
Cross-Project Build Co-change Prediction

Xin Xia∗, David Lo†, Shane McIntosh‡, Emad Shihab§, and Ahmed E. Hassan‡
∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China
†School of Information Systems, Singapore Management University, Singapore

‡School of Computing, Queen’s University, Kingston, Canada
§Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

xxkidd@zju.edu.cn, davidlo@smu.edu.sg, mcintosh@cs.queensu.ca,
eshihab@cse.concordia.ca, and ahmed@cs.queensu.ca

Abstract—Build systems orchestrate how human-readable
source code is translated into executable programs. In a software
project, source code changes can induce changes in the build
system (aka. build co-changes). It is difficult for developers
to identify when build co-changes are necessary due to the
complexity of build systems. Prediction of build co-changes works
well if there is a sufficient amount of training data to build
a model. However, in practice, for new projects, there exists
a limited number of changes. Using training data from other
projects to predict the build co-changes in a new project can help
improve the performance of the build co-change prediction. We
refer to this problem as cross-project build co-change prediction.

In this paper, we propose CroBuild, a novel cross-project build
co-change prediction approach that iteratively learns new classi-
fiers. CroBuild constructs an ensemble of classifiers by iteratively
building classifiers and assigning them weights according to its
prediction error rate. Given that only a small proportion of code
changes are build co-changing, we also propose an imbalance-
aware approach that learns a threshold boundary between those
code changes that are build co-changing and those that are not
in order to construct classifiers in each iteration. To examine the
benefits of CroBuild, we perform experiments on 4 large datasets
including Mozilla, Eclipse-core, Lucene, and Jazz, comprising
a total of 50,884 changes. On average, across the 4 datasets,
CroBuild achieves a F1-score of up to 0.408. We also compare
CroBuild with other approaches such as a basic model, AdaBoost
proposed by Freund et al., and TrAdaBoost proposed by Dai et al..
On average, across the 4 datasets, the CroBuild approach yields
an improvement in F1-scores of 41.54%, 36.63%, and 36.97%
over the basic model, AdaBoost, and TrAdaBoost, respectively.

Keywords—Cross-project, Build Co-change Prediction, Transfer
Learning, Imbalance Data

I. INTRODUCTION

The build system is an indispensable component in a soft-
ware system, which compiles source code, libraries and other
data into executable programs by executing various compilers
and other tools [1]. Build systems are complex, often describ-
ing how to assemble numerous software configuration [2] that
are specified using hundreds of build files (e.g., Makefile or ant
files) [3]. A prior study found that build maintenance increases
software development costs by an additional 12%-36% [4].

When a software project evolves, its source code is often
changed to add new features, refactor its structure, and fix
bugs. Previous studies have shown that source code and
build system tend to co-evolve [5], [6], i.e., source code

changes1 will induce changes in the build system (aka. build
co-changes), and vice versa. Furthermore, developers have
difficulty identifying the code changes that require build co-
changes, which can cause build breakages that can slow the
release process down [7]–[9]. For example, Seo et al. found
that 29.7% and 37.4% of builds triggered by Java and C++
developers at Google on their local copies of the projects are
broken, mainly due to neglected build maintenance [7].

To help developers identify build co-changes, our prior
work trained classifiers that predict whether or not a source
code change will be build co-changing [10]. However, to
achieve high performance, these classifiers must be trained
using a large amount of historical data that new projects may
not have accrued yet. Fortunately, there are many long-lived
software projects that have collected a plethora of histori-
cal data. Hence, we propose cross-project build co-change
prediction, i.e., the use of training data from other projects
(aka. source projects) to predict the build co-changes in a
particular project of interest (aka. target project) to improve
the performance of build co-change prediction in projects in
the initial development phases.

Cross-project build co-change prediction is a challenging
task for two main reasons. First, a classifier that is trained on
source projects might not generalize to other target projects,
due to the difference in the domains of the source and target
projects. Indeed, one must build a classifier that captures
generalizable properties of build co-changes, while discarding
domain-specific properties that may not apply for a target
project. Second, there is an imbalanced distribution of source
code changes that are build co-changing and those that are
not. For example, only 16.5%, 16.5%, 8.3%, and 10.2% of
the source code changes in Eclipse-core, Jazz, Lucene, and
Mozilla projects are build co-changes, respectively. We refer
to this phenomenon as the class imbalance phenomenon [11].

In this paper, we propose CroBuild, a cross-project build
co-change prediction approach that addresses the above chal-
lenges by iteratively building an ensemble of imbalanced clas-
sifiers. To address the challenge of generalizability, CroBuild is
a transfer learning approach [12] that transfers the knowledge
from source projects to the target projects. To that end,
CroBuild operates in a setting where there are numerous
historical code changes available in a source project, and
limited historical code changes available in a target project.

1In this paper, we consider a source code change as a commit to a version
control system.

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

311

We refer to this limited amount of historical data in the target
project as target training data. To address the class imbalance
challenge, in each iteration, a new classifier is trained and an
effective decision boundary is learned. In a nutshell, CroBuild
searches for an effective classifier threshold that maximizes
F1-scores achieved in the training target data.

To evaluate CroBuild, we perform experiments on the large
Mozilla, Eclipse-core, Lucene, and Jazz datasets containing a
total of 50,884 changes. We measure the performance of the
approaches in terms of F1-score and AUC values. On average,
across the 4 datasets, CroBuild achieves a F1-score and AUC
values to 0.408 and 0.738. We also compare CroBuild to other
approaches such as a basic model2, AdaBoost proposed by
Freund et al. [13], and TrAdaBoost proposed by Dai et al. [14].
On average, across the 4 datasets, CroBuild improves F1-score
and AUC values of basic model by 41.54% and 3.97%, of
AdaBoost by 36.63% and 12.12%, of TrAdaBoost by 36.97%
and 14.16%, respectively.

The main contributions of this paper are:

• We propose the problem of cross-project build co-
change prediction. To the best of our knowledge, this
is the first time the problem is proposed and stud-
ied. Also, considering the challenges in cross-project
prediction, we propose a novel cross-project build co-
change prediction approach named CroBuild, which
iteratively learns new classifiers and good decision
boundaries in each iterations.

• We evaluate our approach with other state-of-the-
art approaches such as AdaBoost, and TrAdaBoost
on 4 datasets containing a total of 50,884 instances.
The experiment results show that our approach can
achieve a substantial improvement over these baseline
approaches.

Paper organization. The remainder of the paper is organized
as follows. Section II provides the technical motivation for
the problem of cross-project build co-change prediction. Sec-
tion III describes the CroBuild architecture. Section IV details
the CroBuild technique. Section V presents the results of
our comparative evaluation of CroBuild. Section VI discusses
the limitations of CroBuild and threats to the validity of
our evaluation. Section VII surveys the related work. Finally,
Section VIII concludes the paper.

II. TECHNICAL MOTIVATION

New projects will have limited historical data. Yet plenty of
data is available in other projects. We can leverage the limited
data in a target project and also other data from other projects
to help predict the build co-changes in the target project. Thus,
the need of our CroBuild approach relies on findings of the
following 2 investigations:

Investigation 1: Can a prediction model built on a small
number of changes (e.g., 5%) achieve similar performance as
a prediction model built on a large number of changes (e.g.,
90%)?

2In the basic model, we build a random forest model by using data in the
source project, and predict the changes in the target project.

TABLE I. THE PRECISION, RECALL, F1-SCORE, AND AUC VALUES
FOR THE PREDICTION MODEL BUILT ON THE 5%, 50%, AND 90% NUMBER

OF CHANGES IN MOZILLA.

Approach Precision Recall F1-score AUC
5% 0.657 0.478 0.554 0.793

50% 0.776 0.551 0.644 0.874
90% 0.788 0.564 0.658 0.868

TABLE II. THE PRECISION, RECALL, F1-SCORE, AND AUC VALUES
FOR THE PREDICTION MODEL BUILT ON THE ECLIPSE-CORE, JAZZ, AND

LUCENE.

Source=>Target Precision Recall F1-score AUC
Eclipse-core=>Mozilla 0.432 0.377 0.402 0.790

Jazz=>Mozilla 0.393 0.134 0.200 0.693
Lucene=>Mozilla 0.481 0.173 0.254 0.779

Approach. To perform Investigation 1, we first randomly
select 5% of the changes from Mozilla, and build a classifier
based on the selected changes. Then, we apply the classifier
to predict build co-changes using the remaining 95% of the
changes. We repeat the process 100 times, and record the
average precision, recall, F1-score, and AUC values. We repeat
the same process with 50% and 90% of the number of changes
being used as training data. The reason we train with 5%, 50%,
and 90% of the number of changes is to examine whether
the performance of prediction models differs when learning
from asmall (i.e., 5%), medium (i.e., 50%), or large (i.e., 90%)
amount of changes. To align with the prior work by McIntosh
et al. [10], we use the random forest algorithm [15] to build
our classifiers.

Results. Table I presents the precision, recall, F1-score, and
AUC values of prediction models built using 5%, 50%, and
90% of the number of changes in Mozilla. We observe that
a prediction model built on a small number of training data
achieves lower performance compared to a model built on a
large training data. In Table I, the F1-score and AUC values
for the classifier built on 5% of the number of changes are
only 0.554 and 0.793 respectively, while those values for the
classifier built on 90% of the number of changes are 0.658 and
0.868 respectively.

Investigation 2: Can a prediction model built on change
data from other projects be used to effectively predict build
co-changes of a new project?

Approach. To perform Investigation 2, we select the Mozilla
project as the target project, and Eclipse-core, Jazz, and Lucene
as the source projects. The domains of these 4 projects
are different (i.e., they provide different functionalities). We
first build 3 classifiers by using the change data in Eclipse-
core, Lucene, and Jazz, respectively. Then, we apply the 3
classifiers to predict the build co-changes in Mozilla. Similar
to Investigation 1, we also record the precision, recall, F1-
score, and AUC values.

Results. Table II presents the precision, recall, F1-score, and
AUC values for the prediction models built on Eclipse-core,
Jazz, and Lucene, respectively. We observe that the prediction
models do not work well to predict build co-changes in the
target project. In Table II, the F1-scores for models built on
Eclipse-core, Jazz, and Lucene are 0.377, 0.200, and 0.254,
respectively, which is much lower than the prediction model
built on Mozilla’s own data.

312

Source Project Training
Target Data

Target
Project

Predicted
Label

Cross-project
Prediction Model

Model Building Phase Prediction Phase

Metric
Extraction

1

5

Metric
Extraction

Cross-project
Prediction Model

2

3

4

Fig. 1. Overall architecture of CroBuild.

Investigation Summary. The above preliminary experiments
show that a build co-change classifier built using insufficient
data (Investigation 1), or built using the data from another
project (Investigation 2) do not perform well. In practice,
new projects will not have accrued sufficient data to train a
high performance build co-change classifier. To address these
challenges, we need to maximize on the value of the limited
data that may be available in the target project by combining
it data available from other projects. However, the external
data will need to be carefully processed in order to retain
generalizable features of build co-changes while discarding the
project-specific ones. Thus, in this paper, we propose CroBuild,
which considers both the limited data in the target projects
and data in the source projects. Furthermore, CroBuild bridges
the domain difference between source projects and the target
project by building an ensemble of classifiers.

III. CROBUILD ARCHITECTURE

Figure 1 presents the architecture of CroBuild, which
contains two phases: a model building phase and a prediction
phase. In the model building phase, our goal is to build a
cross-project build co-change prediction model learned from
instances in a source project and the training target data (i.e.,
5% changes from the target project that are labeled as build
or non-build). In the prediction phase, we apply this model
to predict if a new change in the target project is a build co-
change or not.

Our framework takes as inputs instances (i.e., changes)
from a source project with known labels (i.e., build or non-
build). Moreover, it also needs a small number of labeled
instances from the target project (i.e., 5% of the instances).
Note that the labels of these instances can be automatically de-
cided by mining project historical data (e.g., checking whether
changes contain modifications of build files). Next, it extracts
various metrics from instances in the the source project and
the training target data (Step 1). Table III shows the metrics
we collected that are also used by McIntosh et al. [10]. Notice
that we extract the same metrics from the source project and
the target project. Then, our framework builds a cross-project
build co-change prediction model based on the metrics from
the source project and the training target data (Step 2). The
model is a machine learning classifier which assigns labels (in
our case: build or non-build) to an instance (in our case: a
change) based on its metrics.

TABLE III. EXTRACTED METRICS.

Metrics Description
new src Number of source code files added in a change.
new test Number of test files added in a change.
del src Number of source code files deleted in a change.
del test Number of test files deleted in a change.
mod src Number of source code files modified in a change.
mod test Number of test files modified in a change.
ren src Number of source code files renamed in a change.
ren test Number of test files renamed in a change.
num dependency Number of dependencies added/removed on other

code through #include preprocessor directives for
C++ code or import statements in Java code.

num ifdefs* number of times that #if[n][def] preprocessor direc-
tives added or removed.

prior build changes* For each source and test file involved in a change,
the maximum proportions of prior changes that were
build co-changes.

num files* The number of source and test files that are involved
in a change.

*In Jazz, these 3 metrics are not collected due to privacy concerns.

After the model is constructed, in the prediction phase it
is then used to predict whether an unlabeled instance (i.e.,
change) in the target project is a build co-change or not. For
each such instances, we first extract the same metrics as those
extracted in the model building step (Step 3). We then input the
values of these metrics into the model (Step 4). It outputs the
prediction result, which is one of the following labels: build
or non-build (Step 5).

IV. OUR PROPOSED APPROACH

In this section, we present the details of CroBuild. CroBuild
has two types of projects, source projects S and target projects
T . The source project contains many instances, and an instance
corresponds to a change. Each instance has two parts: a set
of metrics x and a label y, which corresponds to whether a
change is a build or non-build co-change (y = 1 represents
build, y = 0 represents non-build). For unlabeled instances in
the target project T , the goal of CroBuild is to predict the labels
of the instances by using the model trained using instances in
the source project S and a small number of instances from the
target project whose labels are known (aka. training target data)
Tt. In the following sections, we first propose our imbalanced
classifier approach that is used as the underlying classifier of
CroBuild in Section IV-A. Next, we propose CroBuild, which
learns an ensemble of imbalanced classifiers to bridge the
domain differences between the source projects and the target
project in Section IV-B.

A. Imbalanced Classifier

In this work, we are interested in identifying build co-
changes, and follow the prior work [10], [16], [17], we use
random forest [15] to construct a classifier. In the model
building phase, random forest constructs a number of decision
trees by using instances in the training set. To predict the label
for a new change, random forest inputs the instance into sets
of decision trees, and predicts the label of the instance based
on the majority voting of the outputs of the set of decision
trees.

The output of random forest is a likelihood score between
0 and 1 that denotes the confidence that the instance is a build
co-change. Then, the user determines a threshold that she/he
will consider a change as being a build co-change. By default,
a threshold of 0.5 is used. This means that if a change has a

313

likelihood score of 50% or higher, then it is considered a build
co-change, otherwise it is not.

In our collected data, we notice that the distribution of
build and non-build co-changes is skewed. Only 16.5%, 16.5%,
8.3%, and 10.2% of the source code changes in Eclipse-core,
Jazz, Lucene, and Mozilla projects respectively are build co-
changes. Due to the class imbalance phenomenon, a random
forest classifier would be prone to predict a change as a non-
build co-change if we set the threshold to 0.5. Hence, we need
to automatically determine a good threshold value. Also, the
threshold value can be different for different datasets and the
value of the threshold affects the performance of the prediction
models [18].

Algorithm 1 Pseudocode of Our Imbalanced Classifier.
1: EstimateThreshold(S, Tt)
2: Input:
3: S: Source Project
4: Tt: Training Target Data
5: Output: threshold
6: Method:
7: Built a random forest classifier Cla on S;
8: for all change c in Tt do
9: Compute the likelihood score of c to be a build co-change by using

Cla;
10: end for
11: for all threshold from 0 to 1, every time increase threshold by

0.01 do
12: Predict the labels of changes in Tt according to Equation (1);
13: Compute the F1-score on Tt;
14: end for
15: Return threshold which maximizes the F1-score for changes in Tt

Due to the class imbalance phenomenon and the impor-
tance of the threshold, we propose Algorithm 1 that automat-
ically estimates a good threshold value in the model building
phase. Our algorithm takes as input historical instances in the
source project S and training target data Tt. It then builds
a classifier on S (Line 7), and for each change c in Tt,
it computes c’s likelihood score to be a build co-change,
i.e., Scorebuild(c) (Lines 8 - 10). Finally, to tune a good
threshold value, it gradually increases the threshold value from
0 to 1 (every time increasing the threshold by 0.01), and for
each change c in Tt, we predict its label using the following
equation:

Predict(c) =

{
Build,

Non-Build,
if Scorebuild(c) ≥ threshold

Otherwise
(1)

Finally, we output a threshold which maximizes the F1-score
for changes in Tt (Lines 11 - 15).

B. CroBuild: An Ensemble Learning Approach

Imbalance classifiers can help to deal with the class im-
balance phenomenon. However, in cross-project build change
prediction, we face another challenge: a prediction model that
is trained on a source project might not generalize to another
target project due to the differences in the domains of the
source and the target project. To address this challenge, we
adapt AdaBoost [13], which is one of the most popular and
widely used ensemble learning algorithms in the machine
learning literature.

AdaBoost iterates a number of times and builds a classifier
for each iteration. In each iteration, it assigns a weight to
the classifier according to its prediction error rate, and also
assigns weights to the instances in the training set depend-
ing on whether the instances are correctly classified or not.
CroBuild follows the principle of AdaBoost to generate the
ensemble of classifiers. However, there are several differences
between CroBuild and AdaBoost: (1) AdaBoost is designed for
traditional supervised learning, while our approach is designed
for transfer learning [12], where we transfer the knowledge
from source project to the target project. (2) To adapt AdaBoost
for transfer learning, we modify the way AdaBoost [13] assigns
weights to the classifiers and the instances in each iteration. In
AdaBoost, the instances are from the same project, however,
in CroBuild we have instances from a source project and from
training target data. CroBuild adjusts the weights of instances
from the source project differently from those from the training
target data. In general, CroBuild assigns higher weights for
the wrongly classified instances in the training target data,
compared to the weights assigned to the wrongly classified
instances in the source projects. Also, during the iterations,
CroBuild focuses on minimizing prediction errors on instances
in the training target data, while AdaBoost tries to minimize
prediction errors on all training instances.

The details of CroBuild are as follows. For each iteration
k, we build an imbalance classifier Clak according to the data
distributions in S and Tt. Next, we assign different weights
to the data instances in S and Tt. For the instances that Clak
predicts correctly, we assign low weights, and for the instances
that Clak predicts wrongly, we assign high weights. We have
different strategies in assigning weights to instances in training
target data and those in the source project, since our goal is
to minimize errors on instances in the training target data. In
the next iteration (k + 1), since different data instances have
different weights, Clak would prioritize data instances with
higher weights. At the end of iteration k, we also assign a
weight to Clak according to its prediction error rate εk on
instances in the training target data Tt. εk is computed based
on instances in Tt that are wrongly classified by Clak. We
denote the ith instance in Tt as (xiTt

, yiTt
), where xiTt

denotes
the set of metrics and yiTt

denotes the label (i.e., build or non-
build) of the ith instance. Its weight is denoted as wi

Tt
. The

prediction error rate is computed as follows:

εk =

∑|Tt|
i=1 w

i
Tt
|Clak(xiTt

)− yiTt
|∑|Tt|

j=1 w
j
Tt

(2)

In the above equation, Clak(x) denotes the predicted label
for an unlabeled instance, with a set of metrics x using the
classifier Clak. For example, consider 3 instances with weights
0.2, 0.3, and 0.5, and labels 1, 0, and 1. After we run the
imbalance classifier Clak, the predicted labels are 1, 1, and 0.
Then, the error rate for Clak would be:

ε(k) =
0.2 ∗ |1− 1|+ 0.3 ∗ |0− 1|+ 0.5 ∗ |1− 0|

0.2 + 0.3 + 0.5
= 0.8

At the end of the K iterations, we have a total of K imbalanced
classifiers, and each imbalanced classifier has a weight. We
refer to the combination of these K classifiers as an ensemble
classifier. For a new instance in the target project, we input it

314

into the ensemble classifier, and the ensemble classifier would
output a predicted label.

Algorithm 2 presents the detailed steps of CroBuild. We
denote the ith instance in the source project as {xiS , yiS} where
xiS is the set of metrics of the ith instance and yiS is its label.
Moreover, we denote the weight of the ith instance in S as
wi

S , and the weight of the ith instance in the training target
data Tt as wi

Tt
.

CroBuild first computes the total number of instances in S
and Tt (n) (Line 8). Then, it initializes the source project factor
(βs) which would be used to reassign weights of instances in
source projects (Line 9). We initialize the source project factor
following the approach by Dai et al. [14]. Next, it initializes
the weights of the instances in S and Tt (Line 10). After these
initializations, we iterate K times and build K imbalanced
classifiers to get the ensemble classifier. For each iteration
k, we first normalize the weights of all instances following
AdaBoost [13] (Line 12), and then input the instances in the
source projects and training target data by using the imbalance
classifier presented in Algorithm 1 to get the classifier Clak,
and also record the threshold value thresholdk (Line 13). For
iteration k, we compute the error rate by running Clak on
instances in Tt (Line 14). An error rate of more than 0.5 means
that the performance of Clak is even lower than a random
guess, so we terminate the process, and discard classifier Clak,
and return all of the previous imbalance classifiers to form
the ensemble classifier (Line 15). If the error rate is less than
or equal to 0.5, CroBuild calculates weight βk for Clak and
also reassigns the weights of instances in the source project
and training target data, respectively (Lines 16 and 17). The
reassignments of weights of instances in the source project
and training target data are done differently. For instances in
the source project, if they are wrongly labeled, we still need
to increase their weights, but lower than those in the target
project. The weights of instances in the training target data are
adjusted using βk which is usually larger than βs especially
when the error rate is relatively high. At the end of the K
iterations, we get the final ensemble classifier

∑K
k=1 βkClak,

and the ensemble threshold
∑K

k=1 βkthresholdk.

To predict the label of a new change c in the target project,
we first compute the likelihood score for c to be a build
co-change for each imbalanced classifier Clak (denoted as
Scorek(c)). Then, we predict its label by using the following
equation:

Predict(c) =
{

Build,
Non-Build,

if
∑
k βkScorek(c) ≥

∑
k βkthresholdk

Otherwise
(3)

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of CroBuild.
The experimental environment is a Windows Server 2008, 64-
bit, Intel Xeon 2.00GHz server with 80GB RAM.

A. Experiment Setup

We use the same datasets as McIntosh et al. [10], which
contain source code changes from 4 open source software
projects: Eclipse-core, Jazz, Lucene, and Mozilla. In total we
analyze 50,884 source code changes, and among these changes,

Algorithm 2 Pseudocode of CroBuild.
1: CroBuild(S, Tt, K)
2: Input:
3: S: Source project
4: Tt: Training target data
5: K: Maximum number of iterations
6: Output: Ensemble Classifier

∑K
k=1 βk · Clak.

7: Method:
8: Compute the number of instances in S and Tt: n = |S|+ |Tt|;
9: Set βs = 1

2
ln(1 +

√
2 ln ns

K
);

10: Initialize the weights of instances in S, and Tt. We set the weights
equally, i.e., wjS = 1

n
, and wjTt

= 1
n

;
11: for all Iteration k from 1 to K do
12: Normalize the weights in S, and Tt to 1;
13: Input S and Tt into the imbalance classifier (i.e., Algorithm 1) to

get the classifier Clak, and also the thresholdk;
14: Compute the prediction the error rate εk of Clak on Tt according

to Equation (2):
15: If εk > 1

2
, Break;

16: Set βk = εk
1−εk

, with εk ≤ 1
2

;
17: Reassign the weights in S, and Tt:

wjS = wiS exp−βs|Clak(x
i
S)−yiS |, 1 ≤ i ≤ |S|

wiTt
= wiTt

exp−βk|Clak(x
i
Tt

)−yiTt
|, 1 ≤ i ≤ |Tt|

18: end for
19: Output Ensemble Classifier (

∑K
k=1 βkClak,∑K

k=1 βkthresholdk).

only 5,409 are build co-changes, which accounts for 10.6% of
the total number of changes. Table IV presents the statistics of
McIntosh et al.’s data. The columns correspond to the name
of projects (Project), the time period (# Time), the number
of source code changes (# Change), the number of build co-
changes (# Build), and the percentage of build co-changes (%
Build).

To evaluate CroBuild, we randomly select 5% of the
instances in a target project to construct a training target data
Tt. We set the number of iterations K = 100 to mitigate
overfitting [13]. Since our approach involves randomness (i.e.,
we randomly select 5% of the target instances), similar to
Arcuri and Briand [19], we run CroBuild 100 times and
record the average performance across the multiple runs. To
simulate the practical usage of our approach, when we consider
a project as a target project, we choose the other projects
as the source projects. For example, if we choose Eclipse-
core as the target project, we use Jazz, Lucene, and Mozilla
as the source projects, and build 3 prediction models based
on the data from the 3 corresponding source projects. We
denote them as Jazz⇒Eclipse-core, Lucene⇒Eclipse-core, and
Mozilla⇒Eclipse-core, respectively.

We compare the performance of CroBuild to a basic model,
AdaBoost [13], and TrAdaBoost [14]. In the basic model,
we build a random forest model by using data in the source
project, and predict the changes in the target project. In
AdaBoost, we also iterate 100 times as we do for CroBuild, and
in each iteration, we build a model using the data in the source
project and minimize the prediction error rate of the changes
in the source project. In TrAdaBoost, we also randomly select
5% of the instances in a target project to construct a sample of
training target data Tt. We use the same setting for TrAdaBoost
as we use for CroBuild: iterate 100 times and run TrAdaBoost

315

TABLE IV. STATISTICS OF THE COLLECTED DATA.

Project Time # Changes # Build % Build
Eclipse-core 2001 – 2010 2,309 382 16.5%

Jazz 2007 – 2008 2,309 382 16.5%
Lucene 2010 – 2013 2,817 234 8.3%
Mozilla 1998 – 2010 43,449 4,411 10.2%

10 times. For both AdaBoost and TrAdaBoost, we use random
forest as the underlying classification algorithm.

B. Evaluation Metrics

In this paper, we use the F1-score and AUC values as the
main evaluation metrics.

1) F1-score: There are four possible outcomes for a change
in the test data: a change can be classified as a build co-change
when it truly is a build co-change (true positive, TP); it can be
classified as a build co-change when it is actually not a build
co-change (false positive, FP); it can be classified as a non-
build co-change when it is actually a build co-change (false
negative, FN); or it can be classified as a non-build co-change
and it truly is a non-build co-change (true negative, TN). Based
on these possible outcomes, precision, recall and F1-score are
defined as:

Precision: the proportion of changes that are correctly labeled
as build co-changes among those labeled as build co-changes,
i.e., P = TP/(TP + FP)

Recall: the proportion of build co-changes that are correctly
labeled, i.e., R = TP/(TP + FN).

F1-score: a summary measure that combines both precision
and recall - it evaluates if an increase in precision (recall)
outweighs a reduction in recall (precision), i.e., F = (2×P ×
R)/(P +R).

There is a trade-off between precision and recall. One can
increase precision by sacrificing recall (and vice versa). In
CroBuild, we can sacrifice precision (recall) to increase recall
(precision), by manually lowering (increasing) the value of the
threshold parameter in Equation (1). This trade-off causes
difficulties to compare the performance of several prediction
models by using only precision or recall alone [20]. For this
reason, we compare the prediction results using the F1-score,
which is the harmonic mean of precision and recall. This
follows the setting used in the prior study [10] and many other
software analytics studies [21]–[25]. In general, the higher the
F1-score is, the better the performance of an approach is.

2) Area under the ROC curve (AUC): Due to the imbalance
class phenomenon, area under the ROC curve (AUC) is one of
the de facto performance measure that measures the likelihood
that a build co-change is given a higher confidence score than
a false positive (i.e., a non-build co-change). Values of AUC
range between 0 (worst classifier performance) and 1 (best
classifier performance). An AUC score of 0.7 or above is
typically considered to be good [26]. In general, the higher
the AUC value is, the better the performance of an approach
is.

C. Research Questions

In order to evaluate CroBuild, we perform experiments
that: (1) compare its performance to other state-of-the-art build

TABLE V. PRECISION FOR CROBUILD COMPARED WITH THE BASIC
MODEL, ADABOOST, AND TRADABOOST.

Source⇒Target CroBuild Basic AdaBoost TrAdaBoost
Jazz⇒Eclipse 0.321 0.665 0.218 0.665

Lucene⇒Eclipse 0.271 0.517 0.333 0.517
Mozilla⇒Eclipse 0.307 0.370 0.306 0.370

Eclipse⇒Jazz 0.377 0.363 0.203 0.363
Lucene⇒Jazz 0.266 0.260 0.201 0.260
Mozilla⇒Jazz 0.229 0.295 0.167 0.295

Eclipse⇒Lucene 0.209 0.230 0.128 0.230
Jazz⇒Lucene 0.155 0.136 0.091 0.136

Mozilla⇒Lucene 0.194 0.205 0.150 0.205

Eclipse⇒Mozilla 0.445 0.433 0.197 0.433
Lucene⇒Mozilla 0.452 0.389 0.260 0.389

Jazz⇒Mozilla 0.626 0.485 0.109 0.485

Average. 0.321 0.362 0.197 0.362

TABLE VI. RECALL FOR CROBUILD COMPARED WITH THE BASIC
MODEL, ADABOOST, AND TRADABOOST.

Source⇒Target CroBuild Basic AdaBoost TrAdaBoost
Jazz⇒Eclipse 0.672 0.311 0.924 0.311

Lucene⇒Eclipse 0.664 0.085 0.490 0.085
Mozilla⇒Eclipse 0.543 0.314 0.563 0.314

Eclipse⇒Jazz 0.704 0.580 0.990 0.580
Lucene⇒Jazz 0.541 0.318 0.746 0.318
Mozilla⇒Jazz 0.649 0.434 0.832 0.434

Eclipse⇒Lucene 0.525 0.242 0.829 0.242
Jazz⇒Lucene 0.417 0.094 0.803 0.094

Mozilla⇒Lucene 0.614 0.484 0.756 0.484

Eclipse⇒Mozilla 0.684 0.378 0.832 0.378
Lucene⇒Mozilla 0.594 0.132 0.677 0.132

Jazz⇒Mozilla 0.615 0.175 0.825 0.175

Average. 0.602 0.296 0.772 0.296

co-change prediction techniques, (2) compare its performance
to within-project build co-change prediction, and (3) evaluate
the impact of the number of code changes used to train the
CroBuild classifiers. We formalize our study with the following
three research questions:

RQ1: How effective is CroBuild? How much improvement
can it achieve over other state-of-the-art approaches?

Motivation. Developers can use CroBuild to identify code
changes that require build co-changes. Developers using
CroBuild expect it to be accurate. Hence, we first set out to
evaluate the accuracy of CroBuild with respect to other state-
of-the-art approaches.

Approach. To address RQ1, we compare CroBuild with the
basic model, AdaBoost, and TrAdaBoost approaches. We

TABLE VII. F1-SCORES FOR CROBUILD COMPARED WITH THE BASIC
MODEL, ADABOOST, AND TRADABOOST. THE STATISTICALLY

SIGNIFICANT IMPROVEMENTS ARE MARKED IN BOLD.

Source⇒Target CroBuild Basic AdaBoost TrAdaBoost
Jazz ⇒ Eclipse 0.435 0.425 0.353 0.424

Lucene⇒ Eclipse 0.385 0.144 0.396 0.147
Mozilla ⇒ Eclipse 0.392 0.341 0.397 0.340

Eclipse ⇒ Jazz 0.491 0.444 0.337 0.447
Lucene ⇒ Jazz 0.356 0.288 0.317 0.286
Mozilla ⇒ Jazz 0.339 0.344 0.278 0.351

Eclipse ⇒ Lucene 0.299 0.234 0.222 0.340
Jazz ⇒ Lucene 0.226 0.112 0.163 0.111

Mozilla ⇒ Lucene 0.295 0.288 0.250 0.288

Eclipse ⇒ Mozilla 0.539 0.402 0.319 0.403
Jazz ⇒ Mozilla 0.621 0.254 0.376 0.257

Lucene ⇒ Mozilla 0.546 0.200 0.193 0.198
Average 0.401 0.290 0.300 0.299

316

TABLE VIII. AUC VALUES FOR CROBUILD COMPARED WITH THE
BASIC MODEL, ADABOOST, AND TRADABOOST. THE STATISTICALLY

SIGNIFICANT IMPROVEMENTS ARE MARKED IN BOLD.

Source⇒Target CroBuild Basic AdaBoost TrAdaBoost
Jazz ⇒ Eclipse 0.769 0.805 0.663 0.807

Lucene⇒ Eclipse 0.679 0.672 0.704 0.553
Mozilla ⇒ Eclipse 0.681 0.673 0.680 0.620

Eclipse ⇒ Jazz 0.794 0.784 0.620 0.714
Lucene ⇒ Jazz 0.645 0.634 0.585 0.587
Mozilla ⇒ Jazz 0.612 0.624 0.503 0.628

Eclipse ⇒ Lucene 0.754 0.708 0.724 0.620
Jazz ⇒ Lucene 0.674 0.611 0.565 0.571

Mozilla ⇒ Lucene 0.726 0.733 0.725 0.695
Eclipse ⇒ Mozilla 0.871 0.790 0.811 0.717

Jazz ⇒ Mozilla 0.882 0.779 0.802 0.632
Lucene ⇒ Mozilla 0.755 0.693 0.506 0.603

Average 0.737 0.709 0.657 0.646

compute the precision, recall, F1 and AUC scores to evaluate
the performance of the 3 approaches on the 4 studied projects.
Also, since we run these approaches 100 times, we apply the
Wilcoxon signed-rank test [27] on the 100 rows of paired per-
formance values to test whether the improvement of CroBuild
over the 3 approaches is statistically significant (α = 0.05).

Results. Tables V and VI present the precision and recall
of the RQ1 experiment. On average across the 4 projects,
CroBuild achieves precision and recall values of 0.321 and
0.602, respectively. Precision and recall are both important
metrics for build co-change prediction since they measure
quality in two aspects. Low precision means a high number
of false labels. On the other hand, low recall means that most
correct labels are not assigned to the changes. There is a trade
off between precision and recall [20], we use the F1-score,
which is the harmonic mean of precision and recall, to compare
the performance of the different approaches.

Tables VII and VIII show the F1 and AUC scores of
the RQ1 experiment. Statistically significant improvements are
marked in bold. The F1 and AUC scores of CroBuild vary
from 0.226 - 0.621 and 0.612 - 0.882, respectively. On average,
across the 4 projects, CroBuild can achieve F1 and AUC scores
of 0.401 and 0.731, respectively.

From Table VII, the improvement of CroBuild over the
basic model, AdaBoost, and TrAdaBoost are substantial in
terms of F1-score. On average, across the 4 projects, CroBuild
improves over the basic model, AdaBoost, and TrAdaBoost by
41.54%, 36.63%, and 36.97%, respectively. Also, the Wilcoxon
signed-rank tests show that CroBuild statistically significantly
improves the basic model on 9 out of 12 source and target
project pairs, AdaBoost on 10 out of 12 source and target
project pairs, and TrAdaBoost on 8 out of 12 source and target
project compositions.

From Table VIII, we notice on average across the 4
projects, CroBuild improves the AUC values of the basic
model, AdaBoost, and TrAdaBoost by 3.97%, 12.12%, and
14.16%, respectively. Also, the Wilcoxon signed-rank tests
show that CroBuild statistically significantly improves the
basic model on 8 out of 12 source and target project pairs,
AdaBoost on 9 out of 12 source and target project pairs, and
TrAdaBoost on 10 out of 12 source and target project pairs.

TABLE IX. F1-SCORES FOR CROBUILD COMPARED WITH
WITHIN-PROJECT PREDICTION (5%, 90%), AND THE BEST RESULTS

REPORTED BY MCINTOSH ET AL. [10].

Source⇒Target CroBuild 5% 90% McIntosh et al.
Jazz ⇒ Eclipse 0.435

0.213 0.340 0.390Lucene⇒ Eclipse 0.385
Mozilla ⇒ Eclipse 0.392

Eclipse ⇒ Jazz 0.491
0.146 0.231 0.310Lucene ⇒ Jazz 0.356

Mozilla ⇒ Jazz 0.339

Eclipse ⇒ Lucene 0.299
0.150 0.138 0.360Jazz ⇒ Lucene 0.226

Mozilla ⇒ Lucene 0.295

Eclipse ⇒ Mozilla 0.539
0.554 0.658 0.640Jazz ⇒ Mozilla 0.621

Lucene ⇒ Mozilla 0.546

Average 0.401 0.266 0.342 0.425

TABLE X. AUC VALUES FOR CROBUILD COMPARED WITH
WITHIN-PROJECT PREDICTION (5%, 90%), AND THE BEST RESULTS

REPORTED BY MCINTOSH ET AL. [10].

Source⇒Target CroBuild 5% 90% McIntosh et al
Jazz ⇒ Eclipse 0.769

0.649 0.695 0.690Lucene⇒ Eclipse 0.679
Mozilla ⇒ Eclipse 0.681

Eclipse ⇒ Jazz 0.794
0.580 0.720 0.610Lucene ⇒ Jazz 0.645

Mozilla ⇒ Jazz 0.612

Eclipse ⇒ Lucene 0.754
0.723 0.761 0.790Jazz ⇒ Lucene 0.674

Mozilla ⇒ Lucene 0.726

Eclipse ⇒ Mozilla 0.871
0.793 0.868 0.880Jazz ⇒ Mozilla 0.882

Lucene ⇒ Mozilla 0.755

Average 0.737 0.686 0.761 0.743

In most cases, CroBuild achieves a statistically significant
improvement compared to the basic model, AdaBoost, and
TrAdaBoost in terms of F1 and AUC scores. On average,
CroBuild improves F1-scores of the basic model, AdaBoost,
and TrAdaBoost by 41.54%, 36.63%, and 36.97%, and AUC
by 3.97%, 12.12%, and 14.16%, respectively.

RQ2 Can CroBuild outperform conventional within-
project build co-change prediction?

Motivation. We refer to an approach that builds a model using
only change data from a project and uses the model to predict
other changes from the same project as an within-project build
co-change prediction approach. Prior work by McIntosh et
al. [10] falls under this category. Since we use some labeled
training data from a target project (i.e., training target data),
we also investigate whether CroBuild could achieve better
performance than conventional within-project prediction using
some data from the target project. In within-project prediction,
some labeled training data from a target project are input to a
base classifier and the resultant classifier is used to label the
other data from the target project. Thus, we are also interested
to investigate whether our approach, which leverages change
data from other projects can perform similar to within-project
prediction, when a sufficient amount of within-project training
data is available.

Approach. To address RQ2, we investigate two settings. First,
since by default CroBuild requires 5% of the code changes
from the target project to be labeled, we investigate the
performance of conventional within-project prediction using

317

the same 5% of data. Second, we randomly select 90% of
the instances from the target project, and build a classifier
to predict the label of the remaining 10% of the instances.
With 90% of the instances labeled, it is likely that conventional
within-project predictions can train a high-performance model
to predict the remaining 10% of the instances.

Results. Tables IX and X show the F1-scores and AUC values
of CroBuild compared to those of within-project prediction
with 5% and 90% labeled data, and also the best results
reported by McIntosh et al. [10]. From Tables IX and X, the
improvement of our approach over within-project prediction
with 5% labeled data is substantial. On average across the 4
datasets, CroBuild outperforms the F1-score and AUC values
of within-project prediction with 5% labeled data by 50.89%
and 7.40% respectively. Moreover, CroBuild still improves
the average F1-score of within-project prediction with 90%
labeled data by 17.34%, and achieves similar AUC values
as the within-project prediction with 90% labeled data. The
average AUC of within-project prediction with 90% data is
0.761, while it is 0.737 for CroBuild. Note that CroBuild only
requires 5% labeled data from the target project.

McIntosh et al. propose a re-sampling based approach to
predict build co-changes, which removes samples from the
non-build (majority) category and repeats samples in the build
(minority) category. We also compare CroBuild with McIntosh
et al.’s approach. In Tables IX and X, we record the best results
reported by McIntosh et al. [10]. We notice McIntosh et al.’s
approach achieve a slight better performance than CroBuild.
The average F1-score and AUC values for McIntosh et al.’s
approach are 0.425 and 0.743, while those values are 0.401
and 0.737 for CroBuild. Once again, it is important to note
that McIntosh et al.’s approach requires 90% labeled data from
the target project.

CroBuild achieves better performance compared to within-
project prediction, when only 5% of the instances are used.
Furthermore, CroBuild achieves similar performance as
within-project prediction with 90% of instances, such as
McIntosh et al.’s approach.

RQ3: Do different percentages of code changes selected
from a target project affect the performance of CroBuild?

Motivation. CroBuild requires a small number of labeled data
from the target project (i.e., training target data). By default,
the number of code changes in the training target data is
set to 5% of the total number of code changes in the target
project. However, how the number of code changes affects
the performance of CroBuild remains unknown. Knowing the
impact of the number of code changes is important, since we
would like to know the smallest amount of code changes that
will produce the best results.

Approach. To address RQ3, we vary the number of code
changes from 1% - 15% of the total number of code changes
in the target project and measure the performance of CroBuild.
Additionally, we investigate the performance of CroBuild when
a limited budget is specified, i.e., an absolute number of code
changes selected from a target project.

Results. Figure 2 presents the F1-scores across the 4 datasets
when we vary the percentage of code changes (1% to 15%)
from the target project. We notice that in general, when we

Fig. 3. AUC for different percentages of instances in the training target data
(1% to 15%) in Mozilla.

TABLE XI. F1 AND AUC SCORES FOR CROBUILD WITH DIFFERENT
NUMBER OF INSTANCES IN THE TRAINING TARGET DATA (100, 300, AND

500, RESPECTIVELY).

Source⇒Target 100 300 500
F1 AUC F1 AUC F1 AUC

Jazz ⇒ Eclipse 0.460 0.786 0.493 0.766 0.498 0.766
Lucene⇒ Eclipse 0.304 0.663 0.386 0.684 0.399 0.696
Mozilla ⇒ Eclipse 0.385 0.657 0.393 0.684 0.388 0.700

Eclipse ⇒ Jazz 0.500 0.788 0.432 0.754 0.484 0.789
Lucene ⇒ Jazz 0.340 0.654 0.326 0.632 0.362 0.622
Mozilla ⇒ Jazz 0.342 0.627 0.354 0.597 0.344 0.604

Eclipse ⇒ Lucene 0.253 0.719 0.206 0.756 0.374 0.768
Jazz ⇒ Lucene 0.223 0.634 0.240 0.676 0.301 0.727

Mozilla ⇒ Lucene 0.314 0.753 0.297 0.758 0.403 0.808
Eclipse ⇒ Mozilla 0.404 0.781 0.531 0.853 0.561 0.863

Jazz ⇒ Mozilla 0.391 0.749 0.400 0.755 0.433 0.746
Lucene ⇒ Mozilla 0.364 0.782 0.522 0.847 0.552 0.861

Average 0.357 0.716 0.382 0.730 0.425 0.746

increase the number of code changes in the training target data
from 1% to 15% of the number of code changes in the target
project, the F1-scores for CroBuild are slightly increased. For
example, when we choose Eclipse as the source project and
Mozilla as the target project, the F1-scores vary from 0.538
(4%) to 0.615 (15%). Figure 3 presents the AUC values in
Mozilla with various percentages of code changes (1% to 15%)
from the target project. Still, we find when we increase the
number of instances in the training target data, the AUC values
for CroBuild are slightly increased. For the other 3 datasets,
we observe a similar result for AUC values. Due to the page
limitation, we do show the AUC values in a table.

Table XI presents the F1-scores and AUC of CroBuild
when there are only 100, 300, and 500 code changes in
the training target data. The average F1-scores and AUC
for CroBuild vary from 0.357 to 0.425, and 0.716 to 0.746,
respectively. With more instances in the training target data,
the performance of CroBuild is better.

In general, an increase in the number of instances in the
training target data increases the F1 and AUC scores.

VI. THREATS TO VALIDITY

Threats to internal validity relates to errors in our code
and experiment bias. We have double-checked our code, still
there could be errors that we did not notice. To reduce the
training set selection bias, we run CroBuild 100 times, and
record the average performance. Also, in our CroBuild, we
randomly took 5% of the changes in the target project, which

318

(a) Eclipse-core (b) Jazz

(c) Lucene (d) Mozilla
Fig. 2. F1-scores for different percentages of instances in the training target data (1% to 15%).

is an approximation since in most cases, we will only have
the first 5% of the data. Threats to external validity relate to
the generalizability of our results. We have analyzed 50,884
changes from 4 different projects. In the future, we plan to
reduce this threat further by analyzing even more change data
from additional software projects. Threats to construct validity
refer to the suitability of our evaluation measures. We use F1-
score and AUC, which are also used by past studies to evaluate
the effectiveness of build co-change prediction [10], and also
various automated software engineering techniques [21]–[25].
Also, we consider all the false positives to have the same
impact. In the future, we plan to reduce this threat by taking
into consideration cost in our analysis.

VII. RELATED WORK

Build system maintenance. A number of prior studies have
shown that source code changes often require build co-
changes. Adams et al. noticed that the source code and the
make-based build system of the Linux kernel tend to co-
evolve [5]. Similar results were also observed in a sample
of Ant- and Maven-based build systems [6], [28]. Even for
programs written in dynamic scripting languages like Ruby,
the source code tends to co-evolve with its build system [29].

To support developers in maintaining build systems, re-
searchers have proposed a variety of tools. For example,
Adams et al. propose a reverse-engineering framework named
MAKAO to analyze the dependencies in build systems [30].
Tamrawi et al. propose SYMAKE, which analyzes make-
based build systems using symbolic execution [31]. Zhou et
al. propose BuildPredictor, which predicts the missed depen-
dencies in software build system by leveraging the links in the
build graph and code graph [32]. Our work is orthogonal to
the above studies – we propose CroBuild, which predicts build
co-changes in a project by using other projects’ data.

Source-build co-change. Prior studies have also shown that up
to 27% of source code changes are accompanied by build co-

changes [3]. These build co-changes are difficult for developers
to identify. To support developers in identifying the code
changes that require accompanying build changes, McIntosh
et al. propose build co-change prediction [10]. They study the
build co-changes in Eclipse-core, Jazz, Lucene, and Mozilla,
extract a number of metrics such as the number of files
added/removed/modified in a source code change, and propose
a re-sampling approach to predict the build co-changes. Our
work is different from their work in several ways: (1) the
approach proposed in their work is a within-project predic-
tion approach, while CroBuild is a cross-project prediction
approach, (2) to address the class imbalance phenomenon,
McIntosh et al. use a re-sampling strategy where the instances
in the majority class (non-build) are under-sampled and the
instances in the minority class (build) are over-sampled, while
CroBuild addresses the class imbalance problem by learning
an appropriate decision boundary to separate majority and
minority classes.

Transfer learning. In the machine learning community, there
have been a number of studies on transfer learning [12],
[14], [33]. There are two categories for the techniques that
focus on transfer learning: (1) supervised transfer learning,
where a small amount of labeled data are available for
the target task [14]3, and (2) unsupervised transfer learning,
where only some unlabeled data are available for the target
task [33]. TrAdaBoost is a supervised state-of-the-art transfer
learning algorithm, which is most related to ours [14]. It
also extends AdaBoost and transfers knowledge from a source
project to a target project. Our proposed CroBuild is different
from TrAdaBoost: TrAdaBoost does not consider the class
imbalance phenomenon, while our CroBuild considers the
class imbalance phenomenon in build co-change prediction,
and learns a good threshold for the classifier built in each
iteration. In the software engineering community, some studies

3In our setting, we refer to this small amount of labeled data as training
target data

319

also leverage transfer learning approaches to solve the defect
prediction problem [34]–[36]. In contrast, we focus on the
problem of cross-project build co-change prediction.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose the problem of cross-project build
co-change prediction - namely the prediction of a source code
change that leads to a future change in the build code. We
propose CroBuild, which iteratively learns new classifiers and
a good decision boundary that collectively try to overcome the
class imbalance phenomenon and project difference problem.
CroBuild iterates a number of times, and in each iteration,
it builds an imbalance classifier, and assigns a weight to the
classifier according to its prediction error rate. In effect, it
builds an ensemble of classifiers. To examine the benefits of
CroBuild, we perform experiments on 4 large datasets includ-
ing Mozilla, Eclipse-core, Lucene, and Jazz containing a total
of 50,884 changes. On average across the 4 datasets, CroBuild
achieves an F1-score of 0.408. We also compare CroBuild with
other state-of-the-art approaches, i.e., basic model, AdaBoost
proposed by Freund et al., TrAdaBoost proposed by Dai et al..
On average, across the 4 datasets, CroBuild results correspond
to an improvement in the F1-scores of 41.54%, 36.63%, and
36.97% over the basic model, AdaBoost, and TrAdaBoost,
respectively.

In the future, we plan to evaluate CroBuild with datasets
from additional software projects, and develop a better tech-
nique that improves the prediction performance further, e.g.,
by combining some classical imbalance learning approaches
such as SMOTE [11] and OSS [11] .

Acknowledgment. This research was supported by the Na-
tional Basic Research Program of China (the 973 Program)
under grant 2015CB352201, and National Key Technology
R&D Program of the Ministry of Science and Technology of
China under grant 2014BAH24F02.

REFERENCES

[1] P. Smith, Software build systems: principles and experience. Addison-
Wesley Professional, 2011.

[2] C. AtLee, L. Blakk, J. ODuinn, and A. Gasparian, “Firefox release
engineering,” The Architecture of Open Source Applications, vol. 2.

[3] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in ICSE, 2011, pp.
141–150.

[4] G. K. T. Epperly, “Software in the doe: The hidden overhead of the
build,” 2002.

[5] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution
of the linux build system,” Electronic Communications of the EASST,
vol. 8, 2008.

[6] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of java build
systems,” Empirical Software Engineering, vol. 17, no. 4-5, pp. 578–
608, 2012.

[7] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W.
Bowdidge, “Programmers’ build errors: a case study (at google).” in
ICSE, 2014, pp. 724–734.

[8] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” TSE, pp. 307–324, 2011.

[9] A. E. Hassan and K. Zhang, “Using decision trees to predict the
certification result of a build,” in ASE, 2006, pp. 189–198.

[10] S. McIntosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining co-
change information to understand when build changes are necessary,”
in ICSME, 2014, pp. 241–250.

[11] H. He and E. A. Garcia, “Learning from imbalanced data,” Knowledge
and Data Engineering, IEEE Transactions on, pp. 1263–1284, 2009.

[12] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and
Data Engineering, IEEE Transactions on, pp. 1345–1359, 2010.

[13] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, p. 1612, 1999.

[14] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learn-
ing,” in Proceedings of the 24th international conference on Machine
learning, 2007, pp. 193–200.

[15] L. Breiman, “Random forests,” Machine learning, pp. 5–32, 2001.
[16] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “Elblocker: Predicting

blocking bugs with ensemble imbalance learning,” Information and
Software Technology, 2015.

[17] H. Valdivia Garcia and E. Shihab, “Characterizing and predicting
blocking bugs in open source projects,” in MSR, 2014, pp. 72–81.

[18] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial
study on the risk of software changes,” in FSE, 2012, p. 62.

[19] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in ICSE, 2011,
pp. 1–10.

[20] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan kaufmann, 2006.

[21] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs in
open source software,” Empirical Software Engineering, pp. 1005–1042,
2013.

[22] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report
priority using multi-factor analysis,” Empirical Software Engineering,
pp. 1–30, 2014.

[23] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in ICSM, 2008, pp. 346–355.

[24] H. V. Garcia and E. Shihab, “Characterizing and predicting blocking
bugs in open source projects,” in MSR, 2014.

[25] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high ac-
curacy prediction of reopened bugs,” Automated Software Engineering,
pp. 1–35, 2014.

[26] D. Romano and M. Pinzger, “Using source code metrics to predict
change-prone java interfaces,” in ICSM, 2011, pp. 303–312.

[27] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, pp. 80–83, 1945.

[28] S. McIntosh, B. Adams, and A. E. Hassan, “The evolution of ant build
systems,” in MSR, 2010, pp. 42–51.

[29] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan,
“A large-scale empirical study of the relationship between build tech-
nology and build maintenance,” Empirical Software Engineering, pp.
1–47, 2014.

[30] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in ICSM, 2007, pp. 114–
123.

[31] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build
code analysis with symbolic evaluation,” in ICSE, 2012, pp. 650–660.

[32] B. Zhou, X. Xia, D. Lo, and X. Wang, “Build predictor: More
accurate missed dependency prediction in build configuration files,” in
COMPSAC, 2014, pp. 53–58.

[33] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” Neural Networks, IEEE Transactions
on, pp. 199–210, 2011.

[34] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE,
2013, pp. 382–391.

[35] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect
prediction,” in MSR, 2013, pp. 409–418.

[36] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Information and Software Tech-
nology, pp. 248–256, 2012.

320

