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Abstract—Many software maintenance activities need to find
code units (functions, files, etc.) that implement a certain con-
cern (features, bugs, etc.). To facilitate such activities, many
approaches have been proposed to automatically link code units
with concerns described in natural languages, which are termed
as concern localization and often employ Information Retrieval
(IR) techniques. There has not been a study that evaluates
and compares the effectiveness of latest IR techniques on a
large dataset. This study fills this gap by investigating ten IR
techniques, some of which are new and have not been used for
concern localization, on a Linux kernel dataset. The Linux kernel
dataset contains more than 1,500 concerns that are linked to over
85,000 C functions. We have evaluated the effectiveness of the
ten techniques on recovering the links between the concerns and
the implementing functions and ranked the IR techniques based
on their precisions on concern localization.
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I. INTRODUCTION

To help with program comprehension and software mainte-
nance, various techniques have been proposed to link units of
program code (e.g. functions, files) with a particular concern,
which are termed as concern localization (e.g. bug localiza-
tion [22], [29], feature location [1], [14], [15], [34]). Many
studies on concern localization use Information Retrieval (IR)
techniques to recover the links between concerns and code
units [16], [24], [26]-[29], [32], [33].

However, most previous studies are evaluated with a rela-
tively small numbers of concerns and small to medium sized
programs. Would IR-based concern localization approaches
remain effective for a large scale software system with a large
number of concerns?

On another related angle, the information retrieval commu-
nity has proposed many alternative IR techniques. For exam-
ple, topic modeling [5], [6] has been shown to perform well
on textual corpora in both natural languages and programming
languages [30]. Would these techniques, some of which have
not been used before for concern localization, achieve better
results than older, simpler IR techniques?

In this paper, we attempt to answer the above questions
by performing an empirical study of the effectiveness of
various IR techniques on a large software system with a large
number of concerns. Specifically, we study the Linux kernel
that consists of more than 1,500 features (i.e. concerns to
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be localized) and over 85,000 C functions (i.e. code units of
interest in our study) in about 10 million lines of code.

We investigate ten IR techniques, including Vector Space
Model (VSM) [23], Smoothed Unigram Model (SUM) [23],
[29], Non-negative Matrix Factorization (NMF) [20], La-
tent Semantic Indexing (LSI) [3], [13], probabilistic LSI
(pLSI) [17], Latent Dirichlent Allocation(LDA) [7], hierarchi-
cal LDA (hLDA) [5], Laplacian pLSI (LapPLSI) [25], Locally-
consistent Topic Modeling (LTM) [9], and Discriminative
Topic Modeling (DTM) [18]. The last four are new and have
not been used before for concern localization.

We measure the effectiveness of the IR techniques with
Mean Average Precision (MAP). We also perform statistical
significance tests to investigate whether the differences in
effectiveness between each pair of techniques are statistically
significant, and arrange the IR techniques into a partial order
based on their effectiveness measures.

II. LINUX KERNEL

The Linux kernel (http://www.kernel.org) was originally
developed for 32-bit x86-based PCs, but has evolved into
a software product line [2], which consists of thousands of
features that can be configured to generate specific kernel
products for vast combinations of architectures, subsystems,
device drivers, etc.

In this study, we use a stable version 2.6.38 of the Linux
kernel released on March 15th, 2011. We filter out many
features having no implementing functions (e.g., some features
are only linked to certain variable declarations), and obtain a
final dataset containing 1,561 features linked to 85,466 non-
empty implementing functions.

We extract the followings from the Linux kernel: 1) features
with textual descriptions that can be used as queries for
concern localization using IR techniques, 2) C functions that
form corpus for concern localization, and 3) ground truth
links between features and their implementing functions for
evaluating the effectiveness of various IR techniques.

Extracting Features as Queries. The Linux kernel manages
features using a feature modeling language (Kconfig) and its
accompanied configuration tool [2]. Each defined feature has
a configuration symbol, a short prompt, a free-form textual
description, together with other information (such as datatype
and default value of the feature, dependencies between fea-
tures), and can be extracted from the Kconfig model.
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Building C Function Corpus. We collect all C functions in
the source code as the candidates linking to each feature. For
each C function in the source code, we transform its function
body, including the C code and comments, excluding macros,
to a bag of words so that IR techniques can be applied. This
step is done with a customized C parser.

Establishing Ground Truth of Feature-Function Links.
Note that the features in the Linux kernel are configured via a
set of feature symbol-value pairs. These feature symbol-value
pairs are used as macros in the makefiles and source code
to control which directories, files, and code blocks would be
compiled. Such correspondence between the feature symbol
and the macros controlling which code gets compiled allows
us to automatically establish the ground truth links between
features and their implementing functions.

For example, by searching for the uses of the
symbol CONFIG_SWAP in the makefiles and source
code, we can infer that the swap feature of the Linux
kernel has 120 implementing functions, including
the two  functions  inactive_anon_is_low() and
inactive_anon_is_low_global() defined in vmscan.c, 77
functions defined in page_io.c, swap_state.c, swapfile.c,
and thrash.c, and 41 functions defined in other source files.

Note that, in fact, we do not need IR techniques to establish
the link between features and code for the Linux kernel.
However, the availability of this ground-truth allows us to
systematically evaluate the effectiveness of IR techniques for
concern localization at a large scale.

III. IR TECHNIQUES

In this section, we describe in brief the ten IR techniques
that we investigate. The ten IR techniques could be categorized
into four groups: vector space model, language modeling,
matrix factorization, and topic modeling.

Vector Space Model. Such models represent each document d
as a vector. Each value in the vector corresponds to the weight
of a term ¢ in d. The weight is often calculated based on term
frequency (i.e., the frequency of the term in the document) and
inverse document frequency (i.e., the reciprocal of the number
of documents containing the term). We use a typical formula
in information retrieval studies for the weight of ¢ in d:

weight(t,d) = tf(t,d) x idf (t, D)

where ¢, d, D, tf(t), and idf(t) correspond to a term, a
document, a set of documents, the term frequency of ¢ in d,
and the inverse document frequency of ¢ in D, respectively.
Given a query containing the short prompt and the descrip-
tion of a Linux kernel feature, and a set of documents which
is comprised of the C code and comments in functions in
the kernel source code, we convert each of them to a vector
representing the weights of the terms in it. We then compute
the similarities between the query vector and all document
vectors; the similarity between two vectors is calculated as
the cosine distance between them [23]. The documents with
high similarities with the query vector are returned as result.

Language Modeling. In this study we consider a simple
model, Unigram Model, that is frequently used and has re-
cently be shown to be effective in bug localization [29].

Matrix Factorization. A large matrix can be factorized into
two smaller matrices in various ways for easier manipulation.
In this study, we only evaluate NMF [20].

We use NMF for information retrieval as follows. We
characterize a set of documents as a term-document matrix.
This document matrix is then decomposed into a smaller
term-feature matrix (not the same kind of features as the
Linux kernel features, but the technical noun used in matrix
factorization) and a feature-document matrix. The feature-
document matrix describes a document as a distribution of
features—for each document, each feature is given a weight.
To compute the similarity of a document in a corpus to a given
query, we compute the cosine distance of their representative
weight vectors. Documents with sufficiently high similarity
scores are returned as the query results.

Topic Modeling. Techniques in this category relate words to
topic and can help to identify synonyms and different words
related to a same topic.

Well-known topic modeling techniques include Latent Se-
mantic Indexing (LSI) [3], [13], Latent Dirichlet Alloca-
tion (LDA) [7], and their extensions, such as probabilis-
tic LSI (pLSI) [17], Laplacian Latent Semantic Indexing
(LapPLSI) [8], [25], hierarchical LDA (hLDA) [5], Locally-
consistent Topic Modeling (LTM) [9], and Discriminative
Topic Modeling (DTM) [18]. These seven topic modeling
techniques are used in our study. We simply consider a query
and every document as a vector of weights. Then, cosine
similarity scores are used again to measure the similarities
between the query and documents, and the documents with
high scores are returned as the query results.

IV. CONCERN LOCALIZATION USING IR

In this section, we describe the process of using IR tech-
niques discussed in Section III for concern localization. A
concern localization approach that leverages IR techniques
could be broken down into two phases: extraction of bag-
of-words representation, and retrieval of relevant code units
implementing a concern. Fig. 1 shows the overall process.

Bag-of-words Extraction. We split the Linux kernel into a
set of functions (i.e. code units of interest) and convert each
function into a bag of words in three steps: tokenization,
stop word (e.g. keywords) removal, and stemming. Each linux
feature is also converted into a bag of words using the three
steps, except that the stop words are the stop words in English
instead of the keywords in C.

Code-Units Retrieval. We feed the bags of words to our
information retrieval engine, which has mainly two steps:

o Model Construction. In this step, all bags of words are
used to build either a vector space model, a language
model, a factorized matrix, or a topic model. This step
takes the most amount of time but is only performed once.
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Fig. 1.

o Link Inference. In this step, a concern is treated as a

query to the IR engine. The engine would return a list of

code units ordered based on their similarity scores against

the query. This link inference step (a.k.a. the query step)
could be repeated for any query.

When we finish the link inference step for every concern,
we could compare all returned results with the ground truth in
the Linux kernel (c.f. Section II) to evaluate the effectiveness
of the IR techniques for concern localization.

Concern Localization using Information Retrieval.

V. EMPIRICAL EVALUATION

In this section, we present our research questions, experi-
mental settings, and results.

A. Research Questions

We are interested in understanding the effectiveness of IR
techniques on concern localization at large. In particular, we
aim to gain insights into the following research questions:

Q1:  Which IR technique performs better than others for
concern localization?

Q2: Do recently proposed, more sophisticated IR tech-
niques outperform older, simpler ones?

Q3: Is the effectiveness of IR-based concern localization
on large datasets comparable to that on small to
medium sized datasets?

Q4: Compared to textual corpora in natural languages, do

IR techniques perform well on software data?

B. Experimental Settings

Four of the ten IR techniques discussed in Section III were
implemented in Java: VSM and SUM were implemented by
ourselves, LDA was an implementation by Phan and Nguyen',
and hLDA was from MALLET’s homepage”. The other six

Uhttp://jgibblda.sourceforge.net/
Zhttp://mallet.cs.umass.edu/

MAP
Technique / Topic # 50 100 303 500
pLSI 0.0138  0.0213  0.0647  0.0853
LapPLSI 0.0147  0.0198  0.0617  0.0781
SUM 0.1520  0.1520  0.1520  0.1520
VSM 0.2626  0.2626  0.2626  0.2626
LDA 0.0077  0.0130  0.0223  0.0491
LSI 0.0179  0.0226  0.0378  0.0524
NMF 0.0123  0.0035 0.0364 oM
hLDA N/A N/A 0.0203 N/A
LT™M oM
DTM O/M
TABLE I

PRECISION COMPARISON AMONG ALL IR TECHNIQUES WITH VARIOUS
NUMBERS OF TOPICS.

IR techniques were implemented in Matlab: NMF was from
IMM DTU? [19], LST was implemented by ourselves, pLSI
was from Peter Gehler’s Code and Dataset Page*, LapPLSI
and LTM were from Deng Cai’s webpage’, and DTM was
provided by its authors [18].

Our evaluation was performed on a PC with a 3.3GHz 2-
core CPU and 4 GiB of memory running Window 7. And
we use Mean Average Precision (MAP), a commonly used
measure in IR community [23], to evaluate the effectiveness
of IR techniques for concern localization.

C. Evaluation Results
A) Raw Results

There are many control parameters used in various IR
techniques. A major parameter common to a number of
techniques is the number of topics that should be used for
model construction. In this study, we use 50, 100, 303, and
500 as the numbers of topics and perform the comparison
accordingly. Note that 303 is used because it is the number
automatically chosen by the 3-level hierarchical LDA, and thus
we use 303 (instead of 300) for fair comparison with other IR
techniques. We use default settings for other parameters.

Table I summarizes the effectiveness of all IR techniques
used. Two of them, LTM and DTM, cannot complete because
of out of memory (“O/M”). NMF ran out of memory for 500
number of topics. hLDA is not applicable (“N/A”) to 50, 100,
and 500 number of topics, because it automatically chooses
a topic number for a corpus (in our case, 303). Each number
indicates the MAP value for each technique; the higher the
better. Fig. 2 shows the corresponding plots.

B) Research Questions Answered

Overall, we compare the effectiveness of the IR techniques
based on MAP. Since the MAP of some IR techniques (e.g.,
NMEF, LSI, pLSI, LDA, LapPLSI) depends on the number of
topics used during link inference, we treat each instance of
such techniques instantiated with a topic number as a different
technique in our comparative evaluation. For example, we use
pLSI(500) to denote the particular instance of pLSI that is
instantiated with 500 topics.

3http://cogsys.imm.dtu.dk/toolbox/
“http://people kyb.tuebingen.mpg.de/pgehler/code/
Shttp://www.zjucadcg.cn/dengcai/LapPLSA/index.html
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Fig. 2. MAP for eight IR techniques with topic number k = 50,100,303,500

1) QI: Better Performing IR Techniques: We rank the IR
techniques based on their MAP measures (c.f. Table I and
Fig. 2), from high to low, as follows:

VSM > SUM > pLSI(500) > LapPLSI(500) >
pLSI(303) > LapPLSI(303) > LSI(500) > LDA(500) >
LSI303) > NMF(303) > LSI(100) > LDA303) >
pLSI(100) > hLDA(3-level) > LapPLSI(100) > LSI(50) >
LapPLSI(50) > pLSI(50) > LDA(100) > NMF(50) >
LDA(50) > NMF(100)

Since MAP is aggregated from the underlying precision
measures for individual queries (which can be viewed as
samples drawn from certain distributions), we employ the
Wilcoxon test [10], [31] to compare each pair of the IR
techniques using their underlying precision measures.

The results of the Wilcoxon tests on all pairs of the IR
techniques can be represented as a partial order as follows,
where some IR techniques have comparable effectiveness
(i.e. their differences are not statistically significant) and are
denoted by ~:

VSM > SUM > pLSI(500) ~ LapPLSI(500) >
pLSI(303) ~ LapPLSI(303) > LSI(500) ~ LDA(500) >
LSI(303) ~ LapPLSI(100) ~ pLSI(100) > NMF(303) >
LSI(100) ~ LapPLSI(50) ~ LDA(303) ~ pLSI(50) >
LSI(50) A LDA(100) > LDA(50) > hLDA(3-level) ~
NMF(50) ~ NMF(100)

Note that this partial order produced by Wilxocon tests is
different from the total order based on the absolute MAP mea-
sures for the IR techniques. For example, MAP for LSI(100)
and pLSI(100) are 0.0226 and 0.0213 respectively, but they
are shifted as approximate (=) in the partial order. The biggest
shifting is for hLDA, from a middle position in the total order
to the bottom in the partial order, which implies that hLDA
may perform badly for some queries.

2) Q2: Newer, More Sophisticated versus Older, Simpler
IR Techniques: Based on the above partial order of the
IR techniques, we have no reason to believe that newer or
more sophisticated IR techniques would outperform older or
simpler IR techniques. A similar observation was also noted
by Rao and Kak in their study on bug localization using
IR techniques [29]. We hypothesize that this phenomenon
is mainly because our dataset (software systems) is quite
different from datasets in natural languages for which the IR
techniques are designed.

VSM is the best performer among all IR techniques, al-
though it is older, and simpler than other techniques in a
number of ways. Some of reasons may be: 1) VSM con-

siders common words when calculating the similarity score
between two documents; 2) VSM does not perform dimension
reduction that is used in many other IR techniques to reduce
probably irrelevant information which may be relevant for
software corpora.

Compared with older IR techniques (e.g., LSI and pLSI),
newer ones (e.g., LDA, hLDA, LapPLSI, LTM, and DTM) are
more complex, but do not necessarily perform better either.

3) Q3: Large versus Small-Medium Datasets: To answer
this question, we compare our results against Rao and Kak’s
results in [29]. Rao and Kak study the effectiveness of five IR
techniques (VSM, SUM, CBDM, LSA, and LDA) on fault
localization using iBUGS [11], [12]—a benchmark dataset
containing several medium-size Java programs with about
three hundreds bugs for fault localization.

There are differences between our results and theirs. In
our study, VSM has the best retrieval precisions for concern
localization, while in their study of fault localization, SUM has
the best precisions. Furthermore, their study shows that LDA
performs the worst among their five IR techniques, while our
study shows that hLDA can perform even worse.

In spite of the differences, both our and their results suggest
that IR techniques can be useful in general for either feature
location or bug localization, and that simpler techniques (e.g.,
VSM and SUM) perform better than more sophisticated tech-
niques (e.g., LSI, LDA, hLDA).

The best MAP score reported in [29] is between 0.14
to 0.15. In our study, the best MAP score is better, i.e.,
0.26. Thus, the effectiveness of concern localization is not
diminished when a large software system is analyzed.

4) Q4: Software Corpora versus Natural Language Cor-
pora: Information retrieval techniques are typically applied on
a corpus of articles in natural languages, while we apply the
techniques on software corpora that have quite different textual
appearance, syntactic structure, and semantics from articles in
natural languages, which would affect the effectiveness of IR
techniques for concern localization in software systems.

For example, using LDA, the MAP measure reported in [30]
(a study of LDA on natural language articles) is between
25-30%, much higher than what we achieved in this study
which is about 1-5%. Further work would be to investigate the
underlying causes and design a customized IR technique that
is suited for concern localization in large software systems.

VI. RELATED WORK

Concern localization is often referred to as feature location,
concept assignment, or bug localization in different work. A
survey on feature location is available in [14]. We highlight
some past studies in this section. Biggerstaff et al. [4] and
Wilde et al. [32] pioneered the research on concept assignment
and feature location. Software reconnaissance by Wilde and
Scully [32] and its extensions (e.g., [33]) identify the parts of
the program that implement a feature by comparing execution
profiles or slices of two sets of carefully designed test cases.

Antoniol et al. [1] apply both a probabilistic and a vector
space model to recover links between source code units and
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free text documents (e.g., manual pages or requirements).
Marcus and Maletic [24] use LSI for a similar purpose. The
underlying assumption is that programmers use meaningful
words for code units, and these words capture application-
specific knowledge. Our study suggests that although this as-
sumption is valid in general, it may be necessary to customize
IR techniques so that they can perform similarly well on
software data, compared to natural language corpora.

A recent work by Rao and Kak [29] describes a similar
study that evaluates the effectiveness of various IR techniques
on fault localization. Our earlier work [21] investigate the
effectiveness of various association measures on fault local-
ization. The subjects examined in this paper are different: our
study considers a much larger software system with a larger
set of concerns using IR techniques; we also investigate four
latest IR techniques that have never been used for concern
localization. Such comparative studies can help gain insights
into the applicability and effectiveness of various techniques
on various software engineering tasks.

VII. CONCLUSION AND FUTURE WORK

In this study, we perform an empirical study on the effec-
tiveness of many IR techniques for the purpose of concern
localization in a large software system. We collect the Linux
kernel dataset that contains more than 1,500 features linked to
over 85,000 functions in about 10 million lines of code. We
explore ten different IR techniques from four different groups:
vector space model, language model, matrix factorization, and
topic modeling, some of which are new and have not been
used for concern localization.

Our evaluation results show that (1) older and simpler
IR technique, such as VSM and SUM, can perform better
than more recent or more complicated IR techniques, such
as NMF, pLSI, LDA, hLDA, and LapPLSI; (2) the same
IR techniques may perform differently on different software
systems for different applications (e.g., feature location versus
bug localization); (3) IR-based concern localization techniques
work as well in a large software system as it is in small-to-
medium sized software systems; and (4) existing IR techniques
may perform worse on software corpora than on natural
language textual corpora.

In the future, we plan to investigate the effects of the param-
eters used in the IR techniques on the precision. We also plan
to investigate more large systems in different programming
languages. It is also interesting to develop a customized IR
technique that is specifically suited for concern localization.
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