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Abstract. Protecting running programs from exploits has been the fo-
cus of many host-based intrusion detection systems. To this end various
formal methods have been developed that either require manual con-
struction of attack signatures or modelling of normal program behavior
to detect exploits. In terms of the ability to discover new attacks before
the infection spreads, the former approach has been found to be lacking
in flexibility. Consequently, in this paper, we present an anomaly moni-
toring system, NORT, that verifies on-the-fly whether running programs
comply to their expected normal behavior. The model of normal behavior
is based on a rich set of discriminators such as minimal infrequent and
maximal frequent iterative patterns of system calls, and relative entropy
between distributions of system calls. Experiments run on malware sam-
ples have shown that our approach is able to effectively detect a broad
range of attacks with very low overheads.

1 Introduction

Many techniques have been proposed to ensure the safety of computing systems.
Security policies on the flow of sensitive information [2] and encryption target
only the safety of highly sensitive data while neglecting the presence of malware
and infections. Traditional antivirus system target infections by searching for
known patterns of malware statically, within system files. Host-based intrusion
detection systems (IDS), on the other hand, monitor the dynamic behavior of a
computing system in order to detect infections.

Misuse IDS [11] are similar to traditional antivirus systems. They model
known intrusions and scan running programs to detect signatures of attacks.
While they benefit from a high degree of accuracy their main drawback is the
inability to detect novel attacks. Consequently, attackers exploit this weakness
by using various obfuscation techniques or developing new attacks. Built as a
response, anomaly-based IDS learn the normal behavior of programs and protect
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them by observing the events they generate and comparing them to the expected
behavior, thus are capable of detecting new attacks. The models of expected
behavior can be obtained either by static analysis [21, 8, 9] or dynamic analysis
[7, 13, 23, 24, 18, 6]. Although conservative static analysis approaches do not
exhibit false positives they suffer from generating and using imprecise models
due to the need to handle non-determinism, non-standard control flows, function
pointers, libraries, etc. Dynamic analysis, on the other hand, leverages specific
program’s input to yield more accurate models; it however admits false positives.

In this work we propose an anomaly-based IDS , called NORT, that models
dynamic behavior of programs and detects attacks by discovering deviations from
the expected behavior. Our motivation lies with the very nature of malware
that will usually reach our computers by exploiting vulnerabilities in running
programs, getting installed as a start-up service by using legitimate services and
hiding itself by modifying legitimate programs.

We build upon the work of Forrest et al [7] that was the first to propose a
simple yet effective model, based on contiguous sequences of system calls, to
describe the behavior of programs. We add to their success and strive to attain
better performance by considering arguments, return values and probability dis-
tributions of system calls (in addition to temporal information) in our model.
More importantly, we capture both frequent and infrequent system call patterns
and relative entropy between distributions of calls to distinguish between accept-
able and unacceptable behavior. Compared to other techniques based on data
mining [24, 13] one of our contributions is the richness of our feature set: NORT
is the first work that uses iterative patterns (of system calls) to model normal
behavior. Iterative patterns permit gaps between adjacent calls found in the pat-
terns, allowing for faster convergence and both effective and efficient detection
of variants of malware. They also succinctly capture repetitive call sequences,
resulting in patterns of shorter length and far less overhead in pattern manipu-
lations. We are also the first to employ relative entropy to detect anomalies in a
host machine (previously, this has mostly been used in network IDS). By adding
this extra layer of security we raise the likelihood of an intrusion being detected.

NORT addresses current security issues, including the zero-day attacks, and
the emergence of more a advanced malware phenomenon also known as Malware
2.0. These new security situations entail the development of adaptive methods,
such as NORT, that can detect attacks and intrusions without prior knowledge
about the malware itself. The contributions of our work are:

1. A new mining algorithm of frequent and infrequent patterns and a practical
application to runtime verification and malware detection.

2. An effective model to describe the dynamic behavior of programs, incorpo-
rating not only the temporal ordering of input events but also data-flow infor-
mation. This differs from past work on pattern based specification mining[15].

3. A prototype system, implemented and tested on Windows, to verify that
programs comply to their expected behavior. Most IDS so far focused on
Unix systems. However recent attacks such as the one on Google [1] showed
the need for an IDS for a commodity operating system such as Windows.
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The experiments aimed at evaluating our prototype system have shown a good
balance between the three main concerns of dynamically built program models:
accuracy, training convergence, and efficiency. Accuracy makes the model useful
while efficiency and the rate of convergence make it usable, especially on-the-fly.
Our results showed fast training convergence for both simple applications such
as the Windows printing service and complicated applications such as Internet
Explorer and Adobe Reader. In terms of accuracy, NORT showed the ability to
detect a broad range of attacks with runtime overhead of less than 10%.

2 Overall Picture

NORT is designed as a system that offers individual computers one more layer
of security, besides the ones already used: firewall, network IDS and antivirus.

It relies on the fact that software is used in a consistent manner and it detects
malicious changes by a two phase-system: first it learns the normal behavior of
the system and then it monitors the dynamic system to detect deviations from
normal. During the learning phase a stochastic vector capturing the distribution
of system calls for each program is computed, frequent iterative call patterns dis-
covered across programs are mined and minimal infrequent call patterns exhib-
ited within each program are identified and stored in a normal behavior database
(NBDB). When the detection mode is activated, NORT computes the relative
entropy between the stochastic vectors of the running processes and the corre-
sponding learned programs in the NBDB, mines maximal frequent and minimal
infrequent iterative patterns and compares them against those stored in NBDB.

Similar to usual dynamic machine learning approaches, a major challenge
that we face is with the incompleteness of the training data. In the ideal
case the normal database would contain all variations in normal behavior and
we could regard a single mismatch found to be significant. Unfortunately, in
real environments, it is practically impossible to collect all normal variations.
Our solution to this problem is to attach, to each process, a trust barometer
that increases the trust level when normal behavior is observed and decreases
when anomalies are detected. Different types of anomalies have different weights
associated to them. The weights of high entropy and new frequent patterns are
heavier since these are less likely to occur in traces while the weight of new
infrequent patterns is lighter such that several anomalies must occur before an
alert is raised. The weight associated with normal behavior is much smaller than
those associated with anomalies and has the effect of ignoring isolated anomalies.

The architecture of NORT is modular, being comprised of a kernel-driver, an
engine and the user interface, as seen in Figure 1(a). The kernel instrumentation
module acts as a sensor, recording system calls with their parameters and passing
them to the engine. Because these have to be done at real-time, kernel-level
buffers are used. The engine consists of several modules and is the core of the
system. The first module preprocesses the data and passes the results through
the learner/detector modules: entropy and data miner. The learner/detector
modules store or query information from the storage module. The graphical
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user interface allows the user to choose the programs to monitor and to view the
reports of specifications learned or detected and alerts generated.

3 Data Preprocessing

For runtime systems that deal with an infinite sequence of input events, it is
important to have efficient data collection and preprocessing techniques. This
section is thus dedicated to describing the kernel instrumentation module that
handles the interception of the input events (system calls) and the data prepro-
cessing module where we structure the stream of system calls by considering call
arguments and employing techniques such as aggregation.

3.1 System-Calls and Kernel Instrumentation

System calls represent the basic interaction unit between programs and the OS
kernel. We assume that any harmful attack to a system will require the compro-
mised applications to interact with the OS. Thus, we focus on inspecting system
calls, their arguments and return values to discriminate between normal and
abnormal dynamic program behaviors.

Several approaches have been proposed for intercepting system calls. User-
level mechanisms [18, 6] are deemed unsuitable, as they usually incur run-time
overheads in the range of 100% and 250% due to the additional task switching
operation required at each interception. Techniques that intercept system calls
within the kernel, through kernel modifications, incur much lower overheads.
We therefore adopt the latter approach and use techniques from BindView’s
strace open-source application to install a kernel driver. We also provide users
the option to monitor either all or part of the system calls and their parameters.

3.2 Handling Complex Behavior and Overcoming Obfuscation

Signature based antivirus programs easily become ineffective when viruses
employ obfuscation techniques [4]. Several types of obfuscation techniques are
described in [4] classifying viruses as either polymorphic or metamorphic. A
polymorphic virus tries to avoid detection by encrypting itself and applying
transformations to its decryption routine such as inserting instructions without
effect (nop, dead-code), changing the order of instructions and inserting jump
instructions to preserve the effect of the code (code transposition) or making use
of other registers. Metamorphic viruses change their code to an equivalent one
by employing more complex techniques such as code transposition, equivalent
instruction sequence substitution, and code insertion to the entire host binary.

By performing data mining on system calls sequences, it is possible to elimi-
nate threats from many of these obfuscation techniques. However, mining system
call patterns naively may not be effective, as it may attempt to distinguish call
patterns which differ by the ordering of calls made on different resources. For
instance, when a program opens two files and mixes reads and writes from these
two files, two call patterns describing this file operation behavior may deem
distinct as they capture different orderings of file operations.
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NORT performs clever data mining on system calls. It first overcomes the call
ordering problem mentioned earlier by using system call’s parameters. NORT
groups together system calls that refer to the same resource, thus ignoring the
order of operations that apply to different resources. Next, contiguous strings
of the same repeating system calls are aggregated into one system call; cf. [5].
These techniques also help in learning more complex behaviors and speeding up
the convergence rate of normal behavior as we will explain in the section on
Experiments.

(a) Architecture (b) A Sliding Window and Trace Partitioning

Fig. 1. NORT

3.3 Trace Partitioning

As NORT is required to analyze data in the form of possibly infinite sequences of
calls, we apply a sliding window model to split the data and mine and compute
relative entropy for windows of events. A definition of this model would be: each
element arrives at time t and expires at time t + w, where w is the window size.

On top of splitting the stream of system calls into windows we further struc-
ture it by process ids and then in thinner strands by handle and thread ids
(Figure 1(b)). We also apply an aggregation technique which involves adding a
system call to a strand only if it differs from the previous one. A thread strand
will contain all system calls generated by the thread execution and that are not
related to a handle. A handle strand will contain system calls that act upon an
object such as a file, socket, button (handles are some of the most important
data objects in Win32). Because handles may be reused in the process context,
they can be either in use (opened) or old (closed). Handles that are in use get
special treatment when a window expires. Specifically, in order to avoid losing
information, handles in use are kept beyond window expiration until they are
closed or they have reached a certain age (in terms of number of windows).

During preprocessing we also check the return values of system calls. If a
system call has executed successfully we will add its id to the preprocessing
database. Otherwise we will add an anomaly score (greater than the highest id
ever assigned to a system call) to its id and add this new value to the prepro-
cessing database. By using this additional information the training convergence
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of normal behavior is not adversely affected. Also, we are able to detect more
attacks such as the PDFKA attack on Adobe Reader.

4 Analysis Engine

To detect anomalous behavior we make use of both statistical analysis and a
specification mining approach that extends the algorithm proposed by Lo et
al [15]. In this section we describe these two layers of detection and the method
for storing the specifications that will be used for real time detection of malware.

4.1 Statistical Analysis

As the first layer of defence we build upon the approach expounded in [16] to
compute relative informational entropy [14] which captures the distance between
the regularity of two datasets. Our motivation lies with the fact that, similar to
Internet traffic, system call patterns have both randomness and structure, and
malware can alter both. Specifically, when most malware enter their infection
and multiplication phase, they start accessing files, creating network connections,
sending emails thus changing the randomness and patterns of system calls. To
detect such changes we use relative entropy which can be defined as follows:

Definition 1. The relative entropy between two probability distributions P and
Q that are defined over the same class Cx is:

Hrel(P | Q) =
∑

x∈CX

P (x) log
P (x)

Q(x)
.

In our interpretation of relative entropy, x represents a system call, the class CX

refers to the set of all system calls under consideration while the two probability
distributions P(x) and Q(x) refer respectively to the learned and current distri-
butions of system calls generated by a process. Specifically, Q(x) is implemented
as a stochastic vector that captures the degree of randomness of a process in
the currently processed window and P(x) is the corresponding stochastic vec-
tor computed and stored in the NBDB (for each program) during the learning
phase by aggregating the results from multiple windows. These two vectors are
used to compute the relative entropy between the current distribution for each
process and window and the learned distribution of the corresponding program
(found in NBDB). These relative entropies obtained during the learning phase
are used to determine the maximum relative entropy exhibited during learning
for each program. The relative entropies obtained during the detecting phase,
on the other hand, are compared against a threshold and the trust levels of the
appropriate programs are decremented or incremented according to the result.
The threshold chosen is relative to the maximum relative entropy observed in
the learning phase. It is thus unique for each program as a global absolute value
would not be appropriate due to differences among programs.

As entropy only measures the randomness of system calls, not all malware
could be detected via entropy measures. To further enhance the malware
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detection capability, we use a novel data mining algorithm that looks for both
frequent and infrequent patterns in the call stream, as described in the next
subsection.

4.2 Specification/Pattern Mining

To capture relevant patterns of software behavior we adapt two existing mining
algorithms – Efficient Mining of Iterative Patterns for Software Specification
Discovery [15] and Towards Rare Itemset Mining [20] – and obtain FEELER:
Frequent and infrEquent itErative sequentiaL pattErn mineR. In this subsection
we describe formally the notion of iterative patterns and how they are used by
FEELER to detect malware.

Basic Definitions. Let I be a set of distinct events which are the system calls
under consideration. Let a sequence S be an ordered list of events. We write S
as 〈e1, e2, . . . , eend〉 where each ei is an event from I. The input to the mining
algorithm is a set of sequences also referred to as the sequence database (SeqDB).

A pattern P1 (〈e1, e2, . . . , en〉) is considered a subsequence of another pattern
P2 (〈f1, f2, . . . , fm〉) if there exist integers 1 ≤ i1 < i2 < . . . < in ≤ m where
e1 = fi1 , . . . , en = fin . We denote this subsequence relationship by P1 ⊆ P2.

Concatenation of two patterns P1(〈e1, . . . , en〉) and P2(〈f1, . . . , fm〉) is defined
as follows: < e1, . . . , en > ++ < f1, . . . , fm >=< e1, . . . , en, f1, . . . , fm >.

Semantics of Iterative Patterns. For the rest of this section, we use itera-
tive pattern and pattern interchangeably. An iterative pattern is a pattern the
instances of which conform to a specific requirement, as defined below:

Definition 2. (Iterative Pattern Instance) Given an iterative pattern P = 〈e1, e2,
. . . , en〉, a substring SB = 〈sb1, sb2, . . . , sbn〉 of a sequence S in the sequence
database is an instance of P if SB can be described by the Quantified Regular
Expression:

e1; [−e1, . . . , en]; e2; [−e1, . . . , en]; . . . ; en

A Quantified regular expression is very similar to a standard regular expression
with ; as the concatenation operator and [-] as the exclusion operator.

Definition 3. (Support) The support of a pattern P (denoted as sup(P)) wrt.
to a sequence database SeqDB is the number of its instances in SeqDB.

Definition 4. (Frequent and Infrequent Patterns) A pattern P is considered
frequent in SeqDB when its support, sup(P) is greater or equal to a certain
threshold (min sup). Otherwise if sup(P ) < min sup, P is infrequent or rare.

The following theorem, the proof of which is omitted, provides a valuable means
to prune the search space during mining, rendering the mining process efficient.

Theorem 1. (Anti-monotonicity Property) If a pattern Q is infrequent and P
= Q ++ evs (where evs is a series of events), then P is also infrequent.
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As there may be too many frequent and infrequent patterns, we mine for two
compact sets of patterns: maximal frequent and minimal infrequent.

Definition 5. (Maximal Frequent Patterns) An iterative pattern P is considered
maximal frequent in a sequence database SeqDB if P is frequent and there exists
no super-sequence Q such that P ⊆ Q and Q is frequent in SeqDB.

Definition 6. (Minimal Infrequent Patterns) An iterative pattern P is consid-
ered minimal infrequent (minimal rare) in a sequence database SeqDB if P is rare
and there exists no sub-sequence R such that R ⊆ P and R is rare in SeqDB.

Generation of Iterative Patterns. Our algorithm for mining, FEELER,
adopts a depth-first pattern growth and prune strategy to obtain maximal fre-
quent and minimal infrequent iterative patterns. Its input comes from the pre-
processing module in the form of all strands (handle and thread) of system calls
corresponding to one process. These strands constitute the sequences in the Se-
qDB. The output of FEELER, the iterative patterns obtained for each running
process in a window of calls, are stored in the NBDB during the learning phase
and checked against the corresponding ones in the NBDB in the detection phase.

Procedure MinePat
Inputs : min sup : Minimum Support Threshold
Outputs : freqDB : Max. Frequent Patterns, infreqDB : Min. Infreq. Patterns
1 : Let FreqEv = All single events e where sup(e) ≥ min sup
2 : Let infreqDB = All single events e where 0 < sup(e) < min sup
3 : Let freqDB = {}
4 : For each f ev in FreqEv do
5 : Call GrowPat (f ev,min sup, FreqEv, freqDB, infreqDB)

Procedure GrowPat
Inputs : Pat : A frequent pattern

min sup : Minimum Support Threshold
EV : Frequent Events
freqDB : Max. Frequent Patterns, infreqDB : Min. Infrequent Patterns

6 : Let NxtFreq = {Pat++e | e ∈ EV ∧ (sup(Pat++e) ≥ min sup)}
7 : Let NxtInfreq = {Pat++e | e ∈ EV ∧ (0 < sup(Pat++e) < min sup)}
8 : For each iPat ∈ NxtInfreq
9 : If (�R. (R ∈ infreqDB ∧ R ⊆ iPat)) then
10 : infreqDB = infreqDB \ {Q | Q ∈ infreqDB ∧ (iPat ⊆ Q)}
11 : infreqDB = infreqDB ∪ {iPat}
12 : If |NxtFreq| = 0 then
13 : If (�Q. (Q ∈ freqDB ∧ Pat ⊆ Q)) then
14 : freqDB = freqDB \ {R | R ∈ freqDB ∧ (R ⊆ Pat)}
15 : freqDB = freqDB ∪ {Pat}
16 : Else For each fPat in NxtFreq
17 : Call GrowPat(fPat,min sup,EV, freqDB, infreqDB)

Fig. 2. FEELER Mining Algorithm
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The main procedure of FEELER, MinePat, shown in Figure 2, will first find
frequent patterns of length one (Line 1) and then call GrowPat which recur-
sively grows each pattern (Line 5). The length-1 patterns that are infrequent
(support < min sup) and minimal are added to infreqDB (Line 2).

Procedure GrowPat, shown at the bottom of Figure 2, receives as inputs a
frequent pattern (Pat), the support threshold, the set of frequent events and the
sets of maximal frequent (freqDB) and minimal infrequent (infreqDB) iterative
patterns. The recursive algorithm will grow the current pattern Pat by a single
event and collect the resultant frequent and infrequent patterns (Lines 6-7). For
each infrequent pattern iPat, GrowPat will check if any of its subsequences is
in infreqDB (Line 9) and will add iPat to infreqDB if no pattern is found. The
patterns in infreqDB that are not minimal are also removed (Line 10). For each
frequent pattern fPat it will try to grow further by calling GrowPat recursively
(Line 17). If however the growth of Pat resulted in non-frequent patterns, Pat is
added to freqDB if none of its super sequences is found in freqDB(Lines 12-15).

4.3 Storage

The Storage module interacts with the entropy and miner modules and manages
the extracted specifications. The unique feature that enables this module to
efficiently respond to queries is the use of bloom filters to store patterns [3](one
bloom filter for the frequent patterns from all the running processes and one per
process for the infrequent patterns). These data structures generate and store
a unique binary hash of a pattern and allow us to query for patterns without
having to enumerate them. However, depending on the bloom filter size and
hashing, the queries might have false positives. We have determined empirically
the size of all the bloom filters to be 4MB in order to reduce the false positives.

5 Experiments

Dynamically built program models for runtime intrusion detection can be eval-
uated on three criteria: accuracy, training convergence, and efficiency. Greater
accuracy makes the model useful while efficiency and fast convergence make the
model usable. In order to evaluate our model we gathered different types of real
world exploits and legitimate applications and confronted them against our pro-
totype. All the experiments were performed on a Quad Core i7 running Windows
XP SP 2 with 2GB of RAM inside VMWare Player on a Windows 7 host.

We started the experiments by first constructing models of normal behavior
for the internal components of the operating system (winlogon, explorer, spoolsv,
services), the pre-installed programs (Internet Explorer, notepad), and several
legitimate applications such as Adobe PDF Reader. The obtained models showed
fast training convergence rates for both simple and complex applications. Second,
we ran a series of cross-validation tests. These tests consisted of learning the
models of normal behavior and then feeding Nort in detection mode with new
data from a clean installation, data that has never been learned before. No
false positives were exhibited at the end of the tests. We next experimented
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with a broad range of malware samples and observed significant changes caused
by the exploits in legitimate applications (as exhibited by the introduction of
new frequent and infrequent patterns and a significant increase in entropy) that
resulted in all attacks being detected. Lastly, we evaluated the efficiency of NORT
by computing the runtime overhead of the system.

During the course of the experiments we used a window size of 10,000, a
minimum support of 20 for mining and a threshold of 150% for relative entropy.
From the list of 284 system calls of Windows XP we monitored a subset of 274.

5.1 Training Convergence

All anomaly detection techniques factor the time required to train and the con-
vergence of the model in their evaluation. The rate of convergence is of particular
interest as it governs the training time needed to attain a given level of false pos-
itives. The faster the convergence rate the smaller the training time needs to be.

We ran experiments with Internet Explorer, Adobe PDF Reader, spoolsv,
and the internals of the operating system (services such as explorer, svchost,
etc.). Internet Explorer and Adobe Reader were chosen as we wanted to show
how learning converges for complex applications with interfaces, and where user
behavior is perceived to yield slow convergence. The spoolsv printing service, for
which all executions differ, was chosen to demonstrate that fast convergence can
be attained by aggregating multiple reads and multiple writes.

The rate of convergence was measured in terms of the number of unique
frequent and infrequent patterns (as functions of the number of system calls)
required to learn applications. As shown in Figure 3, despite the initial surge, the

Fig. 3. Training convergence
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increase in new patterns tapers off after reasonable amount of training time. We
also ran alternative experiments that did not split the system calls by handles;
there we observed a larger number of learned patterns (due to the interleaving of
calls on resources such as keys, threads, etc.) and much longer times are needed
for learning to converge.

5.2 Performance Study

An improvement in security comes at a cost: the performance degradation caused
on a running system. As NORT has to continuously monitor legitimate applica-
tions without disrupting overall usability of the system, performance is critical.
To evaluate the efficiency of NORT we measured the impact of on-the-fly mon-
itoring on the runtime of 7-zip (a well known compression application) and on
the startup time of three interactive applications (Figure 4). We also observed
the system during viral tests, and found neither noticeable slow-down nor loss
in usability.

As the runtime overhead caused by NORT depends on the type and rate
of system calls it processes we ran experiments that would show a range of
system usage scenarios. In the first 7-zip test, a simple compression benchmark
was run mimicking the case in which an application is performing a CPU-bound
computation. In the second test, a mixed workload scenario was simulated. Here,
7-zip was used to compress and archive a folder that contained 733 MB of data
(404 files in 74 subfolders). The third test depicts an IO-bound workload scenario.
Here, 7-zip was used to archive the same folder without performing compression.
These results, as summarized in the left table in Figure 4, show that running
NORT causes very low overhead (less than 10%) for all applications.

The other set of experiments we ran were aimed at measuring the impact of
NORT on the startup time of Microsoft Office and Adobe Reader. To this end we
used a program to launch the tested applications and monitor the initialization
status through the WaitforInputIdle() API. The results – depicted at the right
of Figure 4 – showed that the monitoring activities only incur a slight overhead
on the tested applications although a higher rate of system calls was generated.

Baseline Monitored

7-zip Benchmark 5:29s 5:31s(0.6%)

7-zip Compress 2:43s 2:45s(1.22%)

7-zip Archive 18s 19s(5.55%)

Fig. 4. NORT monitoring runtime overhead

We also ran tests to find the rate of system calls NORT can intercept and
process. During the course of these experiments we found that when the OS is
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not intensively used (cmd, notepad, calc, etc.) the average number of system
calls/second is 1,600 whereas the peak is 26,000. When the system is used inten-
sively (a Trend Micro Office scan or running MS Visual Studio while browsing
the Web) the average number of calls/second is 12,476 and peaks at 65,000.
These findings are shown in Figure 5. In addition, the last two bars in this figure
also show NORT’s processing capability in two running modes. In the online
mode NORT was able to handle a high rate of calls while in the offline mode
(all calls are written in a MySql file) NORT is able to handle a smaller rate.

Fig. 5. NORT processing capability

During the course of all experiments NORT handled high rates of system
calls with a small runtime impact. We attribute these results to the efficient
interception of system calls, the small size of the window on which the algorithms
are run, and the aggregation of calls.

5.3 Accuracy

In this subsection, we show that NORT is able to accurately detect attacks by
real-world malware. Each viral experiment we performed involved, as the first
step, the analysis of the malware to find information about the applications
compromised and the nature of the changes. We then learned the behavior of
legitimate applications and ran the malware and NORT (in detection mode) to
capture the changes on legitimate applications. To avoid mixing malware, the
virtual machine was brought to its initial installation before every experiment.

W32/Virut.n is a polymorphic virus that infects PE and HTML files and
downloads other malware. In order to modify critical files the virus first disables
the System File Protection (SFP) by injecting code into winlogon. The injected
code modifies sfc os.dll in memory (which allows it to infect files protected by
SFP) and downloads malicious files such as worm bobax.f and worm bobax.bd.
The observable effects of the intrusion are an increase in entropy, new frequent
operations on files and the registry, new infrequent patterns containing unseen
system calls related to network activity (as winlogon downloads malicious files),
to the creation of processes and threads (as winlogon creates processes from the
files downloaded), to the deletion of keys or values from the registry, etc.

PDFKA takes the form of an innocent PDF document and is accounted
for 42.97% of all exploits detected by Kaspersky in the first quarter of 2010
[10]. In our experiments, running Win32.Pdfka.bo resulted in a large number
of unseen frequent and infrequent patterns in AcroRd32Info, AcroRd32 and
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AdobeARM. AcroRd32Info started exhibiting infrequent network activity and
infrequent activity on processes, threads and virtual memory. The new behavior
of AdobeARM was mostly related to activity on processes (virtual memory ac-
cesses and threads creation) as AdobeARM will open all running processes. The
new patterns generated by AcroRd32 were detected from the anomalous return
values reflecting the corrupted nature of the PDF file being opened.

Project Aurora surfaced in December 2009 when security experts at Google
identified a highly sophisticated attack targeted on their corporate infrastruc-
ture and another 20 large companies such as Adobe, Yahoo, etc. The 0-Day
widespread attack exploits a vulnerability in the way Internet Explorer handles
a deleted object which results in IE referencing a memory location where the
attacker dropped malicious code. In order to test this exploit we connected two
virtual machines (the attacker and the victim) and used reverse tcp as payload.
Employing the attack caused IE 6, running on the victim, to connect to the
attacker and execute commands (getting the user id and a screenshot). The new
patterns detected by NORT include system calls that create named pipes (the
new code in IE initiates communication with the attacker) and system calls on
threads, processes and virtual memory (memory is allocated for the payload).

Win32.Hydraq is a family of backdoor Trojans that was first used by the
Aurora Project, as a payload. The carefully crafted attack takes advantage of the
svchost process in Windows (a common technique used by malware to persist
on a compromised computer) and can be detected by our approach due to a
new service and the new patterns generated by it. The attack caused svchost
to exhibit network activity directed to 360.homeunix.com and was detected by
means of: new frequent patterns of network usage, of memory mapped IO and
files; infrequent patterns on the registry that returned anomalously, etc.

Other attacks For a more thorough evaluation we tested several more mal-
ware taken from the Top 10 malware list [19]. Z0mbie.MistFall.3, one of the best
metamorphic viruses, which infects other executables and causes many running
programs to exhibit abnormal behavior, was detected by NORT. We are also
able to detect NetSky.y and Mytob.x in different processes as these worms over-
write other executables and try to exploit components of the operating system
(services.exe and svchost.exe). In the experiments with Zhelatin.uq (aka Storm),
the newly installed malicious service component was detected as anomalous.

6 Related Work

Many models have been proposed that try to define normal system behavior in
such a way that the models are sensitive to dangerous foreign activity.

Models of program behavior obtained by dynamic analysis. Forrest
et al [7] were the first to propose the use of fixed length contiguous sequences of
system calls (n-grams) to define the expected behavior of programs. Their results
showed a fast convergence and good discrimination which made system calls
based IDS the most popular approach in detecting novel attacks. The downfall
of the simple n-gram model is that due to not allowing gaps between system
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calls forming sequences, one single misplaced system call will cause multiple
mismatches. In our mining approach we mitigate this weakness by allowing for
flexible gaps between system calls forming patterns of various sizes. We also
consider the frequencies of patterns and split the stream of system calls by
threads and handles to address the complexity due to concurrency.

Lee and Stolfo adopt a data mining approach by generalizing fixed length
sequences of system calls as a set of concise association rules [13]. They reported
a good degree of success in accurately detecting new attacks. We further improve
their success by (1) mining on variable length sequences thus allowing for flexible
gaps among call events and capturing long term correlations (2) involving call
arguments and return values in our mining.

In [24] Wespi et al introduce a technique based on the Teiresias algorithm
to create a table of maximal variable length patterns. While their model uses
variable-length maximal patterns and aggregation, they do not allow gaps in
patterns and do not consider using infrequent patterns and relative entropy.

Sekar et al [18] propose profiling normal system behavior via finite state au-
tomata with the states corresponding to the values of the innermost program
counter located at a static location and the transitions to system calls. They
thus are not able to characterize the behavior exhibited by dynamically linked
libraries which, as demonstrated in [6], may significantly impair their accuracy.

Feng et al. use both program counters and stack history to capture normal
behavior in [6]. This enables the detection of any attack that modifies the return
address of a function. The overheads reported in [18, 6] are unfortunately in the
range of 100 to 250%.

Pattern-Based Specification Mining. There have been a number of works
on mining patterns as specifications of a program [15, 17, 12]. In our approach
we leverage the efficiency of iterative patterns [15] and extend it to mine for both
minimal infrequent and maximal frequent events. This new algorithm combined
with a smart preprocessing of the input events and statistical analysis proved to
be an expressive way of modeling behavior and effective in detecting malware.

7 Conclusions and Future Work

As Malware 2.0 threatens to be more adaptive than what we have experienced
so far, we believe that data mining and artificial intelligence techniques will play
more prominent roles in managing the new security problem.

This paper describes a prototype system (NORT 1 that integrates advanced
pattern mining techniques and relative entropy to effectively and efficiently de-
tect malware intrusions. By using these layers of defence our prototype attained
a reasonably fast rate of training convergence for all applications and detected
all malware intrusions with at most 10% slowdown. Although further investiga-
tion is required, we believe that by using frequencies, distributions, and relative
entropy of system calls our system should be robust enough to mimicry attacks,
an invention of Wagner and Soto [22] tasked at evading IDS detection.

1 The prototype can be found at http://www.comp.nus.edu.sg/%7Especmine/nort/
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NORT is not meant to be a substitute of an antivirus, but rather to com-
plement one. The ability of NORT to detect malicious activity as anomalous
behavior can prevent spreading of viruses or worms and provide a modern tool
for security specialists to determine the installation of rootkits inside systems.

We envisage the use of NORT in an environment with multiple similar host
systems. Here, distributed data mining can be used to better detect intrusions
or to identify points of malware entry. Patterns discovered from all the machines
will be gathered and then compared, taking in account the time-window and
frequencies. Notifications can be redirected to a security specialist or a larger
cross-institution knowledge base of known patterns.
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