
Recommending People in Developers’ Collaboration
Network

Didi Surian∗, Nian Liu†, David Lo∗, Hanghang Tong‡ Ee-Peng Lim∗ and Christos Faloutsos§
∗School of Information Systems, Singapore Management University

Email: {didisurian, davidlo, eplim}@smu.edu.sg
†College of Software, Zhejiang University

Email: squall405001206@126.com
‡IBM T.J. Watson Research, 19 Skyline Dr., Hawthorne NY, 10532

Email: htong@us.ibm.com
§Department of Computer Science, Carnegie Mellon University

Email: christos@cs.cmu.edu

Abstract—Many software developments involve collaborations
of developers across the globe. This is true for both open-source
and closed-source development efforts. Developers collaborate on
different projects of various types. As with any other teamwork
endeavors, finding compatibility among members in a devel-
opment team is helpful towards the realization of the team’s
goal. Compatible members tend to share similar programming
style and naming strategy, communicate well with one another,
etc. However, finding the right person to work with is not an
easy task. In this work, we extract information available from
Sourceforge.Net, the largest database of open source software,
and build developer collaboration network comprising of infor-
mation on developers, projects, and project properties. Based on
an input developer, we then recommend a list of top developers
that are most compatible based on their programming language
skills, past projects and project categories they have worked
on before, via a random walk with restart procedure. Our
quantitative and qualitative experiments show that we are able
to recommend reasonable developer candidates from snapshots
of Sourceforge.Net consisting of tens of thousands of developers
and projects, and hundreds of project properties.

I. INTRODUCTION

More and more software projects are developed in a col-
laborative fashion involving developers across the globe. This
is true both for industrial and open source projects. Microsoft
has a development center in India, China, USA, etc. Many
software sites enable developers to start, join, and participate
in different projects. Eclipse, Apache Tomcat, MySQL, etc
are examples of successful software projects that come from
a globally distributed team. Among these sites, a super-
repository Sourceforge.Net contains the largest amount of
information on developers working on various projects of
various types. A super-repository is an integrated archive of
multiple projects and contains many information including the
people contributing to various projects, some project properties
such as project categories and programming languages that
build that projects.

Similar to many teamwork endeavors, having a team that
works closely together is essential towards the realization of
the team’s goal. Not everyone works well with everyone else.

Different individuals have different working styles and prefer-
ences. The danger of a dysfunctional team is arguably higher
in a distributed development setting than among developers
working from the same location.

In this work, we would like to help construction of workable
teams especially in a distributed setting and extend the scale
of collaboration among developers. To achieve this goal,
we develop a new approach to recommend people from the
implicit developer’s social or collaboration network extracted
from a database of software projects. Our tool could be used
by project managers, or developers in open-source settings to
know other potentially compatible developers based on past
history of their interactions.

There have been several recent studies on developing a
recommendation system to aid software development. Most of
these studies develop a recommendation system to aid a soft-
ware developer in executing a software maintenance task [34],
[23]. There is a number of recent work that utilizes developers
social network to predict for failures [21], [32]. Most related
to our work is the work by Ma et al. that develops a developer
recommendation system based on usage expertise [16]. While
the work by Ma et al. focuses on fine-grained file-level history
of how developers make changes to different source code files
in a system, our work focuses on coarse-grained history on
which projects and project types developers work. Different
from the work by Ma et al which works on two projects, we
work on a super-repository, c.f., [15], that consists of 151,776
projects, 354 project categories, and 50 different programming
languages. Another related work is by Lungu et al. and Sarma
et al. which proposes approaches to manage a super-repository
via visualization strategies [15], [25]. We believe our approach
is complementary to that of Lungu et al.’s and Sarma et al.’s
by providing a list of people to be recommended to a particular
developer which would complement the visualization of the
super-repository.

Our approach starts by extracting a graph from past history
of projects and developers working on them. The graph
contains three types of nodes: developers, projects, and project

properties. We consider project properties as project category
and programming language. An edge is introduced between
a developer and a project, if the developer has worked on
the project before. An edge is introduced between a project
and a property if the project has a particular property (e.g.,
(written in) C++, Java, (about) Database, etc). With a graph
representation, we could handle heterogeneity inherent in soft-
ware data. We desire a metric to quantify the “social distance”
from one developer to another in the developers’ network,
which takes into account the projects the developers worked
on, the properties of the projects they are involved with before,
and the transitive relationships between the developers (e.g., a
collaborator of a collaborator). We find the similarity score
computed by performing random walk with restart (RWR)
used in search engines to be appropriate. RWR could capture
multi-faceted relationship between two nodes in the graph.
This score is then used to obtain a list of compatible people
to be recommended to the input developer.

We perform a qualitative experiment on a network of
209,009 developers working on 151,776 projects extracted
from Sourceforge.Net1. We recommend people for 20 different
developers and show that our recommendation is reasonable.
We could automatically recommend a sorted list of other
developers based on the projects and properties of projects that
they have worked before. Developers having more similarity
to the input developer would be ranked first in the list. The
process is shown to be scalable as it could be completed in
a few seconds. We also perform a quantitative experiment
on pairs of consecutive snapshots from SourceForge.Net. A
recommendation is good if it eventually leads to a collabora-
tion among developers. We evaluate the proportion of the new
collaborations that correspond to recommendations made by
our tool. The result shows that up to 83.33% accuracy could
be attained.

The structure of the paper is as follows. In Section II, we
discuss related work. We present our approach in Section III.
We describe our experiment results in Section IV. We discuss
some issues in Section V. We finally conclude and describe
future work in Section VI.

II. RELATED WORK

Recently there has been an active interest to mine knowl-
edge from the mass of software data in various formats. Some
studies proposed mining of knowledge from code [10], [11],
[28], [18], from execution traces [30], [26], [7], from software
repositories like SVN or CVS [34], [20], etc. In many of
these studies, a data mining algorithm is deployed to solve a
software engineering task. In this work, we are also interested
in mining knowledge from the mass of software data. In
particular, we focus on developers’ collaboration network
with the purpose of recommending compatible developers.
We make use of direct and transitive history of collaborations
(based on information on past projects and project properties
such as project categories and project programming languages)

1http://sourceforge.net

to recommend a personalized list of recommended developers.
Random walk with restart is used to realize this goal.

There have been several recent work on developing a
recommendation system to aid software development. Most
of these work focus on helping developers with a software
maintenance task. Gall et al. and Zimmermann et al. pro-
posed such recommendation systems based on change sets
i.e., the sets of program elements that change together [8],
[34]. Rastkar and Murphy argued that developers’ interaction
could complement the information from change sets [23]. In
this work, we build a recommendation system not to predict
future maintenance activities, rather to recommend compatible
developers with similar history of past projects, or categories
of projects worked before, or programming language skills.

Social network analysis has drawn much research interests
in various communities [6], [14], [13], [2], [3], [21]. In the
software engineering community, there is a number of recent
work that utilizes developers’ social network information. Bird
et al. extracted a social network from developers’ email com-
munications [3]. They found that the level of email activities
correlates with the amount of changes in the source code.
Pinzger et al. developed an approach to predict failure based
on social networks induced upon dependencies on the code
that developers wrote [21]. Wolf et al. extended the work
to consider social network built upon communication among
developers [32]. Surian et al. mined for frequent patterns
of collaborations [27]. Our work enriches past studies that
leverage developers’ social network, by proposing a new
approach to recommend people based on the projects and
project properties they have worked before.

A recent work by Chen et al. proposed an approach to
recommend friends on social networking sites [5]. Our work
also has a similar flavor. However, we make use of special-
ized information on developers’ social/collaboration networks
namely projects and project properties to build a customized
recommendation system for software developers working in
a super-repository. The work by Chen et al. focuses on
informal friendship-based social network, on the other hand,
our work focuses on semi-formal working relationship among
developers in a software super-repository.

There is also a recent work by Lappas et al. that develops a
new algorithm to recommend a team of experts from a social
network graph [12]. There are two differences between their
work and ours. First, our goal is to extract a list of people
relevant to a particular input developer. The work by Lappas
et al. on the other hand extracts a set of people relevant
to a particular task. We believe it is possible to merge the
two approaches in the future. Second, different from Lappas
et al.’s work, we focus on developers’ social/collaboration
network with information on developers, projects, and project
properties such as project categories and project programming
languages.

Ma et al. developed a developer recommendation system
based on the set of files developers have worked on in the
past [16]. We extend the work by Ma et al. by considering
a higher level of abstraction namely the projects and project

properties the developers have worked on. We also extend the
work by Ma et al. to analyze a super-repository containing
numerous projects rather than a small number of related
repositories. We believe considering both lower (i.e., files)
and higher (i.e., projects and project properties) levels of
abstraction is an interesting future work.

Lungu et al. proposed an approach to visualize a super-
repository [15]. A related visualization study is also performed
by Sarma et al. [25]. Wermelinger et al. [31] proposed an
application of formal concept analysis (FCA) to compute and
visualize the hierarchical ordering of socio-technical relations.
We believe our approach is complementary to that of Lungu
et al.’s, Sarma et al.’s, and Wermelinger et al.’s. By using
both visualization and our approach, users could benefit not
only from the visualization to obtain a general overview of
the super-repository, but also from a more specific information
provided by our system, namely the list of developers that are
likely to be compatible to an input developer in question.

There have also been several work on the analysis of
open source developer communities [24], [33], [17]. Ricca
et al.[24] proposed an approach to identify Heroes in open
source projects. Heroes refer to developers who manage large
and critical portions of a system. Xu et al. and Madey et al.
also studied the open-source software development community
at SourceForge. Xu et al.’s work is related to community
distributions. Madey et al. analyzed developer collaboration
networks in open-source community by using social network
theory. Our work is complementary to that of Xu et al.’s and
Madey et al.’s by developing a recommender tool utilizing the
past history of projects and developers working on them.

There is a number of studies analyzing globally distributed
software development activities [9], [22], [4]. Herbsleb et
al. reported various qualitative experiences learned from
nine globally-distributed software development projects within
Siemens [9]. Ramasubbu and Balan investigated the cost
of globally distributed software development efforts. They
highlighted that the cost of dispersion has significant effect on
productivity and could be mitigated by deploying structured
software engineering processes [22]. Cataldo and Herbsleb
reported networks formed by analyzing communications be-
tween developers in a globally distributed software project.
They found that over time there exists a group of developers
that become the liaisons between teams and locations [4]. In
this study, we complement the above mentioned studies by
proposing a developer recommendation tool that could be used
to promote globally distributed software development. As a
case study, we investigate an open source globally distributed
software development portal namely SourceForge.Net.

III. PROPOSED APPROACH

In this section, we describe the formation of Developer-
Project-Property (DPP) graph from a super-repository. We
then describe our proposed metric to measure the compati-
bility between two developers. Next, we describe how this
metric could be computed fast as various input developers are
presented to the system.

A. Formation of DPP Graph

A super-repository usually comes with a set of tables storing
information on the various projects, types, developers, etc that
are part of the super-repository. Based on these tables, we
extract a Developer-Project-Property (DPP) graph as a target
representation of the developers’ collaboration network.

A DPP graph has a set of nodes and edges. There are
three types of nodes: developer, project, and project properties.
Project properties correspond to project categories and project
programming languages that further describe the project. There
are two types of edges: one connecting developer and project
(d-p edges), another connecting project and project properties
(p-prop) edges. A developer could work on multiple projects.
On the other hand, a project could be associated to multiple
categories. A project could also have several programming
languages used to develop that project. The resultant graph
hence is a tripartite graph. An example of such a graph is
shown in Figure 1.

D1

D2

D3

D4

P1

P2

P3

P4

P5

C1

C2

C3

L1

L2

Developers Projects Properties
Categories
Programming Languages

Fig. 1. Developer-Project-Property (DPP) Graph

We extract information for the construction of the DPP
graph by performing SQL queries to the database containing
information on the super-repository. In the case of Source-
Forge.Net that we study in this paper, we process the raw
database described in [1].

B. Compatibility Metric

Next we describe our proposed compatibility metric. More
compatible developers should have a higher score than less
compatible ones.

Developers in a super-repository worked on various projects.
Two developers worked together before on various projects are
likely to be more compatible than two developers that have not
worked before.

As many developers have not worked with many other
developers before, we also make use of project properties. We
use project properties such as project categories and program-
ming languages used in the project. Each project is associated

to a list of categories. For example, in SourceForge.Net, the
project Notepad++ is associated with the following project cat-
egories: Text Editors, Software Development, etc. Developers
that have developed similar applications (i.e., applications of
the same category but different name) is likely to be more
compatible than those developing totally different types of
applications. Also, developers with many mutual “colleagues”
developing the same/similar projects before is likely to be
more compatible than complete “strangers”. The same is likely
to be true for “colleagues of colleagues” albeit with a lower
likelihood. Furthermore, developers also tend to seek partners
that have similar programming language skills.

The above describes three qualitative criteria for a good
compatibility metric. We find similarity based on random walk
with restart (RWR) first proposed in [19] for search engines,
to be a suitable metric realizing the above criteria. Given a
graph and a node n in the graph, by performing a random walk
starting with n, one will reach various other nodes. Nodes that
are closer to n are more likely to be visited. Nodes that are far
from n are less likely to be visited. One would assign scores
to other nodes based on the likelihood the nodes are visited
by the random walk with restart starting at n.

Considering a DPP and an input developer node dn in
the DPP , developers that have a high score based on RWR
on the DPP would have the desired characteristics of likely
compatible people to be recommended. They would either
have worked on some of the projects dn has worked before,
and/or have worked on many similar projects of the same
category, and/or share many mutual “colleagues”, and/or have
similar programming language skills.

C. Fast Computation of the Metric

To compute the compatibility metric, one could directly
apply a straightforward implementation of random walk with
restart. However, the process would not scale for large graphs:
it either requires quadratic space, cubic pre-computa- tion
time, or slow response time for a given input developer node in
the DPP graph. In order to speed up the process, we employ
the approach proposed in [29], namely B LIN. The approach
is briefly described below.

Let W be the normalized adjacency matrix of the graph and
(1− c) be the re-start probability of random walk with restart.
If we define an n×n matrix Q = (I − cW)−1, where I is an
identity matrix. It turns out the ith column of the matrix Q is
proportional to the ranking vector of the ith query node. The
ranking vector of the ith query node corresponds to the RWR
score of the ith node to the other nodes. It is prohibitive to pre-
compute and store the full Q matrix in the training stage. On
the other hand, simply performing on-the-fly computation of
RWR score in the query stage without any pre-computation
would require a lot of matrix-vector multiplication, which
leads to slow response.

B LIN carefully balances the pre-computation cost in the
training stage and the on-line query cost. The key operation
in the algorithm is a so-called block-linear decomposition
on the normalized adjacency matrix W . That is, we will

approximate W by a block-diagonal matrix W1 plus a low-
rank approximation USV :

W ≈W1 + USV (1)

where W1 is a block-diagonal matrix and it corresponds to
the within community (i.e., dense neighborhood of nodes and
edges in a graph) links; U , S and V are three low rank matrices
and they correspond to the cross-community links.

Then, we have the following approximation for the Q
matrix:

Q = (I − cW)−1

≈ (I − cW1 − cUSV)−1

= Q1 + cQ1UΛV Q1 (2)

where Q1 = (I − cW1)
−1 is easy to compute since we can

do inverse for each diagonal block independently, and Λ =
(S−1 − cV Q1U)−1 is another small matrix inverse. In in the
training stage, we pre-compute and store Q1, Λ, U and V , all
of which are cheap to compute.

In the on-line query stage, we can get the ith column of
Q matrix qi which contains the RWR scores for qi by a few
matrix-vector multiplications:

q0 ← Q1 e1
qi ← V q0
qi ← Λ qi
qi ← U qi
qi ← Q1 qi
qi ← q0 + cqi

where ei is an n × 1 vector with ith element to be 1 and
0s for all the others.

D. Recommending Developers

As the final step, we need to recommend developers based
on the RWR compatibility metric. We first train B LIN on the
DPP graph. Next we query B LIN on the input developer in
question. B LIN computes scores between the input developer
to other k nodes in the graph with the input developer. We
only keep nodes that are developers and sort them based on
the score. A list containing a maximum of top-k developers
is then presented to the user as a recommendation to the
input developer in question. For each of the recommended
developers, we also output the common projects and types
they share with the input developer.

The end-to-end pseudocode of our approach is shown in
Figure 2. The pseudocode on the left describes the training
phase. At line 1, the Developer-Project-Property (DPP) graph
is constructed as described in Section III-A. This DPP is
later broken down into parts via a graph partitioning algorithm
as described in [29] (line 2). Various inverse matrices are
pre-computed based on these partitions (line 3). These pre-
computed inverse matrices are used to speed up the query
phase. The DPP graph and inverse matrices are then output

Procedure RecommendDevelopers Train
Inputs:
DB: A database representing a super-repository;

Outputs:
DPP graph representation of DB;
Pre-computed inverse matrices;

Method:
1: Let DPP = Create a Developer-Project-Property graph

from DB
2: Let DPP PARTS = Break down the DPP graph

into parts following [29]
3: Let PRECOMPUTE = Pre-compute inverse

matrices for graphs in
DPP PARTS
following [29]

4: Output DPP
5: Output PRECOMPUTE

Procedure RecommendDevelopers Query
Inputs:
DPP : Developer-Project-Property graph;
devQ: Input developer in question;
PRECOMPUTE: Pre-computed inverse matrices;
k: Max. num. of top compatible developers to return;

Outputs:
A sorted list of recommended developers;

Method:
6: Compute the RWR score from devQ to other nodes in

DPP based on PRECOMPUTE following [29]
7: Let RECOMMEND = Extract top-k developers sorted

based on their RWR scores
8: For each developer devK in RECOMMEND
9: Let CProj = Find common projects between devQ & devK
10: Let CCat = Find common project categories btw. devQ & devK
11: Let CLang = Find common programming lang. btw. devQ & devK
12: Output (devK,CProj,CCat,CLang)

Fig. 2. Developer Recommendation Algorithm: Training and Query Phase

and are used in the query phase (lines 4-5). The pseudocode
on the right describes the query phase where given an input
developer devQ, a list of top compatible developers are
returned. First, at line 6, the RWR scores between devQ to
the nodes in the DPP graph are computed. The pre-computed
inverse matrices PRECOMPUTE makes this process faster.
Based on these RWR scores, at line 7, we sort the result
in descending order and extract the top-k developers. Infor-
mation on common projects, project categories, and project
programming languages between devQ and top-k developers
are computed and output at lines 8-12.

E. Overall Process

The block diagram of our approach is illustrated in Fig-
ure 3. Our recommendation tool has two phases: training and
query. We would first construct a Developer-Project-Property
(DPP) graph from a super-repository. This graph is later
pre-processed to form pre-computed matrices in the training
phase. The pre-computed matrices would then be used for the
query phase. In the query phase, our tool accepts a set of user
inputs including the developer desiring recommendation. Our
query processor would then produce a list of recommendations
and present the top-k most recommended developers. Figure 2
(left) describes the pseudo-code for the pre-processor. Figure 2
(right) describes the pseudo-code for the query-processor.

IV. EXPERIMENTS

We have conducted both qualitative and quantitative ex-
periments to evaluate our approach. We describe the two
experiments in the following sections. We also describe some
threats of validity.

A. Qualitative Experiment

In this experiment, we show the result of performing various
queries on SourceForge.Net dataset using our recommender
tool. We first describe our experiment settings followed with
our results.

1) Experiment Settings: We analyze SourceForge.Net, the
largest open source software development portal. We use the
database dumps of SourceForge.Net collected by Madey [1].
We focus on tables from May 2008 snapshot that consist of
information about projects that developers work on, various
project categories, and programming languages used in the
projects. There are 209,009 developers working on 151,776
projects in May 2008 snapshot. From these 151,776 projects,
we extract 354 project categories and 90 different program-
ming languages.

We then do several filtering steps based on some basic
intuitions. Our tool makes recommendations based on a devel-
oper’s past history. If a particular developer has only worked
on one or a few projects, the accuracy of our tool could
be adversely affected as we have insufficient data to make
recommendations. Furthermore, for some projects, there are
a lot of developers. Various developers might work on totally
different parts of the project and might even be unaware of the
participation of many other developers in the same project.

Based on the above intuitions, we only include developers
who have more than p projects. Furthermore, we only include
projects which have less than v developers. We refer to this
process as database projection. We denote the projection of
database D on developers working on at least p projects con-
taining at most v developers as Projpv (D). In this qualitative
study, we set p = 7 and v = 3. We investigate different
values of p and v in Section IV-B2. The resultant projected
database, i.e., Proj73 (D), contains 213 projects. These projects
involve 67 developers, 136 project categories, and 27 different
programming languages. We then build a DPP graph based
on these 213 projects. The resultant DPP graph consists of
376 nodes and 1,076 edges.

We process our DPP graph following the procedure de-
scribed in Section III and extract top-k recommended devel-
opers based on user inputs. We use Matlab to perform backend
computation and build the user interface using C#.

A snapshot of the user interface is shown in Figure 4. The

User Query

Query Phase

List of
Recommendation

s1. …..2. …..3.4. …..Query Processor

DPP GraphD1D2D3D4
P1P2P3P4P5

C1C2C3L1L2

Training Phase

Pre-processor

Pre-computed
Matrices

SourceForge.Net
Database Dumps

Fig. 3. Overall Recommendation Process

Fig. 4. UI Snapshots: Query 1 (Left) & Query 2 (Right)

tool requests three data inputs, i.e. user ID2 of a developer
requesting recommendations (input developer), information on
the database snapshot of SourceForge.Net to be used, and
number of recommended developers that will be returned by
the tool. After a user presses the “Recommend” button, the
tool will output a list of top-k developers based on user’s
inputs. The tool also outputs what projects, project categories
and project programming languages that the recommended
developers have in common with the input developer.

Our tool also has a feature to verify whether the top-k rec-
ommended developers will create a real collaboration with the

2Every developer in SourceForge.Net has an unique identifier that differ-
entiates one user from the others.

query developer or not. This feature enables us to check if our
approach is reasonable. We collect multiple SourceForge.Net
snapshots. From these multiple snapshots, we check if the
query developer really make a collaboration with each top-
k recommended developers in the future. The tool outputs the
project ID3 and snapshot where the advised developer really
collaborates with the recommended developers. This feature
is shown in Figure 6.

2) Runtime & Results: The following describes our findings
on querying top-k different developers for recommendations.
The runtime needed for the training (only run once) and
producing top-k recommendations for various queries are

3Every project in SourceForge.Net also has an unique identifier.

shown below. We show the runtime for various k values, i.e.
5, 10, 15, and 20.

k Value Time
5 0.0298s
10 0.0291s
15 0.0297s
20 0.0299s

Next we show our findings on querying 4 different input
developers for recommendations. We also present our tool’s
user interface when showing the results.

Query 1. As the first query, we input a developer with user ID
37687. Using k equals to 5, our tool recommends developers
with user ID 879778, 72656, 34749, 91099, and 452543.
Developer 879778 is ranked higher than the other developers
as it is the only one with some common projects with the
input developer. The rest of the recommended developers have
common project categories and programming languages with
the input developer. Figure 4 shows the result for Query 1.

Query 2. As the second query, we input a developer with user
ID 372260. We use k equals to 5 and our tool recommends
developers with user ID 879778, 37687, 72656, 452543, and
34749. All recommended developers have a common project
category with the query developer, i.e. Software Development.
They also have a programming skill in Java which is the same
with the query developer. Developer 879778 is ranked first as
he has worked together with the input developer on a common
project, i.e. the project with ID 194517. Figure 4 shows the
result for Query 2.

B. Quantitative Results

We first describe our experiment settings and then present
the result of our quantitative experiments. We also present a
sensitivity analysis to evaluate the effect of varying k (i.e., the
number of developers to recommend) on the quality of our
recommendations.

1) Experiment Settings: The previous section describes the
results of our tool on various queries and shows that the
results are reasonable. We would like to also quantitatively
evaluate our tool. A recommendation is good if it eventually
leads to a collaboration among developers. To evaluate how
good our recommendation is we take two consecutive monthly
snapshots, say Do and Dn, of the SourceForge.Net dataset. We
then evaluate the proportion of the new collaborations that
corresponds to recommendations made by our tool. We use
this as a proxy of our recommendation accuracy. In practice,
if our tool is deployed, we believe the result would likely to
be better as it would actively encourage new collaborations.

The following paragraphs describe how our recommender
system is trained, how a new collaboration test set is formed,
and how the accuracy of the recommender system is evaluated.

Training Recommender System. Similar to the qualitative
analysis, we would focus on developers who worked on at
least 7 projects and each project has at most 3 developers.
We perform database projection on Do to result in DSet

(see Section IV-A1). These are the important projects and
developers in Do. We use this to train our recommender system
REngine.

Building Collaboration Test Set. Next, we build a test set
that represent new collaborations in Dn. A collaboration is a
mapping between a developer to a set of other developers he
or she works with. A collaboration test set is thus a set of
mappings. To extract this new collaboration test set Collab,
we follow the following steps:

1) Compare Do and Dn to get a set of new projects NP .
A new project is a project that appears in Dn but not in
Do.

2) Find the set of developers devTest in DSet working on
one or more projects in NP . For these developers we
could use the recommender engine REngine trained on
DSet.

3) For each developer d in devTest and for each project p
in NP that d worked in, we add the mapping d 7→ C,
where C are the collaborators of developer d in project
p, to the collaboration test set Collab.

Evaluating the Accuracy of Recommender Engine. For each
developer devQ in Collab (i.e., each developer in the domains
of the mappings in Collab), we run REngine which returns
a list of recommended developers. We say a recommendation
is successful for a new project P that devQ works on if at
least one person in the recommended list works with devQ
in P . For each collaboration mapping in Collab, there are 2
possible cases for our recommendation: our recommendation
is successful or our recommendation is not successful. We
refer to these two cases as HIT and MISS. Based on these,
we simply compute accuracy by the following formula:

accuracy =
|HIT |

|HIT |+ |MISS|

Issue with SourceForge.Net dataset. We initially thought
that the database dumps of SourceForge.Net collected by
Madey [1] grow over time with new projects added to existing
ones. However, we find that this is not the case. We analyze
database dumps from May 2008 to May 2010. Although the
database dumps grow in size, which means the number of
projects is increasing from one snapshot to others, we find
that not every project from one snapshot still exists in the
subsequent snapshots. However we only use projects that still
exist from Do and Dn. The growth of database dumps could
also be used as an indicator that many new projects are
introduced in the snapshots, which means new collaborations
are formed between developers. We show the growth of the
SourceForge.Net databases from May 2008 to May 2010 in
Figure 5.

The feature Verifier Mode in our tool enables users to
verify if the list of recommended developers will eventually
form a real collaboration with the input developer in a future
snapshot. Figure 6 shows our tool in Verifier Mode. As the
input developer is a developer with user ID 37678, our tool

0

50

100

150

200

250

May-08 Jun-08 Jul-08 Aug-08 Sep-08 Oct-08 Nov-08 Dec-08 Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09 Jul-09 Aug-09 Sep-09 Oct-09 Nov-09 Dec-09 Jan-10 Feb-10 Mar-10 Apr-10 May-10Nu
m

be
r o

f P
ro

je
ct

s Thousands

Snapshots

Number of Project From May 2008 - May 2010
Snapshots

Fig. 5. Number of Projects From May 2008 To May 2010

Fig. 6. Result’s Verification

recommends developers with user ID 879778, 72656, 34749,
91099, and 452543. After clicking “Verify” button, the tool
returns a developer with user ID 879778 who is ranked first
in the recommendation list. Developer (879778) makes future
collaborations with the input developer (37678) in projects
with project ID 166155 and 231108 in June 2008 and July
2008 respectively.

2) Accuracy Results & Sensitivity Analysis: Our approach
takes as input a user-defined parameter k which is the number
of developers to recommend. Using the value of k equals
to 20, for the May 2008 to May 2010 datasets, we could
achieve an accuracy of 83.33%. To evaluate the sensitivity of
our algorithm on the value of k, we vary this k and evaluate
the accuracy of the recommendations. We plot the effects of
varying k on accuracy in Figure 7.

The accuracy values ranges from 78.79% to 83.33%. There
is only 4.54% reduction in accuracy if we use various k values
from 5 to 20. This means that our top few recommendations
are successful. The average time for the training phase is 0.03
seconds and the query phase only needs less than a second
to make recommendations. This shows that our approach is
efficient enough to allow users to perform an interactive query

78.5
79

79.5
80

80.5
81

81.5
82

82.5
83

83.5
84

0 5 10 15 20 25

Ac
cu

ra
cy

 (%
)

k Value

Accuracy at Various k Values

Fig. 7. Accuracy values when varying k

p Value v Value Accuracy (%)
5 2 77.16

3 70.62
6 2 78.57

3 80.21
7 2 79.17

3 83.33

TABLE I
ACCURACY VALUES WHEN VARYING p AND v

with the tool.
We also consider different values of p and v for our database

projection. The accuracy results for various settings of p and
v is shown in Table I. From the results, it can be seen that for
various values of p and v our tool’s accuracy is reasonable.
We must admit when p is very low and v is very high we
notice poor accuracy. However, these are cases where our tool
has insufficient data to make a reasonable recommendations.

C. Threats to Validity

Similar to other empirical studies, there are several threats
to validity in interpreting the results.

Threat to construct validity corresponds to the appropri-
ateness of our evaluation metrics. We evaluate our approach
qualitatively by presenting how our tool could be used and
quantitatively by comparing the number of future collabora-
tions that match our recommendations. We believe these two
evaluation approaches are reasonable. We acknowledge that
the evaluation could be strengthened by a large industrial user
study involving a developer collaboration network in a large
software company. Our system could be deployed for a few
months and successful cases of “happy” collaborations could
be the evaluation metric. This is a potential future work.

Threat to internal validity corresponds to the ability of
our experiments to link the independent variable (i.e., input
variable to be varied during the experiment) and the dependent
variable (i.e., target variable). Our qualitative evaluation is
rather subjective. Experimenter bias is one threat of internal
validity. However, our quantitative and sensitivity evaluations
are objective. The dependent variable, namely the accuracy
measure, is computed based on historical data in Source-
Forge.Net.

Threat to external validity corresponds to the ability to
generalize our results to recommending developers in general.
In this study, we experiment with developers involved in

a large open-source software super-repository. The projects
range from large to small, popular to unpopular, C to Java, etc.
We show that our tool is able to make good recommendations
when there is sufficient data. It remains unexplored how
one could make reasonable recommendations when there is
little data. Also, we have only analyzed open-source software
development. Proprietary/closed-source software development
might follow a different pattern that might impede the effec-
tiveness of our recommendation system.

V. DISCUSSION

It might seem that our approach could be done by simply
performing SQL queries. This is not the case as random walk
with restart captures not only direct relationships between
developers, project, and project properties such as project
categories and programming languages, but also transitive rela-
tionships between them. We also have two additional benefits:
(1) In the case the SQL queries return empty results, our
approach still works by considering the indirect or transitive
relationships; (2) In the case, the SQL queries return too many
results, our approach can output the top-k since we do a
ranking based on random walk with restart algorithm.

We show an example of the case mentioned above in
Figure 8. We consider developer 11970 and k set to 20. For
these inputs, our tool returns a list of recommended developers
including: 405291, 69820, 161, 297846, and 72656. After
performing verification, our tool shows on the right pane
that the input developer makes future collaborations with all
these recommended developers4. All of these developers, i.e.,
developer 405291, 69820, 161, 297846, and 72656, do not
have any common project, project category, and programming
language skill with the input developer. However, due to tran-
sitive relationships captured by our tool that leverages random
walk with restart we are able to recommend successfully.

Sometimes, one might want to look for collaborators/co-
developers that posses a particular skill. Our method could
be naturally extended to support this kind of query by post-
filtering the ranking result by RWR based on a given criteria.
Although our current tool does not directly support such
constrained query, it could be easily extended to find these
developers.

The project properties in our DPP graph are project
categories and project programming languages. Although in
this work we only use 2 types of project properties to construct
DPP graph, it is possible to extend them to include more
types. In this work, we do not conduct a real-life survey with
feedback from actual developers to decide properties to be
used. We assume that in an open-source setting, developers
decide to join in or contribute to a particular project motivated
by who invites them and the project’s details. Regarding the
latter one, there is a tendency that project category and project
programming language are considered by the developers be-
fore they join the project.

4Developer with user ID 72656 is not shown on the screen

Fig. 8. Transitive Relationships

In this work, we do not differentiate developers’ relative
contribution in a project. Some developers act as project
leaders, others contribute most of the project, while yet others
contribute little to the project. We simply take the list of
contributors recorded in SourceForge.Net site. Note that we
do not look into the various SVN/CVS repositories. We
believe one needs to contribute substantially before he or she
is listed as one of the contributor in SourceForge.Net site.
Furthermore analyzing SVN/CVS for tens of thousands of
projects poses a scalability issue. Another issue related to
using SVN/CVS information to analyze a super-repository
is the uniqueness of the committer names in SVN/CVS.
A member of a super-repository could have multiple user
names in various SVN/CVS repositories. Furthermore, two
members in a super-repository could have the same user
name in different SVN/CVS repositories. Indeed, during our
preliminary study on a small set of SVN/CVS repositories of
frequently downloaded projects in SourceForge.Net, we find
that the identifier involved in the most projects is “root” which
likely corresponds to more than one developer.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a new approach to recommend
people from developers’ collaboration network extracted from
a super-repository containing numerous developers, projects,
and project properties.We represent the collaboration network
of developers in the super-repository by a tripartite graph re-
ferred to as Developer-Project-Property (DPP) graph. Based
on the graph, given an input developer, we compute a measure
of compatibility that would rank developers based on the
number of common projects, common project properties, and
their transitive relationships to the input developer. We find
that the similarity measure based on random walk with restart
used in search engine to be very appropriate. We build our

solution on top of a fast random walk with restart solution
that breaks a large graph into parts and pre-compute inverse
matrices of the partial graphs. Each query could then be
performed fast based on the pre-computed inverse matrices.
To evaluate our proposed recommendation approach, we have
performed qualitative and quantitative experiments on a dataset
extracted from database dumps of Sourceforge.Net. The ex-
periment shows that the approach could run fast and produce
a reasonable list of recommendations. In our quantitative
evaluation, we show that our approach could yield up to
83.33% accuracy.

In the future, we plan to extend the evaluation our approach
by means of a user study. An industrial user study on a
network capturing collaborations among software developers
working in various projects of a large corporation would be
interesting. No constraint is currently supported in this work;
in the future we would like to incorporate constraints into the
recommendation system. We plan to develop a query language
that would further help users to specify the various constraints
on their desired collaborators. Aside from recommending
developers, we would also like to investigate the applicability
of random walk with restart to produce different types of
recommendations based on historical software engineering
data.

Acknowledgement. We would like to thank Greg Madey
for sharing with us the SourceForge.Net dataset. We would
also like to thank Shaowei Wang for valuable discussion
and National Research Foundation (NRF) (NRF2008IDM-
IDM004-036) for funding the work.

REFERENCES

[1] M. Antwerp and G. Madey, “Advances in the sourceforge research data
archive (SRDA),” in Int. Conf. on Open Source Systems, 2008.

[2] C. Bird, E. Barr, A. Nash, P. Devanbu, V. Filkov, and Z. Su, “Structure
and dynamics of research collaboration in computer science,” in SDM,
2009.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in International Working Conference
on Mining Software Repositories, 2006.

[4] M. Cataldo and J. Herbsleb, “Communication networks in geographi-
cally distributed software development,” in CSCW, 2008.

[5] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy, ““make new
friends, but keep the old”: Recommending people on social networking
sites,” in Proceeding of The 27th International Conference on Human
Factors in Computing Systems (CHI), 2009.

[6] F. Chua and E.-P. Lim, “Trust network inference for online rating
data using generative models.” in Proceedings of the 16th International
Conference on Knowledge Discovery and Data Mining (KDD), 2010.

[7] F. C. de Sousa, N. C. Mendona, S. Uchitel, and J. Kramer, “Detecting
implied scenarios from execution traces.” in Proceeding of The 14th
Working Conference on Reverse Engineering (WCRE), 2007, pp. 50–
59.

[8] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history.” in Proceeding of International Conference
on Software Maintenance (ICSM), 1998.

[9] J. Herbsleb, D. Paulish, and M. Bass, “Global software development at
Siemens: Experience from nine projects,” in ICSE, 2005.

[10] H. Kagdi and D. Poshyvanyk, “Who can help me with this change
request?” in IEEE 17th International Conference on Program Compre-
hension (ICPC), 2009, pp. 273–277.

[11] H. Kagdi, M. Collard, and J. Maletic, “An approach to mining call-usage
patterns with syntactic context.” in Proceeding of 22nd International
Conference on Automated Software Engineering (ASE), 2007, pp. 457–
460.

[12] T. Lappas, K. Liu, and E. Terzi, “Finding a team of experts in social
networks,” in Proceeding of The 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2009.

[13] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-
messaging network,” in WWW, 2008.

[14] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Densi-
fication laws, shrinking diameters and possible explanations,” in Proc.
2005 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD’05), Chicago, IL, Aug. 2005, pp. 177–187.

[15] M. Lungu, M. Lanza, T. Girba, and R. Heeck, “Reverse engineering
super-repositories,” in Proceeeding of The 14th Working Conference on
Reverse Engineering (WCRE), 2007.

[16] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, “Expert recom-
mendation with usage expertise,” in IEEE International Conference on
Software Maintenance (ICSM), 2009.

[17] G. Madey, V. Freeh, and R. Tynan, “The open source software devel-
opment phenomenon: An analysis based on social network theory,” in
AMCIS, 2002.

[18] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen, “Graph-
based mining of multiple object usage patterns.” in ESEC/SIGSOFT
FSE, 2009, pp. 383–392.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “Pagerank citation
ranking: Bringing order to the web,” in Technical Report, Stanford
University, 1998.

[20] K. Pan, S. Kim, and E. W. Jr., “Toward an understanding of bug fix
patterns.” Empirical Software Engineering, vol. 14, pp. 286–315, 2009.

[21] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures ?” in Proceeding of The 16th International
Symposium on Foundations of Software Engineering (FSE), 2008.

[22] N. Ramasubbu and R. Balan, “Globally distributed software develop-
ment project performance: An empirical analysis,” in FSE, 2007.

[23] S. Rastkar and G. Murphy, “On what basis to recommend: Changesets
or interactions?” in IEEE International Working Conference on Mining
Software Repositories (MSR), 2009.

[24] F. Ricca and A. Marchetto, “Heroes in floss projects: An explorative
study,” in Working Conference on Reverse Engineering (WCRE), 2010.

[25] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, “Tesseract:
Interactive visual exploration of socio-technical relationships in software
development,” in Proceeding of The 31th International Conference on
Software Engineering (ICSE), 2009.

[26] M. Shevertalov and S. Mancoridis, “A reverse engineering tool for
extracting protocols of networked applications.” in Proceeding of The
14th Working Conference on Reverse Engineering (WCRE), 2007, pp.
229–238.

[27] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from a
large developer network,” in Proceeding of The 17th Working Conference
on Reverse Engineering (WCRE), 2010.

[28] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web.” in The 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2008, pp. 327–336.

[29] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart
and its applications,” in Proceeding of The 6th International Conference
on Data Mining (ICDM), 2006.

[30] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage.” in Proceeding of The IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2009, pp. 295–306.

[31] M. Wermelinger, Y. Yu, and M. Strohmaier, “Using formal concept anal-
ysis to construct and visualise hierarchies of socio-technical relations,”
in International Conference on Software Engineering (ICSE), 2009.

[32] T. Wolf, A. Schroter, D. Damian, and T. Nguyen., “Predicting build
failures using social network analysis on developer communication.” in
Proceeding of The 31st International Conference on Software Engineer-
ing (ICSE), 2009.

[33] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of
the open source software development community,” in Proceedings of
The 38th Annual Hawaii International Conference on System Sciences
(HICSS), 2005.

[34] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes.” in Proceedings of The 26th
International Conferences on Software Engineering (ICSE), 2004.

