
Accurate Developer Recommendation for
Bug Resolution

Xin Xia∗‡, David Lo†, Xinyu Wang∗, and Bo Zhou∗§
∗College of Computer Science and Technology, Zhejiang University, China

†School of Information Systems, Singapore Management University, Singapore
xxkidd@zju.edu.cn, davidlo@smu.edu.sg, {wangxinyu, bzhou}@zju.edu.cn

Abstract—Bug resolution refers to the activity that developers
perform to diagnose, fix, test, and document bugs during software
development and maintenance. It is a collaborative activity
among developers who contribute their knowledge, ideas, and
expertise to resolve bugs. Given a bug report, we would like
to recommend the set of bug resolvers that could potentially
contribute their knowledge to fix it. We refer to this problem as
developer recommendation for bug resolution.

In this paper, we propose a new and accurate method named
DevRec for the developer recommendation problem. DevRec is
a composite method which performs two kinds of analysis:
bug reports based analysis (BR-Based analysis), and developer
based analysis (D-Based analysis). In the BR-Based analysis,
we characterize a new bug report based on past bug reports
that are similar to it. Appropriate developers of the new bug
report are found by investigating the developers of similar bug
reports appearing in the past. In the D-Based analysis, we
compute the affinity of each developer to a bug report based
on the characteristics of bug reports that have been fixed by
the developer before. This affinity is then used to find a set of
developers that are “close” to a new bug report.

We evaluate our solution on 5 large bug report datasets
including GCC, OpenOffice, Mozilla, Netbeans, and Eclipse
containing a total of 107,875 bug reports. We show that DevRec
could achieve recall@5 and recall@10 scores of 0.4826-0.7989,
and 0.6063-0.8924, respectively. We also compare DevRec with
other state-of-art methods, such as Bugzie and DREX. The results
show that DevRec on average improves recall@5 and recall@10
scores of Bugzie by 57.55% and 39.39% respectively. DevRec
also outperforms DREX by improving the average recall@5 and
recall@10 scores by 165.38% and 89.36%, respectively.

Index Terms—Developer Recommendation, Multi-label Learn-
ing, Topic Model, Composite Method

I. INTRODUCTION

Due to the complexity of software development, bugs are in-
evitable. Bug resolution, which is the diagnosis, fixing, testing,
and documentation of bugs, is an important activity in software
development and maintenance. Bug tracking systems, such as
Bugzilla and JIRA, help developers manage bug reporting, bug
resolution, and bug archiving processes [1]. However, despite
the availability of bug tracking systems, bug resolution still
faces a number of challenges. The large number of new bug
reports submitted to bug tracking systems daily increases the
burden of bug triagers. For Eclipse, it was reported in 2005
that the number of bug reports received daily (around 200

‡The work was done while the author was visiting Singapore Management
University.

§Corresponding author.

reports/day) are too many for developers to handle [2]. As
there are many bug reports requiring resolution and potentially
hundreds or even thousands of developers working on a large
project, it is non-trivial to assign a bug report to the appropriate
developers.

Although only one developer is recorded as the final
bug fixer, bug resolution is fundamentally a collaborative
process [1], [3], [4]. Various developers contribute their
knowledge, ideas, and expertise to resolve bugs. Figure 1
shows a bug report from Eclipse with BugID=2152521. In
the figure, we notice that there are many developers that
contribute their knowledge and post comments to resolve the
bug. The bug reporter is Chris Recoskie who provides
detailed information of the bug. Nine other people, Steffen
Pingel, Mik Kersten, Felipe Heidrich, Dirk
Baeumer, Dani Megert, Boris Bokowski, Steve
Northover, Olivier Thomann, and Grant Gayed,
participated in the resolution of this bug report, and contribute
their expertise to the bug resolution process. The nine devel-
opers are the bug resolvers of this report. Among the nine
developers, Steve Northover is recorded as the fixer of
the bug (as specified in the assigned to field of the bug report).

In this paper, we are interested in developing an automated
technique that processes a new bug report and recommends
a list of developers that are likely to resolve it. We refer to
this problem as developer recommendation for bug resolution
(or developer recommendation, for short) [3], [4]. This is an
extended version of the bug triaging problem [5] that would
only recommend the fixer of a new bug report. Since bug fixing
is a collaborative activity, aside from the final bug fixer, other
developers involved in the bug resolution process also play a
major role.

We propose a technique named DevRec that performs two
kinds of analysis: bug report-based analysis (BR-based) and
developer-based analysis (D-based). The combination of these
two components would improve the overall performance fur-
ther (see Section IV-C). In our BR-based analysis, we first
measure the distance among bug reports. Given a new bug
report, we find other similar past bug reports and recommend
developers based on the developers of these past similar bug
reports. In our D-based analysis, we measure the distance
between a potential developer with a bug report. We char-

1https://bugs.eclipse.org/bugs/show bug.cgi?id=215252

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

72

acterize the distance between a developer and a bug report by
considering the characteristics of bug reports that the developer
helps to resolve before. Given a new bug report, we would
find developers with smallest distance to the new bug report.
DevRec combines BR-based and D-based analysis to assign a
score to each potential developer. A list of top-k most suitable
developers would then be output.

There are a number of recent studies that are related to
ours. The state-of-the-art work on automated bug triaging is
the study by Tamrawi et al. that propose a fuzzy set method
named Bugzie to recommend fixers given a new bug report [5].
Wu et al. address bug resolution problem by proposing a k-
nearest neighbor search method named DREX to recommend
developers given a bug report [3]. These two algorithms are the
most recent studies related to the developer recommendation
problem. Both of them return a list of candidate developers
that are the most relevant for a bug report. Thus we use these
algorithms as baselines that we would compare with.

We evaluate our approach on 5 datasets from different
software communities: GCC2, OpenOffice3, Mozilla4, Net-
beans5, and Eclipse6. In total we analyze 107,875 bug reports.
We measure the performance of the approaches in terms of
recall@k. For the 5 datasets, DevRec could achieve recall@5
and recall@10 scores of up to 0.7989, and 0.8924 respectively.
DevRec on average improves recall@5 and recall@10 scores
of Bugzie by 57.55% and 39.39% respectively. DevRec also
outperforms DREX by improving the average recall@5 and
recall@10 scores by 165.38% and 89.36%, respectively.

The main contributions of this paper are:
1) We propose DevRec, which performs both bug report

based analysis and developer based analysis, to solve
the developer recommendation problem.

2) We experiment on a broad range of datasets containing a
total of 107,875 bugs to demonstrate the effectiveness of
DevRec. We show that DevRec outperform Bugzie [5]
and DREX [3] on the developer recommendation prob-
lem by a substantial margin.

The remainder of the paper is organized as follows. We
present the empirical study and preliminary materials in Sec-
tion II. We present our approach DevRec in Section III. We
present our experiments in Section IV. We present related
work in Section V. We conclude and mention future work
in Section VI.

II. EMPIRICAL STUDY AND PRELIMINARIES

In this section, we first present a simple empirical study
on our collected datasets to understand developer recom-
mendation problem in Section II-A. Next, we introduce the
preliminary materials, i.e., Euclidean distance metric, ML-
kNN [6], and topic modeling [7], that would be used in our
proposed approach DevRec presented in Section III.

2http://gcc.gnu.org/bugzilla/
3https://issues.apache.org/ooo/
4https://bugzilla.mozilla.org/
5http://netbeans.org/bugzilla/
6https://bugs.eclipse.org/bugs/

Fig. 1. Bug Report of Eclipse with BugID=215252 - some comments are
omitted or truncated.

TABLE I
COLLECTED INFORMATION FROM BUG REPORTS

Info. Details Example
Summary Brief description of

a bug.
frequent ”invalid thread access”

Description Detailed description
of a bug.

I’m not sure 100% where the
problem ...

Product Product affected by
the bug.

Platform

Component Component affected
by the bug.

SWT

Developers Bug resolvers,
i.e., developers
that contribute to
the bug resolution
process excluding
the reporter.

Steffen Pingel, Mik Kersten,
Felipe Heidrich, Dirk Baeumer,
Dani Megert, Boris Bokowski,
Steve Northover, Olivier
Thomann, and Grant Gayed

A. Empirical Study

A typical bug report contains many fields, such as reporter,
fixer, creation time, modification time, bug version, platform,
CC list, comment list, etc. In this work, we collected 5
pieces of information from the bug report fields including:
bug summary, bug description, product affected by the bug,
component affected by the bug, and developers participated in
the bug resolution process (i.e., bug resolvers). The details of
these pieces of information, illustrated based on the bug report
shown in Figure 1, is presented Table I.

73

TABLE II
STATISTICS OF COLLECTED BUG REPORTS.

Project Time # Reports # Resolvers # Terms # Avg.Resolvers # Product # Component
GCC 2008-01-01–2010-10-28 5,742 650 3,916 2.56 2 40

Openoffice 2007-03-01–2013-04-07 15,448 1,656 8,291 2.60 37 100
Mozilla 2009-6-23–2010-06-03 26,046 3,812 10,232 2.89 56 511

Netbeans 2008-01-01–2010-01-11 26,240 2,274 10,255 2.45 38 336
Eclipse 2008-01-01–2009-07-23 34,399 3,086 11,234 1.88 114 540

In this paper, we collected 5 datasets from different soft-
ware development communities: GCC, OpenOffice, Mozilla,
Netbeans, and Eclipse. Table II shows the statistics of the
5 datasets that we collected. The columns correspond to the
project name (Project), the time period of collected bug reports
(Time), the number of collected reports (# Reports), the num-
ber of unique bug resolvers (# Resolvers), the number of terms
(i.e., words) in the bug reports (# Terms), the average number
of bug resolvers per bug report (# Avg.Resolvers), the number
of different products (# Products), and the number of different
components (# Component), respectively. All bug reports and
their data are download from their bug tracking systems. We
collected bug reports with status “closed” and “fixed”. For
these reports, the set of bug resolvers have been identified.
Unless the bug is reopened in the future, no additional resolver
would be added. Note that the average number of resolvers
represents the activity degree of the development community,
the higher the average number of developers is, the more active
is the community. In our dataset, Mozilla is the most active
community; for each bug report, on average, there are 2.89
developers that help to resolve the bug.

We identify bug resolvers by looking at the “assigned to”
field and the list of comments in the bug reports. A bug
resolver can be a developer who participates or contributes
idea in a bug discussion, or a developer who contributes code
to fix a bug. In this paper, we do not differentiate between
them; we recommend all developers who contribute to the
bug resolution activity. We notice that for many bug reports
the “assigned to” fields are set to generic names which do
not specify developers. In GCC, 45.29% of the bug reports
are assigned to “unassigned”; In OpenOffice, 12.99% of the
bug reports are assigned to generic names such as “issues”,
“needsconfirm”, and “swneedsconfirm”; In Mozilla, 15.1%
of the bug reports are assigned to ”nobody”; In Netbeans,
8.59% of the bug reports are assigned to ”issues”; In Eclipse,
20.12% of the bug reports are assigned to generic names like
“platform-runtime-inbox”, “webmaster”, and “AJDT-inbox”.
Since these generic names are not actual developers, in this
paper, we do not want to recommend them, and thus they are
excluded from our datasets.

Finally, we also explore the relationship between bug re-
solvers, bug reports, and the product and component fields.
A software system contains many products, and each product
may contain various components. For example, Eclipse has
114 products and 540 components. Columns #Product and
#Component of Table II show the number of products and
components for the 5 software projects. Table III presents
some statistics on the number of bug resolvers and bug reports

TABLE III
RELATIONSHIP BETWEEN NUMBER OF BUG RESOLVERS AND BUG

REPORTS WITH THE PRODUCT FIELD.

Project Max Avg Top 10
GCC 634 331 100%

OpenOffice 607 104 74.97%
Mozilla 1641 143.52 70.57%

Netbeans 567 155.32 45.27%
Eclipse 707 50.85 54.32%

TABLE IV
RELATIONSHIP BETWEEN NUMBER OF BUG RESOLVERS AND BUG

REPORTS WITH THE COMPONENT FIELD.

Project Max Avg Top 10
GCC 264 49.93 85.38%

OpenOffice 818 49.62 76.07%
Mozilla 895 34.28 38.11%

Netbeans 515 32.16 31.48%
Eclipse 472 17.31 31.64%

per product. Table IV presents similar statistics on the number
of bug resolvers and bug reports per component. The first
two columns list the maximum and average number of bug
resolvers per product (or per component) for each software
project. There are variations in the maximum and average
number of bug resolvers per product (or per component) across
the five projects. The last column lists the proportion of bug
reports for the top-10 products or components with the most
number of bug resolvers. We notice that the number of bug
reports per product (or per component) is skewed. Most of
the bug reports are for the top-10 products and components
and for these products and components there are many bug
resolvers. We notice, for example, for OpenOffice, 74.97% and
76.07% bug reports belong to the top 10 products (out of 37
products) and top 10 components (out of 100 components).
For Eclipse, 54.32% and 31.64% bug reports belong to the
top 10 products (out of 114 products) and top 10 components
(out of 514 components). Thus, information of the product and
the component that are affected by the bug is not sufficient to
decide suitable developers to be involved in the bug resolution
process.

B. Preliminaries

1) Bug Report Representation & Euclidean Distance Met-
ric: A bug report b can be represented by a vector of feature
values. A feature represents one characteristic of the bug
report b. In this paper, we use 4 types of features, i.e.,
term, topic, product, and component (see Section III-A). For
example, in Figure 1, we extract words from the summary
and description texts as term features, and we extract topic
features from these words by using topic models [7]; we also
use the product and component field values as the product and
component feature values. Thus, a bug report b can be denoted

74

as (p1, p2, p3, ..., pn), where pi, i ∈ {1, 2, ...n}, is the value
of b’s ith feature.

Suppose that there are two different bug reports b1 =
(p1, p2, ..., pn) and b2 = (q1, q2, ..., qn), then the Euclidean
distance between b1 and b2 is defined by:

Distance(b1, b2) =
√
(p1 − q1)2 + ...+ (pn − qn)2 (1)

2) Multi-Label Classification: The task of multi-label clas-
sification is to predict for each data instance, a set of labels
that applies to it [8]. Standard classification only assigns one
label to each data instance. However, in many settings a
data instance can be assigned by more than one labels. For
developer recommendation problem, each data instance (i.e.,
a bug report) can be assigned multiple labels (i.e., developers).

ML-KNN is a state-of-the-art algorithm in the multi-label
classification literature [6]. For a new instance Xnew, ML-
KNN processes its k-nearest neighbors KNN(Xnew) in the
training dataset. For a label dl in the label set D, it computes
the number of training data instances in KNN(Xnew) with
label dl. We denote the number of data instances with label
dl as CXnew

(dl).
Based on the above count, ML-KNN computes the esti-

mated probability of the new instance Xnew to belong to
label dl (denoted as H l

1(Xnew)) and the estimated probability
of the new instance to NOT belong to label dl (denoted as
H l

0(Xnew)). These two estimates do not necessarily sum up
to 1. The above two estimated probabilities are computed for
every label in the label space D. If H l

1 is larger than H l
0, the

label dl would be assigned to Xnew. More than one labels
satisfying the above could be assigned to Xnew. Instead of
outputting predicted labels for Xnew, we modify ML-KNN to
output a score that combines the two probability estimates for
each label dl as follows:

ScoreML−KNN (Xnew, dl) =
H l

1(Xnew)

H l
0(Xnew) +H l

1(Xnew)

This score is the relative likelihood of dl to be assigned to
Xnew.

3) Topic Modeling: A textual document of a particular topic
is likely to contain a particular set of terms (i.e., words). For
example, a document about a user interface bug is likely to
contain terms such as window, button, etc. A document can
be a mixture of several topics. Topic modeling models this
phenomenon. In our setting, a document is a bug report, and a
topic is a higher-level concept corresponding to a distribution
of terms. With topic modeling, given a new bug report, we
extract a set of topics along with the probabilities that the
they appear in the bug report.

Latent Dirichlet Allocation (LDA) is a well-known topic
modeling technique [7]. LDA is a generative probabilistic
model of a textual corpus (i.e., a set of textual documents)
that takes as inputs: a training textual corpus, and a number of
parameters including the number of topics (K) considered. In
the training phase, for each document s, we would get a topic
proportion vector θs, which is a vector with K elements, and

each element corresponds to a topic. The value of each element
in θs is a real number from zero to one, which represents the
proportion of the words in s belonging to the corresponding
topic in s. After training, the LDA is used to predict the topic
proportion vector θm for a new document m. By this, we map
the terms in the document m into a topic proportion vector θm
which contains the probabilities of each topic to be present in
the document.

III. DEVREC: A COMPOSITE OF BR-BASED AND
D-BASED ANALYSIS

In this section, we propose our DevRec method, to solve
the developer recommendation problem. This section includes
three parts: In Section III-A, we present BR-Based analysis.
In Section III-B, we present D-Based Analysis. Finally, in
Section III-C we present a composite of BR-Based and D-
Based analysis that would result in DevRec.

A. BR-Based Analysis

BR-Based analysis takes in a new bug report BRnew whose
resolvers (i.e., developers that contribute to bug resolution)
are to be predicted and outputs a score for each potential
resolver. BR-Based analysis finds the k-nearest bug reports
to BRnew whose resolvers are known and based on these
resolvers, recommend developers for BRnew. There are two
things that we need to do to realize our BR-Based analysis.
First we need to find the k-nearest neighbors of BRnew (i.e.,
k-nearest bug reports to BRnew). Next, we need a machine
learning technique that could infer the resolvers of BRnew

from the resolvers of its k-nearest neighbors. We describe how
we perform these two steps in the following subsections.

1) Finding K-Nearest Neighbors: To find k-nearest neigh-
bors of BRnew, we first need to find a set of features that
characterize bug reports. Next we need a distance metric that
measures the distance between one bug report to another. We
use the following features to characterize a bug report:

1) (Terms) This is a multi-set of stemmed non-stop words
(see [9]) that appear in the summary and description of
the bug report. Stop words are words that carry little
meaning, e.g., I, you, he, she, etc. We remove all such
stop words. Stemming is the process of reducing a word
to its root form, e.g., both “reading” and “reads” can
be stemmed to “read”. Each of the words is a feature.
The value of each feature is the number of times the
corresponding word appears in a bug report.

2) (Topics) This is a set of topics that appear in the
summary and description of the bug report. We make
use of Latent Dirichlet Allocation described in Section II
which reduces a document into a set of topics along
with the probabilities of the document to belong to
each of the topics in the set. Each of the topics is a
feature. The value of each feature is the probability of
the corresponding topic to belong to the bug report.

3) (Product) This is the product that is affected by the bug
as recorded in the bug report. Each possible product is
a binary feature. The value of each of these features

75

is either 0 or 1 depending if the bug report is for the
corresponding product or not.

4) (Component) This is the component that is affected by
the bug as recorded in the bug report. Each possible
component is a binary feature. The value of each of these
features is either 0 or 1 depending if the bug report is
for the corresponding component or not.

Each bug report would then be represented as a vector of
feature values (aka. a feature vector), which contains all of the
4 feature types, i.e., terms, topics, product, and component
features. The distance between two bug reports could be
calculated by simply computing the Euclidean distance of two
vectors (see Section II). Based on this distance, we can find
the k-nearest neighbors of a new bug report.

2) Infer Resolvers of BRnew: Given the k-nearest neigh-
bors, we would like to predict the resolvers of BRnew based
on the resolvers of its k-nearest neighbors. We consider each
developer as a class label, each bug report as a data point, and
each bug report with known resolvers as a training data point.
Under this setting, the problem is reduced to a multi-label
classification problem: given a data point (i.e., a bug report),
predict its labels (i.e., its resolvers).

We leverage the state-of-the-art work on multi-label learning
namely ML-KNN proposed by Zhang and Zhou [6]. We have
provided a short description of this approach in Section II. The
ML-KNN approach outputs the relative likelihood of a label
to be assigned to a data point. After the application of this
approach, we would have assigned for each potential developer
d, a score that denotes the likelihood of this developer d to be
a resolver of BRnew, denoted by BRScoreBRnew(d).

B. D-Based Analysis

For D-based analysis, we model the affinity of a developer to
a bug report. A developer might have resolved past bug reports
before. This experience of the developer could be used to
model the affinity of the developer to various features of a bug
report. We consider 4 types of features: terms, topics, compo-
nent, and product. Similar features are used by the BR-Based
analysis. However, in D-Based analysis, rather than finding
distances between bug reports, we measure distances between
bug reports and developers. We call the distance between a
developer and a term, a topic, a component, and a product
in a bug report as term affinity, topic affinity, component
affinity, and product affinity respectively. We describe how the
scores measuring the affinity of a term, topic, component, and
product with a bug report could be computed in the following
subsections.

1) Terms Affinity Score: We use the following formula to
compute the term affinity score of a bug report b to a developer
d:

Termsb(d) = 1−
∏
t∈b

(1− nd,t
nt + nd − nd,t

) (2)

where t refers to the terms in b, and nd, nt, and nd,t refer to
the number of bug reports that a developer d has contributed
to in bug resolution activities, the number of reports term t

appears and the number of reports resolved by developer d
that contain term t. We characterize each developer by the top-
TC terms of the highest affinity scores. The default number
of terms (i.e., TC) for each developer is set to 10. The above
formula is based on [5].

2) Topics Affinity Score: In natural language processing,
a topic represents a distribution of terms (or words), and a
document (in our setting, a bug report) is a distribution of
topics. We use Latent Dirichlet Allocation (LDA) [7] to get
the topic distribution for each bug report. Section II provides a
description of LDA. Using LDA, we map the term space of the
original document into the topic space. Each document or bug
report corresponds to one topic vector where a topic vector is
a simply a set of mappings from topics to the probabilities of
the corresponding document to belong to these topics.

Consider a set of topic vectors T corresponding to the set of
all bug reports. Let Td refer to the topic vectors corresponding
to bug reports that developer d helps in the bug resolution
process. Also, given a topic vector v, let v[t] denote the
probability of the corresponding bug report to belong to topic
t – it is an entry in the topic vector v corresponding to topic
t. For a bug report b, we denote b[t] as the probability of the
bug report b to belong to topic t. The topic affinity score of b
to a developer d is given by:

Topicsb(d) = 1−
∏
t∈b

(1−
∑
v∈Td

v[t]∑
v′∈T v

′[t]
× b[t]) (3)

t ∈ b denotes a topic contained in the bug report b. Informally
put, the above formula would be very small if the bug reports
that developer d helps in the bug resolution process share very
little topics with the topics contained in bug report b. It would
be large if they share a lot of common topics.

3) Product and Component Affinity Scores: A developer d
might be biased towards certain products and components. The
definitions of product and component affinity score defined
here are different from those of terms and topics affinity
scores. This is so since each bug report has only one product
and one component.

Consider a bug report collection B. Let Bd refers to bug
reports where a developer d participated before. Also, given
product p, let b[p] denotes whether bug report b is for product
p: b[p] = 1 if b is for product p, and b[p] = 0 otherwise (notice
that for all the products, only one product p has b[p] = 1).
Also, let pb denotes the value of the product field of bug report
b. The product affinity score Productb(d) for bug report b and
developer d is given by:

Productb(d) =

∑
b∈Bd

b[pb]∑
b′∈B b

′[pb]
(4)

Similarly, given component c, let b[c] denotes whether bug
report b is for component c, b[c] = 1 if b is for component
c, and b[c] = 0 otherwise (notice that for all the components,
only one component c has b[c] = 1). Also, let cb denote the
value of the component field of bug report b. The component

76

TABLE V
AN EXAMPLE DATASET WITH 2 TOPICS, 2 PRODUCTS, 3 COMPONENTS

AND 2 DEVELOPERS. PART = PARTICIPATE. X = DOES NOT PARTICIPATE.

BugID Topic 1 Topic 2 Prod. Comp. Dev 1 (D1) Dev 2 (D2)
Train 1 0.1 0.9 P1 C1 PART X
Train 2 0.8 0.2 P1 C2 PART PART
Train 3 0 1 P2 C3 X PART
Train 4 0.5 0.5 P1 C1 X PART
Test 1 0.4 0.6 P1 C1 ? ?

affinity score Componentb(d) for b to a developer d is given
by:

Componentb(d) =

∑
b∈Bd

b[cb]∑
b′∈B b

′[cb]
(5)

Informally put, the above two scores would be very small
if the bug report b does not share any product or component
with past bug reports that developer d participated before. The
two scores would be high if many bug reports that developer
d participated before share the same product and component
as bug report b.

4) An Example: To illustrate topic affinity, product affinity,
and component affinity scores, we take an example bug report
dataset shown in Table V, which has 2 topics, 2 types of
product, 3 types of component and 2 developers. The bug
report with identifier “Test 1” is the bug report whose resolvers
are to be predicted.

Developer 1 participated in 2 bug reports, “Train 1” and
“Train 2”. Developer 2 participated in 3 bug reports, “Train
2”, “Train 3”, “Train 4”. The topic affinity score of developer
D1 and bug report “Test 1” can be computed as:

TopicsTest1(D1) = 1− (1− 0.1 + 0.8

0.1 + 0.8 + 0.5
)×

(1− 0.9 + 0.2

0.9 + 0.2 + 1 + 0.5
) = 0.1511

The value of the product field of bug report “Test 1” is P1. In
the training set, there are three bug report with their product
field set as P1 (i.e., “Train 1”, “Train 2”, and “Train 4”). For
“Train 1” and “Train 2”, developer D1 participated in the bug
resolution activity. The product affinity score of developer D1
and bug report “Test 1” can be computed as:

ProductTest1(D1) =
2

1 + 1 + 1
= 0.67

The value of the component field of bug report “Test 1” is C1.
In the training set, there are two bug reports with their product
fields set as C1 (i.e., “Train 1” and “Train 4”). For “Train 4”,
Developer 1 participated in the bug resolution activity. The
component affinity score of developer D1 and bug report “Test
1” can be computed as:

ComponentTest1(D1) =
1

1 + 1
= 0.5

For developer D2, a similar analysis can be performed to
compute the topic, product, and component affinity scores.

5) D-Based Score: In the previous subsections, we define
the affinity scores for term, topic, product and component.
Definition 1 defines a way to combine all of these scores into
a single score referred to as D-based score.

Definition 1: (D-Based Score.) Consider a bug report b
and a developer d. Let us denote its term affinity score,
topic affinity score, product affinity score, and component
affinity score as Termsb(d), Topicsb(d), Productb(d) and
Componentb(d), respectively. The D-Based score for devel-
oper d and bug report b is given by:

DScoreb(d) = β1 × Termsb(d) + β2 × Topicsb(d) +
β3 × Productb(d) + β4 × Componentb(d) (6)

Where β1, β2, β3, β4 ∈ [0, 1] represent the different contri-
bution weights of the various affinity scores to the overall
D-Based score.

C. DevRec: A Composite Method

Algorithm 1 EstimateWeights: Estimation of γ1, γ2, γ3, γ4,
and γ5 in DevRec
1: EstimateWeights(B,D, T,EC, ITER, SampleSize)
2: Input:
3: B: Bug Report Collection
4: D: Developer Collection
5: T : Bug Report Topic Distribution
6: EC: Evaluation Criterion
7: ITER: Maximum Number of Iterations (Default Value = 10)
8: SampleSize: Sample Size
9: Output:γ1, γ2, γ3, γ4, γ5

10: Method:
11: Build BR-Based Analysis component using B;
12: Build D-Based Analysis component using B;
13: Sample a small subset SampB of B of size SampleSize;
14: for all bug report b ∈ SampB , and developer d ∈ D do
15: Compute the BR-Based score , i.e., BRScoreb(d)
16: Compute the Terms Affinity score, i.e., Termsb(d)
17: Compute the Topic Affinity score, i.e., Topicsb(d)
18: Compute the Product Affinity score, i.e., Productb(d)
19: Compute the Component Affinity score, i.e., Componentb(d)
20: end for
21: while iteration times iter < ITER do
22: for all i from 1 to 5 do
23: Choose γi = Math.random()
24: end for
25: for all i from 1 to 5 do
26: γbest

i = γi
27: repeat
28: Compute the DevRec scores according to Equation (8)
29: Evaluate the effectiveness of the combined model on SampB and D

based on EC
30: if EC score of γi is better than that of γbest

i then
31: γbest

i = γi
32: end if
33: Increase γi by 0.01
34: until γi ≥ 1
35: γi = γbest

i
36: end for
37: end while
38: Return γ1, γ2, γ3, γ4, γ5 which give the best result based on EC

As shown in previous sections, we can get the BR-Based
score and D-Based scores for each new bug report b. In this
section, we propose DevRec, which is a composite method
that combines both BR-Based analysis and D-Based analysis.
A linear combination of the BR-Based and D-Based scores
defined in Definition 2 is used to compute the final DevRec
score.

77

Definition 2: (DevRec Score.) Consider a bug report b and
a developer d. Let the BR-Based score and D-Based score
be BRScoreb(d) and DScoreb(d) respectively. The DevRec
score that computes the expert ranking score of developer d
with respect to bug report b is given by:

DevRecb(d) = α1 ×BRScoreb(d) + α2 ×DScoreb(d) (7)

Where α1, α2 ∈ [0, 1] represent the contribution weights of
BRScore and DScore to the overall DevRec score. If we unfold
DevRecb(d), we get:

DevRecb(d) = γ1 ×BRScoreb(d) + γ2 × Termsb(d) +
γ3 × Topicsb(d) + γ4 × Productb(d)
+γ5 × Componentb(d) (8)

Where γ1, γ2, γ3, γ4, γ5 ∈ [0, 1].
To automatically produce good γ values for DevRec, we

propose a sample-based greedy method. Due to the large size
of bug report collection B, we do not use the whole collection
to estimate gamma weights, instead, we randomly sample a
small subset of B. In this paper, by default, we set the the
sample size as 10% of the number of bug reports in B.

Algorithm 1 presents the pseudocode to estimate good γ
values. We first build the BR-based analysis component and
the D-based analysis component using the whole bug report
collection B (Lines 11 and 12). After we sample a small subset
SampB from B (Line 13), we compute the BR-based score,
term affinity score, topic affinity score, component affinity
score, and product affinity score for each bug report in SampB
and each developer in the whole developer collection D (Lines
14-20). Next, we iterate the whole process of choosing good
γ values ITER times (Line 22). For each iteration, we first
randomly assign a value between 0 to 1 to each γi, for
1 ≤ i ≤ 5 (Lines 22-24). Next, for each γi, we fix the values
of γp where 1 ≤ p ≤ 5 and p 6= i, and we increase γi
incrementally by 0.01 at a time, and compute the EC scores
(Lines 25 -36). By default, we set the input criterion EC as
Recall@k [10], [11] (see Definition 3). Algorithm 1 would
return γ1, γ2, γ3, γ4, γ5 which give the best result based on
EC.

IV. EXPERIMENTS

We evaluate our DevRec method on the collected datasets
described in Table II. We compare our method with Bugzie [5]
and DREX [3]. The experimental environment is a Windows
7 64-bit, Intel(R) Xeon(R) 2.53GHz server with 24GB RAM.

A. Experiment Setup

For each bug report, we extract its bug ID, bug summary
and description information, bug product, bug component and
bug resolvers. We extract the stemmed non-stop terms (i.e.,
words) from the summary and description information. We do
some pre-processing for the bug report collections similar to
DREX [3]: For the small-scale bug report collections, such as
GCC and OpenOffice, we delete the terms which appear less
than 10 times; while for large-scale bug report collections,

such as Mozilla, Netbeans, and Eclipse, we delete the terms
which appear less than 20 times. For each of the 5 bug
report collections, we remove developers who appear less
than 10 times. Since they are not active, recommending these
developers do not help much in bug resolution.

To simulate the usage of our approach in practice, we use
the same longitudinal data setup described in [5], [12]. The
bug reports extracted from each bug repository are sorted in
chronological order of creation time, and then divided into
11 non-overlapping frames (or windows) of equal sizes. The
validation process proceeds as follows: First, we train using
bug reports in frame 0, and test the bug reports in frame 1.
Then, we train using bug reports in frame 0 and frame 1, and
use the similar way to test the bug reports in frame 2, and
so on. In the final fold, we train using bug reports in frame
0-9, and test the bug reports in frame 10. In the training data,
we have, for each report, both the features that characterize
the bug report and the set of resolvers. We use these to train
DevRec, Bugzie, and DREX. In the test data, for each bug
report, we use the features that characterize the bug report to
predict the set of resolvers. We use the resolvers recorded in
the bug repository as the ground truth.

DevRec accepts an evaluation criteria EC as a parameter. In
this work, we consider two evaluation criteria to compare De-
vRec with Bugzie and DREX: recall@5 and recall@10. These
measures are well known information retrieval measures [9]
and recall@10 has also been used to evaluate DREX [3].
DevRec uses LDA which accepts a number of parameters. For
LDA, we set the maximum number of iterations to 500, and
the hyperparameters α and β to 50/T and 0.01, respectively,
where T is the number of topics. By default, we set the
number of topics T to 5% of the number of distinct terms
(i.e., words) in the training data. We use JGibbsLDA7 as the
LDA implementation. We use percentages rather than a fixed
number as the amount of training data varies for different
datasets and different test frames (following longitudinal study
setup [5], [12] described in Section IV-A). If there are more
distinct terms, there are likely to be more topics. For the BR-
Based analysis of DevRec, by default, we set the number of
neighbors to 15 .

Bugzie was first proposed for the bug triaging problem.
However, since it can rank each developer based on the
developer’s suitability to a bug report, we can use it for
our problem too. For Bugzie, there are two parameters: the
developer cache size and the number of descriptive terms.
We use 100% developer cache size and set the number of
descriptive terms to 10. These settings have been shown to
result in the best performance [5]. DREX was proposed to
address the same problem as ours. We compare our approach
to the simple frequency variants of DREX which has been
shown to result in the best performance [3]. We set the number
of neighbors of DREX to 15 (the same as that of DevRec).

7http://jgibblda.sourceforge.net/

78

TABLE VI
RECALL@5 AND RECALL@10 OF DevRec AND BUGZIE, AND THE

IMPROVEMENT OF DevRec OVER BUGZIE (IMPROVE.). THE LAST ROW
SHOWS THE AVERAGE RECALL@5 AND RECALL@10 SCORES OF DevRec

AND BUGZIE, AND THE AVERAGE IMPROVEMENT.

Recall@5 Recall@10
Projects DevRec Bugzie Improve. DevRec Bugzie Improve.

GCC 0.5633 0.4743 18.77% 0.7072 0.6724 5.17%
OpenOffice 0.4826 0.4042 19.38% 0.6063 0.5364 13.05%

Mozilla 0.5592 0.3214 73.98% 0.6755 0.4416 52.96%
Netbeans 0.7073 0.4240 66.81% 0.8021 0.5448 47.24%
Eclipse 0.7989 0.3826 108.79% 0.8924 0.4998 78.55%

Average. 0.6222 0.4013 57.55% 0.7367 0.5390 39.39%

TABLE VII
RECALL@5 AND RECALL@10 OF DevRec AND DREX, AND THE

IMPROVEMENT OF DevRec OVER DREX (IMPROVE.)

Recall@5 Recall@10
Projects DevRec DREX Improve. DevRec DREX Improve.

GCC 0.5633 0.5217 7.97% 0.7072 0.6494 8.90%
OpenOffice 0.4826 0.1695 184.69% 0.6063 0.2511 141.48%

Mozilla 0.5592 0.1063 426.08% 0.6755 0.2854 136.67%
Netbeans 0.7073 0.4853 45.74% 0.8021 0.5629 42.50%
Eclipse 0.7989 0.3045 162.44% 0.8924 0.4108 117.28%

Average. 0.6222 0.3175 165.38% 0.7367 0.4319 89.36%

We evaluate the performance of our DevRec with two
metrics, i.e., recall@k, and precision@k. The definitions of
recall@k and precision@k are as follows:

Definition 3: (Recall@k and Precision@k.) Suppose that
there are m bug reports. For each bug report bi, let the set of
its actual bug resolvers be Di. We recommend the set of top-k
developers Pi for bi according to our method. The recall@k
and precision@k for the m bug reports are given by:

Recall@k =
1

m

m∑
i=1

|Pi ∩Di|
|Di|

(9)

Precision@k =
1

m

m∑
i=1

|Pi ∩Di|
|Pi|

(10)

We are interested to answer the following research ques-
tions:

RQ1 How is the performance of DevRec compared to
those of Bugzie and DREX?

RQ2 What is the performance of the BR-based component
and D-based component?

B. RQ1: Performance of DevRec

In this section, we compare DevRec with other state-of-
art methods, namely Bugzie and DREX. Table VI compares
recall@5 and recall@10 of DevRec and Bugzie. Table VII
compares recall@5 and recall@10 of DevRec and DREX. The
recall@5 and recall@10 of DevRec vary from 0.4826-0.7989,
and 0.6063-0.8924, respectively.

From Table VI, the improvement of our method over Bugzie
is substantial. DevRec outperforms Bugzie by 57.55% and
39.39% for average recall@5, and recall@10, respectively.
In the Eclipse dataset, DevRec achieves the highest improve-
ment of 108.79% and 78.55% over Bugzie for recall@5 and
recall@10, respectively. We notice that the result shown in
Table VI is different from the result presented in [5] due to

TABLE VIII
PRECISION@5 AND PRECISION@10 OF DevRec AND BUGZIE.

Precision@5 Precision@10
Projects DevRec Bugzie Improve. DevRec Bugzie Improve.

GCC 0.2453 0.2077 15.33% 0.1599 0.1514 5.32%
OpenOffice 0.2100 0.1740 17.14% 0.1331 0.1192 10.44%

Mozilla 0.2471 0.1456 41.08% 0.1546 0.1043 32.54%
Netbeans 0.3196 0.1953 38.89% 0.1859 0.1268 31.79%
Eclipse 0.2509 0.1212 51.69% 0.1431 0.0816 42.98%

Average. 0.2546 0.1688 32.83% 0.1553 0.1167 24.61%

TABLE IX
PRECISION@5 AND PRECISION@10 OF DevRec AND DREX.

Precision@5 Precision@10
Projects DevRec DREX Improve. DevRec DREX Improve.

GCC 0.2453 0.2314 6.01% 0.1599 0.1493 7.10%
OpenOffice 0.2100 0.0852 146.48% 0.1331 0.0618 115.37%

Mozilla 0.2471 0.0664 272.14% 0.1546 0.0723 113.83%
Netbeans 0.3196 0.2287 39.75% 0.1859 0.1355 37.20%
Eclipse 0.2509 0.1038 141.71% 0.1431 0.0692 106.79%

Average. 0.2546 0.1431 121.22% 0.1553 0.0976 76.06%

several reasons: first, the problem considered there is different
from ours. In [5], it addresses bug triaging problem, i.e., one
bug report has only one fixer. In this work, we address the
developer recommendation problem, i.e., one bug report has
multiple bug resolvers. Second, we drop generic names, e.g.,
nobody, issues, unassigned, as they do not identify particular
developers. From Table VII, the improvement of our method
over DREX is substantial. DevRec outperforms DREX by
165.38% and 89.36% for average recall@5 and recall@10,
respectively. In the Mozilla dataset, DevRec achieves the
highest improvement of 426.08% and 136.67% over DREX
for recall@5, and recall@10, respectively.

Tables VIII and IX compare the precision@5 and preci-
sion@10 of DevRec, Bugzie, and DREX. The precision@5
and precision@10 of DevRec vary from 0.2100-0.3196, and
0.1331-0.1859, respectively. This numbers might seem low.
However, notice that the number of bug resolvers per bug
report is low. Thus, the optimal precision@k value is low.
For example, in Eclipse, the average number of bug resolvers
per bug report is is 1.88. If we recommend top-10 developers,
the best precision@10 would around 0.188. The precision@10
of DevRec for the Eclipse dataset is 0.1431, which is close
to the optimal value. From Table VIII, the improvement of
our method over Bugzie is substantial. DevRec outperforms
Bugzie by 32.83% and 24.61% for average precision@5, and
precision@10, respectively. From Table IX, the improvement
of our method over DREX is also substantial. DevRec out-
performs DREX by 121.22% and 76.06% for average preci-
sion@5, and precision@10, respectively. The results show that
clearly DevRec outperforms Bugzie and DREX which are the
state-of-the-art techniques.

C. RQ2: Performance of BR-based and D-based Components

DevRec has two components (i.e., BR-based and D-based
components), in this section, we investigate the performance
of each of them. We want to see if the combination of the two
components results in better or poorer performance. Table X
and XI present the recall@5 and recall@10 scores of DevRec
compared with those of BR-based and D-based component.

79

TABLE X
RECALL@5 AND RECALL@10 OF DevRec AND BR-BASED COMPONENT.

Recall@5 Recall@10
Projects DevRec BR. Improve. DevRec BR. Improve.

GCC 0.5633 0.4820 16.87% 0.7072 0.6490 8.97%
OpenOffice 0.4826 0.4670 3.34% 0.6063 0.5728 5.85%

Mozilla 0.5592 0.5487 1.91% 0.6755 0.6567 2.86%
Netbeans 0.7130 0.6974 2.24% 0.8082 0.7873 2.65%
Eclipse 0.7989 0.7873 1.47% 0.8924 0.8595 3.93%

Average. 0.6234 0.5965 5.17% 0.7379 0.7051 4.83%

TABLE XI
RECALL@5 AND RECALL@10 OF DevRec AND D-BASED COMPONENT.

Recall@5 Recall@10
Projects DevRec D. Improve. DevRec D. Improve.

GCC 0.5633 0.5524 1.97% 0.7072 0.6952 1.73%
OpenOffice 0.4826 0.4783 0.90% 0.6063 0.6059 0.07%

Mozilla 0.5592 0.5053 10.67% 0.6755 0.6313 7.00%
Netbeans 0.7130 0.6383 11.70% 0.8082 0.7794 3.70%
Eclipse 0.7989 0.7602 5.09% 0.8924 0.8708 2.48%

Average. 0.6234 0.5869 6.07% 0.7379 0.7165 2.99%

DevRec outperforms the BR-based component by 5.17% and
4.83% for average recall@5, and recall@10, respectively.
DevRec outperforms the D-based component by 6.07% and
2.99% for average recall@5, and recall@10, respectively.
Table XII and XIII present the precision@5 and precision@10
scores of DevRec compared with those of BR-based and D-
based component. DevRec outperforms the BR-based com-
ponent by 2.00% and 3.04% for average precision@5, and
precision@10, respectively. DevRec outperforms the D-based
component by 8.77% and 3.93% for average precision@5,
and precision@10, respectively. The results show that it is
beneficial to combine the BR-based and D-based components.

D. Discussion and Threats to Validity

In this paper, we automatically identify good γ values
for DevRec following Algorithm 1. The γ values would be
optimized (and thus are different) for different datasets and
different training frames in our longitudinal data setup.

Threats to internal validity relates to errors in our experi-
ments. We have double checked our datasets and experiments,

TABLE XII
PRECISION@5 AND PRECISION@10 OF DevRec AND BR-BASED

COMPONENT.

Precision@5 Precision@10
Projects DevRec BR. Improve. DevRec BR. Improve.

GCC 0.2453 0.2417 1.49% 0.1599 0.1563 2.30%
OpenOffice 0.2100 0.2028 3.55% 0.1331 0.1278 4.15%

Mozilla 0.2471 0.2414 2.36% 0.1546 0.1508 2.52%
Netbeans 0.3196 0.3145 1.62% 0.1859 0.1817 2.31%
Eclipse 0.2509 0.2460 1.99% 0.1431 0.1377 3.92%

Average. 0.2546 0.2493 2.00% 0.1553 0.1509 3.04%

TABLE XIII
PRECISION@5 AND PRECISION@10 OF DevRec AND D-BASED

COMPONENT.

Precision@5 Precision@10
Projects DevRec D. Improve. DevRec D. Improve.

GCC 0.2453 0.2093 17.20% 0.1599 0.1454 9.07%
OpenOffice 0.2100 0.2080 0.96% 0.1331 0.1327 0.30%

Mozilla 0.2471 0.2229 10.86% 0.1546 0.1460 5.56%
Netbeans 0.3196 0.2939 8.74% 0.1859 0.1810 2.64%
Eclipse 0.2509 0.2365 6.09% 0.1431 0.1401 2.10%

Average. 0.2546 0.2341 8.77% 0.1553 0.1490 3.93%

still there could be errors that we did not notice. Threats to
external validity relates to the generalizability of our results.
We have analyzed 107,875 bug reports from 5 large software
systems. In the future, we plan to reduce this threat further
by analyzing more bug reports from more software systems.
Threats to construct validity refers to the suitability of our
evaluation measures. We use recall@k and precision@k which
are also used by past studies to evaluate the effectiveness
of developer recommendation [3], [4], and also many other
software engineering studies [11]. Thus, we believe there is
little threat to construct validity.

V. RELATED WORK

In this section, we briefly review DREX, studies on bug
triaging, and other studies on bug report management.

DREX. The most related work to our paper is DREX [3],
which recommends developers for bug resolution. The main
idea behind DREX is that the K-nearest neighbors of a bug
report can help to recommend developers for the bug report.
In DREX, for a new bug report, it first finds the new bug
report’s K-nearest-neighbors. And based on the neighbors’
information, it uses simple frequency counting, and some other
social network analysis, such as degree, in-degree, out-degree,
betweeness, closeness and PageRank to recommend potential
developers for bug resolution.

Our approach DevRec is different from DREX in several
ways: 1) We perform not only BR-Based analysis, but also
D-Based analysis, 2) For the BR-Based analysis we make
use of multiple features which are not only terms but also
topics, product, and component, 3) Also, for the BR-Based
analysis, we make use of the state-of-the-art work on multi-
label classification namely ML-KNN, 4) We consider a larger
dataset consisting of more than 100,000 bug reports from 5
projects to evaluate our approach and compares it with DREX
and Bugzie. We show that our approach outperform DREX by
a substantial margin.

Bug Triaging. Bug triaging refers to the task of finding
the most appropriate developer to fix the bug [13], [14],
[5], [15], [12]. From the machine learning perspective, the
problem can be mapped to single-label learning problem,
where each bug report is assigned to only one developer. Anvik
et al. and Cubranic et al. use machine learning technologies
such as Naive Bayes, SVM, and C4.8 for bug triaging [13],
[14]. Tamrawi et al. [5] propose a method called Bugzie,
which is based on the fuzzy set theory. It caches the most
descriptive terms that characterize each developer and uses
them to measure the suitability of a developer to a new bug
report. Jeong et al. investigate bug reassignment in Eclipse and
Mozilla, and propose a graph model based on Markov chain
to improve bug triaging performance [15]. Bhattacharya et al.
reduce tossing path lengths and improve the accuracy of the
approach by Jeong et al. further [12]. In this work, different
from the above mentioned studies, we consider bug fixing as
a collaborative effort. More than one developer often work to-
gether to resolve a bug. Thus, rather than recommending only

80

the developer that is assigned to fix the bug (aka. the fixer),
we would like to recommend all developers that contribute to
the bug resolution process (the bug resolvers). Our problem
(i.e., developer recommendation for bug resolution) is thus an
extension of the bug triaging problem.

Recently, other information sources aside from bug reports
(e.g., commits and source code) have been used to recommend
appropriate developers. Kagdi et al. uses feature location
technology to find program units (e.g., files or classes) that
are related to a change request (i.e., bug report or feature
request) and then mine commits in version control repositories
that modify those program units to recommend appropriate
developers [16]. Linares-Vásquez et al. propose a method to
recommend developers by also employing feature location
to find relevant files; however, rather than analyzing version
control repositories they recommend developers by looking
to the list of authors at the header comments of the relevant
files [17]. Kevic et al. recommend developers to a bug report
by finding other similar bug reports, recovering the files that
are changed to fix the previous similar bug reports, and ana-
lyzing developers that changed those files [18]. Different from
the above studies, in this work we only analyze information
available in bug reports. Often there is an issue in linking bug
reports to commits that fix the bug [19], [20]. Still, it would be
interesting to combine our approach with the above mentioned
approaches when the links between bug reports and relevant
commits are well maintained.
Other Studies on Bug Report Management. A number of
studies have been proposed to automatically detect duplicated
bug reports [21], [22]. A number of studies have been proposed
to predict the severity labels of bug reports [23], [24]. A
number of other studies locate source code relevant to a bug
report [25].

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a new method DevRec to automat-
ically recommend developers for bug resolution. We consider
two kinds of analysis: bug report based analysis (BR-Based
analysis) and developer based analysis (D-Based analysis).
DevRec takes the advantage of both BR-Based and D-Based
analysis, and compose them together. The experiment results
show that, compared with other state-of-the-art approaches,
DevRec achieves the best performance. DevRec improves the
average recall@5 and recall@10 scores of Bugzie by 57.55%
and 39.39%, respectively. DevRec also outperforms DREX
by improving the average recall@5 and recall@10 scores by
165.38% and 89.36%, respectively.

In the future, we plan to improve the effectiveness of
DevRec further (for example, integrate the LDA-GA method
proposed by Panichella et al. [26], or employ other text mining
solutions, e.g., [27]). We also plan to experiment with even
more bug reports from more projects.

ACKNOWLEDGMENT

This research is sponsored in part by NSFC Program
(No.61103032) and National Key Technology R&D Pro-

gram of the Ministry of Science and Technology of China
(No2013BAH01B03). We would like to thank Jafar M. Al-
Kofahi for providing information about Bugzie. The datasets
and source code of DevRec can be downloaded from https:
//www.dropbox.com/s/43ohauo0dfwufvx/DevRec.7z?m.

REFERENCES

[1] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” in CSCW 2010.

[2] J. Anvik, L. Hiew, and G. Murphy, “Coping with an open bug reposi-
tory,” in ETX 2005.

[3] W. Wu, W. Zhang, Y. Yang, and Q. Wang, “DREX: Developer rec-
ommendation with k-nearest-neighbor search and expertise ranking,” in
APSEC 2011.

[4] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “Dretom: Developer rec-
ommendation based on topic models for bug resolution,” in PROMISE
2012.

[5] A. Tamrawi, T. Nguyen, J. Al-Kofahi, and T. Nguyen, “Fuzzy set and
cache-based approach for bug triaging,” in ESEC/FSE 2011.

[6] M. Zhang and Z. Zhou, “Ml-knn: A lazy learning approach to multi-label
learning,” Pattern Recognition, 2007.

[7] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” Journal of
Machine Learning Research, 2003.

[8] H. J. and M. Kamber, Data Mining: Concepts and Techniques, 2006.
[9] C. Manning, P. Raghavan, and H. Schutze, Introduction to information

retrieval, 2008.
[10] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”

IJDWM, 2007.
[11] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software

information sites,” in MSR 2013.
[12] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning and

multi-feature tossing graphs to improve bug triaging,” in ICSM 2010.
[13] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” in ICSE

2006.
[14] D. Čubranić, “Automatic bug triage using text categorization,” in SEKE.
[15] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug

tossing graphs,” in ESEC/FSE 2009.
[16] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning

change requests to software developers,” Journal of Software: Evolution
and Process, 2012.

[17] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in ICSM, 2012.

[18] K. Kevic, S. C. Müller, T. Fritz, and H. C. Gall, “Collaborative bug
triaging using textual similarities and change set analysis,” in CHASE
2013.

[19] Y. Tian, J. L. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in ICSE, 2012.

[20] T. F. Bissyandé, F. Thung, S. Wang, D. Lo, L. Jiang, and L. Réveillère,
“Empirical evaluation of bug linking,” in CSMR, 2013.

[21] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in ASE, 2011.

[22] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in ICSE,
2010.

[23] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in ICSM, 2008.

[24] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor
classification for fine-grained bug severity prediction,” in WCRE 2012.

[25] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in ICSE, 2012.

[26] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia, “How to effectively use topic models for software engineering
tasks? an approach based on genetic algorithms,” in ICSE 2013.

[27] X. Wang, D. Lo, J. Jiang, L. Zhang, and H. Mei, “Extracting para-
phrases of technical terms from noisy parallel software corpora,” in
ACL/IJCNLP, 2009.

81

