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Mining Rich Graphs: A Graph Transformation Approach

Didi Surian∗ David Lo† Hong Cheng‡ Ee-Peng Lim§

Abstract

There have been a large number of studies mining
graph patterns, however, most of them only process
graphs with nodes and edges having a single label.
Often there is a need to represent a rich dataset as
graphs with nodes and edges having multiple labels -
each label representing a feature in the dataset. For
example, in a social network, multiple features could
be associated to individuals (e.g., age, address, etc.)
and their relationships (e.g., friend, foe, send message,
etc.). To analyze these rich datasets, there is a need to
extend existing graph mining algorithms to also mine
rich graphs with nodes and edges having multiple labels.

In this paper, we propose a novel algorithm and
framework to transform richly labeled graphs (i.e.,
graphs with nodes and edges having multiple labels)
to an equivalent set of simple labeled graphs (i.e.,
graphs with nodes and edges having single labels). The
resultant simple graphs could be fed to most of the
available graph mining algorithms to produce simple
graph patterns. A reverse translation process is then
employed to recover rich graph patterns from the simple
graph patterns. We demonstrate that our proposed
algorithm is scalable on various synthetic and real
datasets. We experiment with three notable graph
mining algorithms which are gSpan, CloseGraph, and
Top-k LEAP algorithms. We show that our algorithm
and framework could complement existing simple graph
mining algorithms to allow them to mine rich graphs.

1 Introduction

A graph could be used to represent and model many
complicated relationships in a dataset. Due to the
generality of a graph as a data structure, there have
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been many studies that investigate the discovery of
knowledge from graph datasets. There have been
many algorithms developed to mine frequent subgraphs
[20, 15, 16], correlated subgraphs [13], discriminative
subgraphs [19], etc. However all the above mentioned
studies only mine patterns from graphs with each node
and edge having a single label, called simple graphs.

In various domains, there is often a need to model
data as graphs with nodes and edges having multiple
labels. Such graphs are called richly labeled graphs
or rich graphs. For example, in a social network,
several features could be attached to users and their
relationships. Graphs representing a social network
might consist of nodes corresponding to users, and edges
corresponding to relationships among them. Several
labels could be attached to each node and edge to add
more information about the network. For example, we
could label a node with multiple pieces of information
such as the length of time a user has joined the
network, age, gender, etc. We could also label an
edge with information about the number of friends two
users have in common, the length of time two users
have been friends, etc. As another example, to model
collaborations among software developers, we could use
a graph with developers as nodes and collaborations
between two developers as edges. The nodes may be
labeled with the number of past and ongoing projects
a developer has, the number of his projects which are
successful, etc. The edges may also be labeled with
information such as the number of past projects two
developers have worked together, the length of time two
developers have collaborated, etc. There are many other
situations where we need to use multiple labels instead
of single labels to enrich the graph representation of a
rich dataset.

Thus, there is a need to enable past algorithms
that only mine simple graphs to also mine rich graphs.
We fill this need in this work. We propose a generic
framework that transforms an existing algorithm that
mines a simple graph dataset to handle a rich graph
dataset. Our framework treats an existing algorithm as
a black box and thus does not require any change to
be made to it. This makes our framework desirable, as
existing algorithms could be extended without the need
to “reinvent the wheel”. Many existing implementations
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of popular graph mining algorithms could also be reused
to handle rich graphs.

We focus on a family of graph pattern mining algo-
rithms that take as input a graph database and compute
the set of graphs in the database where a pattern oc-
curs based on subgraph isomorphism. Some examples
of concrete pattern mining algorithms in this family are:
frequent subgraph mining algorithms (e.g., [21]), closed
subgraph mining algorithms (e.g., [22]), discriminative
subgraph mining algorithms (e.g., [5]), etc. We refer
to this family of algorithms as subgraph pattern min-
ing (SPM) algorithms. In this paper, unless otherwise
stated, whenever we mention pattern mining algorithms
we refer to this family of algorithms.

Our approach would first translate a richly labeled
graph dataset into an equivalent simple labeled graph
dataset. Many existing graph mining algorithms could
then be run on the resultant translated dataset. Run-
ning these algorithms would produce a set of simple
graph patterns (i.e., subgraph patterns with nodes and
edges having single labels). We then provide a reverse
translation process to convert these simple graph pat-
terns back to rich graph patterns. We provide several
properties and theorems that guarantee our approach is
both sound and complete, i.e., our proposed approach
does not miss any patterns or add extraneous patterns.

To show the scalability of our approach, we experi-
ment on several synthetic and real rich graph datasets.
Real datasets are taken from a mobile-phone-based so-
cial network and an open source software development
portal. We experiment with three existing pattern min-
ing algorithms, i.e., gSpan [21], CloseGraph [22], and
Top-k LEAP [5]. Our goal is to enable these algorithms
to mine rich graph patterns from rich graphs.

Our contributions are as follows:
1 We propose a novel framework to enable existing

graph mining algorithms to handle rich graphs.
2 We propose a translation algorithm to map a rich

graph dataset to an equivalent simple graph dataset.
We also introduce a reverse translation algorithm
to recover rich graph patterns from the translated
simple graph patterns.

3 We prove that our proposed approach, which in-
volves translation and reverse translation processes,
is sound and complete.

4 We show that we could successfully integrate
our framework with three notable graph min-
ing algorithms, namely, gSpan, CloseGraph, and
Top-k LEAP.

5 We show the scalability of our approach by using
several synthetic and real rich graph datasets.

The structure of this paper is as follows. In Sec-
tion 2, we discuss related work. Section 3 describes

some concepts and definitions. Section 4 describes our
proposed approach to extend existing graph mining so-
lutions to mine richly labeled graph datasets. Section 5
describes our experiments. We conclude our work and
describe future work in Section 6.

2 Related Work

There have been many studies that mine frequent pat-
terns from graphs. These studies could be categorized
into two: those that analyze a graph database, and
those that mine patterns from a single large graph. In
the following paragraphs, we would highlight some al-
gorithms that fall into each category. We would also
highlight some other algorithms that mine discrimina-
tive subgraph patterns.

Graph Database Setting. One of the first pioneers
that mined frequent patterns from a graph database
is Dehaspe et al. [6]. They used inductive logic pro-
gramming to mine frequent graph substructures. These
substructures are used to predict the carcinogenicity
of a chemical compound. Their study is extended by
Inokuchi et al. that proposed an apriori-based approach
to mine frequent subgraphs from a graph database [11].
There have been many studies that improve the scala-
bility of frequent subgraph mining algorithms. These
include the work by Kuramochi and Karypis which
proposes an algorithm named FSG [15], and the work
by Yan and Han which proposes an algorithm named
gSpan [20]. There are many other algorithms including:
MoFa [3], FFSM [10], SPIN [17], and Gaston [16].

There has also been an interest to mine a compact
representation of frequent subgraphs. Yan and Han
mined closed frequent subgraph patterns [22]. Zeng et
al. mined frequent subgraph generators [23]. Closed
patterns are the largest patterns in an equivalence class
of patterns supported by the same set of graphs in an
input database. Generators are the smallest patterns in
the equivalence class.

Our work is orthogonal to the above studies which
mine patterns from simple graphs, i.e., graphs where
each node and edge is attached with at most a single
label. We propose a framework to enable frequent
subgraph mining algorithms to handle rich graphs, i.e.,
graphs where each node and edge can be attached with
multiple labels. There are many problem settings that
are best modeled as rich graphs.

Single Graph Setting. There are many algorithms
that mine patterns that appear frequently in a single
large graph. In this setting, multiple embeddings of
a pattern in a single graph need to be taken into
consideration. One of the first pioneers that mine for
patterns from a single graph is Holder et al. [9]. They



“successpattern”
2011/10/16
page 3i

i
i

i

i
i

i
i

mined for approximate patterns based on minimum
description length property. There are a number of
other studies that also mine for frequent patterns in
a single graph settings. These include the work by
Vanetik et al. [18], Ghazizadeh and Chawathe [7],
Kuramochi and Karypis [15], and Zhu et al. [24].

Different from the above studies, in this work we
focus on extending graph mining algorithms that work
on the graph database setting to mine from a database
of rich graphs.

Mining Discriminative Subgraph Patterns. Yan
et al. proposed a direct discriminative graph mining
approach called LEAP [19]. The approach is later
extended by Cheng et al. in [5] to mine for top-K
most discriminative graph patterns. These patterns are
applied in the software engineering domain to localize
software bugs. Jin and Wang proposed a technique that
leverages search history to improve the scalability of
discriminative subgraph mining [12].

This work is orthogonal to the above studies. Our
work enables the above algorithms to process rich
graphs and mine rich graph patterns.

3 Preliminaries

We introduce the notions of simple graph and rich graph
in Definitions 3.1 & 3.2 respectively. The example for a
simple graph and rich graph is shown in Figure 1.

Definition 3.1. (Simple Graph) A simple graph is
a set of nodes N , edges E, and labels L. Each node
and edge could be attached with one label from L. Each
edge (u,v) is a pair of nodes in N . Each pair of nodes
could be linked only by one edge. Given a node n we
denote edges incident to it and its label by n.Edges and
n.Label respectively. We denote the label of an edge e
by e.Label. Given an edge e of a node n, we refer to the
other node connected to n by e as e.Target.

Definition 3.2. (Rich Graph) A rich graph is a set
of nodes N , node placeholders NP, edges E, edge
placeholders NE, and labels L. Each node and edge
contains multiple placeholders each of which contains
one label from L. Each edge (u,v) is a pair of nodes
in N . Each pair of nodes could be linked by one edge.
Given a placeholder np, we denote its labels by np.Label.
Given a node n we denote edges incident to it and labels
contained in its placeholders by n.Edges and n.Labels
respectively. We denote the labels of an edge e contained
in its placeholders by e.Label. Given an edge e of a
node n, we refer to the other node connected to n by e
as e.Target.

We next formally define sub-graph isomorphism
for simple and rich graphs in Definitions 3.3 & 3.4

 
a 2 1 

(a)

 a,b 3,4 1,2 
(b)

Figure 1: Example: (a) Simple Graph (b) Rich Graph

respectively. Simply put, a graph is a subgraph of
another if we could add nodes, edges, and labels to the
earlier (without modifying or deleting any nodes, edges,
and labels) to form the latter. We give an example of
sub-graph isomorphism for simple and rich graphs in
Figures 2 and 3 respectively. Corresponding nodes of
graphs (a) & (b) are shaded in gray color.

Definition 3.3. (Subgraph Isomorphism: Simple)
For two graphs G = (N,E,L) and G′ = (N ′, E′, L′),
a subgraph isomorphism is an injective function
f : N → N ′, s.t., (1), ∀n ∈ N,n.Label = f(n).Label;
and (2), ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′ and
(u, v).Label = (f(u), f(v)).Label. f is called an
embedding of G in G′.

Definition 3.4. (Subgraph Isomorphism: Rich)
For two graphs G = (N,NP , E,NE , L) and G′

= (N ′,NP ′, E′,NE ′, L′), a subgraph isomorphism
is an injective function f : NP → NP ′, s.t.,
(1), ∀np ∈ NP ,np.Label = f(np).Label; and
(2), it induces a function g : N → N ′ where,
(a) ∀n ∈ N. ∀p ∈ n. ∃p′ ∈ g(n). f(p) = p′,
(b) ∀(u, v) ∈ E, (g(u), g(v)) ∈ E′, and (c)
(u, v).Labels ⊆ (g(u), g(v)).Labels. f is called an
embedding of G in G′. 1 3 2 b a c 1 a 

(a)

 5 4 1 3 2 b a c 1 a d d 
(b)

Figure 2: Subgraph Isomorphism: Simple Graphs

 2,3 1,3 3,4 1,2 a,b b,c a,c a,c 
(a)

 1,4 2,3 2,3 1,3 3,4 1,2 a,b b,c a,c a,c 
a,d c,d 

(b)

Figure 3: Subgraph Isomorphism: Rich Graphs

4 Proposed Approach

In this section, we first outline our overall framework.
We then describe our approach for the translation
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from rich graphs to simple graphs. We show that the
translation to simple graphs only increases the size of
the rich subgraphs by a factor linear to the maximum
number of labels per node and the maximum number of
labels per edge.

4.1 Overall Framework. We build our approach to
accommodate the existing pattern mining algorithms to
handle rich graphs. Our framework consists of three
steps, which are as follows:

Step 1: Convert rich graphs to simple graphs rep-
resentation DB REP .

Step 2: Input these simple graphs to pattern min-
ing algorithms. In this paper we use
three pattern mining algorithms, which are
gSpan, CloseGraph, and Top-k LEAP. The
pattern mining algorithms then mine vari-
ous patterns.

Step 3: Convert the mined simple graph patterns
to its corresponding rich graph patterns.

The steps in our approach are shown in Figure 4. 

Step 1 Step 2 Step 3 

Input: Rich Graphs 
Database 

Convert the rich 
graphs to their 

corresponding simple 
graphs (Translation 

Process) Rich Graphs Simple Graphs 

Simple Graph 
Based Pattern 

Mining 
Algorithms     …etc 
CloseGraph gSpan Top-k LEAP 

Output: Rich 
Graphs 

Convert the resulted 
simple graphs to rich 

graphs 
(Reverse Translation 

Process) Rich Graphs Simple Graphs 
Figure 4: Overall Approach

The next sub-section describes our translation pro-
cess. A reverse translation process is presented next.
We then state some properties and theorems that guar-
antee the correctness of our translation. Finally, we
analyze the bounds on the size of the resultant graph
after translation.

4.1.1 Translation Process. A rich graph can have
multiple node and edge labels. Our translation process
converts a rich graph into a simple graph by performing
node and edge replication operations. Each replica only
retains one of the potentially many labels of the original
node or edge that it replicates.

We first introduce the notions of translated simple
graph and set of sibling nodes in Definitions 4.1 and 4.2
respectively. In a translated simple graph, the replicas
of the same rich graph’s node (i.e., its siblings) are

connected together with a special edge.

Definition 4.1. (Translated Simple Graph) A
translated simple graph is a regular simple graph with a
special edge named sibling-replicated edge (SRE). This
edge connects all replicated nodes that are originating
from the same node in the original rich graph.

Definition 4.2. (Set of Sibling Nodes (SSN))
Consider a translated simple graph G = (N ′,E′,L).
The set of sibling replicated nodes of G is {SNodes |
∀n1′, n2′ ∈ SNodes, (n1′, n2′) ∈ E′ ∧ (n1′, n2′).Label
= SRE}. We denote this set as G.SSN.

Nodes and edges are replicated due to two reasons:

1 There are multiple node labels in a node of a rich
graph. This node would be split into multiple
simple graph nodes each with a single label.

2 There are multiple edge labels attached to an edge
of a rich graph. As a simple graph does not allow
for two edges between two nodes, either one of the
nodes connected by it would need to be replicated.

We refer to the replicas created by the first reason
as NL-Replicas. We refer to the ones created due to the
latter reason as EL-Replicas. Our translation process
first creates NL-Replicas. EL-Replicas are constructed
next.

Creating NL-Replicas. To create NL-Replicas from
a rich graph, for each node, we split it according to the
number of labels that it has. The edges of the original
node are transferred to each of its replicas. We also
add SRE edges to connect all the nodes originating
from the same rich node. The original rich nodes are
then removed from the original graph. After all NL-
Replicas have been created and rich nodes removed,
all nodes in the graph would each have a single node
label. The introduction of new edges ensures that the
structures expressed in the rich graph are preserved
after the introduction of NL-Replicas.

Figure 5 shows the pseudo-code realizing this. We
overlay the NL-Replicas on top of the original graph.
We create the NL-Replicas one by one and eliminate
the original nodes and edges step-by-step. Note that
the order of which the nodes are being processed would
not affect the NL-Replicas introduced. If two rich nodes
n1 and n2 are connected, each of the NL-replicas of n1
is connected to all the NL-replicas of n2.

We illustrate the NL-Replicas creation process in
Figure 6.

Creating EL-Replicas. To create EL-Replicas from
a rich graph, for each edge with multiple labels, we
replicate one of the two nodes connected by it. Given a
node n, connected to a multi-labeled edge e, we create
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Procedure CreateNLReplicas
Inputs:

G = (N,NP , E,EP , L) : A rich graph with
the set of nodes N ,
node placeholders NP , edges E,
edge placeholders EP , and labels L

Output: G with nodes replaced with NL-Replicas
Method:
1: Let Orig N = Shallow copy of N
2: For each n ∈ Orig N
3: Let NSet [] = Create a node array of size |n.Labels|
4: For every ith node in NSet
5: Let NSet [i].Label = n.Labels[i]
6: For every edge e in n.Edges
7: Add an edge with labels e.Labels

from NSet [i] to e.Target
8: Remove all edges from n
9: For every node nnew in NSet []
10: Add nnew to N
11: Output (N,NP , E,EP , L)

Figure 5: Creation of NL-Replicas

1,2 c 3,4 

1 3 

2 4 

c 
c 

c 
c 

Figure 6: NL-Replicas: Illustration. Edges shown in
dashed lines are SREs.

EL-Replicas, by duplicating the node according to the
number of labels e has. The original NL-Replica node
would be connected with an edge with one of e’s labels.
Each of the newly introduced EL-Replica nodes would
be connected with a new edge with one of the remaining
e’s labels. The newly introduced EL-Replica nodes
are connected to the other replica nodes of the same
original rich node by SREs. After all the EL-Replicas
are created, the resultant graph would be a simple
translated graph composed of NL-Replicas (nodes and
edges) and EL-Replicas (nodes and edges).

The remaining ambiguity is on which of the two
nodes should be replicated. We use the label of the two
nodes to decide. Due to the creation of NL-Replicas,
the nodes would have single labels. For a multi-labeled
edge connecting two nodes n1 and n2, there are 3 cases:

1 If n1.Label < n2.Label, we would create EL-
Replicas of n1.

2 If n1.Label > n2.Label, we would create EL-
Replicas of n2.

3 If n1.Label = n2.Label, we would create EL-
Replicas for both n1 and n2.

The above cases are used to ensure that the same
EL-Replicas are introduced no matter which edges are
processed first.

Procedure CreateELReplicas
Inputs:

G = (N,NP , E,NE , L) : A graph with NL-Replicas
and rich edges

Output: An equivalent translated simple graph with
NL- & EL-Replicas

Method:
1: Let Orig E = Shallow copy of E
2: For each e ∈ Orig E
3: Let OTR = The node(s) conn. by e to be replicated
4: For every node n of OTR
5: Let NSet = Replicate n, |e.Labels| times
6: For every node n′ in NSet
7: For every label l in e.Labels
8: Add an edge from n′ to e.Target with label l
9: For every node nnew in NSet []
10: Add nnew to N
11: Output (N,E,L)

Figure 7: Creation of EL-Replicas

Figure 7 shows the pseudo-code realizing this. We
illustrate the EL-Replicas creation process in Figure 8.

1 3 
a,b c d 

1 3 
a 

1 
b 

c d 

3 1 
a,b c d 

3 1 
a 

1 
b 

c d 1 1 
a c 

1 1 

b 

b d c 

1 1 
a,b c d 

Case 1 Case 2 Case 3 

Figure 8: EL-Replicas: Illustration.

Given a rich graph g, its translated simple graph is
denoted as TL(g). Also, given a set of rich graphs DB,
we denote the corresponding set of translated simple
graphs as TL(DB). In the implementation, we combine
the NL-Replicas and EL-Replicas creation process so
that only one pass through the nodes in the graphs is
needed. An end-to-end example of how a rich graph is
translated into a simple translated graph is shown in
Figure 9.

1 

2 

3 

4 

1 

2 

x 

x 

x 
x 

y 

y 

y 
y 

n1 

n1 

n2 

n2 

n1 

n1 

1,2 3,4 
x,y 

All nodes marked with n1 are connected via SREs. Similarly with nodes marked with n2 

Figure 9: Translation Process

4.1.2 Reverse Translation Process. The reverse
translation operation is straightforward. We just need
to merge every node connected by SREs together.
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These nodes map to the same original rich node. When
we merge the nodes we take the union of their node
labels. Due to the merging of the nodes, two nodes
might have more than one edge connecting them. We
would then merge the edges too by again taking the
union of their edge labels. Note that as the set union
operation is commutative, associative, and distributive,
it does not matter as to which nodes and edges are
merged first. The reverse translation operation is
deterministic: Given one input graph, it would always
produce one output graph no matter what nodes and
edges are merged first.

We denote the reverse translation operation by
RTL. Given a translated simple graph g, the correspond-
ing rich graph after the reverse translation operation
is performed is denoted by RTL(g). Also, given a set
of translated simple graphs DB, we denote the corre-
sponding set of rich graphs after the reverse translation
operations are performed as RTL(DB).

Pattern mining algorithms may produce simple
graphs that refer to the same rich graph. This case
could happen because the mined patterns may contain
several extraneous nodes connected by SREs. An ex-
ample of this case is shown in Figure 10. As shown in
Figure 10, the translated rich graphs in (a) and (b) are
isomorphic. To address this issue, we also include graph
isomorphism testing in our reverse translation process.
We employ the graph isomorphism testing used by Zhu
et al. [25] and Kim et al. [14]. The original algorithms
in [14] and [25] are designed to handle subgraph isomor-
phism testing. In our implementation, we modify their
implementations to handle graph isomorphism testing.
We perform graph isomorphism testing after the reverse
translation operation. b a 

1 1 1 1 2 a,b 1 2 Simple Graph Pattern Translated Rich Graph 
(a) a b 

2 2 2 2 1 1 a,b 2 1 Simple Graph Pattern Translated Rich Graph 
(b)

Figure 10: Isomorphic Reverse Translated Rich Graphs

Zhu et al. [25] used node signatures to find subgraph
isomorphism mappings in large graphs. Nodes signa-

ture consists of node label, node degree, and neighbor
information. Kim et al. [14] extent Zhu et al.’s work by
considering not just node signatures, but also edge sig-
natures. The signatures for an edge contain the labels of
its endpoint nodes, the sum of their degrees, and their
neighbors information. In this work, instead of isomor-
phic subgraphs checking, we modify and extend Kim et
al.’s approach to check isomorphic rich graphs. Two rich
graphs are isomorphic if they have the same number of
nodes, the same number of edges, and there is a one-
to-one mapping such as corresponding nodes have the
same node and edge signatures. Definitions 4.3 gives a
formal definition about isomorphic rich graph and Fig-
ure 11 shows an example of two rich graphs which are
isomorphic.

Definition 4.3. (Isomorphic Rich Graph)
Two rich graphs G = (N,NP , E,EP , L)
and G′ = (N ′,NP ′, E′,EP ′, L′) are isomor-
phic iff (1), |N | = |N ′| (2), |E| = |E′| (3)
∀n ∈ N,n.Signatures = f(n).Signatures
(4) ∀(u, v) ∈ E, (f(u), f(v)) ∈ E′and(u, v).
Signatures = (f(u), f(v)).Signatures, where f is
the one-to-one mapping between corresponding nodes in
G and G′.  1,2 a,b b,c 

(a)

 1,2 b,c a,b 
(b)

Figure 11: Rich Graph Isomorphism

Node Signatures Matching. Given two nodes u and
v, we check their signatures by considering the following
conditions:
1. u.Labels = v.Labels
2. u.Degree = v.Degree
3. u.nInfo = v.nInfo

where u.Labels and v.Labels are the labels of u and v
respectively, u.Degree and v.Degree are the degrees of
u and v. Zhu et al. specified a radius parameter rmax.
For all integer r, where 0 < r < rmax, we count the
number of distinct length r simple paths which starts
from u and ends at v with label l. In this work, we
use the same setting as in [25] where rmax is set to
2. Table 1 shows an example of neighbor information
for each node of the graph in Figure 12. As shown in
Table 1, each node has triples to describe its structural
neighbors. For each triple, the first is the number of
hops/radius considered, the second is a node label, and
the third represents the number of paths ending in a
node with the specified label considering the specified
number of hops/radius.
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Definition 4.4 defines nInfo which is adapted from
the definition of nIndex in [25].

Definition 4.4. (nInfo) Given a node v, a maximum
radius value rmax, and a set of labels L, the nInfo
signature of v is nInfo(v) = {(r,l,countr,l(v)) | 0 <
r ≤ rmax ∧ l ∈ L }. countr,l(v) is the number of length
r distinct simple paths connecting node v and the other
node with label l.

Label distribution of distinct paths could partially
reflect the neighboring structural characteristic. For
example, the signatures of the graph in Figure 12 will
change significantly if we add just one edge between
nodes v2 and v3.  

V4 V3 
V2 V1 A B C D 

Figure 12: Graph Example

Node Neighbor Information
v1 (1, B, 1), (1, C, 1), (1, D, 1), (2, B, 1), (2, C, 1), (2, D, 2)
v2 (1, A, 1), (1, D, 1), (2, A, 1), (2, C, 1), (2, C, 2), (2, D, 1)
v3 (1, A, 1), (1, D, 1), (2, A, 1), (2, B, 2), (2, D, 1)
v4 (1, A, 1), (1, B, 1), (1, C, 1), (2, A, 2), (2, B, 1), (2, C, 1)

Table 1: Neighbor Information for Each Node of the
Example Graph

Edge Signatures Matching. Given two edges (u, v)
and (u′, v′), we check their signatures by considering the
following conditions:

1. u.Labels = u′.Labels ∧ v.Labels = v′.Labels
2. u.Degree + v.Degree = u′.Degree + v′.Degree

4.1.3 Properties and Theorems We first state a
property on the canonicity of the translation and reverse
translation process in Lemma 4.1.

Lemma 4.1. (Canonical) One rich graph can only be
translated to one translated simple graph. One trans-
lated simple graph can only be reverse translated to one
rich graph.

Proof. Note that our translation process is agnostic to
the order the nodes and edges are processed. Thus there
is only one possible translated simple graph for a rich
graph. Similarly, our reverse translation process is ag-
nostic to the order the nodes and edges are merged.
Thus there is also one possible rich graph for a trans-
lated simple graph. 2

Lemma 4.2 states that the translation operation
preserves the subgraph relationship between a graph
and its subgraph.

Lemma 4.2. (Containment) Consider an arbitrary
rich graph RG, and its subgraph SGP . SGP is a sub-
graph of RG if and only if TL(SGP ) is a subgraph of
TL(RG).

Proof. Forward direction: RG has the nodes, edges,
and labels of SGP and more. By construction, when
processing RG the translation operation would create
the NL-replicas of SGP , the EL-replicas of SGP , and
more. We could thus add nodes and edges to TL(SGP )
for it to form TL(RG). By definition, a graph g is a
subgraph of g’ iff we could add nodes or edges or labels
to it to form g’. Thus, if SGP is a subgraph of RG,
then TL(SGP ) is a subgraph of TL(RG).

Backward Direction: Assume for contradiction that
TL(SGP ) is a subgraph of TL(RG), but SGP is not
a subgraph of RG. Since TL(SGP ) is a subgraph
of TL(RG), there are nodes in TL(RG) that could
be mapped to nodes in TL(SGP ). Let us perform a
partial reverse translation on these nodes. Doing this
on TL(RG) would create the rich graph SGP connected
with the remaining simple nodes and edges. We could
continue to perform reverse translation operations to
result in a graph SGP ′.

Note that for this case, when we perform reverse
translation operations, we either: (1) do not affect
SGP , (2) add placeholders and edges to nodes in SGP ,
or (3) merge two nodes in SGP . Let’s denote the
successive SGP s created by performing these operations
as SGP1 . . . SGPn. For cases (1) and (2), it is clear
that SGPi is a subgraph of SGPi+1. For case (3),
SGPi is still a subgraph of SGPi+1. Let’s consider the
case where we merge nodes n1 and n2 to form node
m. We can find the embedding of SPGi in SPGi+1

where the placeholders in unmerged nodes of SPGi are
mapped to the placeholders in the corresponding nodes
in SGPi+1, and placeholders in n1 and n2 are mapped
to the corresponding placeholders in m. Merging nodes
n1 and n2 into m simply replaces edge (x, n1) or (x, n2)
into (x,m) for all arbitrary node x. These would satisfy
the subgraph isomorphism conditions in Definition 3.4.

Thus SGP is a subgraph of SGP ′. Since, RG
is not a supergraph of SGP , SGP ′ and RG must be
two different rich graphs. This is a contradiction as a
translated simple graph could only be reverse translated
to a unique rich graph. Thus, the backward direction
holds; if TL(SGP ) is a subgraph of TL(RG), then SGP
is a subgraph of RG. 2

Theorem 1 assures the correctness of our approach
which involves translation and reverse translation pro-
cesses. We start by translating rich graphs to simple
graphs, and then perform mining operation using a spe-
cific subgraph pattern mining (SPM) algorithm, and fi-
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nally reverse translate the mined patterns to rich pat-
terns. The whole process is sound and complete: all
significant rich patterns are mined, and all mined pat-
terns are significant, where significant patterns are de-
fined based on the pattern mining algorithm employed.

Theorem 1. (Sound & Complete) Consider an ar-
bitrary subgraph pattern mining (SPM) algorithm
PMA. It must be the case that the set of rich graph
patterns deemed significant by PMA is the set:

RTL(PMA(TL(DBrich)))

Proof. By definition (see Section 1), all subgraph pat-
tern mining algorithms analyze a graph database and
compute the set of graphs in the database that contains
a pattern based on subgraph isomorphism relation. Fol-
lowing Lemma 4.2, for an arbitrary pattern P and an
arbitrary graph g in DBrich, P is a subgraph of g if and
only if TL(P ) is a subgraph of TL(g). This guarantees
that if a rich pattern is deemed significant by PMA (it
is a subgraph of a significant set of graphs in DBrich), it
will also be in the set RTL(PMA(TL(DBrich))). Simi-
larly, if a graph is in the set RTL(PMA(TL(DBrich)))
it will also be deemed significant by PMA (it is a sub-
graph of a significant set of graphs in DBrich). 2

4.2 Analysis. Consider an arbitrary node n with the
maximum number of labels. Let e be the edge with
the most labels in n. For this n, at most n.Labels ×
e.Labels new nodes are introduced. Thus, the number of
nodes in the new translated graph grows linearly to the
maximum number of labels per node and the maximum
number of labels per edge.

We give an example for a translation that involves
a two-node rich graph with three labels per node and
per edge respectively. Figure 13 shows the original
rich graph. Figure 14 shows that after the translation
process, the translated rich graph contains twelve nodes.
In terms of the number of nodes, the translated graph
becomes six times larger than the original one, but
less than the number of node labels multiplied by the
number of edge labels, which is in this case, 3 x 3 = 9. 1,2,3 4,5,6 x,y,z 

Figure 13: 3-Label Rich Graph

5 Experiments

In this section, we describe our experimental settings,
datasets, and results.

5.1 Experimental Settings. The translation and
reverse translation experiments are performed on an

  1  2  3 n1 n1 n1 
 4  5  6 n2 n2 n2  1  2  3  1  2  3 n1 n1 n1 n1 n1 n1 

x   y   z   
Edge Label Legend 

All nodes marked with n1 are connected via SREs. Similarly with nodes marked with n2 

Figure 14: The Translated 3-Label Rich Graph

Intel Core 2 Duo 2.00 GHz Laptop with 1.75 GB of
RAM. Algorithms are written in Visual C#.Net on
Windows XP Service Pack 3. CloseGraph and gSpan
experiments are performed on Intel Xeon Dell X540
Server with 24 GB RAM and 64-bit CentOS Linux
release 5.5. Top-k LEAP experiment is run on a Dell
PowerEdge R900 server with 2.67GHz six-core CPU and
8GB main memory running RedHat Linux.

5.1.1 CloseGraph & gSpan Algorithms. gSpan
[21] is designed to mine frequent patterns from a graph
database, while CloseGraph [22] is designed to mine
closed frequent graph patterns from a graph database.
For these two pattern mining algorithms, we use syn-
thetic datasets and real data extracted from myGamma
mobile social network dataset [1].

Synthetic Datasets. We develop a synthetic data gen-
erator to generate synthetic datasets with various vari-
ables. Our synthetic data generator takes in several
user-defined parameters, i.e. G (the number of graphs
to be generated), NODEmax (the maximum number of
nodes in a graph), EDGEmax (the maximum number
of edges per node in a graph), and LABELmax (the
maximum number of labels per node/edge). Based on
the above mentioned parameters, our data generator
would then generate rich graphs. We generate two dif-
ferent synthetic datasets, i.e., 10,000 (S10) and 20,000
(S20) rich graphs with NODEmax=5, EDGEmax=4,
and LABELmax=3.

myGamma Dataset. We use myGamma user’s friend-
ships information to create one egocentric graph for each
user. We select the user’s top 10 most recently con-
tacted friends to form the graph. A node represents the
user and an edge represents a relationship between the
user and his friend. We form 10,000 egocentric graph
taken from 5,000 most active users and 5,000 least ac-
tive users1. The nodes of the graphs are then labeled
with information on: (a) the user’s length of member-

1We use the number of messages a user has sent to his friends
as his activity score.
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ship, and (b) the number of friends the user has. The
edges between users are labeled with: (a) the difference
in the users length of membership, and (b) the num-
ber of common friends. We discretize each value for the
node and edge labels into 4-5 ranges. Thus in total we
have 10,000 rich graphs with 2 labels attached to every
node and edge. These 10,000 rich graphs have an av-
erage size of 4.27 nodes and 3.27 edges, with maximum
number of nodes and edges of 11 and 10 respectively.

5.1.2 Top-k LEAP Algorithm. Top-k LEAP [5] al-
gorithm is designed to mine top-k discriminative sub-
graphs and requires two sets of contrasting graph
databases as its input. For this purpose, we analyze
SourceForge.Net, the largest open source software de-
velopment portal.

SourceForge Dataset. We use the database dumps of
SourceForge.Net collected by Madey et al. [2]. We cate-
gorize projects in SourceForge.Net into two groups, i.e.
successful projects and failed projects. From February
2005 onwards, Madey et al. collect SourceForge.Net
database dumps monthly. We take 64 snapshots which
are the dumps for the period starting from February
2005 until May 2010. Each snapshot has many tables
and we focus on those containing the information on
the various projects hosted in SourceForge.Net and the
developers that work on those projects.

We initiate our experiment by extracting projects
that have at least one developer from May 2010 snap-
shot. There are in total 227,922 projects with 289,316
registered developers. We divide the 227,922 projects
into three groups: successful projects, failed projects,
and others. We use the number of downloads to cat-
egorize projects. Projects with more than 100,000
downloads are considered successful. Projects with less
than 100 downloads are considered failed. Projects
with number of downloads between 100 and 100,000
are considered as another separate group2. Unfortu-
nately, SourceForge.net database dumps do not contain
any accurate information on the number of downloads.
Thus, we crawl the SourceForge.Net website to obtain
the download history of each project. We find 2,448
projects (1.07% of all May 2010 projects) are catego-
rized as successful, and 140,796 projects (61.77%) are
categorized as failed.

We filter out projects with only one developer.
From the 2,448 successful projects, 1,859 projects
(75.94% of the successful projects) have more than one
developer. Moreover from the 140,796 failed projects,
28,802 projects (20.46% of failed projects) have more
than one developer. We also filter projects that exist

2We exclude this group from our analysis

on February 2005 as for those projects we could not
ascertain the time the contributors join the project3.
After we exclude those projects, we have 224 successful
projects and 3,826 failed projects.

For each project in every group, we create a graph
consisting of nodes which represent developers working
on that project and edges which represent collaboration
among developers in the project. To form rich graphs,
we extract features representing the socio-technical as-
pects of the developers working on it. To extract the
features, we need to first determine the time when a
developer joins a project. This information is not di-
rectly available from the dump. Fortunately, we have
the monthly snapshots and by contrasting the reported
developers in two consecutive months, we could find the
month a developer joins a project. For consistency rea-
son, for all features, a granularity of one month is used.

Each node is labeled with information on: (a) num-
ber of past successful projects a developer has before
he joins the current project, Past Successful Projects
(PSP ), (b) number of past unsuccessful projects a de-
veloper has before he joins the current project, Past
Failed Projects (PFP ), and (c) the length of time a de-
veloper has joined SourceForge.Net at the time he joins
a project, Length of Membership (LOM).

Each edge is labeled with information on: (a)
number of past successful collaborations two developers
have before they start to work together in the current
project, Past Successful Collaborations (PSC), (b)
number of past failed projects two developers have
before they start to collaborate in the current project,
Past Failed Collaborations (PFC), and (c) the length of
time that has passed, since the first time two developers
worked together prior to the current project, Length of
Collaboration History (LCH).

Four features: Past Successful Projects (PSP ),
Past Failed Projects (PFP ), Past Successful Collabo-
rations (PSC), and Past Failed Collaborations (PFC),
could be obtained by analyzing the monthly dumps one
by one. We just need to compare the month a devel-
oper or a pair of developers join a past project with the
month the developer or the pair of developers join the
current project. If a past project under comparison is
either successful or failed, the counts of the correspond-
ing features among the 4 are updated.

Following our definition of Length of Membership
(LOM), we count the period of time that has passed
since a developer first registered in SourceForge.Net
until he joins the current project. SourceForge database
dumps provide the time when a developer becomes a
member of SourceForge.Net. To compute the feature:

3This information is not recorded in SourceForge.Net dumps.
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Length of Collaboration History (LCH), we analyze the
monthly dumps in chronological order and for relevant
pairs of developers, we find the month that they first
work together in a single project.

At the end of the above process, we have 224 rich
graphs corresponding to successful projects and 3,826
rich graphs corresponding to failed ones. All these rich
graphs have three labels in the nodes and edges. For
the 224 rich graphs, the maximum numbers of nodes
and edges a rich graph has are 32 and 195 respectively,
and the average numbers of nodes and edges are 3.76
and 5.92 respectively. For the 3,826 rich graphs, the
maximum numbers of nodes and edges a rich graph has
are 73 and 1,081 respectively, and the average numbers
of nodes and edges are 2.86 and 3.98 respectively.
Translation & Reverse Translation. Following our
framework description in Section 4, we first perform
translation from the rich graphs (synthetic, myGamma,
& SourceForge) to simple graphs before running the
pattern mining algorithms (CloseGraph, gSpan, and
Top-k LEAP). Finally, we perform reverse translation to
recover rich subgraph patterns from the resultant mined
simple subgraph patterns.

5.2 Experimental Results.

CloseGraph & gSpan. We run our translation
algorithm on synthetic and real datasets. For the
synthetic datasets, we use above mentioned generated
datasets, i.e., S10 and S20 and for the real dataset, we
use myGamma dataset.

For S10 dataset, the translation process takes 23.03
seconds to translate from synthetic rich graphs to trans-
lated simple graphs. The rich graphs from S10 dataset
have an average size of 3.03 nodes and 2.59 edges; while
the translated simple graphs have an average size of
11.40 nodes and 43.56 edges.

For S20 dataset, the translation process takes 23.50
seconds to translate from synthetic rich graphs to trans-
lated simple graphs. The rich graphs from S20 dataset
have an average size of 3.04 nodes and 2.60 edges; while
the translated simple graphs have an average size of
11.47 nodes and 43.96 edges.

We then run CloseGraph and gSpan algorithms on
the translated simple graphs from S10 and S20 datasets.
For CloseGraph, we use various supports, i.e., 60, 80,
and 100. We also run gSpan with various supports, i.e.,
3%, 4%, and 5%. Tables 2 and 3 show the results of
our experiments on the synthetic datasets. Columns
Algorithm, Support, and Time specify the graph pattern
mining algorithms used, the support values used, and
the runtime of each graph pattern mining algorithms.
The inputs are the simple graphs resulted from the
translation process. Column |Graph Patterns| describes

the number of simple subgraph patterns mined by the
graph pattern mining algorithms. These patterns are
then translated to rich subgraph patterns by the reverse
translation process. We present the running time of
our reverse translation process in column RTL Time.
The final number of resultant graphs are shown in
column |Final Graphs|. The last column shows us
the percentage of the translation & reverse translation
runtime to that of the whole process.

The translation process translates 10,000 rich
graphs from myGamma dataset in 8.1875 seconds. The
myGamma rich graphs have an average size of 4.27
nodes and 3.27 edges; while the translated simple graphs
have an average size of 15.55 nodes and 48.25 edges.

For myGamma dataset, we also run CloseGraph
and gSpan algorithm by varying their supports. For
CloseGraph we use support 500, 600, and 700. For
gSpan we set the support to 20%, 30%, and 40%.
Figure 15 shows the results for myGamma dataset
using CloseGraph algorithm. We show the results for
myGamma dataset using gSpan algorithm in Figure 16.

Top-k LEAP.
The translation process for 224 successful projects takes
0.97 seconds. For the 3,826 failed projects, the trans-
lation process takes 12.78 seconds. The 224 translated
simple graphs for the successful projects have an aver-
age size of 32.33 nodes and 303.09 edges. The 3,826
translated simple graphs for the failed projects have an
average size of 24.62 nodes and 216.76 edges.

We run Top-k LEAP algorithm by Cheng et al. [5]
on the translated simple graphs. We vary k value to
mine top 50 and 100 discriminative subgraphs. Table 5
shows the running time of Top-k LEAP and Reverse
Translation process for k=50 and k=100 respectively.

k Disc. Patterns Top-k LEAP Time RTL Time

50 50 9,506 s 0.234 s

100 100 21,371 s 0.047 s

Table 5: Running Time: Top-k LEAP & Reverse Trans-
lation

5.3 Analysis. In terms of the number of nodes,
after translation, the graphs grow by 3.76 times
(S10 dataset), 3.77 times (S20 dataset), 3.64 times
(myGamma dataset), 8.37-8.39 times (SourceForge
dataset), which are less than the number of node la-
bels multiplied by the number of edge labels ( e.g., 2 ×
2 = 4 for myGamma dataset and 3 × 3 = 9 for Source-
Forge dataset). All of these results are in line with our
analysis presented in Section 4.2.

5.4 Applicability of Mined Rich Patterns for
Classification. We use the mined discriminative rich
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Dataset S10 (10,000 Rich Graphs)

Translation (TL) Time: 23.03 s

Algorithms Support Time |GraphPatterns| RTL Time |FinalGraphs| TL+RTL Portion

CloseGraph
60 28.65 s 13,244 24.39 s 4,500 62.34%
80 18.5 s 4,675 1.42 s 749 56.93%
100 17.61 s 4,229 1.17 s 635 57.88%

gSpan
3% 2,311.64 s 23,040 3.52 s 423 1.13%
4% 380.05 s 841 0.06 s 66 5.73%
5% 28.04 s 564 0.05 s 55 45.15%

Table 2: Experimental Result: Synthetic Datasets S10

Dataset S20 (20,000 Rich Graphs)

Translation (TL) Time: 23.499 s

Algorithms Support Time |GraphPatterns| RTL Time |FinalGraphs| TL+RTL Portion

CloseGraph
60 1,377.19 s 147,080 1,698.53 s 20,724 55.56%
80 259.51 s 75,219 570.92 s 14,944 69.61%
100 119.96 s 36,829 186 s 10,208 63.59%

gSpan
3% 3,872.92 s 21,836 3.45 s 433 0.69%
4% 89.72 s 880 0.08 s 67 20.81%
5% 59.52 s 529 0.05 s 55 28.35%

Table 3: Experimental Result: Synthetic Datasets S20

CG Time
456.08 sec

98%

TL Time
8.19 sec

2%

RTL Time
0.98 sec

0%

(a)

CG Time
232.82 sec

97%

TL Time
8.19 sec

3%

RTL Time
0.52 sec

0%

(b)

CG Time
188.7sec

96%

TL Time
8.19 sec

4%

RTL Time
0.36 sec

0%

(c)

Figure 15: CloseGraph: myGamma Dataset, Support (a) 500 (b) 600 (c) 700

gSpan Time
4370.16 sec

95%

TL Time
8.1875 sec

0%

RTL Time
224.34 sec

5%

(a)

gSpan Time
132.85 sec

94%

TL Time
8.19 sec

6%

RTL Time
0.44 sec

0%

(b)

gSpan Time
14.3 sec

64%

TL Time
8.19 sec

36%
RTL Time
0.03 sec

0%

(c)

Figure 16: gSpan: myGamma Dataset, Support (a) 20% (b) 30% (c) 40%

myGamma Dataset (10,000 Rich Graphs)

Translation (TL) Time: 8.1875 s

Pattern Mining Alg. Support Time (s) |GraphPatterns| RTL Time |FinalRichGraphs|

CloseGraph
500 456.08 s 2,831 0.98 s 1,227
600 232.82 s 2,001 0.52 s 723
700 188.7 s 1,664 0.36 s 532

gSpan
10% 4,370.16 s 242,551 224.34 s 5,944
20% 132.85 s 3,354 0.44 s 181
30% 14.30 s 182 0.03 s 21

Table 4: Experimental Result: myGamma Dataset

subgraph patterns as features for effective classification.
We split our SourceForge dataset into two groups:

training and testing. Given a training data containing a
set of projects labeled as successful or failed, we mine for
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patterns and learn a discriminative model. This model
in turn is used to classify a set of projects with unknown
labels.

We use LIBSVM [4] with probability estimates as
the classification model. Classification accuracy, defined
as the percentage of test cases correctly classified,
is used as one measure. Due to the skewed class
distribution, the measure AUC which is the area under
a ROC curve is also used. ROC curve shows the trade-
off between true positive rate and false positive rate for
a given classifier [8]. A good classifier would produce a
ROC curve as close to the top-left corner as possible.
AUC is a measure of the model accuracy, in the range
of [0, 1.0]. The best possible classifier would generate an
optimal AUC value of 1.0.

We perform 10-fold cross validation, where for each
we keep 1/10 of the data for testing and the other
for training. We are able to predict the labels of the
projects with 94.99% accuracy and 0.86 AUC.

6 Conclusion and Future Work

In this work, we propose a novel framework to transform
rich graphs to simple graphs. We also introduce an
algorithm to do reverse translation from rich graphs
to simple graphs. Our work answers the need to
mine graphs with nodes and edges having multiple
labels. The problem is interesting as many datasets
from various domains, e.g., social networks, are best
represented using rich graphs. Our proposed framework
works in three steps. First, the translation process
translates graphs with multiple node and edge labels
to corresponding graphs with single node and edge
label. Second, the translated simple graphs would
become inputs to the pattern mining algorithms. At
the last step, we translate back the resultant simple
graphs output by the pattern mining algorithms to rich
graphs. By integrating our proposed framework with
the simple graph based pattern mining algorithms, the
simple graph based pattern mining algorithms now have
a capability to handle rich graphs.

We experiment our approach with three pat-
tern mining algorithms, i.e., CloseGraph, gSpan, and
Top-k LEAP. We use various datasets as inputs to in-
vestigate the running time and scalability of our frame-
work. From the results, we show that our proposed
framework only adds a reasonable amount of time to
perform translation from rich graphs to simple graphs
and reverse translation from simple graphs back to
rich graphs. Experiments on synthetic, myGamma,
and SourceForge.Net datasets show that our framework
could work and integrate very well with the existing
pattern mining algorithms.

For future work, we plan to apply our algorithm

to a variety of problems that are best modeled as a
set of rich graphs. We also plan to extend our graph
transformation approach to also support algorithms
that mine patterns in a single graph setting.
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