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Abstract—Source code search plays an important role in
software maintenance. The effectiveness of source code search not
only relies on the search technique, but also on the quality of the
query. In practice, software systems are large, thus it is difficult
for a developer to format an accurate query to express what really
in her/his mind, especially when the maintainer and the original
developer are not the same person. When a query performs
poorly, it has to be reformulated. But the words used in a query
may be different from those that have similar semantics in the
source code, i.e., the synonyms, which will affect the accuracy of
code search results. To address this issue, we propose an approach
that extends a query with synonyms generated from WordNet.
Our approach extracts natural language phrases from source
code identifiers, matches expanded queries with these phrases,
and sorts the search results. It allows developers to explore
word usage in a piece of software, helps them quickly identify
relevant program elements for investigation or quickly recognize
alternative words for query reformulation. Our initial empirical
study on search tasks performed on the JavaScript/ECMAScript
interpreter and compiler, Rhino, shows that the synonyms used
to expand the queries help recommend good alternative queries.
Our approach also improves the precision and recall of Conquer,
a state-of-the-art query expansion/reformulation technique, by
5% and 8% respectively.

I. INTRODUCTION

Software change is a fundamental ingredient of software
maintenance [1], [2]. These changes occur due to the continuous
change requests proposed by end users. Given a change request,
developers or maintainers need to analyze the change request,
and locate the parts in a software system which are related
to the change request. To help developers perform this task,
a number of text retrieval (TR)-based code search approaches
have been proposed [3]–[8]. These approaches take as input the
change request as a query, and return a ranked list of program
elements (e.g., methods, files, etc.) that match the query.

A common issue with all TR-based code search approaches is
that the results of the retrieval depend greatly on the quality of
the change query. However, as software systems keep evolving
and growing, locating code for software maintenance becomes
increasingly difficult. The words used in a query written
by a maintainer can be different from the lexicon used by
the developers. Thus, the maintainer will spend much time
and energy to rewrite a query many times, which affects the
effectiveness of a code search tool to aid software maintenance
tasks.

When a maintainer gives a poor query, the query needs
to be reformulated. Many existing code search techniques
provide little support to help developers rewrite a query [3]–
[6]. Most of the code search techniques simply list search
results as a list of files, method signatures, or lines of code
where the query matched (e.g., Eclipse file search or grep),
and display the results by decreasing relevance. Since a good
query is very important to improve search results, and a poor
query can waste developers’ lots of time, there is a need for a
code search tool that can help users reformulate queries. This
need has motivated researchers to develop a number of query
reformulation approaches, e.g., [7], [9], [10]. These approaches
are not perfect yet and additional improvements are needed.

In this paper, to improve existing query reformulation
techniques, we introduce a novel approach to reformulate a
query. We implement an approach that can expand a query
by using synonyms that are obtained from WordNet [11].
Our approach first identifies the part-of-speech (POS) of
each word that makes up the query and finds the synonyms
of each word with the same POS using WordNet. Then, it
expands the original query by replacing the words of the query
with their corresponding synonyms in WordNet [11]. Next, it
extracts natural language phrases from source code identifiers
of methods in a code base, and matches these phrases against
the expanded queries to get the search results (i.e., relevant
methods) that are sorted based on their similarities with the
expanded queries.

We performed a preliminary evaluation using 19 search
tasks that were used by Hill et al. to evaluate an existing query
reformulation tool [9]. The results show that the synonyms
used to expand the query help recommend good alternative
queries. Our approach also outperforms Conquer, the latest
query reformulation technique, by Hill et al. [9].

The rest of our paper is organized as follows. Section 2
introduces the background of Wordnet. We describe the details
of our proposed approach in Section 3. A preliminary evaluation
of our approach is presented in Section 4. In Section 5, some
related work is discussed. Finally, we conclude our paper and
mention future work in Section 6.

II. BACKGROUND

Our approach implements query expansion with synonyms
with the help of Wordnet [11]. Wordnet is a useful tool for

978-1-4799-8469-5/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada545



Source code

Original 
query

Query 
Preprocessing

Query 
Expansion

Identifying
POS

Finding 
synonmys

Identifier 
Extraction Identifiers

Query 
Matching

KeytermsResult 
Sorting

Results

Fig. 1. Process of our approach

computational linguistics and natural language processing. It
resembles a thesaurus, in which it groups words together based
on their meanings. Nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms (i.e.,synsets), each
expressing a distinct concept. Synsets are interlinked by means
of conceptual-semantic and lexical relations. However, there
are some important distinctions. First, Wordnet interlinks not
just word forms—strings of letters—but specific senses of
words. As a result, words that are found in close proximity
to one another in the network are semantically disambiguated.
Second, Wordnet labels the semantic relations among words,
whereas the groupings of words in a thesaurus does not follow
any explicit pattern other than meaning similarity. When we
pass the two arguments (the word and its POS) to Wordnet,
we can get a set of its synonyms. More detailed information
about Wordnet is available online1.

III. APPROACH

The process that our approach follows is shown in Figure 1. It
has five steps, query preprocessing, query expansion, identifier
extraction, query matching, and result sorting. At the end of the
process, it produces a list of results made up of signatures of
methods related to the query and alternative phrases extracted
from source code identifiers of the methods. The following
subsections describe the details of each step of our approach.

A. Query Preprocessing

We perform standard text preprocessing steps on the query.
We first remove stop words, i.e., words that appear very often
and does not have definite meaning, for example, prepositions
and auxiliary words such as the, it, in, etc. Then, we perform
stemming, camel case and underscores splitting to get a set of
words [12]. For example, consider an original query “Converts
decimal to hexadecimal”. After preprocessing, we get the set
of words {convert, decimal, hexadecimal}.

1http://wordnet.princeton.edu/wordnet/

1) Query Expansion: After the query has been preprocessed,
we expand it in the following way. First, we identify the parts-
of-speech (POS) of each word in the preprocessed word set.
The POS of each word can be easily identified using a POS
Tagger [13]. A POS Tagger is a tool that reads text and assigns
POS to each word.

Second, we identify the synonyms of each word to expand
the original query using WordNet, which is a useful tool for
computational linguistics and natural language processing. If
we use all of the synonyms of a word, some inappropriate
synonyms are returned by Wordnet [14]. We deal with this
problem in this way. We only return synonyms of a word in
WordNet that have the same POS. Thus, the possibility that
each of these synonyms to be inappropriate will be decreased.
We replace words in the original query with their synonyms
to create expanded queries. For example, supposing that a
query is “display lyrics”, the synonyms for “display” (with the
same which POS) are {expose, exhibit, reveal, show}, and the
synonyms for “lyrics” (with the same which POS) are {words,
language, poem}, after the query expansion step we get a set
of 20 phrases (or expanded queries), which is {display lyrics,
expose lyrics, exhibit lyrics, reveal lyrics, reveal lyrics, display
words, display language, display lyric poem, expose words,
expose language, expose lyric poem, exhibit words, exhibit
language, exhibit lyric poem, reveal words, reveal language,
reveal lyric poem, show words, show language, show lyric
poem}.

B. Identifier Extraction

The above two subsections focus on the query. In this step,
we focus on the methods in the source code. For each method,
we create its representative set of words by extracting identifiers
from methods. Identifiers are an important source of domain
information and can often serve as a starting point in many
program comprehension tasks [15].

To extract the identifiers, we first create a set of Java reserved
keywords and remove these keywords from the source code.
We then use space, numbers, and other delimiters, e.g.,“.”, “;”,
to separate one identifier from the others. For example, we
can extract identifiers {eb , cstop , swing} from the following
piece of code: “package eb.cstop.swing;”. In addition, we also
perform camel case and underscores splitting. For instance,
“CrystalPlayer” is split into “crystal player” and “Decimal2Hex”
is split into “decimal hex”.

C. Query Matching

In this step, we match the expanded queries with the
identifiers. For each expanded query eQuery and each identifier
id we compute the following similarity score:

Sim(eQuery, id) =
|eQuery

⋂
id|

max(|eQuery|, |id|)

In the above equation, max(|eQuery|, |id| represents
the largest number of words in eQuery and id, while
|eQuery

⋂
id| is the number of common words shared between

the two sets. For instance, given an expanded query “display
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lyrics”, its similarity with the identifier “get lyrics list” is
1/3. If the similarity score is larger than the threshold set by
developers, we regard the identifier as a keyterm and forward
it to the next step.

D. Result Sorting

Once the keyterms have been identified, we want to identify
methods that are likely to be related to the original query. We
do this by checking for the appearance of each keyterm in a
method.

Let us denote the total number of all keyterms as sum, and
the number of keyterms in each method in a code base as n1,
n2, · · · , nk, where k is the total number of methods in the
code base. Let us also use p1, p2, · · · , pk to represent the
percentage of keyterms that appear in each method. That is,
pi=ni/sum.

We sort the methods in the code base based on their
corresponding percentages in a descending order. The higher
the percentage, our approach deems the method to be more
relevant. As a final result, we present each of the methods in
the following format:

method signature = {identifiers in the method}

For the query “display lyrics”, one of the results is: “public
void lyricsDowned (LyricsContents contents) = { get lyrics list,
lyrics writer, is show lyrics, crystal lyrics list, set lyrics, lyrics
content, get lyrics, lyrics list, show select list, lyrics selecter,
lyrics downed, add lyrics, lyrics item, lyrics contents}”, where
the phrases in braces, i.e., {}, separated by commas are the
natural language identifiers extracted from the source code of
the method. The phrases extracted from method identifiers can
help developers to quickly determine whether the method is
relevant or not and reformulate a better query.

IV. PRELIMINARY EVALUATION

A. Study Setup

We conducted a preliminary empirical study to investigate
the performance of our approach. In this study, we asked 20
volunteer Java developers with varying levels of programming
skills to perform 19 search tasks. These tasks are performed on
a 45 KLOC JavaScript/ECMAScript interpreter and compiler,
Rhino, following the details provided by Hill et al. to evaluate
their query reformulation approach [9]. Each search task maps
to a feature described by a subsection of Rhino’s documentation.
Each search task corresponds to a screen shot of the feature
being executed. This screen shot is given to the participants
to formulate queries to search for code that implements the
feature.

There are several aspects of our approach that we want
to evaluate in our preliminary study. First, we want to
investigate whether our query expansion helps improve the
results. Second, we want to assess whether our approach
performs better than the state-of-the-art query expansion (aka.
query reformulation) technique Conquer [9]. Conquer is an
approach that automatically extracts natural language phrases
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Fig. 2. Precision of direct search (i.e., no query expansion) and our approach
on 19 search tasks

from source code identifiers and categorizes the phrases and
search results in a hierarchy [9]. It requires a user to enter a
query as input and the results are composed of four components:
(1) prevalence of query words, (2) suggested alternative query
words, (3) categorization by action or theme, and (4) phrase
list. Prevalence of query words is the frequency of each query
word in the relevant results. Suggested alternative query words
suggest alternative query words that appear in the source code.
The results of Conquer will be divided into two hierarchies
organized by action and theme. Conquer also returns a phrase
list composed of phrases, methods and files. For our approach,
we set the similarity score threshold as 3/7 based on our
empirical investigation in our studies.

As discussed above, we evaluated our approach from two
aspects. First, we compared the performance of the expanded
queries created by our approach with that of the original
queries. Second, we compared the performance of our approach
with Conquer to see whether our approach outperforms the
state-of-the-art. We measure performance in terms of search
effectiveness. To evaluate search effectiveness, the participants
in our user study answer the following two survey questions
(SQs) about each search task that they have completed.

SQ1: How many results returned by a query expansion
technique are relevant?

SQ2: How many relevant results are not returned by a query
expansion technique?

Search effectiveness is then measured based on the answers
to these two survey questions by calculating the precision
and recall of each search result [16], [17]. Precision is the
percentage of search results that are relevant, and captures
how many irrelevant results were present with the relevant
results. Recall is the percentage of all relevant results that were
correctly returned as search results, and captures how many
of the actually relevant results were predicted as relevant. We
use the following two formulas to calculate the precision and
recall of the search tasks.

Precision = number of relevant results retrieved
number of results retrieved

Recall = number of relevant results retrieved
number of relevant docs
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Fig. 3. Recall of direct search (i.e., no query expansion) and our approach
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B. Results

No query expansion vs. Query expansion by our approach.
For the 19 search tasks, all the participants reflected that the
synonyms used to expand the query help recommend good
alternative queries. Since the participants were not familiar
with Rhino, it was very difficult for them to write a good
query at the beginning. Most of the queries they wrote at the
beginning returned no results or the results did not meet their
original intention. What’s worse, without query expansion by
our approach, the results returned could not give any hints for
participants to rewrite a query.

Our approach solved the above-mentioned problem. The
precision and recall results of direct search (i.e., no query
expansion) and our approach are shown in Figure 2 and 3.
From the figures, we can note that the precision and recall
results of our approach are better than those of direct search.
On average, our approach improves the precision and recall of
direct search by 40% and 24%, respectively. This indicates that
the alternative queries recommended by our approach could
reflect the true intention of the developers. Although there
were some results that were not relevant, overall our approach
greatly helped the participants rewrite a good query close to
the ideal query. Hence, instead of disturbing developers, the
expanded query recommended by our approach help developers
formulate better queries.

Conquer vs. Our approach. In addition, we also conducted
a comparison between our approach and the state of the art
technique, Conquer [9]. Tables I and II report the precision and
recall scores of our approach and Conquer on the 19 search
tasks, respectively. In the tables, min, max, and mean denote
the minimum, maximum and mean values of the respective
score. The results show that the precision and recall of our
approach are higher than Conquer for many search tasks in
spite of a few of exceptions. For example, for the fourth search
task in Table I, the minimum, maximum and mean precision
scores of our approach are 66%, 83%, 74%, respectively; On
the other hand, the scores for Conquer are 56%, 76%, 67%,
respectively. For the fourth search task in Table II, the minimum,
maximum and mean recall scores of our approach are 78%,
83%, 80%, and the scores are 56%, 71%, 64% for Conquer.
On average, across all the tasks, our approach outperforms

TABLE I
PRECISION OF OUR APPROACH AND Conquer

Techniques
Task Our approach Conquer

min max mean min max mean
1 64% 87% 72% 62% 84% 72%
2 56% 76% 65% 55% 77% 67%
3 45% 67% 51% 43% 58% 49%
4 66% 83% 74% 56% 76% 67%
5 76% 88% 81% 75% 87% 81%
6 34% 47% 40% 43% 54% 47%
7 54% 78% 66% 45% 67% 56%
8 67% 79% 73% 37% 48% 45%
9 61% 83% 71% 77% 83% 80%
10 54% 62% 58% 63% 69% 65%
11 47% 55% 50% 74% 78% 76%
12 56% 76% 65% 71% 83% 76%
13 77% 89% 84% 56% 71% 64%
14 59% 75% 64% 54% 68% 59%
15 76% 83% 79% 68% 79% 74%
16 44% 67% 56% 33% 45% 37%
17 66% 79% 71% 35% 47% 43%
18 51% 60% 54% 26% 37% 29%
19 23% 45% 35% 31% 37% 33%

TABLE II
RECALL OF OUR APPROACH AND Conquer

Techniques
Task Our approach Conquer

min max mean min max mean
1 77% 86% 82% 67% 79% 72%
2 81% 93% 87% 76% 82% 79%
3 82% 89% 84% 65% 77% 72%
4 78% 83% 80% 56% 71% 64%
5 81% 84% 83% 75% 87% 81%
6 76% 79% 77% 76% 88% 81%
7 71% 79% 74% 34% 45% 41%
8 69% 74% 71% 56% 67% 61%
9 65% 78% 69% 54% 78% 64%
10 67% 86% 81% 81% 89% 85%
11 70% 85% 77% 73% 91% 85%
12 87% 93% 89% 72% 78% 75%
13 86% 96% 91% 71% 84% 79%
14 76% 79% 78% 67% 74% 68%
15 61% 74% 68% 45% 56% 49%
16 76% 85% 80% 42% 56% 49%
17 77% 83% 79% 67% 76% 71%
18 56% 64% 59% 74% 84% 78%
19 45% 65% 57% 76% 79% 77%

Conquer’s precision and recall by 5% and 8%, respectively.
Hence, we can conclude that our proposed approach performs
better than Conquer search technique.

V. RELATED WORK

Query expansion (or reformulation) has long been established
as a way to improve the results returned by a TR engine [18].
Some existing software engineering work have been focusing
on this task to help code search. We highlight some of them
below.

Shepherd et al. developed a tool, V-DO, which automatically
extracts V-DO (verb - direct object) pairs from source code
comments and identifiers for query recommendations [19].
V-DO automatically suggests close matches for misspelled
query terms [19]. Haiduc et al. proposed an approach that can
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recommend a good query reformulation strategy by performing
machine learning on a set of historical queries and relevant
results [10]. It suggests four strategies to formulate a query,
including three query expansion techniques and one reduction
techniques. Recently, Hill et al. proposed a query expansion tool
named Conquer, which automatically extracts natural language
phrases from source code identifiers and categorizes the phrases
and search results in a hierarchy [9]. Conquer combines V-
DO [19] and contextual search technique [20]. It introduces a
novel natural language based approach to organize and present
search results and suggest alternative query words. In our
approach, we expand the original query with synonyms from
WordNet and extract natural language phrases from source
code identifiers. The results of our approach are composed
of method signatures corresponding to the expansion of the
original query and alternative phrases extracted from source
code identifiers. Our preliminary empirical results show that
our approach improves Conquer in terms of precision and
recall.

VI. CONCLUSION AND FUTURE WORK

Source code retrieval plays an important role in many
software engineering tasks, especially in software maintenance
tasks. However, designing a query that can accurately retrieve
the relevant software artifacts is challenging for developers as it
requires a certain level of knowledge and experience regarding
the code base. In this paper, we propose a new approach which
implements query expansion using synonyms, extracts natural
phrases from source code identifiers, matches the expanded
queries with identifiers, and sorts methods in a code base based
on the matched identifiers. The results returned by our approach
are composed of method signatures and the alternative phrases
extracted from method identifiers, which can help developers
to quickly determine whether the results are relevant or not and
reformulate a better query. Our preliminary evaluation results
show that our approach helps recommend better reformulations.
Moreover, our approach outperforms Conquer, a state-of-the-art
query expansion technique, in terms of precision and recall.

In the future, we want to conduct more experiments using
additional search tasks performed on various software projects
written in various programming languages to evaluate the
generality and effectiveness of our approach.
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