Evaluating Defect Prediction Approaches Using A Massive
Set of Metrics: An Empirical Study

Xiao Xuan?, David Lo?, Xin Xia'*, and Yuan Tian?
'College of Computer Science and Technology, Zhejiang University, China
2School of Information Systems, Singapore Management University, Singapore

jackyxuan@zju.edu.cn, davidlo@smu.edu.sg, xxkidd@zju.edu.cn,
yuan.tian.2012@phdis.smu.edu.sg

ABSTRACT

To evaluate the performance of a within-project defect pre-
diction approach, people normally use precision, recall, and
F-measure scores. However, in machine learning literature,
there are a large number of evaluation metrics to evaluate
the performance of an algorithm, (e.g., Matthews Correla-
tion Coeflicient, G-means, etc.), and these metrics evaluate
an approach from different aspects. In this paper, we inves-
tigate the performance of within-project defect prediction
approaches on a large number of evaluation metrics. We
choose 6 state-of-the-art approaches including naive Bayes,
decision tree, logistic regression, kNN, random forest and
Bayesian network which are widely used in defect prediction
literature. And we evaluate these 6 approaches on 14 eval-
uation metrics (e.g., G-mean, F-measure, balance, MCC, J-
coeflicient, and AUC). Our goal is to explore a practical and
sophisticated way for evaluating the prediction approach-
es comprehensively. We evaluate the performance of defect
prediction approaches on 10 defect datasets from PROMISE
repository. The results show that Bayesian network achieves
a noteworthy performance. It achieves the best recall, FN-
R, G-meanl and balance on 9 out of the 10 datasets, and
F-measure and J-coefficient on 7 out of the 10 datasets.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords

Defect Prediction, Evaluation Metric, Machine Learning

1. INTRODUCTION

Due to the complexity of software systems, defects are in-
evitable. A previous study from NIST shows that software
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defects cost the US economy an estimated $59 billion ev-
ery year [12]. Early detection or prediction of the defective
classes/files/modules in a software system could not only
enhance software dependability, but also reduce the cost of
software development and maintenance. A number of de-
fect prediction approaches have been proposed to identify
defect-prone classes, files, or modules by leveraging machine
learning techniques to build a prediction model from his-
torical data [3, 6, 9]. Most of these approaches are trained
and applied on classes/files/modules from the same project
which are referred to as within-project defect prediction ap-
proaches.

To evaluate the performance of a within-project defect
prediction approach, people normally use precision, recall,
and F-measure scores [3, 6, 9]. However, in machine learn-
ing literature, there are massive evaluation metrics to eval-
uate the performance of an algorithm, e.g., accuracy [3,
6], specificity [3, 6], G-mean [3], and Area Under the ROC
Curve (AUCQC) [3, 6]. These metrics evaluate an approach
from different aspects.

In this paper, we investigate the performance of within-
project defect prediction approaches on massive evaluation
metrics. We choose 6 state-of-the-art approaches including
naive Bayes, decision tree, logistic regression, kNN, random
forest and Bayesian network which are widely used in defec-
t prediction literature [3, 16, 11]. Then, we evaluate these
6 approaches on 14 evaluation metrics including accuracy,
error rate, recall, specificity, precision, false positive rate
(FPR), false negative rate (FNR), G-meanl, G-mean2, F-
measure, balance, MCC, J-coefficient, and AUC. Our goal
is to evaluate the prediction approaches comprehensively.
To evaluate the performance of these 6 approaches on 14
metrics, we perform experiments on 10 defect datasets from
PROMISE repository [10] containing a total of 5,305 in-
stances. The results show that Bayesian network achieves
a noteworthy performance. It achieves the best recall, FN-
R G-meanl and balance on 9 out of the 10 datasets, and
F-measure and J-coefficient on 7 out of the 10 datasets.

The main contributions of this work are listed as follows:

1. We empirically investigate performance of 6 most wide-
ly used classification algorithms for defect prediction
with a large set of evaluation metrics. We perform ex-
periments on a broad range of datasets containing a
total of 5,305 instances.

. Based on the experiment results, we present a detailed
analysis on the performance of these defect prediction
approaches with respect to the different metrics.



Table 1: Confusion matrix

Predicted Positive Predicted Negative
True Positive (TP) False Negative (FN)
False Positive (FP)  True Negative (TN)

Actual Positive
Actual Negative

2. WITHIN-PROJECT PREDICTION
APPROACHES

Within-project defect prediction aims to predict if a par-
ticular class/file/module (aka. instance) is defective or not.
Typically, a within-project defect prediction approach has
the following steps:

Training Data Extraction. For each class/file/module,
label it as defective or not by mining a project’s revision
history and bug tracking system. Defective class/file/mod-
ule means there are some bugs in it.

Feature Extraction. Identify various features from the
class/file/module. A great number of features have been
used in many previous defect prediction work. In this paper,
we use the datasets provided by Jureczko and Madeyski [5].
Model Building Phase. Build a model with a classifica-
tion algorithm based on the extracted features.

Model Application Phase. For a new class/file/module,
extract the values of its features, then input them to the
learnt model to predict whether it is defective or not.

In this work, we evaluate 6 state-of-the-art within-project
defect prediction approaches including naive Bayes (NB) [2],
decision tree (DT) [2], logistic regression (LR) [4], k-nearest
neighbor (kNN) [2], random forest (RF) [2] and Bayesian
network (BN) [2].

3. MASSIVE EVALUATION METRICS

In this section, we elaborate the 14 evaluation metrics
which would be used to evaluate the performance of defect
prediction approaches.

The Confusion Matrix: Most of the performance evalu-
ation metrics are based on the result of a Confusion Matrix
[13, 14]. This matrix shows the numbers of correctly classi-
fied (i.e. the predicted outcome is the same as the observed
one) and misclassified instances (i.e. the predicted outcome
is contrary to the observation). As presented in Table 1,
four categories of labelled instances will be concluded after
a prediction has been performed:
e True Positive (TP): an instance is classified as defective
when it truly is defective.
e False Positive (FP): an instance is classified as defec-
tive when it is not defective.
e True Negative (TN): an instance is classified as not
defective when it is actually not defective.
e False Negative (FN): an instance is classified as not
defective when it is actually defective.
Accuracy and Error Rate: Accuracy is the ratio of
the number of correctly classified instances (TP and TN)
to total number of instances (see Equation 1). Error rate
is the number of correctly classified instances over the total
number of instances, as shown in Equation 2.

Accurac TP+ TN (1)
4 TP+TN + FP+FN
FP+ FN
ErrorRate + (2)

TP+TN+ FP+ FN
Both of these two metrics measure the overall performance

of a classifier. However, neither of them inspect the data
distribution and cost information.

1645

Recall, Specificity & Precision: Recall, aka. sensitiv-
ity, true positive rate or probability of detection, is defined
as the proportion of observed positive instances predicted
as positive by a classifier (see Equation 3). Another metric,
named specificity, is just complementary to recall, which is
defined as the proportion of observed negative instances pre-
dicted as negative by a classifier (see Equation 4).

TP
TP+ FN

F PT—i\r TN )
Precision is a metric that is easy to be confused with recall.

It refers to the proportion of instances predicted as defective

which actually are defective, as shown in Equation 5.

_re
TP+ FP

Recall

= Sensitivity

3)

Speci ficity

Precision (5)

Note that both recall and precision are crucial metrics
for defect prediction. Jiang et al [3] elaborate that there
is a trade-off existing between these two metrics. Zhang
and Zhang [15] state that a good prediction model should
achieve high recall and high Precision. That means single-
focus metrics like recall, specificity and precision cannot pro-
vide comprehensive evaluation for software defect prediction
approaches. To remedy this problem, some combination
metrics were proposed, which are introduced later.

False Positive Rate (FPR) & False Negative Rate
(FNR): False positive rate and false negative rate are ad-
ditional single-focus metrics (see Equation 6 and 7), which
are also known as Type I error rate and Type II error rate re-
spectively. False positive rate is used for calculating balance
and J-coefficient that are described later.

P

FPR TN+ FP (6)
FN

FNE FN+TP (™)

Geometric Mean (G-mean): Geometric mean was pro-
posed by Kubat et al [7], which is motivated by two factors
- the requirement for a metric that can tackle the class im-
balance problem, and the requirement for a metric that is
not only easy to compute but also more comprehensive than
single-focus metrics. In software defect prediction, datasets
usually are imbalanced. Defective instances are the minority,
while faultless ones are the majority. As shown in Equation
8, G-mean is the square root (i.e. geometric mean) of the
product of recall and specificity: one for the minority class
and another for the majority class. Equation 9 denotes an-
other definition of G-mean: square root of the product of
recall and precision.

G — meanl = \/Recall x Speci ficity (8)

(9)

F-Measure: F-measure is another combination metric,
and it also looks at two positive metrics - recall and preci-
sion, the same as G-mean. Compared to G-mean, F-measure
is more flexible and sophisticated by introducing a weight
coefficient w. The user is able to weigh the contribution of
these two component metrics arbitrarily. To be specific, F-

G — mean2 = v/ Recall x Precision



measure is defined as a weighted harmonic mean of precision
and recall, see Equation 10. For any w € R, we have:

(1 +w) [Precision x Recall]
" [w X Precision] + Recall

F, (10)
where, typically, w is assigned the values 0.5, 1, or 2. In this
work, we set w = 1 by default, considering that precision
and recall are equal.

Balance: The metric balance is a combination of FPR and
recall. According to the definition (see Equation 11), a high
recall leads to a high balance; whereas a high FPR causes a
low balance.

Balance =1 — \/ (11)

Matthews Correlation Coefficient (MCC): Matthews
Correlation Coefficient is rarely used in the scenario of soft-
ware defect prediction but widely used in medical science
domain. MCC is a Chi-Square based metric which is de-
fined in Equation 12.

MCC =

(0 — FPR)® + (1 — Recall)?
2

TP x TN — FP x FN
V(TP +FP)(TP + FN) (TN + FP) (TN + FN)

(12)

J-coefficient (J-coeff):  J-coefficient is another metric
which is initially proposed for models evaluation in medical
research. It was first used to assess the performance of soft-
ware defect prediction approaches by El Emam et al in 2001
[1]. Equation 13 is J-coefficient’s formal expression.

JCoef f = Recall + Speci ficity — 1 = Recall — FPR (13)

Area Under the ROC Curve (AUC): Receiver Oper-
ating Characteristic (ROC) curve is a graphical evaluation
method for classification approaches. This curve is plotted
in a two-dimensional space with FPR as x-coordinate and
recall as y-coordinate. Area Under the ROC Curve (AUC)
is defined as what its name implies, which can also be com-
puted in one simple way (see Equation 14).

A

AVC ) = =)

- (14)
where T, C T and T;, C T are the subsets of positive and
negative instances in test set T, and R; is the rank of the

ith instance in T}, given by the classifier f.

4. EXPERIMENTS

Experiment Setup. The experimental environment of this
work is a computer equipped with 2.4 GHz Intel Core 2 Duo
CPU and 4GB 1067 MHz DDR3 RAM, running Mac OS
X 10.8.2 (64-bit). We use Weka 3.6 to evaluate 6 classical
software defect prediction approaches which consist of naive
Bayes, decision tree, logistic regression, K-nearest neighbor,
random forest and Bayesian network.

Table 2 shows the statistics of the 10 datasets that we
collected from PROMISE repository [10]. The columns cor-
respond to the dataset name and version (Dataset), the
number of total instances (# Inst.), the number of defec-
tive instances (# Defect.), and the percentage of defective
instances (% Defect.).
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Table 2: Statistics of Collected Datasets

Dataset # Inst # Defect. | % Defect.
ANT-1.7 745 166 22.3%
PROP-6 660 66 10.0%
IVY-2.0 352 40 11.4%
JEDIT-4.0 306 75 24.5%
LOG4J-1.0 135 34 25.2%
LUCENE-2.2 247 144 58.3%
POI-2.0 314 37 11.8%
CAMEL-1.6 965 188 19.5%
TOMCAT 858 7 9.0%
XALAN-2.4 723 110 15.2%
Total 5,305 937 17.7%
Results. We are interested in the following research ques-
tion:

Which defect prediction approach achieves the best
performance across the 14 evaluation metrics?

Motivation. In this paper, we propose 14 evaluation met-
rics, we would like to investigate whether exists a defect pre-
diction approach which achieves the best performance across
the massive set of evaluation metrics.

Method. We perform 10x10-fold cross-validation experi-
ments on these 10 datasets. We repeat 10-fold cross-validation
10 times, and record the average scores across the 10 times.
The parameters are set by default in Weka, except the k
value for kNN classifier, which is configured as 5.

Results. Table 3 shows the overall performance of each de-
fect prediction approach on the datasets. For each metric
in this table, we show the average score of the metric over
the 10 datasets. As shown in this table, in general, Bayesian
network performs very well. It achieves the best scores in
terms of recall (0.529), G-meanl (0.653), G-mean2 (0.457),
F-Measure (0.445), balance (0.640), J-coeff (0.351) and MC-
C (0.305). Logistic regression performs the best in terms of
accuracy (it scored 0.820). Random forest achieves the best
AUC (it scored 0.750). kNN performs the best in terms of
specificity (it scored 0.912).

Figure 1 presents the number of times each approach achieve
the best performance on 14 evaluation metrics. We also no-
tice that Bayesian network achieves the best performance; it
achieves the best recall, FNR, G-meanl, and balance for 9
out of the 10 datasets, the best F-measure and J-coefficient
for 7 out of the 10 datasets, the best G-mean2 for 6 out of the
10 datasets, and the best AUC for 4 out of the 10 dataset-
s. Thus, for a new defect prediction approach, we need to
compare it with Bayesian network since it achieves the best
performance across a massive set of evaluation metrics.

Also, from the Table 3 and Figure 1, we need to use a
range of metrics and not just one metric to evaluate a de-
fect prediction approach. Using just one metric will not do
well, since an approach that is good on one metric might be
very poor on many others. For example, logistic regression
achieves the best performance in terms of accuracy, but its
recall, F-measure, G-meanl, G-mean2, and MCC scores are
low.

S. RELATED WORK

There have been a number of empirical studies to evaluate
the performance of defect prediction approaches. Jiang et
al. perform an empirical study which investigates the perfor-
mance of different defect prediction approaches on 8 datasets
from NASA MDP repository [3]. They study the perfor-
mance of defect prediction approaches by using cost curves.
Li et al. also investigate the performance of different defect



Table 3: Classifiers Performance on Overall Datasets

NB DT LR kNN RF BN
Accuracy 0.790 0.807 0.820 0.816 0.818 0.762
Error Rate | 0.210 0.193 0.180 0.184 0.182 0.238
Recall 0.383 0.333  0.289 0.269 0.307  0.529
Specificity | 0.892  0.881  0.902 0.912  0.907  0.822
Precision 0.450 0.473 0.501 0.496 0.513 0.411
FPR 0.108 0.119 0.098 0.088 0.093 0.178
FNR 0.617 0.667 0.711 0.731 0.693  0.471
G-meanl 0.577 0.512  0.464 0.462 0.503 0.653
G-mean?2 0.407 0.390 0.370 0.358 0.390 0.457
F-Measure | 0.399 0.378  0.348 0.337 0.373  0.445
Balance 0.556  0.503  0.471 0.467 0.493  0.640
J-coeff 0.275 0.214  0.191 0.181 0.214  0.351
MCC 0.281 0.253  0.249 0.239 0.270  0.305
AUC 0.734 0.626  0.726 0.722  0.750 0.737
F-Measure
FNR, Accuracy
/
Balance?/" Specificity
j‘{
G-meanl] Precision
Recall & Error Rate
"

G-mean2 FPR

J-coeff Mcc

AUC
==NB ==DT =+LR -#-kNN —RF -e-BN

Figure 1: The number of times that each approach
achieve the best performance on 14 evaluation met-
rics.

prediction approaches on 12 NASA MDP datasets [9]. Two
evaluation metrics, namely recall and AUC, are used. Less-
mann et al. evaluate the performance of 22 defect prediction
approaches using AUC as the evaluation metric [8]. Our
work complements the above studies. We investigate the
performance of defect prediction approaches using a large
number of evaluation metrics.

6. CONCLUSION AND FUTURE WORK

In this paper, we present an empirical study on evaluation
of software defect prediction approaches with massive nu-
meric metrics. Various classification techniques (e.g., naive
Bayes, decision tree, logistic regression, K-nearest neighbor,
random forest and Bayesian network) have been investigat-
ed. Besides, 14 performance metrics have been used to as-
sess the performance of the 6 classifiers. In our experiment,
we use 10 PROMISE datasets that contains 5,305 instances
in total. From the experiment results, the performance of
Bayesian network classifier is remarkable. It achieves the
best performance in terms of recall, FNR, G-meanl and bal-
ance on 9 out of the 10 datasets, and in terms of F-measure
and J-coefficient on 7 out of 10 datasets. Furthermore, for 6
datasets, Bayesian network achieves the best value for more
than 5 metrics.

In the future, we plan to evaluate the performance of
defect prediction approaches with more evaluation metrics,
and more datasets. We also plan to design a better approach
which would achieve the best performance across all of the
evaluation metrics.
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