. Thus, we would recommend commons-httpclient to
openpipe.

We propose to automate the above approaches for recom-
mending libraries to a project. We automate the first approach
by using association rule mining to extract library usage
patterns. We automate the second approach by leveraging a
collaborative filtering technique. We then combine these two
approaches to recommend libraries.

III. PRELIMINARIES

In this section, we describe several techniques that are used
in our approach: frequent itemset mining [1], association rule
mining [1], and collaborative filtering [32]. Frequent itemset
mining is the first step of association rule mining.

A. Frequent Itemset Mining

Frequent itemset mining takes as input a transaction
database (i.e., a multi-set of transactions), where each transac-
tion is a set of items, and outputs sets of items (aka. itemsets)
that appear frequently (i.e., each frequent itemset is a subset of
many transactions) in the database. In our setting, a transaction
is the set of third party libraries that are used by a project.
We refer to the number of transactions that contain all of the
elements of an itemset I as the frequency of I , denoted as
freq(I). The support of an itemset I is defined as:

sup(I) =
freq(I)

N

where N is the number of transactions in the transaction
database. An itemset is frequent if its support is no less than
minsup, where minsup is a user-defined minimum support
threshold.

Example 1. Consider a project database shown in Table I. Each
project can be considered as a transaction. If minsup is e.g.
0.5, then I = {commons-collections, commons-logging} is
a frequent itemset in these transactions, computed as follows.
I appears in 3 transactions (easysoa, red5-mavenized, thucy-
dides), so freq(I) is 3. Since the number of transactions in the
database (N) is 5, sup(I) is 0.6, which is greater than minsup.

B. Association Rule Mining

In addition to frequent itemsets, another kind of pattern
can be extracted from the transaction database. For example,
from the database shown in Table I, we can infer: “if a
project uses commons-collections, then the project is likely
to also use commons-lang” because all of the transactions

3McMillan et al. use API calls as semantic anchors to measure the similarity
between projects [21]; we use a similar idea.

183

TABLE I
EXAMPLE PROJECT DATABASE

Project Libraries
easysoa lucene-core, commons-httpclient, logback-classic, spring-context, commons-collections, commons-lang
fuse commons-httpclient, camel-core, lucene-core, logback-classic, aether-util, spring-context
red5-mavenized groboutils-core, commons-collections, ehcache, jta, commons-lang, catalina
histone-java mockito-all, reflections, spring-context, cglib, joda-time, xstream
thucydides logback-classic, commons-collections, spring-context, commons-lang, opencsv, groovy

that contain commons-collections also contain commons-
lang. This kind of pattern is referred to as an association
rule. An association rule is an “if/then” rule that captures a
relationship between two itemsets X and Y in the database. It
can be written as:

X → Y

where X is the pre-condition of the rule and Y is the post-
condition of the rule. The pre-condition is a statement that
must be satisfied for the rule to be applied, whereas the post-
condition is the result if the pre-condition is met.

We are interested in association rules that apply to many
transactions in the database. For this, we use a metric referred
to as support. The support of an association rule R = X → Y ,
denoted as sup(R), is the proportion of transactions in the
database that contain X

⋃
Y . We also need to measure the

likelihood that a rule is true. For this purpose, we use a metric
referred to as confidence. The confidence of a rule R with
pre-condition X and post-condition Y (i.e., R = X → Y) is
defined as follows:

conf (R) =
freqX

⋃
Y

freqX

Association rule mining extracts all rules that satisfy user-
defined minimum support (minsup) and confidence (minconf)
thresholds. We refer to such rules as significant association
rules. Association rules can be generated from frequent item-
sets. We can enumerate all possible pairs of frequent itemsets
where one is a subset of another. Consider A and B where A
and B are frequent itemsets and A is a subset of B. Then, the
generated association rule R is of the form:

A→ B \A

The support and confidence of the rule R can be computed
from the supports of its constituent itemsets as follows:

sup(R) = sup(B)

conf (R) =
sup(B)

sup(A)

Example 2. We refer to Table I. Given minsup = 0.5, frequent
itemsets A = {commons-collections} and B = {commons-
collections, commons-lang}. Frequent itemsets A and B
form the rule R = commons-collections→ commons-lang.
The support of R is the same as sup(B), which is 0.6. Since
sup(A) is 0.6, the confidence of the rule is 1.0.

C. Collaborative Filtering

Collaborative filtering is an automatic technique to make
predictions about an entity based on information collected
about other similar entities. Collaborative filtering has been
used in many real systems, including environmental sensing,
financial services, electronic commerce, web applications,
etc. [29]. One popular implementation of collaborative filtering
in the context of web applications is the recommendation
system developed by Amazon.com for recommending new
items to the users in their website [14].

A basic method to perform collaborative filtering is by
finding the nearest neighbors of the target entity. A target entity
is compared with all other entities and a list of most similar
entities based on a distance metric is produced. The similarities
among the entities are used as a basis for making predictions
about the entity. In our setting, an entity is a project, and the
prediction task is the prediction of libraries that are useful for
the project.

IV. PROPOSED APPROACH

In this section, we first provide a birds-eye-view description
of our overall framework in Section IV-A. We then zoom in
to the various components of our framework. We describe the
association rule mining component in Section IV-B. We then
present the collaborative filtering component in Section IV-C.
The aggregator component which combines the result of the
association rule mining and collaborative filtering components
is described in Section IV-D.

A. Overall Framework

Figure 1 shows the overall framework of our recommenda-
tion system referred to as LibRec. It has two major compo-
nents: LibRecRULE and LibRecCOLLAB . LibRecRULE rec-
ommends libraries by mining library usage patterns expressed
as association rules. LibRecCOLLAB recommends libraries
by investigating the set of libraries that are used by similar
projects, using a nearest-neighbor-based collaborative filtering
approach. Our framework consists of two phases: training and
deployment.

184

Rule Extractor Training
Projects

Feature Vector Extractor

Rule Matcher Nearest Neighbor Processor

Aggregator

New
Projects

LibRecRULE LibRecCOLLAB

API Recommendations

TRAINING

DEPLOYMENT

Fig. 1. Our Recommendation Framework LibRec

In the training phase, our system infers models needed for
the deployment phase. These models are extracted from a
training dataset (TrainingProjects). TrainingProjects is a set
of projects, along with the names of third-party libraries used
by each of them. Models are extracted by the following sub-
components:

1) RuleExtractor , a sub-component of LibRecRULE , ex-
tracts association rules that capture library usage patterns
from Training Projects.

2) FeatureVectorExtractor , a sub-component of
LibRecCOLLAB , extracts a vector of feature values
from the set of libraries that each project uses. Each
feature corresponds to a library and its value is 1 if the
library is used by the project and 0 otherwise.

The association rules and vectors are models that are provided
to the deployment phase.

In the deployment phase, our system recommends libraries
to new projects (NewProjects) based on the models extracted
from the training phase. NewProjects is a set of new projects
along with the names of third-party libraries already used by
each of them. The following sub-components use the models
to recommend libraries:

1) RuleMatcher , a sub-component of LibRecRULE , takes
each new project p ∈ NewProjects and the association
rules extracted in the training phase as inputs. It matches
the libraries used in the project with the rules. It makes
recommendations based on the post-conditions of the
matching rules.

2) NearestNeighborProcessor , a sub-component
of LibRecCOLLAB , takes each new project
p ∈ NewProjects and the feature vectors extracted in
the training phase as inputs. It then constructs a feature
vector for p and calculates the distance between this
feature vector and each of the feature vectors extracted
from the training phase. The most similar vectors and
their corresponding projects (i.e., the nearest neighbors)
are identified. Recommendations are made based on the
libraries used by the nearest neighbors.

Both RuleMatcher and NearestNeighborProcessor output
a list of recommended libraries along with their recommenda-
tion scores. The Aggregator component combines these two
lists into a new list with the final recommendation scores. The
libraries with the highest scores will be recommended.

We now describe each of the components in more detail.

B. LibRecRULE Component

Our LibRecRULE component recommends libraries based
on library usage patterns. It consists of the RuleExtractor
sub-component in the training phase and the RuleMatcher
sub-component in the deployment phase.

1) RuleExtractor : This sub-component employs asso-
ciation rule mining to mine library usage rules. In
TrainingProjects , each project uses a set of third-party li-
braries. We treat each project as a transaction where the items
in the transactions are the third-party libraries that it uses.

Traditional association rule mining (see Section III) extracts
all rules that satisfy the minimum support and confidence
thresholds from the set of all frequent itemsets. However,
often, too many rules are extracted. Association rule mining
can thus become very slow. To address this issue, we observe
that not all of the rules are necessary; some of the rules can
be combined to construct a compact set of association rules.

Example 3. Consider the following rules: R1 = log4j →
commons-logging , R2 = log4j → slf4j -api , and R3 =
log4j → commons-logging , slf4j -api . All of these rules have
support 0.6 and confidence 1.0. Rules R1 and R2 , however,
are covered by rule R3 and they have the same support and
confidence, and thus they are not actually needed.

To construct a compact set of association rules, we use
two special subsets of all frequent itemsets, referred to in
the literature as closed itemsets and generators [24]. A closed
itemset is a frequent itemset with no superset having the same
support as itself. A generator is a frequent itemset with no
subset having the same support as itself. Algorithms have
been developed to mine these closed itemsets and generators

185

directly [24], [13], without the need to mine all frequent
itemsets.

Example 4. Consider two frequent itemsets: I1 = {log4j} and
I2 = {log4j , commons-logging , slf4j -api}. I1 has support
of 3 and does not have any subset having the same support.
Thus, I1 is a generator. I2 has support of 3 and does not
have a superset having the same support. Thus, I2 is a closed
itemset. Note that I1 is not a closed itemset and I2 is not a
generator as I1 ⊂ I2 and sup(I1) = sup(I2).

We construct the compact set of association rules from these
two subsets following Bastide et al. [2]. We define a compact
set of association rules in Definition 1.

Definition 1 (Compact Assoc. Rules (ARulesCompact)):
Consider a set of generators GEN , a set of closed itemsets
CLOSED , a minimum support minsup and a minimum
confidence minconf . The compact set of association rules is
the following set:

{r = pre → post |(pre ∈ GEN) ∧

(pre
⋃

post ∈ CLOSED) ∧
sup(r) ≥ minsup ∧ conf (r) ≥ minconf }

The set of compact rules is the set of frequent rules whose
pre-condition is a generator and where the difference of the
pre- and post-conditions is a closed itemset.

Example 5. Referring to Example 4, we can construct a
compact rule from I1 and I2. The pre-condition of the
compact rule is I1 = {log4j} and the post-condition of the
compact rule is I2\I1 = {commons − logging , slf4j − api}.
Thus, we can the construct compact rule C = log4j →
commons − logging , slf4j − api .

The set of association rules obtained from closed itemsets
and generators is potentially much smaller than the complete
set of rules. The algorithm presented in Figure 2 constructs
this compact set of association rules. The algorithm first mines
the set of closed itemsets and generators (lines 7-8). We
use the algorithm Zart [31] to mine these closed patterns
and generators.4 Next, the algorithm iterates over all of the
closed itemsets and generators (lines 9-10). If the generator
(Gen) is the subset of the closed itemset (Item), a rule is
constructed (lines 11-22). Gen is the pre-condition of the
rule and Item \ Gen is its post-condition (lines 14-15). We
then compute the support and confidence of the rule (lines
16-17). The constructed rule is added to the compact set of
association rules if it satisfies the minconf threshold (lines
18-19). There is no need to check the minsup threshold as
the closed itemsets are frequent. At the end, all the generated
rules are stored for use in the deployment phase.

2) RuleMatcher : In the deployment phase, for each new
project p to receive library recommendations, RuleMatcher

4http://www.philippe-fournier-viger.com/spmf/index.php.

1: Input:
2: TrainingProjects = set of projects with third party

libraries used by each of them
3: minconf = minimum confidence threshold
4: Output:
5: Compact set of association rules
6: Method:
7: Let ClosedItems = set of closed itemsets mined from

TrainingProjects
8: Let Generators = set of generators mined from

TrainingProjects
9: Let CompactRules = {}

10: for all Item ∈ ClosedItems do
11: for all Gen ∈ Generators do
12: if Gen ⊂ Item then
13: Let Rule = {}
14: Rule.PreCondition = Gen
15: Rule.PostCondition = Item \Gen
16: Rule.Support = Item.Support
17: Rule.Conf = Item.Support/Gen.Support
18: if Rule.Conf ≥ minconf then
19: add Rule to CompactRules
20: end if
21: end if
22: end for
23: end for
24: return CompactRules

Fig. 2. Mining a Compact Set of Association Rules

gets the list currentLib of the libraries that it currently
uses, and then matches this list against the association rules
libRules generated by the RuleExtractor component. A
rule matches currentLib if its precondition is a subset of
currentLib. RuleMatcher then recommends libraries, based
on the post-conditions of the matching rules.

We assign a score to assess the suitability of a library to
a new project p. Informally, the rule-based recommendation
score for a library A is the highest confidence of any matching
rule whose post-condition contains A. This score is computed
by the following formula:

RecScoreRULE (A) = MAX (0,MAXR∈RMatched(A).conf (R))

RMatched(A) = {(R = X → Y) ∈ libRules |
X ⊆ currentLib ∧A ∈ Y }

In the above equation, RMatched(A) is the set of rules
whose pre-condition is a superset of currentLib and whose
post-condition contains A. If the set RMatched(A) is empty,
the recommendation score of A is 0. RecScoreRULE ranges
from 0 to 1. The libraries with the highest recommendation
scores are the most suitable libraries based on the mined
association rules.

186

Example 6. Suppose a project has a set of libraries P =
{a, b, c} and we have the following rules: R1 = e → d with
conf (R1) = 1.0, R2 = a, b → f, g with conf (R2) = 0.9,
and R3 = a→ f with conf (R3) = 0.8. R2 and R3 match P
because their pre-conditions are a subset of P . We then want
to compute RecScoreRULE for the library f . Both R2 and
R3 contain f in their post-conditions. Thus, R2 and R3 are
matching rules. RecScoreRULE (f) will then be the maximum
of 0, 0.9 (conf (R2)), and 0.8 (conf (R3)), which is 0.9.

The pseudocode for the matching process is shown in
Figure 3. At lines 8-9, for each association rule in libRules,
we check whether curLibraries is a superset of the pre-
condition of the rule. If it is, we iterate over the items in the
rule’s post-condition and add them to the list of recommended
libraries (recLibraries) (lines 10-18). We iteratively update
the recommendation scores of the libraries in recLibraries .
Whenever a matching rule of higher confidence containing a
recommended library is encountered, we update the recom-
mendation score of the library (lines 14-16).

1: Input:
2: curLibraries = libraries that the target project uses
3: libRules = association rules
4: Output:
5: Recommended libraries w. recommendation scores
6: Method:
7: Let recLibraries = {}
8: for all Rule ∈ libRules do
9: if curLibraries ⊆ Rule.PreCondition then

10: for all A ∈ Rule.PostCondition do
11: if A 6∈ curLibraries then
12: add A and A.Conf to recLibraries
13: else
14: if recLibraries[A] < A.Conf then
15: recLibraries[A] = A.Conf
16: end if
17: end if
18: end for
19: end if
20: end for
21: return recLibraries

Fig. 3. Rule Matching Procedure

C. LibRecCOLLAB Component

Our LibRecCOLLAB component recommends libraries
based on those that are used by similar projects, following
a nearest-neighbor-based collaborative filtering approach. We
measure the similarity of two projects based on their set
of commonly used libraries. LibRecCOLLAB consists of the
FeatureVectorExtractor sub-component in the training phase
and the NearestNeighborProcessor sub-component in the
deployment phase.

1) FeatureVectorExtractor : This component converts the
list of libraries used by each project in TrainingProjects to
a feature vector. Let aL be the set of all libraries arranged

in alphabetical order of their names. Each library can then be
assigned a unique index in aL and referred to as aL[i]. The
feature vector of project A, denoted as V (A), is defined as
follows:

V (A) = (ind(aL[0], A), . . . , ind(aL[|aL|], A))
ind(L,A) = 1, If A uses library L

0, Otherwise

2) NearestNeighborProcessor : Given a new project to
receive library recommendations, NearestNeighborProcessor
converts the list of libraries that the project uses into a
feature vector in the same manner as was done by the
FeatureVectorExtractor component. It then calculates the
distance between this feature vector and the feature vectors
of projects in TrainingProjects . We use cosine similarity as
the metric to compute this distance [19]. The cosine similarity
of a new project New and an existing project Existing in
TrainingProjects is:

Cosine(New,Existing) =
V (New) · V (Existing)

|V (New)||V (Existing)|

In the above equation, · denotes dot product, and |V (i)|
denotes the size of a vector, which is defined as the square
root of the sum of the squares of its constituent elements.

We rank the projects in TrainingProjects based on their
cosine similarity scores. The higher the cosine similarity score
is, the more similar a training project is to the new project.
Therefore, we pick the top-n projects with the highest cosine
similarity scores as the nearest neighbors for the new project.
In the implementation, we sort the projects based on their
cosine similarity scores followed by their names. If there are
projects with rank greater than n that have the same cosine
similarity score as the n-th project, we group the projects
having this score, and randomly select projects from this
group, to result in the final n nearest neighbors.

Our next step is to compute a recommendation score for
each library. We collect all of the libraries that are used by
projects in the n nearest neighbors and compute the score for
each library. Given a library A, we compute the collaborative-
filtering-based recommendation score for A as follows:

RecScoreCOLLAB (A) =
NNCountLib(A)

n

In the equation above, NNCountLib(A) is the number of
nearest neighbor projects that use library A and n is the
number of nearest neighbors. RecScoreCOLLAB scores range
from 0 to 1. The library with the highest RecScoreCOLLAB

score is considered to be the most the most suitable library.

Example 7. Consider a project that has 3 nearest
neighbors as follows: P1 = {ant, jsp-api, junit},

187

P2 = {hsqldb, junit, commons-lang}, and
P3 = {log4j, jetty, gson}. junit is used in 2 out of 3
nearest neighbor projects. So, NNCountLib(junit) is 2 and
RecScoreCOLLAB (junit) is 0.67.

D. Aggregator Component

This component combines RecScoreRULE and
RecScoreCOLLAB to get an overall recommendation
score, denoted as RecScore. The overall recommendation
score of a library A is defined as follows:

RecScore(A) = α× RecScoreRULE (A) +

β × RecScoreCOLLAB (A)

In the equation above, α and β represent weights for the
two recommendation strategies. When α + β = 1, RecScore
ranges from 0 to 1. By default, we set α and β to 0.5. The
top-k libraries with the highest RecScores are recommended
to developers – again ties are randomly broken.

Example 8. Suppose that we have a library called z. Let
RecScoreRULE (z) = 0.8 and a RecScoreCOLLAB (z) = 1.0.
RecScore(z) is 0.9.

V. EXPERIMENTS & ANALYSIS

In this section, we describe our dataset, followed by our
evaluation measures and procedure. We then present our
research questions and the results of our experiments. Finally,
we discuss some threats to validity.

A. Dataset

To construct the dataset, we first randomly collected a few
thousand Java projects from GitHub.5 We then filtered the
collected projects based on the following criteria:

1) The project contains more than 10,000 lines of code.
This is intended to filter out “toy projects”. We counted
the line of codes by using SLOCCount,6 which excludes
comments and whitespace.

2) The project is not a fork of another project in Github.
A fork is essentially a clone of another project at a
specific point of time. We do not want to consider both
the original and the forked project, or multiple projects
that are forked from the same source. The original and
forked projects are likely to share the same libraries.

3) The project is a Maven project. Maven is a build
automation tool. One of its features is the ability to
declare library dependencies for a project. Libraries have
a unique identifier that can help us to correctly identify
the use of the library across multiple projects. We identify
Maven projects by checking for the existence of pom.xml
files in the project repository. From these xml files, we
extracted the GroupId and ArtifactId of the libraries on

5http://github.com
6http://www.dwheeler.com/sloccount

which the project depends. The combination of these two
identifiers forms a unique identifier for a library stored
in the Maven repository.7

4) The project uses at least ten libraries. We focus on
projects that rely on third-party libraries. Our recom-
mendation system has more value for library-intensive
projects.

After filtering projects that contain fewer than 10,000 lines
of code, are forked from other projects, and are not Maven
projects, we are left with 1008 projects. The distribution of
the number of libraries used in these projects is shown in
Figure 4. The minimum, maximum, and average number of
libraries used in these projects are 0, 627, and 28.1 projects,
respectively. To focus on projects that rely heavily on third-
party libraries, we randomly selected 500 projects that use
at least ten libraries as our experimental dataset. Projects
included in this dataset include popular projects such as
Tapestry5 (146.4 kLOC), Sonar (132.3 kLOC), JBoss (499.0
kLOC).8

0

100

200

300

400

500

<10 10-25 26-50 51-100 101-250 >250

N
u

m
b

e
r

o
f

P
ro

je
ct

s

Number of Libraries Used

Fig. 4. Distribution of Library Usage in 1008 Projects

B. Evaluation Measures and Procedure

We evaluate our experiments using a well known evaluation
metric, recall rate@k [22], [23], [27], [30], [36].9 Consider m
target projects that should receive library recommendations.
For each project pi, let the ground truth be the set of libraries
GTi. The recall rate@k of a library recommendation system
that recommends a set of top-k libraries Ri for each of the
projects pi, is the proportion of recommendation Ri, in the
set of all recommendations R (for all projects), that includes
at least one library in the ground truth (i.e., Ri

⋂
GTi 6= ∅).

We use a small value for k as developers are unlikely to look
through a long recommendation list.

We perform ten-fold cross validation to measure the ac-
curacy of our approach. We randomly distribute the dataset
into ten equal-sized parts. Each fold consist of nine parts of
the dataset as the training data and the remaining part as the
testing data. For each project in the test data, we drop half of

7repo1.maven.org, http://search.maven.org
8The list of selected projects is available at: https://sites.google.com/site/

autolibrec/projects
9Note that precision rate@k is not defined and is not used in past

studies [22], [23], [27], [30], [36].

188

their libraries and use these as the ground truth. The remaining
half are used as inputs to our recommendation approach. This
methodology mimics the scenario where a developer knows
some of the needed libraries but needs help to find other
relevant libraries.

LibRec takes a number parameters: minsup, minconf ,
n (i.e., number of neighbors), α (i.e., weight of the
LibRecRULE), and β (i.e., weight of the LibRecCOLLAB).
We set minsup = 0.1 and minconf = 0.8. We chose
minsup = 0.1 because we do not want to miss specific rules
that only exist in a small portion of the dataset. We chose
minconf = 0.8 because we want the rule to have a high
likelihood of being followed in a software project. We set the
parameter n to 20, and the other parameters to their default
values i.e., α = β = 0.5.

C. Research Questions

We consider the following three research questions:
R1 How accurate is our proposed approach in recom-

mending libraries to client applications?
R2 What are the effects of the various components and

parameters of our approach on the overall accuracy?
R3 What is the impact of the various experimental

settings on the overall accuracy?

D. RQ1: Accuracy of the Proposed Approach

We have performed a ten-fold cross validation on the 500
projects. The experiment shows that LibRec achieves a recall
rate@5 of 0.852 out of 1.

E. RQ2: Effectiveness of Various Components and Parameter
Settings

To answer this research question, we investigate the ef-
fectiveness of the two major components of LibRec and the
sensitivity of LibRec to the various parameter settings.

Effectiveness of the Individual Components. We investi-
gate the how well our individual components LibRecRULE

and LibRecCOLLAB work separately. The result is shown
in Table II. Our LibRecCOLLAB component performs better
than our LibRecRULE component. Still, both of their recall
rates are lower than that of LibRec. Thus, combining the two
components is beneficial, as it improves accuracy.

TABLE II
EFFECTIVENESS OF INDIVIDUAL COMPONENTS

Component Recall Rate@5

LibRecRULE 0.702
LibRecCOLLAB 0.800

Effect of the Varying Number of Neighbors. We next in-
vestigate the sensitivity of our approach to the number of
nearest neighbors taken into account. In practice, developers
might not know the best number, and thus it is best if our
approach is robust on different numbers of nearest neighbors,

within a particular range. We vary the number of nearest
neighbors from 5 to 25 and show the accuracy of LibRec
in Table III. We find that the accuracy of our approach is
relatively stable across different numbers of nearest neighbors
(differences are less than 0.012). This shows the robustness of
our approach.

TABLE III
EFFECT OF VARYING THE NUMBER OF NEAREST NEIGHBORS

Number of Nearest Neighbors Recall Rate@5
5 0.840
10 0.848
15 0.850
20 0.852
25 0.848

Effect of Varying minsup and minconf. We next investigate
the effect of varying minsup. As shown in Table IV, there is a
small drop in accuracy when minsup is increased from 0.1 to
0.3 (about 0.05 reduction in recall rate@5). Increasing minsup
eliminates some high confidence rules that apply to only a
few projects. This reduces the effectiveness of our approach
on these projects. The recall rate is relatively stable when we
increase minsup from 0.3 to 0.4 and 0.5.

TABLE IV
EFFECT OF VARYING minsup

minsup Recall Rate@5
0.1 0.852
0.2 0.816
0.3 0.796
0.4 0.800
0.5 0.800

We also investigate the effect of varying minconf. We notice
that on very high minconf settings, there is a small drop in
accuracy (about 0.07 drop in recall rate@5, when minconf is
increased from 0.9 to 1.0). Raising the required confidence
too high can cause good rules that might not apply in a few
cases to be omitted. Note that LibRec uses the confidence of
a matching rule to compute the rule-based recommendation
score. Thus, we notice that reducing minconf from 0.9 to 0.8
results in little change in accuracy as LibRec takes a matching
rule with the highest confidence.

TABLE V
EFFECT OF VARYING minconf

minconf Recall Rate@5
0.8 0.852

0.85 0.852
0.9 0.848

0.95 0.824
1.0 0.778

F. RQ3: Effectiveness of Various Experimental Settings

To answer this research question, we investigate the sensi-
tivity of LibRec to two experimental settings.

189

Effect of Varying Training Set Size. We vary the training
set size by varying the value of k in k-fold cross validation.
As k increases, the training set size also increases. The result
for this experiment is shown in Table VI. We notice that the
average recall rate@5 does not vary much on the training set
size (differences are at most 0.014).

TABLE VI
EFFECT OF VARYING TRAINING SET SIZE

k Fold Recall Rate@5
2 0.840
4 0.848
6 0.840
8 0.854

10 0.852

Effect of Changing Recall Rate@k. Finally, we investigate
the effect of changing the value of k for recall rate@k.
Intuitively, a larger k results in a higher recall rate. As shown
in Table VII, the recall rate@1 is 0.616, and recall rate@3 is
0.804 which means, for most cases, correct recommendations
appear early in the recommendation list.

TABLE VII
EFFECT OF VARYING RECALL RATE@K

Recommendation Size (i.e., k) Recall Rate @ k
10 0.894
7 0.866
5 0.852
3 0.804
1 0.616

G. Threats to Validity

Threats to internal validity refers to experimenter bias. Most
of our experimental process is automated and randomized.
Thus we believe there is little experimenter bias.

Threats to external validity refers to the generalizability of
our findings. Our dataset consists only of open source Java
projects. Moreover, we pick only Java projects that use Maven.
In practice, only a subset of Java developers use Maven to
develop their applications. Even so, Maven is a popular tool in
the Java developer community. We expect big projects that use
many libraries to use Maven or similar tools to help manage
their build process. We have already tried to minimize this
threat by investigating 500 random projects. In the future, we
plan to reduce this threat further by adding more projects.

Threats to construct validity refers to the suitability of
our evaluation measure. Currently, we use recall rate@k to
measure the effectiveness of our approach. This is a well
known measure that is used in many past studies, e.g., [22],
[30], [36].

VI. RELATED WORK

Mandelin et al. propose the problem of jungloid min-
ing [18]. Given a query that describes the input and output
types, jungloid mining returns code fragments that satisfy the
query. Thummalapenta and Xie propose the tool ParseWeb

that recommends code examples from the web [33]. Similar
to jungloid mining, their tool accepts as input the source object
type and the destination object type. It generates a sequence of
methods that convert the source object type to the destination
object type. Chan et al. [5] and Thung et al. [34] recommend
API methods from queries expressed in natural language.

Robbes and Lanza analyze recorded program history to im-
prove code auto-completion [25]. Hindle et al. propose a code
auto-completion feature by investigating the “naturalness” of
software [8]. A number of tools also support real-time code
clone detection [9], [12]. These tools can also potentially be
used to recommend code to developers.

Gall et al. detect logical couplings among software modules
that are changed in a similar way [7]. Zimmermann et al.
use association rule mining to infer that if changes are made
to a set of program elements, then another set of program
elements need to also be changed [38]. McCarey et al. rec-
ommend methods to a developer in a group of developers by
investigating the history of methods that the developers have
used before [20].

The above-mentioned studies recommend various code el-
ements (method calls, blocks of code, etc) using various
heuristics leveraging various information sources (source code,
commit logs, etc.). Our study differs in the following respects:

1) We propose a novel hybrid approach that combines com-
pact association rule mining and nearest neighbor based
collaborative filtering to recommend libraries. Mandelin
et al., Thummalapenta and Xie, and Robbes and Lanza
use static analysis [18], [25], [33]. Hindle et al. use a
statistical language model [8]. Kawaguchi et al. and Lee
et al. use clone detection methods [9], [12]. Gall et al. use
an algorithm that performs subsequence matchings [7].
Chan et al. use a graph analysis technique [5]. Thung
et al. use a text analysis technique [34]. Zimmermann et
al. also use association rule mining [38] however they
do not integrate it with collaborative filtering. McCarey
et al. also use collaborative filtering, however they use
it in a different setting and they do not integrate it with
association rule mining [20].

2) We leverage a different information source namely the
lists of libraries used by other projects.

3) We consider a higher level of granularity. We recommend
new libraries to client applications. Various libraries exist
and developers are often unaware of their existence. Suc-
cessful library recommendations can allow developers to
reuse more code than successful code recommendations.

VII. CONCLUSION AND FUTURE WORK

Third party libraries can help to reduce software system
development time. Developers can reuse the libraries to code
some parts of the system rather than implementing them by
themselves. Using well tested libraries also makes the system
more reliable. Many third party libraries are publicly available.
However, the large number of libraries makes it hard for
developers to pick the relevant libraries that can improve their
productivity.

190

We propose an automated technique to recommend relevant
libraries to developers. Our approach combines association
rule mining techniques and collaborative filtering to perform
the recommendation. Based on the libraries used by other
projects, we recommend a number of likely relevant libraries to
developers of a target project. We have evaluated our approach
on 500 open source Java projects hosted on GitHub. Our
approach achieves a promising results with recall rate@5 and
recall rate@10 of 0.852 and 0.894 respectively.

In the future, we plan to include more projects to further
validate our results. We also plan to develop a better approach
that can increase the recall rate. To achieve this, we plan
to analyze cases where our approach and individual compo-
nents are ineffective and make appropriate modifications to
our approach. One approach could be to consider not only
libraries but also abstractions of libraries, e.g., the domain
that they address. Another approach could be to consider
nonfunctional properties of the projects, such as the time at
which they were developed. Yet another approach would be
to take into account the textual descriptions of libraries, by
employing advanced NLP techniques, e.g., [4], [35], or to
analyze the usage specifications of these libraries inferred by
specification mining techniques, e.g., [6], [10], [15], [16], [17],
[28]. We would also like to extend our approach to be able to
recommend libraries to projects that only use a small number
of libraries or do not use any libraries at all.

In terms of our experimental method, we plan to experiment
with various experimental settings, e.g., considering differ-
ent numbers of projects being dropped, considering different
number of libraries used, etc. We also plan to integrate our
proposed approach in an IDE (e.g., Eclipse) and perform a
user study.

Finally, we also want to integrate our approach with tech-
niques that recommend specific methods to use in a library,
e.g., [18], [25], [33], [34] and to recommend specific library
versions.

ACKNOWLEDGEMENT

This project is partly supported by MERLION MS12C0014
grant.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
in Proc. of Int. Conf. on Very Large Data Bases, 1994.

[2] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal, “Mining
minimal non-redundant association rules using frequent closed itemsets,” in
International Conference on Computational Logic, 2000.

[3] V. Bauer, L. Heinemann, and F. Deissenboeck, “A structured approach to
assess third-party library usage,” in ICSM, 2012, pp. 483–492.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal
of Machine Learning Research, vol. 3, 2003.

[5] W.-K. Chan, H. Cheng, and D. Lo, “Searching connected api subgraph via
text phrases,” in SIGSOFT FSE, 2012.

[6] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and A. Zeller,
“Automatically generating test cases for specification mining,” IEEE Trans.
Software Eng., vol. 38, no. 2, 2012.

[7] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based on
product release history.” in ICSM, 1998.

[8] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On the
naturalness of software,” in ICSE, 2012, pp. 837–847.

[9] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura,
and H. Iida, “SHINOBI: A tool for automatic code clone detection in the
IDE,” in WCRE, 2009, pp. 313–314.

[10] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo, “Mining message
sequence graphs,” in ICSE, 2011.

[11] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based API-usage
analysis of open-source Java projects,” in SAC, 2011, pp. 1317–1324.

[12] M.-W. Lee, J.-W. Roh, S. won Hwang, and S. Kim, “Instant code clone
search,” in SIGSOFT FSE, 2010, pp. 167–176.

[13] J. Li, H. Li, L. Wong, J. Pei, and G. Dong, “Minimum description length
principle: Generators are preferable to closed patterns,” in AAAI, 2006, pp.
409–414.

[14] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-
to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1, pp.
76–80, 2003.

[15] D. Lo and S. Maoz, “Mining hierarchical scenario-based specifications,” in
ASE, 2009.

[16] ——, “Scenario-based and value-based specification mining: better to-
gether,” in ASE, 2010.

[17] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani, “Mining quantified
temporal rules: Formalism, algorithms, and evaluation,” in WCRE, 2009, pp.
62–71.

[18] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining: helping
to navigate the API jungle,” in PLDI, 2005, pp. 48–61.

[19] C. Manning, P. Raghavan, and H. Schutze, Introduction to information
retrieval. Cambridge University Press Cambridge, 2008, vol. 1.

[20] F. McCarey, M. Ó. Cinnéide, and N. Kushmerick, “Rascal: A recommender
agent for agile reuse,” Artif. Intell. Rev., vol. 24, 2005.

[21] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar soft-
ware applications,” in ICSE, 2012, pp. 364–374.

[22] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun, “Duplicate
bug report detection with a combination of information retrieval and topic
modeling,” in ASE, 2012, pp. 70–79.

[23] J. N. och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell, “Speeding up
requirements management in a product software company: Linking customer
wishes to product requirements through linguistic engineering,” in RE, 2004.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent
closed itemsets for association rules,” in ICDT, C. Beeri and P. Buneman,
Eds., 1999.

[25] R. Robbes and M. Lanza, “Improving code completion with program his-
tory,” Autom. Softw. Eng., vol. 17, no. 2, pp. 181–212, 2010.

[26] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[27] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in ICSE, 2007, pp. 499–
510.

[28] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia, “Static specification mining
using automata-based abstractions,” IEEE Trans. Software Eng., 2008.

[29] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering tech-
niques,” Adv. Artificial Intellegence, vol. 2009, 2009.

[30] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate retrieval of
duplicate bug reports,” in ASE, 2011, pp. 253–262.

[31] L. Szathmary, A. Napoli, and S. O. Kuznetsov, “Zart: A multifunctional
itemset mining algorithm,” in CLA, 2007.

[32] L. Terveen and W. Hill, “Beyond recommender systems: Helping people
help each other,” in HCI in the New Millennium, 2001.

[33] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in ASE, 2007, pp. 204–213.

[34] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic recommendation of
API methods from feature requests,” in ASE, 2013.

[35] X. Wang, D. Lo, J. Jiang, L. Zhang, and H. Mei, “Extracting paraphrases
of technical terms from noisy parallel software corpora,” in ACL/IJCNLP,
2009.

[36] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting
duplicate bug reports using natural language and execution information,” in
ICSE, 2008, pp. 461–470.

[37] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining and
recommending API usage patterns,” in ECOOP, 2009, pp. 318–343.

[38] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes.” in ICSE, 2004.

191

