
Science of Computer Programming 77 (2012) 743–759

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Mining quantified temporal rules: Formalism, algorithms,
and evaluation
David Lo a, G. Ramalingam b, Venkatesh-Prasad Ranganath b,∗, Kapil Vaswani b
a Singapore Management University, Singapore
b Microsoft Research, India

a r t i c l e i n f o

Article history:
Received 17 February 2010
Received in revised form 28 July 2010
Accepted 12 October 2010
Available online 16 November 2010

Keywords:
Specification mining
Temporal rules
Quantification
Dynamic analysis
Reverse engineering

a b s t r a c t

Libraries usually impose constraints on how clients should use them. Often these con-
straints are notwell-documented. In this paper, we address the problem of recovering such
constraints automatically, a problem referred to as specification mining. Given some client
programs that use a given library, we identify constraints on the library usage that are (al-
most) satisfied by the given set of clients.

The class of rules we target formining combines simple binary temporal operators with
state predicates (composed of equality constraints) and quantification. This is a simple
yet expressive subclass of temporal properties (LTL formulae) that allows us to capture
many common API usage rules. We focus on recovering rules from execution traces and
apply classical data mining concepts to be robust against bugs (API usage rule violations)
in clients. We present new algorithms for mining rules from execution traces. We show
how a propositional rule mining algorithm can be generalized to treat quantification and
state predicates in a unifiedway. Our approach enables theminer to be complete (i.e. , mine
all rules within the targeted class that are satisfied by the given traces) while avoiding an
exponential blowup.

We have implemented these algorithms and used them to mine API usage rules for
several Windows APIs. Our experiments show the efficiency and effectiveness of our
approach.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Libraries and APIs usually impose constraints on how clients should use them but often these constraints are not well-
documented. In this paper, we address the problem of recovering such constraints automatically via dynamic analysis of
clients of an API (i.e. , from a large number of execution traces that use a given API).

Target class of specifications. A key attribute of any specification miner is the class of properties (or specifications) that can
be mined. In this paper, we introduce a class of quantified binary temporal rules with equality constraints (QBEC). This is a
simple yet expressive class of temporal properties that allows us to capture many common (API usage) rules/constraints
such as:

• Temporal rules, such as ‘‘every call tom1() must be preceded by a call tom2()’’.
• Rules with equality constraints on parameters such as ‘‘every call tom5(3, . . .) must be followed by a call tom6(10, ..)’’.
• Quantified (temporal) rules such as ‘‘for every object x, every call tom3(x) must be followed by a call tom4(x)’’.

∗ Corresponding author. Tel.: +91 80 6658 6107.
E-mail addresses: davidlo@smu.edu.sg (D. Lo), grama@microsoft.com (G. Ramalingam), rvprasad@microsoft.com (V.-P. Ranganath),

kapilv@microsoft.com (K. Vaswani).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.10.003

http://dx.doi.org/10.1016/j.scico.2010.10.003
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:davidlo@smu.edu.sg
mailto:grama@microsoft.com
mailto:rvprasad@microsoft.com
mailto:kapilv@microsoft.com
http://dx.doi.org/10.1016/j.scico.2010.10.003

744 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

Importantly, QBEC illustrates three natural dimensions of API usage rules (as shown by the above examples): temporal
operators which impose constraints on the order in which API calls may be made, state predicates which qualify the API
calls referred to in a temporal rule, and quantificationwhich captures data-flow constraints between API calls.

The binary temporal operators we consider have been addressed by several others previously, but we present a new
linear-time algorithm in this respect. Our more important contribution is the formalism we present for handling state
predicates and quantification. Our mining algorithm is complete (i.e. , it mines all rules within the targeted class that satisfy
the desired criteria), while avoiding an exponential blowup that alternative strategies can encounter. An important aspect
of our formalism is that it is fairly general and can be easily extended to other temporal operators as well as a large class of
state predicates.

Bug-tolerant specification-mining. Another important characteristic of specification miners is whether they can tolerate
‘‘input errors’’. For example, given a set of execution traces, one possibility is to compute the set of rules satisfied by all
traces in the given set. Unfortunately, such an approach is not robust to occasional bugs in the programs (under study),
which may produce execution traces that violate valid API rules. Instead, we focus on inferring API usage rules that are
‘‘almost satisfied’’ by a given set of clients (in a sense formalized below).

Data-mining based specification mining. Another distinguishing characteristic of our approach is that it is based on data-
mining. Specifically, we use well-accepted concepts from the data-mining literature to formalize what it means for a rule
to be ‘‘almost satisfied’’ by a given a set of execution traces. This formalization is based on the concepts of support and
confidence. The support for a rule in a given set of traces is a count of the number of ‘‘positive instances’’ of the rule in the
set of traces. The confidence is the ratio of the number of instances satisfying the rule to the number of instances where the
rule is applicable. The mining problem, then, is to identify all rules whose confidence and support in the given set of traces
is above user-provided thresholds.

Efficientmining algorithms. In this paper,we present efficient algorithms forminingQBEC rules.Wepresent a newalgorithm
for mining must-be-followed-by and must-be-preceded-by rules. We also describe algorithms for mining alternation rules.
(These refer to specific temporal operators, which are formally defined later.)

The above algorithms are quite efficient in terms of their dependence on the length of the traces analyzed. Hence, these
work well for mining purely temporal rules. However, mining temporal rules that also incorporate state predicates (such
as constraints on a procedure’s arguments) pose a challenge. In general, the number of candidate rules can be very high
(or even potentially infinite); consequently, the mining can be very expensive. We tackle this problem by using the a priori
property from data mining: this technique prunes the search space of candidate rules by inductively constructing terms
(which eventually form rules) by composing only subterms that occur frequently enough to justify consideration.

Finally, we consider quantified rules. We show that a logical view of quantification enables the above mentioned
propositional rulemining algorithms to be naturally extended tomine quantified rules. This approach also helped us uncover
and handle subtle corner cases correctly.

Eliminating redundant rules. In general, the set of mined rules may contain some redundancy. A rule is redundant if it is
logically implied by another rules. We propose a set of simplifications to eliminate redundancy in a set of mined rules. Such
redundancy elimination can serve as a useful filter before the rules are presented to the user.

Implementation and evaluation. We have implemented our mining algorithms (along with the redundancy elimination
strategies) and evaluated our implementation by applying it to a set of clients of several Windows API, including the
Windows Driver Model (WDM), a framework for device drivers.

Our evaluations show that the mining algorithms are effective and efficient. We were able to mine several rules shipped
with Static Driver Verifier (SDV) [1], a static analysis based tool used to verify that WDM device drivers satisfy a given
set of rules. Further, we were able to mine rules that are currently not shipped with SDV but are suggested in the textual
documentation of WDM.

We also show that the search space of QBEC rules is very large in practice, and that the a priori technique is effective in
pruning this search space. Further, we study the impact of varying confidence and support on the mining. Finally, we show
that our redundancy elimination technique is very effective and useful.

Contributions

The contributions of this paper include:

• A formalism for mining quantified rules. The formalism is novel in introducing quantification to the framework of data-
mining and, in fact, can be applied to standard data-mining problems such as association rule mining.
• A general event (item) quantification technique that enables existing (data-)mining algorithms to mine quantified rules.
• Algorithms tomine binary temporal ruleswhile handling both quantification and state predicates in a unified fashion. The

algorithms are complete, i.e. they mine all rules within the targeted class that have the desired support and confidence
in the given set of execution traces.
• A new linear-time algorithm for mining must-be-followed-by rules.
• An empirical evaluation of our mining algorithm.

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 745

1 0x1 = fopen("usr.txt", ’r’)
2 0x2 = fopen("pwd.txt", ’r’)
3 30 = fread(0x1, . . .)
4 16 = fread(0x2, . . .)
5 0x3 = fopen("db.txt", ’w’)
6 void = fwrite(0x3, . . .)
7 void = fclose(0x3)
8 void = fclose(0x2)
9 void = fclose(0x1)

Fig. 1. An execution trace capturing file access API invocations.

e1:[0x1, fopen, "usr.txt", ’r’]
e2:[0x2, fopen, "pwd.txt", ’r’]
e3:[30, fread, 0x1, . . .]
e4:[16, fread, 0x2, . . .]
e5:[0x3, fopen, "db.txt", ’w’]
e6:[void, fwrite, 0x3, . . .]
e7:[void, fclose, 0x3]
e8:[void, fclose, 0x2]
e9:[void, fclose, 0x1]

Fig. 2. A trace π1 of file access API invocations.

2. Running examples

In the rest of this paper, we will use the execution trace in Fig. 1 as a running example to illustrate various concepts and
techniques.

Fig. 1 is an execution trace of a program that reads from "usr.txt", reads from "pwd.txt", and writes to "db.txt.
Each line in the figure captures an event. For example, line 1 in the trace in Fig. 1 captures the information about an invocation
of fopen with "usr.txt" and ’r’ as the first and second arguments, respectively, and 0x1 as the return value.

For the purpose of simplicity of exposition (via uniformity), invocations that do not return a value are captured as
invocations returning a special value void.

3. An extensible class of temporal rules

In this section, we define various classes of temporal rules that are easily amenable to mining. These are special
kinds of LTL formulae (enhanced to express past-time temporal rules). From an expressiveness perspective, a powerful
language like LTL is a convenient specification formalism. However, formining specifications, it is helpful to consider various
restricted classes of specifications, both for efficiency reasons as well effectiveness reasons. The larger the class of targeted
specifications, the more the potential for noise in the mined results and the more a user is likely to be overwhelmed by a
large number of mined rules. We now introduce a parameterized class of predicates that lets us define various useful classes
of temporal rules, including several classes addressed by previous work in specification mining.

3.1. Traces

Formally, we assume that we are given a set of sequences of events, which we will refer to as traces. We use the symbol
π , possibly subscripted, to denote a sequence. We use the symbol e, possibly subscripted, to denote an event. An example
trace is shown in Fig. 2.

3.2. Events

In the particular instantiation we study, an event is a tuple of primitive values. We consider a primitive value to be a
string or an integer (which can also represent an address or pointer value). Let V denote the set of all primitive values. In
our context, an event represents a particular call to an API method (during an execution) by a client. The tuple captures the
name of the method called, as well as the values of the parameters of this particular call and the return value. Thus, a tuple
[0, foo, 5, 10] represents a call to foo with parameters 5 and 10 whose return value was 0. We will represent such tuples
mnemonically as ‘‘0 ←↪ foo(5,10)’’.

In this representation, the execution trace in Fig. 1 could be represented as an event trace shown in Fig. 2.
More generally, however, an event could be any concrete or abstract representation of a program’s state, and a sequence

could be a corresponding representation of an execution trace. Note that a tuple, in our usage as described above, actually
represents an abstraction of a pair of states, one representing a point where the procedure call begins and one representing
a point where the procedure call ends.

746 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

3.3. Event predicates

An event-predicate is a predicate ξ over events. We will use the notation e |= ξ to denote that an event e satisfies an
event-predicate ξ .

In our setting, an event predicate typically combines a specific procedure name with potential constraints on the
parameter values or return value. As an example, we could have an event predicate ξ that matches calls to a procedure
bar where the second parameter value is 13. If t is a tuple, we will use the representation t ↓ i to denote the i + 1-th
element of the tuple t . Thus, t ↓ 0 denotes the first element of the tuple. We define a set of predicates EC of the form $i = c ,
where i is a non-negative integer and c is a primitive value, whose meaning is defined as follows: a tuple t satisfies the
predicate $i = c iff t ↓ i equals c. We refer to these predicates as equality constraint predicates.

For example, event e1 in trace π1 (in Fig. 1) satisfies the equality constraint predicate $2 = "usr.txt", i.e. e1 |= ($2 =
"usr.txt").

Let EC1 denote the subset of EC consisting of predicates of the form ‘‘$1 = procname’’. These are the simplest event
predicates of interest to us, which check if the given event is a call to a specific procedure.

More generally, we would like to consider any event predicate that can be expressed as the conjunction of one or more
equality constraint predicates. In our context, an event predicate ‘‘$2 = 5’’ is satisfied by an event iff it represents a call
whose first parameter has the value 5. Such an event predicate is typically meaningless without any information about the
procedure that is called. Hence, we restrict ourselves only to conjunctions of equality constraint predicates that include a
constraint of the form ‘‘$1 = procname’’. Let EC∗ denote the set of all such event predicates. Thus, EC∗ is isomorphic to
EC1 × 2EC\EC1 .

We will use the notation ⟨c0 ←↪ c1(c2, . . . , ck)⟩, where each ci, except c1, is either a primitive value or an underscore,
and c1 is a primitive value (representing a procedure name) to represent an element of EC∗. This represents an event
predicate that is satisfied by a call to c1 with parameter values c2 through ck and a return value of c0. Furthermore, we will
use an underscore in place of a constant ci if we do not want any constraint on the corresponding tuple element. In other
words, ⟨c0 ←↪ c1(c2, . . . , ck)⟩ is short for

{$i = ci | 0 ≤ i ≤ k, ci ≠ _}. Further, wewill abbreviate ⟨c0 ←↪ c1(c2, . . . , ck)⟩

to ⟨c1(c2, . . . , ck)⟩when c0 is ‘‘_’’.

Example 1. Consider event e1 = [0x1, fopen, "usr.txt", ’r’] in trace π1. ⟨_ ←↪ fopen(_, _)⟩, ⟨0x1 ←↪
fopen(_, _)⟩, and ⟨0x1 ←↪ fopen(_, ’r’)⟩ are predicates in EC∗ that are satisfied by e1.

3.4. Temporal operators

We construct temporal formulae (or temporal rules) by combining event predicates using temporal operators. We
currently consider two types of temporal operators, the ‘‘eventual’’ operator and the ‘‘alternation’’ operator, in two flavors
each (forward and backward). This gives us the following temporal operators: ξ1

∗

� ξ2 (forward eventual operator), ξ2
∗

� ξ1

(backward eventual operator), ξ1
a

� ξ2 (forward alternation operator), and ξ2
a

� ξ1 (backward alternation operator) where
ξ1 and ξ2 represent event predicates. The meaning of these operators is defined below.

The temporal formula ξ1
∗

� ξ2 represents the rule that any occurrence of ξ1 must eventually be followed by an occurrence
of ξ2. More formally, we say that a sequence π = e1e2 · · · en satisfies the temporal formula ξ1

∗

� ξ2 (denoted π |= ξ1
∗

� ξ2)
iff for any ei |= ξ1 there exists a j > i such that ej |= ξ2.

For example, the temporal formula ⟨fopen(_,’r’)⟩
∗

� ⟨fclose(_)⟩ represents the rule that any call to fopen with ’r’
as the second argument should be followed by a call to fclose. In trace π1, e1 |= ⟨fopen(_,’r’)⟩, e2 |= ⟨fopen(_,’r’)⟩,
e4 |= ⟨fopen(_,’r’)⟩, and e7 |= ⟨fclose(_)⟩; hence, π1 |= ⟨fopen(_,’r’)⟩

∗

� ⟨fclose(_)⟩.
Similarly, the temporal formula ξ2

∗

� ξ1 represents the rule that any occurrence of ξ1 must be preceded by an occurrence
of ξ2.

The temporal formula ξ1
a

� ξ2 represents the rule that (i) any occurrence of ξ1 must eventually be followed by an
occurrence of ξ2; (ii) furthermore, an occurrence of ξ1 cannot be followed by another occurrence of ξ1 before an occurrence
of ξ2.

For example, the temporal formula ⟨lock(0x4)⟩
a

� ⟨unlock(0x4)⟩ represents the rule that any call to lock with the
first argument of 0x4 should be followed by a call to unlock with the first argument of 0x4 and no intervening calls
to lock with the first argument of 0x4. In trace π2, e1 |= ⟨lock(0x4)⟩, e3 |= ⟨unlock(0x4)⟩, e5 |= ⟨lock(0x4)⟩, and
e6 |= ⟨unlock(0x4)⟩; hence, π2 |= ⟨lock(0x4)⟩

a
� ⟨unlock(0x4)⟩ due to event pairs (e1, e3) and (e5, e6) (see Fig. 3).

The formula ξ2
a

� ξ1 is similar, but in the backward direction.
In all of the rule forms described above, we refer to ξ1 as the antecedent and ξ2 as the consequent of the rule. (Notice that

an occurrence of an event satisfying the antecedent implies the occurrence of an event satisfying the consequent. However,
the temporal order of the antecedent and the consequent events are different for forward and backward rules.)

We will use the symbol
←→
EA to denote the set of four temporal operators defined above.

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 747

e1 [void, lock, 0x4]
e2 [void, lock, 0x5]
e3 [void, unlock, 0x4]
e4 [void, unlock, 0x5]
e5 [void, lock, 0x4]
e6 [void, unlock, 0x4]

Fig. 3. An event trace π2 capturing synchronization API invocations.

Example 2. Consider the typestate property (lock;unlock)∗ that says that lock and unlock operations have to occur in
strict alternation. This property can nowbe expressed using the above operators as (lock

a
� unlock)∧(lock

a
� unlock).

3.5. Quantification

We will refer to the type of temporal rules considered so far as propositional temporal rules. We use quantification to
introduce constraints involving parameter (and return) values of different events in a temporal rule, as in ‘‘Every call to
foo(x) must be preceded by a call to bar that returned x’’. This rule can be expressed formally as: ∀x.⟨x ←↪ bar()⟩

∗

�
⟨foo(x)⟩.

Formally, we need to first generalize event predicates to allow event predicates that contain free variables. In our
instantiation, we allow equality constraints of the form ‘‘$i = x’’, where x is a free variable. For clarity, we shall refer to event
predicates with free variables as quantifiable event predicates and to event predicates with no free variables as propositional
event predicates. A binding θ is a map from free variables to (primitive) values. Given a quantifiable event predicate ξ , and a
binding θ for all the free variables occurring in ξ , we will use ξ [θ] to denote the event predicate obtained by replacing every
variable x in ξ by its value θ(x).

For example, event e1 = [0x1, fopen, "usr.txt", ’r’] in trace π1 can be denoted by the quantifiable event
predicate $1 = fopen ∧ $3 = x along with the binding [x → ’r’].

In such a setting, a quantified forward-eventual rule is of the form ∀X⃗ .ξ1
∗

� ξ2 where ξ1 and ξ2 have the same set of free
variables X⃗ . We say that a sequence π = e1e2 · · · en satisfies the quantified formula ∀X⃗ .ξ1

∗

� ξ2 iff for some binding θ of
values to the free variables in X⃗ , if ei |= ξ1[θ] then there exists a j > i such that ej |= ξ2[θ].

In trace π1, e1 |= ⟨lock(x)⟩[θ] relates to e3 |= ⟨unlock(x)⟩[θ] and e5 |= ⟨lock(x)⟩[θ] relates to e6 |= ⟨unlock(x)⟩[θ]
via θ = [x → 0x4]. Similarly, e2 |= ⟨lock(x)⟩[θ] relates to e4 |= ⟨unlock(x)⟩[θ] via θ = [x → 0x5]. Hence,
π1 |= ∀x.⟨lock(x)⟩

∗

� ⟨unlock(x)⟩.
The quantified form of other rules and their meanings are defined in a similar fashion.

Note. The above definition constrains the antecedent and the consequent to have the same set of free variables, without
any loss of generality. A rule such as ∀x.⟨foo(x)⟩

∗

� ⟨bar()⟩ is equivalent to the unquantified rule ⟨foo(_)⟩
∗

� ⟨bar()⟩.
The rule ∀x.⟨foo()⟩

∗

� ⟨bar(x)⟩ cannot be satisfied if the quantification is over an infinite domain, and is equivalent to a
conjunction of unquantified rules ∧k

i=1⟨foo()⟩
∗

� ⟨bar(vi)⟩ otherwise.

3.6. Summary

Note that we can obtain different classes of rules by considering the following dimensions: (a) the set of temporal
operators allowed, (b) the set of event predicates allowed, and (c) the degree of quantification allowed. Let EP denote a
set of event predicates, T denote a set of temporal operators, and n denote a non-negative number. We define F(EP, T, n) to
be the set of temporal rules built out of event predicates in EP and the temporal operators in T and consisting of at most n
quantified variables.

In the rest of the paper, we present a formalization of the mining problem and present our mining algorithms by
considering the following, increasingly richer, classes of rules.

1. F(EC1,
←→
EA, 0): We first consider propositional temporal rules such as ⟨foo⟩

∗

� ⟨bar⟩.
2. F(EC∗,

←→
EA, 0): We then consider propositional temporal rules with equality constraints, such as ⟨foo(3)⟩

∗

� ⟨bar(7)⟩.
While we use equality constraints to illustrate our algorithm and our experimental evaluation is restricted to this class,
the algorithm we present is more generally applicable. It can handle event predicates that can be expressed as the
conjunction of predicates belonging to a finitely instantiable set of predicates, defined as follows. A set S of event predicates
is said to be finitely instantiable if any event can satisfy at most a finite number of predicates belonging to S. Any finite
set S is trivially finitely instantiable. Note that the set EC is infinite but finitely instantiable.

3. F(EC∗,
←→
EA, k ≥ 1): We then consider quantified rules with equality constraints such as ∀x.⟨foo(x)⟩

∗

� ⟨bar(x)⟩. In our
experimental evaluation, we restrict attention to rules with one level of quantification (k = 1), but our algorithms apply
to any value of k.

748 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

Discussion. We briefly discuss other interesting classes of rules. One important class is that of non-temporal rules [2]: e.g.,
a rule that the first parameter of foo must be non-null. This can also be expressed as a trivial (temporal) operator ξ1

s
� ξ2,

whose meaning is that any event satisfying ξ1 must also satisfy ξ2.
Some of the previous work on specification mining has focused on mining temporal rules captured as a finite-state

automaton. We note that many commonly observed finite-state automaton rules can be expressed as the conjunction of
simple temporal rules of the above form. The temporal operators we study correspond to (templates) for a small finite-
state automaton. However, unlike techniques for mining a single finite-state automaton, we focus on mining the set of
all finite-state automaton of a given template satisfied by a given set of traces. This approach has certain advantages. For
instance, assume that we have a library with k different temporal rules fi

∗

� gi, 1 ≤ i ≤ k. Expressing these rules as a single
finite automaton would require O(2k) states. Since finite-state automaton mining algorithms tend to limit their attention
to automatons with a limited number of states, it would be easy to miss mining these temporal rules in a single automaton-
mining approach. In contrast, approaches that mine a set of finite automaton, such as ours, can handle this scenario easily
enough. In particular, mining the set of k temporal rules in the above example is straightforward with our approach.

Though we restrict our attention to a specific class of temporal operators, namely
←→
EA , our approach for handling event

predicates and quantification can be used for other temporal operators as well.

4. The problem

In this section we formally define the problem considered in this paper. Informally, our goal is: given a set T of traces,
identify the set of all rules r from the class of temporal rules (defined in the previous section) such that we can say with
‘‘high confidence’’ that T satisfies r .

We use a well-accepted definition from the data-mining literature [3] to formalize the problem. The first step in this
formalization is to define the notion of support and confidence for a rule r in a set T of traces.

Propositional temporal rules. Let π1, . . . , πn be the set of given sequences. Let π [j] denote the j-th element of a sequence
π and the ordered pair (i, j) denote the position of the j-th element of the i-th sequence πi. We say that position (i, j) is a
witness for the event predicate ξ if πi[j] |= ξ . Similarly, we say that position (i, j) is a witness for the temporal rule ξ1

∗

� ξ2
if (i, j) is a witness for ξ1 and there exists a witness (i, k) for ξ2 with k > j.

Given a temporal rule ξ1
∗

� ξ2, we define its support as the number of witnesses for the rule and its confidence as the
ratio of its support to the number of witnesses for ξ1.

For example, in trace π1, positions (1, 1) and (1, 2) (events e1 and e2, respectively) are witnesses to ⟨fopen(_,’r’)⟩. These
positions are also witnesses for the rule ⟨fopen(_, ’r’)⟩

∗

� ⟨fclose(_)⟩. Hence, the number of witnesses for the antecedent
of this rule is 2, the the support for the rule is 2, and the confidence for the rule is 1 (=2/2).

Support and confidence of rules with other temporal operators are similarly defined. The support of any event predicate
ξ is also defined to be the number of witnesses for ξ .

Quantified temporal rules. While dealing with quantification, we say that position (i, j) is a witness for a quantifiable event
predicate ξ(X⃗) if there exists a binding θ for X⃗ such that πi[j] |= ξ [θ]. As in the case of propositional temporal rules, we say
that position (i, j) is a witness for the quantified temporal rule ∀X⃗ .ξ1

∗

� ξ2 if there exists a binding θ for X⃗ such that (i, j) is
a witness for ξ1[θ] and there exists a witness (i, k) for ξ2[θ] with k > j. With these definitions of witnesses, the notion of
support and confidence for propositional temporal rules carries over to quantified temporal rules.

For example, in trace π2, there are 3 witnesses (2, 1), (2, 2), and (2, 5) for ⟨lock(x)⟩. These are also witnesses for the
rule ⟨lock(x)⟩

∗

� ⟨unlock(x)⟩. Hence, the number of witnesses for the antecedent of this rule is 3, the support for the rule
is 3, and the confidence for the rule is 1 (=3/3).

Problem definition. Given a set of traces T, a positive integer Smin, and a value Cmin in the range [0,1], identify all rules
belonging to class QBEC whose support in T is at least Smin and whose confidence in T is at least Cmin.

5. Mining algorithms

In this section, we describe our mining algorithms. For the sake of brevity, we only describe the algorithms to mine the
forward forms of rules as these algorithms can be trivially adapted to mine the backward forms of rules.

5.1. Forward-eventually rules

In this sectionwe present our algorithm formining
∗

� rules.Wewill start with the simplest form of these rules, and then
consider increasingly richer forms of these rules.

5.1.1. Propositional rules with no equality constraints
We first consider mining rules such as ⟨foo⟩

∗

� ⟨bar⟩, which involve only the temporal ordering of procedure calls and
not the parameters or return-values of these calls. The design of our algorithm is influenced by two key insights.

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 749

PropositionalMustFollowEventually(T , Smin, Cmin)
1 # First Phase: Initialize
2 Preds←

t∈T

e∈t PredsOf (e)

3 FreqPreds← {ξ ∈ Preds | Supp(ξ , T) ≥ Smin}

4 for each (ξ1, ξ2) ∈ FreqPreds× Preds
5 do NR[ξ1, ξ2] ← 0
6 # Second Phase: Mine rule instances
7 for each t in T
8 do for each i← 1 to |t|
9 do for each ξ ∈ PredsOf (t[i])

10 do last[ξ] ← i
11 for each ξ ∈ Preds
12 do NP [ξ] ← 0
13 for i← 1 to |t|
14 do e← t[i]
15 for each ξe in PredsOf (e)
16 do if last[ξe] = i
17 then for each ξf in FreqPreds
18 do NR[ξf , ξe] ← NR[ξf , ξe] + NP [ξf]
19 NP [ξe] ← NP [ξe] + 1
20 # Third Phase: Identify significant rules
21 Rules← ∅
22 for each NR[ξ1, ξ2] = s
23 do if s ≥ Smin ∧ (s/Supp(ξ1, T)) ≥ Cmin

24 then Rules← Rules ∪ {ξ1
∗

� ξ2}
25 return Rules

Fig. 4. Algorithm to mine ξ1
∗

� ξ2 rules composed of propositional event predicates. PredsOf (e) is the set of all propositional event predicates satisfied by
event e and Supp(φ, T) is the total number of φ satisfying events in T .

The first insight is based on the following observation. To compute the support and confidence for the rule ⟨foo⟩
∗

� ⟨bar⟩
in a trace, it is sufficient to consider the last occurrence of bar in the trace (ignoring the earlier occurrences of bar). Given
the last occurrence of bar in the trace, we then just need the number of occurrences of foo that precede it: this gives us the
support for rule ⟨foo⟩

∗

� ⟨bar⟩ in the given trace. The support for the rule in a set of traces can be computed by just adding
its support from each trace. Given the support, we just need to know the total number of occurrences of foo in all the traces
to compute the confidence.

We can identify the last occurrence of every procedure in a trace in a single pass through the trace. Similarly, we can
compute the occurrence count of every procedure in every prefix of the given trace in a single pass through the trace. This
leads to an algorithm whose complexity is linear in Nl, the sum of the lengths of the input traces. The worst-case time
complexity of the algorithm is Nl.Np where Np is the number of distinct procedures.

The second insight draws from the use of an a priori property [3] in the data mining community. The following
(straightforward) theorem serves as the basis for applying the a priori property:

support(ξ1
∗

� ξ2) ≤ support(ξ1).

This theorem says that the support for a rule ⟨foo⟩
∗

� ⟨bar⟩ can be nomore than the support for foo (i.e. , the total number of
occurrences of foo in the traces). We say that a procedure p is frequent if its support is at least Smin. It follows that in mining
rules of the form ⟨f ⟩

∗

� ⟨g⟩ it suffices to consider only procedures f that are frequent.
Using this optimization reduces the time complexity of the algorithm to Nl.Fp where Fp is the number of frequent

procedures (which is often smaller than the number of procedures recorded in a trace). While this improvement may not
appear exciting, the a priori property will be significant as we expand our scope to more general forms of rules.

5.1.2. Propositional rules with equality constraints
Wenow considermining rules of the form ξ1

∗

� ξ2, where either ξi may include equality constraints. The intuitions of the
earlier approach carry over. A key distinction, however, is that in the earlier approach every event satisfies only one predicate
of interest. In the current setting, an event can satisfy many different event predicates. Note that it is straightforward to
enumerate the set of predicates from EC∗ that an event satisfies. The algorithm is presented in Fig. 4 and it operates in three
phases.

In the first phase, it constructs the set Preds of all event predicates (line 2) satisfied by some event in the input traces
and the set FreqPreds of frequent event predicates (line 3). (An event predicate ξ is said to be frequent if its support is at

750 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

least Smin.) It also initializes a map NR that will be used to compute the support for rules (lines 4–5) that are represented as
a pair of event predicates. Driven by the second insight, only pairs of event predicates from the set FreqPreds × Preds are
considered.

In the second phase, each trace is processed to compute the support for rules (lines 7–19). Driven by the first insight,
the position of the last occurrence of every predicate from Preds in a trace is identified and recorded in last (lines 8–10).
Every event e in a trace π , say at the i-th position, is then processed, in order, to calculate the total support of frequent event
predicates in π [1..i]. This support is recorded in the map NP (line 19). During this processing, if the last occurrence of an
event predicate ξe is encountered (line 16), the cumulative support for rules ξf

∗

� ξe involving frequent event predicate
ξf ∈ FreqPreds is incremented by NP [ξf], the support for ξf (again, driven by the first insight) (line 18).

In the final phase the algorithm selects rules that have/exceed the minimum desired support Smin and confidence Cmin
(lines 21–24) and returns them.

The worst-case time complexity of the algorithm is Nl.Fe.Me where Nl is the total length of the input traces, Fe is the
number of frequent event predicates (which, as stated previously, will often be smaller than the number of all event
predicates possible in the traces), and Me is the maximum number of event predicates satisfied by any event. Thus, the
complexity of the algorithm is linear in the total length of all the traces.

Note. The computation of the set of frequent event predicates (line [3]) is done using a frequent item set mining algorithm [3].
The key idea exploited here is again the a priori property: a predicate ξ1 ∧ ξ2 is frequent only if ξ1 and ξ2 are both frequent.
Hence, this conjunction needs to be considered by the algorithm only if both conjuncts are frequent. Since most event
predicates (conjunctions of equality constraints involving different parameters) will be infrequent and uninteresting, this
technique allows the exploration of a big space of candidate predicates effectively.

5.1.3. Quantified rules with equality constraints
We now extend our algorithm to mine quantified rules. As motivation, consider the common rule that lock and unlock

operations on a given lock must strictly alternate. Consider the trace π = 0 ←↪ lock(3), 0 ←↪ lock(7), 0 ←↪ unlock(3),
0 ←↪ unlock(7). Events 1 and 3 together are a positive witness to this rule, and so are events 2 and 4. The key to noting that
these two pairs arewitnesses to the same rule is to abstract away the parameter that couples the antecedent and consequent
together: both event pairs are positive witnesses to the parameterized rule ⟨lock(x)⟩

∗

� ⟨unlock(x)⟩with different bindings
for x. From this, we would like to infer the quantified rule ∀x.⟨lock(x)⟩

∗

� ⟨unlock(x)⟩.
A key first step in our previous algorithm was to enumerate the set of event predicates that a given event e satisfied.

We generalize this step as follows: we will now enumerate for every event e the set of ordered pairs (ξ , θ), consisting of a
quantifiable event predicate ξ and a binding θ for the free variables of ξ such that e satisfies ξ [θ]. We refer to a pair (ξ , θ),
as described above, as a generalized event predicate (denoted as ζ).

We assume a fixed variable naming scheme for quantified variables in the mined rules. If we want to mine rules with
k quantifiers, then we will use the set of variables {v1, . . . , vk} for this purpose. Let GenPredsOf (e, k) denote the set of
generalized event predicates (ξ , θ) satisfied by e, where the set of free variables in ξ and the domain of binding θ are
both {v1, . . . , vk}. Note that GenPredsOf (e, 0) is just the set of event predicates (with no variables) satisfied by e, and that
elements ζn+1 of GenPredsOf (e, k+ 1) can be obtained from elements ζn of GenPredsOf (e, k) in a straightforward fashion
by binding vk+1 to every possible value occurring in ζn, as illustrated below.

As an example, consider the event e = 1 ←↪ baz(1, 2). The set of generalized event predicates with at most 2 free
variables satisfied by this event are given below, where 1? can be replaced by either 1 or _ and 2? can be replaced by either
2 or _.

No free variables GenPredsOf (e, 0) =
(⟨1?
←↪ baz(1?, 2?)⟩, {}).

One free variable GenPredsOf (e, 1)
(⟨v1 ←↪ baz(1?, 2?)⟩, {v1 → 1}),
(⟨1?
←↪ baz(v1, 2?)⟩, {v1 → 1}),

(⟨v1 ←↪ baz(v1, 2?)⟩, {v1 → 1}),
(⟨1?
←↪ baz(1?, v1)⟩, {v1 → 2}).

Two free variables GenPredsOf (e, 2)
(⟨v1 ←↪ baz(v2, 2?)⟩, {v1 → 1, v2 → 1}),
(⟨v1 ←↪ baz(1?, v2)⟩, {v1 → 1, v2 → 2}),
(⟨v1 ←↪ baz(v1, v2)⟩, {v1 → 1, v2 → 2}),
(⟨v2 ←↪ baz(v1, 2?)⟩, {v1 → 1, v2 → 1}),
(⟨1?
←↪ baz(v1, v2)⟩, {v1 → 1, v2 → 2}),

(⟨v2 ←↪ baz(1?, v1)⟩, {v1 → 2, v2 → 1}),
(⟨1?
←↪ baz(v2, v1)⟩, {v1 → 2, v2 → 1}), and

(⟨v2 ←↪ baz(v2, v1)⟩, {v1 → 2, v2 → 1}).

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 751

A couple of points are worth noting here. First, the example illustrates what happens when a concrete value is repeated
multiple times in an event. In the above example, the value 1 occurs twice in the tuple e. When we produce generalized
event predicates corresponding to the binding {v1 → 1}, we have a choice of replacing various occurrence of 1 by v1, and
we consider all these possibilities (except that we require at least one occurrence of 1 to be replaced by v1).

Second, note that in the case of generalized event predicates with two variables, we have some redundancy. For
example, in GenPredsOf (e, 2), (⟨v1 ←↪ baz(1?, v2)⟩, {v1 → 1, v2 → 2}) and (⟨v2 ←↪ baz(1?, v1)⟩, {v2 → 1, v1 → 2}) are
the equivalent modulo variable renamings. We can eliminate this redundancy and reduce the size of the set of generalized
event predicates of an event; however, this requires that checking equivalence of variable bindings at a later step in the
algorithm be adapted to check for equality modulo variable renaming. (This is straightforward, but not shown in our
algorithm presentation.)

Description. The algorithm to mine
∗

� rules involving quantifiable event predicates is given in Fig. 5. This algorithm is
identical to the one in Fig. 4 except for processing generalized event predicates instead of propositional event predicates
and the two minor yet key differences described below.

We represent a rule ∀x⃗.ξ1
∗

� ξ2 by the pair (ξ1, ξ2) where each ξi is a quantifiable event predicate. Hence, the map NR
used to compute the support of rules maps pairs of quantifiable event predicates to non-negative numbers (lines 4–5).

Within the algorithm, when we consider a pair of generalized event predicates (ξ1, θ1) and (ξ2, θ2) to determine if they
are awitness to a rule, we check to see if the bindings θ1 and θ2 are equal (line 18): if they are, then these constitute awitness
for the rule ∀v⃗i.ξ1

∗

� ξ2.
As this algorithm is similar in structure to the algorithm for propositional rule mining, its complexity will be Nl.Fe.Me

where Fe and Me are defined over generalized event predicates (instead of event predicates). Note that when Fe and Me are
independent of Nl, the complexity is linear in Nl. However, if Fe andMe increase when Nl increases, the complexity may not
be linear in Nl.

When k = 0, the set of generalized event predicate corresponds to the propositional event predicates (with empty
bindings). Hence, this algorithm generalizes our previous algorithm for mining propositional rules.

5.2. A comparison with alternative techniques

We now contrast our technique with an alternative approach based on the idea of trace slicing [4,5]. Let π =
f (1); f (2); g(1); g(2) be a trace (where the return values have been omitted for simplicity). The slice of π with respect
to the value 1 is f (x); g(x) and the slice of π with respect to value 2 is f (x); g(x). The rule f (x)

∗

� g(x) can be mined from
each of these trace slices, and this serves as the basis for mining quantified rules.

However, this approach raises several subtle questions. How do we define the slice of the trace f (1, 1); g(1, 1) with
respect to the value 1? Should the first event be abstracted into f (x, x) or f (x, 1) or f (1, x)? All are reasonable possibilities. If
we choose just one of these possibilities, the mining algorithm becomes incomplete and may fail to mine some valid rules. If
we consider all of these possibilities, thenwe need to consider 9 different slices (since we have 3 such choices for the second
event as well). In general, the number of slices we need to consider could be exponential in the length of the trace.

Furthermore, computing support and confidence from the slices is tricky. If a single trace produces multiple slices, many
of these may not satisfy a given rule, but cannot be treated as negative witnesses.

The same problem arises in the mining of rules with equality constraints. Yang et al. [4] use a context-sensitive mining
approach for such rules. Essentially, this amounts to transforming a trace f (1); g(2) into a trace f _1; g_2 and applying the
basic mining algorithm to this trace (where f _1 is treated as a procedure name). Consider an event f (1, 2). Should this be
transformed into f or f _1 or f _2 or f _1_2? Again we face a choice between incompleteness or an exponential blowup.

One of our key contributions is amining algorithm that is complete, yet avoids the above-mentioned exponential blowup.
Our approach works by generalizing a trace into a sequence of sets of predicates (while the trace slicing approach relies on
generalizing a trace into a set of sequence of predicates).

5.3. Alternation rule mining algorithm

We now describe our algorithm for mining alternation rules of the form ξ1
a

� ξ2 (Fig. 6). The treatment of equality
constraints and quantification in this case is the same as before and, hence, is not described here.

In comparison with the algorithms for mining eventually rules, this algorithm differs primarily in the overall iterative
structure of the algorithm, which is guided by the nature of the alternation operator.

First, consider the following theorem:

support(ξ1
a

� ξ2) ≤ min(support(ξ1), support(ξ2)).

As before, this theorem allows us to use the a priori property while mining. We have a stronger theorem here, which says
that while mining rules of the form f1

a
� f2 it is sufficient to consider only frequent f1 and frequent f2. Driven by this insight,

we only capture information for rules composed of frequent event predicates (lines 4–5).

752 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

QuantifiedMustFollowEventually(T , Smin, Cmin, k)
1 # First Phase: Initialize
2 Preds←

t∈T

e∈t GenPredsOf (e, k)

3 FreqPreds← {ξ |(ξ , θ) ∈ Preds ∧ Supp(ξ , T) ≥ Smin}

4 for each (ξ1, (ξ2, θ)) ∈ FreqPreds× Preds
5 do NR[ξ1, ξ2] ← 0
6 # Second Phase: Mine rule instances
7 for each t in T
8 do for each i← 1 to |t|
9 do for each ζ ∈ PredsOf (t[i])

10 do last[ζ] ← i
11 for each ζ ∈ Preds
12 do NP [ζ] ← 0
13 for i← 1 to |t|
14 do e← t[i]
15 for each ζe in GenPredsOf (e, k)
16 do if last[ζe] = i
17 then for each ζf in Preds
18 do if ξf ∈ FreqPreds ∧ θe = θf
19 then NR[ξf , ξe] ←
20 NR[ξf , ξe] + NP [ζf]
21 NP [ζe] ← NP [ζe] + 1
22 # Third Phase: Identify significant rules
23 Rules← ∅
24 for each NR[ξ1, ξ2] = s
25 do if s ≥ Smin ∧ (s/Supp(ξ1, T)) ≥ Cmin

26 then Rules← Rules ∪ {ξ1
∗

� ξ2}
27 return Rules

Fig. 5. Algorithm to mine ξ1
∗

� ξ2 rules composed of quantifiable event predicates. GenPredsOf (e, k) is the set of generalized event predicates, with k
quantifiers, satisfied by event e.

We also leverage the form of the rule to optimize the search of event predicates used to construct witnesses. Specifically,
an event e cannot be paired with an event f to construct a witness for the rule ξ1

a
� ξ2 if there exists an intermediate event

ei that satisfies either ξ1 or ξ2. Given an event e that satisfies ξ1, the algorithm searches for events following e that can be
paired with e to construct witnesses for alternation rules (lines 10–17). Due to the optimization, the algorithm aborts the
search if it encounters an event ei that satisfies ξ1 (lines 12–13). Likewise, upon finding a rule f that satisfies ξ2, the support
for the rule ξ1

a
� ξ2 (recorded in NR[ξe, ξf]) is incremented by 1 (line 16) and the search is aborted.

5.4. Completeness and soundness

We now prove the completeness and soundness of PropositionalMustFollowEventually algorithm. As the algorithms
are similar in structure and flow, the proof of soundness and completeness can be carried over to other algorithms.

Theorem 1 (Soundness). Every rule mined by PropositionalMustFollowEventually satisfies the support and confidence
thresholds.

Proof. In the third phase, PropositionalMustFollowEventually identifies only rules that satisfy support and confidence
thresholds and emits them as the mined rules. Hence, the algorithm is sound. �

Theorem 2 (Completeness). PropositionalMustFollowEventuallymines every rule that satisfies the support and confidence
threshold.

Proof. In the second phase, in a trace, PropositionalMustFollowEventually combines every event predicate with the last
occurrence of every event predicate to construct the witness for the rule involving these two event predicates. Hence, all
possible forward eventually rules are constructed by the algorithm. Further, the algorithmalso calculates the correct support
for every rule. Hence, in combination with the soundness theorem, the algorithm is complete. �

6. Eliminating redundancy in mined rules

Note that a number of logical implication relations hold between various different temporal rules. These implications
are relevant in two ways. First, these implications can be used to make the mining process more efficient. Second, and more

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 753

MustFollowWithStrictAlternation(T , Smin, Cmin, k)
1 # First Phase: Initialize
2 Preds←

t∈T

e∈t GenPredsOf (e, k)

3 FreqPreds← {ξ |(ξ , θ) ∈ Preds ∧ Supp(ξ , T) ≥ Smin}

4 for each (ξ1, ξ2) ∈ FreqPreds× FreqPreds
5 do NR[ξ1, ξ2] ← 0
6 # Second Phase: Mine rule instances
7 for each t in T
8 do for i← 1 to |t|
9 do e← t[i]

10 for each ζe in FreqPredsOf (e, k)
11 do for j← i+ 1 to |t|
12 do if t[j] |= ζe
13 then break
14 else for each ζf ∈ FreqPredsOf (f , k)
15 do if θe = θf
16 then NR[ξe, ξf] ← NR[ξe, ξf] + 1
17 break
18 # Third Phase: Identify significant rules
19 Rules← ∅
20 for each NR[ξ1, ξ2] = s
21 do if s ≥ Smin ∧ (s/Supp(ξ1, T)) < Cmin

22 then Rules← Rules ∪ {ξ1
a

� ξ2}
23 return Rules

Fig. 6. Algorithm to mine ξ1
a

� ξ2 rules where FreqPredsOf (e, k) = {(ξ , θ) ∈ GenPredsOf (e, k)|ξ ∈ FreqPreds}.

importantly, they can be used to simplify the output set of mined rules by eliminating redundant rules, which can make it
easier for end users to study the set of mined rules.

Theorem 3. Let ξ1, ξ2, ξ3, ξ ′1, and ξ ′2 be event predicates. Then,

1. ξ ′1 ⇒ ξ1, ξ1
∗

� ξ2, ξ2 ⇒ ξ ′2 imply ξ ′1
∗

� ξ ′2. (Similarly for all other temporal operators.)
2. ξ1

a
� ξ2 implies ξ1

∗

� ξ2. (Similarly for
a

� and
∗

�.)
3. ξ1

∗

� ξ2 and ξ2
∗

� ξ3 imply ξ1
∗

� ξ3. (Similarly for
∗

�.)

Our algorithm for eliminating redundant rules iteratively identifies (using the above implications) and removes
redundant rules. The complexity of our algorithm is quadratic in the number of rules. Our algorithm takes support and
confidence of the rules into account to decide whether to eliminate a logically redundant rule: if a logically redundant rule
has greater support/confidence than the rules that imply it, we retain the redundant rule.

7. Experimental evaluation

In this section, we empirically evaluate many aspects of our formalism and algorithms.

7.1. Expressiveness of QBEC

We chose to target QBEC rules in our work because we believe that it offers a good tradeoff between expressiveness and
the complexity of mining. We performed a simple study to validate our belief that QBEC is quite expressive in practice. We
manually analyzed a set of 78 widely used rules from the WDM API (incorporated in the Static Driver Verifier [1]).

Our study shows that 23 of the 78 rules can be directly expressed in QBEC and that 45 (including the 23 that are directly
expressible) of the 78 rules canbe expressed in a simple extension ofQBECwherewepermit inequality constraints (involving
< and>) over finite enumeration types and allow predicates involving global variables. (The use of global variables requires
only a generalization of the concept of an event, rather than a generalization of QBEC.) Our mining algorithms can directly
handle these extensions. (See our description of finitely instantiable predicates in Section 3.)

The other 33 rules cannot be expressed in QBEC for one or more of the following reasons.1

(a) 24 rules require ternary temporal operators, such as ‘‘between every occurrence of events e1 and e2, there must be an
occurrence of event e3’’.

1 The sum of these three classes is more than 33 because some of these rules fall into multiple classes.

754 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

Table 1
The APIs used in evaluation along with the mined rules. An entry X/Y/Z in the Rules column denotes X propositional binary rules, Y binary rules w/
quantification, and Z binary w/ quantification and equality constraints were mined.

API # Procs # Traces # Calls # Rules Supp/Conf

WDM 68 7038 99736 15/15/7 1000/0.9
IO 72 54 56721 8/9/53 1000/0.95
Registry 44 41 35435 13/12/54 2000/0.95
Memory 50 63 581187 10/11/8 20000/0.9
Printing 36 34 4172 21/13/110 200/0.95

(b) 18 rules require disjunction in the rule: e.g., ‘‘every occurrence of e1 must be followed by an occurrence of e2 or e3’’.
(c) 17 rules require negation: e.g., a rule that an occurrence of e1 must not be followed by an occurrence of e2.

This preliminary analysis suggests that despite its simplicity, QBEC is quite expressive. Furthermore, QBEC is a very good
basis for various natural extensions (of the form described above) that will make its expressiveness even better.

7.2. Implementation

We now describe a couple of aspects in which our implementation differs from the algorithms presented earlier.

Restricted
∗

� rules. While mining rules of the form ξ1
∗

� ξ2 and ξ2
∗

� ξ1, our implementation only considers consequents
with an equality constraint involving at most one parameter. We made this pragmatic choice as the a priori property is not
applicable to the consequent of these rules. We plan to relax this restriction in our ongoing work.

Value equality. One of the limitations ofmining rules using dynamic execution traces is that it relies on the equality of values
to relate events. However, it is possible that two unrelated events may have the same parameter or return values. Consider
the following trace.

0x40000 = HeapAlloc(0x56000, 0);
...
HeapFree(0x56000, 0x40000);
...
0x40000 = HeapAlloc(0x56000, 0);

The memory object 0x40000 is reused by the memory allocator and hence returned by two calls to HeapAlloc.
However, note that the call to HeapFree and the second call to HeapAlloc are logically unrelated, although they share
a common value. Such accidental value equalities can lead to imprecision in the mined rules. We use a simple heuristic to
work around this problem. While mining quantified rules, we restrict attention to those pairs of compatible generalized
event predicates that do not have an intervening event whose return value equals the bound variable’s value.We found that
this heuristic helps improve the quality of mined rules.

7.3. Experimental methodology

We applied our algorithms to several commonly used Windows APIs. Table 1 lists the APIs, the number of procedures in
the API, the number of traces we generated for each API, and the number of API calls in the traces.

The traces for the Windows APIs (Registry, IO, Memory Management and Printer) were generated using logger [6]. As
clients of these APIs, we selected a number of desktop applications such as Adobe Reader, XEmacs, Windows media player,
Outlook etc.We ran each application several times and during each run, we performed a series of actions simulating realistic
usage of the applications.

TheWindows Driver Model (WDM) is a framework for device drivers. We generatedWDM traces from a set of 20 device
drivers using a software model checker because we could not find a logging utility that generates device driver traces. The
model checker executed the drivers to verify their correctness. We instrumented the model checker to generate a function
call trace during every execution. Compared to the Windows API traces, the traces generated by the model checker tend to
be smaller (an average of 14 API calls per trace). To compensate for the size of the traces, we generated a significantly larger
number of traces.

We ran our experiments in a systemwith a 1.6 GHz Intel Pentium Core2 Duo processor with 3 GB RAM runningWindows
Vista. We measure the running times of the mining algorithms using the .NET TimeSpan class. The execution times we
report are averages across 3 runs of the algorithm.

7.4. Size of the search space

We now present some metrics that characterize the size of the search space (of QBEC rules) considered by our miner.

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 755

Fig. 7. The distribution of the number of equality constraints associated with functions in various APIs.

Fig. 8. The distribution of the number of frequent event predicates associated with each function in the WDM API for different support thresholds.

First, we measured the number of instantiated equality constraints associated with functions in the APIs. We say that an
equality constraint $i = ci where i ≠ 1 is an instantiated equality constraint associated with a function f if there exists
some event e in the traces such that e |= ($1 == f ∧ $i == ci). Fig. 7 shows the distribution of the number of instantiated
equality constraints for various APIs. The bottom bar in each column of the figure shows that a majority of the functions are
associated with less than 100 instantiated equality constraints. However, between 2% and 20% of functions have more than
500 constraints (represented by the top bar in each column). This observation shows that the search space of QBEC rules is
extremely large. The observation also shows the need for mining algorithms that search this space efficiently.

As described earlier, our algorithms exploit the a priori property to search this space efficiently by considering only
frequent predicates where possible. Fig. 8 shows the distribution of the number of frequent event predicates for functions
from the WDM API for various minimum support values. Not surprisingly, most functions in the API have a small number
(between 0 and 10) of frequent event predicates. The percentage of API functions with ≤10 frequent predicates increases
from 70% to 90% as the support threshold is increased from 50 to 500. Note that the number of frequent predicates is
significantly smaller than the number of instantiated equality constraints (Fig. 7). This shows the effectiveness of using
the a priori property. The data from other APIs is qualitatively similar.

Fig. 9 shows the distribution of the size of frequent event predicates in the WDM API. The size of an event predicate ξ
is the number of equality constraints in ξ . We find that most frequent event predicates are conjunctions of 1 or 2 equality
constraints.

7.5. Impact of confidence/support threshold

We performed a sensitivity analysis to study the impact of the support and confidence thresholds on the number of
QBEC rules mined by our algorithm. Tables 2 and 3 show the number of

∗

� rules mined, before and after redundant rule

756 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

Fig. 9. The distribution of the size of frequent event predicates associated with functions in the WDM API for different support thresholds.

Table 2
Number of QBEC rules with equality constraints generated for the WDM API.

Support↓ Before elimination After elimination
Conf.→ 0.8 0.9 0.95 0.98 0.8 0.9 0.95 0.98

50 2732 2212 2092 1079 315 268 230 261
100 1295 1117 1053 750 114 108 96 112
200 563 526 510 456 80 76 70 72
500 222 199 186 141 57 57 47 37

1000 176 156 149 111 39 37 31 23

Table 3
Number of QBEC rules generated for the memory management API.

Support↓ Before elimination After elimination
Conf.→ 0.9 0.95 0.98 0.9 0.95 0.98

10000 4301 3150 2967 3728 2777 2759
20000 229 155 95 29 23 16
50000 55 25 7 6 3 2

elimination, for the WDM and memory management APIs, respectively, when the support threshold or the confidence
threshold is increased, showing that these parameters can be effective filters for choosing rules for subsequent manual
examination. Note that in a few cases, the number of non-redundant rulesmined increaseswith an increase in the confidence
threshold. This is because of an interaction between the confidence threshold and redundant rule elimination. Consider two
rules r1 and r2 and a rule rs such that rs =⇒ r1 and rs =⇒ r2, where =⇒ denotes the logical implication. Also assume
that the rules r1 and r2 have a higher confidence than rs. If the minimum confidence threshold is greater than the confidence
of rs, but less than the confidence of r1 and r2, the rule rs will be dropped while the other rules will be retained. However, if
the confidence threshold is decreased and falls below the confidence of rs, this rule will be included as part of the rule set.
Consequently, the redundancy elimination step, which is currently insensitive to the confidence threshold, will eliminate
the rules r1 and r2 and retain rs instead. Hence, decreasing the confidence thresholdmay result in the smaller non-redundant
number of rules.

7.6. Effectiveness of redundancy elimination

Tables 2 and 3 also illustrate that redundancy elimination is very effective in reducing the number ofmined rules that one
must consider. On the average, this phase eliminates 77% of the rules in the WDM API and 82% of the rules in the Windows
APIs. Thus, this phase is critical in ensuring that the mined rules do not overwhelm users.

7.7. Efficiency of the mining algorithms

We now evaluate the efficiency of our mining algorithms. Fig. 10 shows the total running time of the two algorithms
for mining rules from WDM traces for various support thresholds. The running times are averages across four different

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 757

Fig. 10. Time taken to mine rules for the WDM API. The support threshold corresponding to each bar is mentioned beneath each bar.

Table 4
A selection of the QBEC rules mined using our tool. V represents a quantified variable.

Rule Support Confidence

KeAcquireSpinLock(_,V)
∗

� KeReleaseSpinLock(_,V) 5124 1.00
ExAcquireFastMutex(V)

∗

� ExReleaseFastMutex(V) 1242 1.00
InterlockedIncrement(V)

∗

� InterlockedDecrement(V) 3571 1.00
IoGetNextIrpStackLocation(V)

∗

� IoCallDriver(V,_) 2599 0.99
IoCopyCurrentIrpStackLocationToNext(V)

∗

� IoCallDriver(V,0) 3346 0.98
V ExAllocatePoolWithTag(_,_,_)

∗

� ExFreePool(V) 2060 0.97
IoCopyCurrentIrpStackLocationToNext(V)

∗

� PoCallDriver(V,_) 519 0.94
IoCopyCurrentIrpStackLocationToNext(V)

∗

� IoCallDriver(V,_) 4473 0.90

confidence thresholds; we did not find any significant variation in the running times as the confidence thresholds are
changed. We can attribute the total running time to the time consumed in reading and parsing raw traces, mining frequent
event predicates, mining rules, and eliminating redundant rules.

The figure shows that the time for mining the binary event rules and the alternation rules are almost the same. At
low support thresholds, a large fraction of the running time is due to redundancy elimination. This is because redundancy
elimination takes time quadratic in the number of rules and at low support thresholds, we mine a large number of rules.
The running time decreases sharply as the minimum support threshold is increased. However, even with high support
thresholds, the time consumed in mining QBEC rules itself is small (1̃0% on average), with a large fraction of the runtime is
attributed to trace quantification. E.g., rules with support and confidence greater than 200 and 0.9 respectively are mined
in approximately 20 s, out of which 11 s are spent in trace quantification and 3.4 s in mining rules.

7.8. Quality of mined rules

An important measure of a mining algorithm is its precision: how many of the candidate rules mined are indeed valid
rules? However, evaluating this metric is challenging (in our context) as it can only be done manually. Table 4 shows some
of the mined rules with their support and confidence. Following are a few interesting observations from this data.

• Many of the rules we mine are known rules documented as part of the Static Driver Verifier (SDV) tool. For instance, the
quantified rule involving KeAcquireSpinLock is part of the SDV toolkit.

Some of the rules we mine are not known rules but represent common idioms that most clients follow. For
instance, consider the forward binary-eventually rule involving the functionIoCopyCurrentIrpStackLocation and
IoCallDriver. This rule is informally documented as follows [7].

‘‘After calling IoCopyIrpStackLocationToNext, a driver typically sets an I/O completion routine with
IoSetCompletionRoutine before passing the IRP to the next-lower driver with IoCallDriver.’’

The documentation suggests that this rule is perhaps a common idiom. This may explain the number of violations of
this rule. The documentation for the rule involving PoCallDriver is along similar lines. On the other hand, consider the

758 D. Lo et al. / Science of Computer Programming 77 (2012) 743–759

backward-eventually rule between the same functions (with the additional equality constraint on the second parameter).
This rule is documented as follows, which points to a stronger rule that must be followed.

‘‘Before a calling IoCallDriver, the calling driver must set up the I/O stack location in the IRP for the target
driver.’’

We did not find a violation of this rule in any of the drivers in the validation suite.
• In general, onemay expect the confidence to correlate with the number of violations of the rule. However, we do not find

a strong correlation between these quantities. On the contrary, we find that several rules with high confidence are also
violated by many clients. There may be several reasons for the lack of correlation, including the presence of rare paths
such as error handling code that do not show up in the traces and that some of the rules we mine represent common
idioms that all clients may not follow.
• Wefound that the violations of someof the rules (such as a few forward-eventually rules involvingKeAcquireSpinLock

and ExAllocatePoolWithTag in antecedent positions) are definite bugs in the drivers.

Similarly, we validated some of the rules mined for the other APIs (the rules mined at a reasonably high support and
confidence specific to each API) against the informal documentation of the APIs and found that a large fraction of the rules
were stated in the documentation.

8. Related work

The topic of specification mining has attracted wide attention in the recent years. The early work of [2] addresses the
problem of mining program invariants (as opposed to API usage rules), but restricts attention to non-temporal invariants.
Some researchers (e.g., [8]) explore the problem of mining API usage rules by analyzing the library, while others (including
us) use clients to mine API usage rules. Within the space of client-based mining, several researchers (e.g., [9]) have pursued
a static-analysis based approach tomining, while we (and several others) address the problem ofmining specifications from
traces. We now compare our work with related work in the space of trace-based specification-mining.

We first state some distinguishing features of our work. (a) One of our significant contributions relates to quantification.
We provide a simple yet rigorous formalization of event quantification along with a general algorithm to mine quantified
rules. Further, our algorithm is complete with respect to possible quantifications that are considered during rule mining.
(b) We provide a unified formalism and mining algorithm that combine state predicates with temporal constraints. (c) The
algorithm we present for mining binary-eventually rules is novel, and is linear in the total size of the input traces. (d) Our
approach exploits the classical a priori property from data-mining to make the mining more efficient.

The work most closely related to ours is that of Yang et al. [4], Yang and Evans [10]. Yang et al. also focus on mining
binary temporal rules, but differ from us in several respects. They rely on trace slicing for quantification and context-sensitive
mining for equality constraints. Section 5.2 compares these approaches and outlines the advantages of our approach.

Quantified rules are very common, but only a few past efforts support the mining of quantified rules. Ammons et al. [11]
support only quantification over the first argument to a procedure call. Chen and Rosu [5] is the only priorwork that provides
a complete formalism for quantification. Our formalism, done independently, is similar in some respects to their formalism,
but there are very significant differences as well. The Chen and Rosu algorithm is based on trace slicing and we contrast our
work with trace slicing in Section 5.2.

Some of the previous work [5,11,12] has focused onmining API usage rules in the form of a single finite-state automaton.
Our approach may be viewed as mining a number of small automata of a special form (corresponding to the temporal
operators), which has some advantages. E.g., consider an API with k rules fi

∗

� gi, 1 ≤ i ≤ k. Expressing these as a single
automatonwould require 2k states. Sincemining algorithms tend to limit their attention to automatawith a limited number
of states, a single-automaton-miner is likely to miss some of these temporal rules. In contrast, mining this set of k temporal
rules is straightforwardwith our approach. Furthermore, ourmining algorithms are linear in the total size of the trace, while
the automaton-based approaches are cubic. It would be interesting to generalize our approach to mine a set of arbitrary
automatons within some size. Recently, Gabel and Su [13] showed how simpler rules (like ours) can be combined to form
more complex rules (or automaton).

Recently, Lorenzoli et al. [12] have presented a technique for mining an Extended FSM, which combines state predicates
with finite-state automaton, but this neither supports quantification nor tolerates erroneous inputs. In contrast, our
techniques can mine binary temporal rules involving state predicates and quantification (more efficiently) while tolerating
erroneous inputs.

The work in [14,15] also use data mining, but they mine frequent patterns rather than rules. While rules capture
constraints, patterns only capture series of events that appear frequently. De Sousa et al. [16] address the mining of implied
scenarios, in the form of message sequence charts, which describe sequences of events that could occur.

9. Conclusion and future work

In this paper, we have introduced QBEC, a class of quantified binary temporal rules with equality constraints, that is
equivalent to a subset of LTL formulae. As common API usage patterns can be easily expressed as QBEC rules, we explored

D. Lo et al. / Science of Computer Programming 77 (2012) 743–759 759

the possibility of mining QBEC rules in the context of mining API usage patterns (as QBEC rules). Consequently, as part of
devising algorithms to mine QBEC rules, we described a novel formalism for mining quantified rules along with a general
event quantification technique that can be seamlessly leveraged by existing standard data-mining frameworks. Further, we
empirically evaluated and demonstrated the expressiveness of QBEC and the feasibility of efficiently and effectively mining
QBEC rules in the context of rules shipped with an industrial strength program verification tool.

Going forward, there are few possibilities to extend our work. The first possibility is to explore extensions to QBEC to
express higher arity rules i.e. , rules involvingmore than two events. The second possibility is to admit disjunctive predicates,
i.e. , predicates formed by the disjunction of equality constraints, in QBEC rules. Along the same lines, it would be interesting
to admit non-equality constraints in QBEC rules. It would be useful to extendQBECwith the support to capture various forms
of timing constraints, e.g. event e will be followed by event f within 3 s.

Distinct from extensions to QBEC, it would be interesting to explore various applications of QBEC rules in the context of
developer assistance, fault analysis, compatibility checking, program verification, and system optimization.

References

[1] Static driver verifier. http://www.microsoft.com/whdc/devtools/tools/sdv.mspx.
[2] M. Ernst, J. Cockrell, W. Griswold, D. Notkin, Dynamically discovering likely program invariants to support program evolution, TSE 27 (2).
[3] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proc. of VLDB, 1994.
[4] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, M. Das, Perracotta: mining temporal API rules from imperfect traces, in: Proc. of ICSE, 2006.
[5] F. Chen, G. Rosu, Mining parametric state-based specifications from executions, in: Technical Report, 2008, Unpublished.
[6] Debugging tools for windows. http://www.microsoft.com/whdc/devtools/debugging/default.mspx.
[7] Windows Driver Development. http://www.osronline.com/.
[8] R. Alur, P. Cerny, G. Gupta, P. Madhusudan, Synthesis of interface specifications for java classes, in: Proc. of POPL, 2005.
[9] M. K. Ramanathan, A. Grama, S. Jagannathan, Static specification inference using predicate mining, in: Proc. of PLDI, 2007.

[10] J. Yang, D. Evans, Dynamically inferring temporal properties, in: Proc. of PASTE, 2004.
[11] G. Ammons, R. Bodik, J.R. Larus, Mining specification, in: Proc. of POPL, 2002.
[12] D. Lorenzoli, L. Mariani, M. Pezzè, Automatic generation of software behavioral models, in: Proc. of ICSE, 2008.
[13] M. Gabel, Z. Su, Javert: fully automatic mining of general temporal properties from dynamic traces, in: Proc. of FSE, 2008.
[14] H. Safyallah, K. Sartipi, Dynamic analysis of software systems using execution pattern mining, in: Proc. of ICPC, 2006.
[15] M. El-Ramly, E. Stroulia, P. Sorenson, Interaction-pattern mining: extracting usage scenarios from run-time behavior traces, in: Proc. of KDD, 2002.
[16] F. de Sousa, N. Mendonca, S. Uchitel, J. Kramer, Detecting implied scenarios from execution traces, in: Proc. of Work. Conf. on Reverse Engineering,

2007.

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.osronline.com/

	Mining quantified temporal rules: Formalism, algorithms, and evaluation
	Introduction
	Running examples
	An extensible class of temporal rules
	Traces
	Events
	Event predicates
	Temporal operators
	Quantification
	Summary

	The problem
	Mining algorithms
	Forward-eventually rules
	Propositional rules with no equality constraints
	Propositional rules with equality constraints
	Quantified rules with equality constraints

	A comparison with alternative techniques
	Alternation rule mining algorithm
	Completeness and soundness

	Eliminating redundancy in mined rules
	Experimental evaluation
	Expressiveness of QBEC
	Implementation
	Experimental methodology
	Size of the search space
	Impact of confidence/support threshold
	Effectiveness of redundancy elimination
	Efficiency of the mining algorithms
	Quality of mined rules

	Related work
	Conclusion and future work
	References

