
Deep Learning for Just-In-Time Defect Prediction

Xinli Yang∗, David Lo†, Xin Xia∗‡, Yun Zhang∗, and Jianling Sun∗
∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China
†School of Information Systems, Singapore Management University, Singapore
zdyxl@zju.edu.cn, davidlo@smu.edu.sg, {xxia, yunzhang28, sunjl}@zju.edu.cn

Abstract—Defect prediction is a very meaningful topic, par-
ticularly at change-level. Change-level defect prediction, which
is also referred as just-in-time defect prediction, could not only
ensure software quality in the development process, but also make
the developers check and fix the defects in time. Nowadays, deep
learning is a hot topic in the machine learning literature. Whether
deep learning can be used to improve the performance of just-
in-time defect prediction is still uninvestigated.

In this paper, to bridge this research gap, we propose an
approach Deeper which leverages deep learning techniques to
predict defect-prone changes. We first build a set of expressive
features from a set of initial change features by leveraging a deep
belief network algorithm. Next, a machine learning classifier is
built on the selected features. To evaluate the performance of our
approach, we use datasets from six large open source projects,
i.e., Bugzilla, Columba, JDT, Platform, Mozilla, and PostgreSQL,
containing a total of 137,417 changes. We compare our approach
with the approach proposed by Kamei et al. [1]. The experimental
results show that on average across the 6 projects, Deeper could
discover 32.22% more bugs than Kamei et al’s approach (51.04%
versus 18.82% on average). In addition, Deeper can achieve F1-
scores of 0.22-0.63, which are statistically significantly higher than
those of Kamei et al.’s approach on 4 out of the 6 projects.

Keywords—Deep Learning, Just-In-Time Defect Prediction,
Deep Belief Network, Cost Effectiveness

I. INTRODUCTION

To improve software quality, much effort is invested to
the process of testing and debugging. However, in most cases,
developers usually have limited resources and tight schedules,
and thus could not pay too much effort to such process.
Defect prediction techniques are proposed to help prioritize
software testing and debugging; they can recommend software
components that are likely to be defective to developers. Much
research has been done on defect prediction; these techniques
construct predictive classification models built on features such
as lines of code, code complexity and number of modified
files [2], [3], [4]. Prior studies mainly focus on predicting
defects at coarse granularity level, such as file, package, or
module [4], [5], [6].

In recent years, several research studies propose just-in-
time defect prediction techniques that are able to predict defec-
tive changes (i.e., commits to a version control system) [1], [7].
Just-in-time defect prediction is more practical because it can
not only ensure software quality in the development process,
but also make the developers check and fix the defects just
at the time they are introduced. The advantage of just-in-time
defect prediction includes: (1) it leads to smaller amount of
code to be reviewed because only individual changes (rather

‡Corresponding author.

than entire files or packages) need to be reviewed [8]; (2)
it leads to an easier assignments of developers to fix bugs
because we can easily identify the authors of the changes that
introduce defects. In a recent work, Kamei et al. perform a
large-scale empirical study on just-in-time defect prediction,
and propose the usage of the logistic regression algorithm to
build a prediction model [1].

Deep learning is one of the most promising area in the
machine learning literature [9], and it is adopted in many
research areas and proves to be very effective, particularly in
image processing [10] and speech recognition [11]. However,
whether deep learning could be used to improve the perfor-
mance of just-in-time defect prediction is still uninvestigated.
In this paper, to bridge this research gap, we propose an
approach named Deeper to address the just-in-time defect
prediction problem by leveraging deep learning techniques.
Deeper contains two phases: a feature selection phase and a
machine learning phase. In the feature selection phase, we
extract a set of expressive features from an initial set of
basic features by leveraging Deep Belief Network [9]. In the
machine learning phase, we build a classifier based on the
selected features.

To evaluate Deeper, we use two widely used metrics
which were also used to evaluate the approach proposed by
Kamei et al. [1]: cost effectiveness [12], [13], [14], [15],
and F1-score [7], [12], [16], [17]. Cost effectiveness evaluates
prediction performance considering a given cost threshold, e.g.,
a certain percentage of code to inspect. For example, when a
team has limited resources to inspect potentially buggy lines
of code, it is crucial that by manually inspecting the top
percentages of lines that are likely to be buggy, developers
can discover as many bugs as possible. We measure cost
effectiveness as the percentage of bugs that can be discovered
by inspecting the top 20% LOC based on the confidence levels
that a change classification technique outputs (PofB20) [3],
[1]. In addition, we also evaluate our method using the F1-
score [7], [12], [16], [17], which is a summary measure
that combines both precision and recall. F1-score is a good
evaluation metric when there is enough resources to inspect
all predicted buggy changes. A higher F1-score means that a
method can detect more buggy changes.

We have performed experiments on 6 large-scale software
projects from different communities, i.e., Bugzilla, Columba,
JDT, Platform, Mozilla, and PostgreSQL, containing a total of
137,417 changes. We compare our approach with the approach
proposed by Kamei et al. [1]. The experimental results show
that on average across the 6 projects, Deeper can discover up
to 39.96% more bugs than the Kamei et al’s approach (58.09%
versus 18.13% for Mozilla). In addition, Deeper can achieve

F1-scores of 0.22-0.63, which are statistically significantly
higher than those of Kamei et al.’s approach on 4 out of the
6 projects.

The main contributions of this paper are:

1) To our best knowledge, it is the first time deep learn-
ing is used to improve the performance of just-in-
time defect prediction. We propose a novel approach
Deeper which leverages a Deep Belief Network to
achieve a better performance.

2) We compare our method with Kamei et al.’s approach
on 6 large software projects. The experiment results
show that our method can achieve a better perfor-
mance than Kamei et al.’s approach.

The rest of our paper is organized as follows. Section II
introduces the background and motivation of our work. Sec-
tion III presents the overall framework of our approach and
elaborates the techniques that we use in our approach. Sec-
tion IV describes our experiments and the results. Section V
discusses the related work. Conclusion and future work are
presented in the last section.

II. BACKGROUND

In this section, we first introduce the basic concepts of just-
in-time defect prediction in Section II-A. Next, we present the
motivation of using deep learning in Section II-B.

A. Just-in-time Defect Prediction

Just-in-time defect prediction aims to predict if a particular
file involved in a commit (i.e., a change) is buggy or not.
Traditional just-in-time defect prediction techniques typically
follow the following steps:

1) Training Data Extraction. For each change, label
it as buggy or clean by mining a project’s revision
history and issue tracking system. Buggy change
means the change contains bugs (one or more), while
clean change means the change has no bug.

2) Feature Extraction. Extract the values of various
features from each change. Many different features
have been used in past change classification studies.

3) Model Learning. Build a model by using a classi-
fication algorithm based on the labeled changes and
their corresponding features.

4) Model Application. For a new change, extract the
values of various features. Input these values to the
learned model to predict whether the change is buggy
or clean.

B. Motivation of Using Deep Learning

Kamei et al. propose a just-in-time defect prediction tech-
nique which leverages the advantages of logistic regression
(LR) [18]. However, Logistic regression has two weaknesses.
First, in logistic regression, the contribution of each feature is
calculated independently, which means that LR can not com-
bine different features to generate new features. For example,
given two features x and y, if x × y is a more important and
really-needed feature, it is not enough to input only x and y
because logistic regression can not generate the new feature

Training Changes &

Labels (Buggy or

Clean)

New Changes

Model Building Phase Prediction Phase

Label (Buggy or

Clean)

Feature Extraction

Classifier

1

2

3

5

6

7

8

Data Proceesing

Feature

Integration

Classifier

Construction

Feature Extraction

Data Proceesing

Feature

Integration

Classifier

Construction

4

9

Fig. 1. The Overall Framework of Deeper.

x × y. Second, logistic regression performs well only when
input features and output labels are in linear relation. Due to
these two weaknesses, the selection of input features becomes
crucial when using Logistic regression. The bad selection of
features may be not in linear relation with output labels,
leading to bad training performance or even training failure.

The severe problem leads us to adopt Deep Belief Network
(DBN) [9], which is one of the state-of-the-art deep learning
approaches. The biggest advantage of DBN over Logistic
regression is that DBN can generate a more expressive feature
set from the initial feature set. The generated feature set, which
can include x × y, xy , and even more complicated nonlinear
combination of the initial features, is more powerful to express
the nature of a problem. If we input these generated features
instead of the initial set of basic features, the above two
weaknesses with logistic regression can be overcome.

III. OUR PROPOSED APPROACH

In this section, we present the details of our proposed
approach Deeper. We first present the overall framework of
Deeper, and then we describe in detail the individual steps in
the overall framework.

A. Overall Framework

Figure 1 presents the overall framework of our proposed
approach Deeper. The framework mainly contains two phases:
a model building phase and a prediction phase. In the model
building phase, our goal is to build a classifier (i.e., a statistical
model) by leveraging deep learning and machine learning
techniques from historical changes with known labels (i.e.,
buggy or clean). In the prediction phase, this classifier would
be used to predict if an unknown change would be buggy or
clean.

Our framework first extracts a number of features from
a set of training changes (i.e., changes with known status)
(Step 1). Features are various quantifiable characteristics of
changes that could potentially distinguish changes that are
buggy from those that are clean. In this paper, we use the 14
basic features proposed by Kamei et al. [1] as shown in Table I.
Next, we perform data preprocessing on the collected features

TABLE I. FOURTEEN BASIC CHANGE MEASURES

Name Description
NS The number of modified subsystems [19]
ND The number of modified directories [19]
NF The number of modified files [20]
Entropy Distribution of modified code across each file [21]
LA Lines of code added [22]
LD Lines of code deleted [22]
LT Lines of code in a file before the change [23]
FIX Whether or not the change is a defect fix [24]
NDEV The number of developers that changed the modi-

fied files [24]
AGE The average time interval between the last and the

current change [25]
NUC The number of unique changes to the modified

files [21]
EXP Developer experience [19]
REXP Recent developer experience [19]
SEXP Developer experience on a subsystem [19]

(Step 2)1. The data preprocessing contains two sub-steps:
data normalization and resampling. In the data normalization
sub-step, we transform the values of all features to values
in the interval from 0 to 1. Due to the class imbalance
phenomenon [26], the number of clean changes is much
more than the buggy changes, thus in the resampling sub-
step, we perform random under-sampling [27] to make the
number of buggy and clean changes equal. Then, a deep
learning technique such as Deep Belief Network (DBN) is
used to generate and integrate advanced features from the
initial features (Step 3)2. The advanced features are linear
combinations of the initial features. After we generate the
advanced features, our framework next constructs a classifier
(i.e., a statistical model) based on the advanced features of
the training changes (Step 4).3 In this paper, we use logistic
regression [18] to build the classifier.

In the prediction phase, the classifier is then used to predict
whether a change with an unknown label is buggy or clean.
For each of such changes, our framework first extracts the
values of the same set of initial features (Step 5), preprocess the
changes (i.e., using data normalization) (Step 6), and generate
and integrate the same advanced features as we do in the model
building phase (step 7). Next, these features are input into the
classifier (Step 8). This step would output the prediction result
which is one of the following labels: buggy or clean (Step 9).
Note that to mimic reality (we do not have the class labels:
buggy or not), we do not perform random under-sampling in
the prediction phase.

B. Data Preprocessing

1) Data Normalization: Considering that the values of
the 14 basic change features are not in the same order
of magnitude, we perform data normalization on the these
features. In this paper, we use the min-max method to do
the normalization. It transforms all values to values in the
interval [0, 1]. Given a feature f , we denote the maximum and
minumum value for f as max(f) and min(f) respectively.

1Detail information of this step is presented in Section III-B.
2Detail information of this step is presented in Section III-C.
3Detail information of this step is presented in Section III-D.

For each value fi of the feature f , the normalized value zi is
computed as

zi =
xi −min(f)

max(f)−min(f)

2) Random Under-Sampling: Random under-sampling [26]
is one of the effective approaches to deal with unbalanced data.
It randomly deletes data belonging to the majority class (in
our case: non-buggy changes) until the amount of data in the
majority class is approximately equal to the minority. This step
is essential and important for defect prediction because it helps
the learned classifier not to be biased to the majority class and
thus it can improve the performance of the classifier [27], [28].

C. Feature Integration

Deep Belief Network (DBN) is an advanced deep learning
algorithm [9], [29], [10]. It consists of several Restricted
Boltzmann’s Machines (RBM). The RBM, which is used for
feature detection, is a two-layer network. The first layer is
the input layer, which contains several visible units. And the
second is the hidden layer, which contains several hidden
units. The hidden units are also called feature detectors, which
output the detected features. The units in the two layers are
connected symmetrically, but the units in the same layer are
not connected. The numbers of units in the two layers are
variable with different research areas and generally is chosen
empirically or experimentally. Figure 2 presents the structure
of a simple RBM, which contains three visible units and two
hidden units.

Fig. 2. The Structure of a Restricted Boltzmann’s Machine.

The principle of RBM is to minimize the energy of the
network. The energy function of RBM is defined as follows:

E(v, h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij

In the above equation, w represents the weights connecting
visible units and hidden units and a and b are the offsets of
the visible and hidden units respectively. Knowing the energy
function, we can obtain the joint probability of the two layers
of RBM, which is:

p(v, h) =
1

Z
e−E(v,h), where Z =

∑
v,h

e−E(v,h)

The probability distribution function about v is:

P (v) =
∑
h

P (v, h) =
∑
h

e−E(v,h)

Z

From the above formulas, in order to minimize the energy
of RBM, we should maximize P (v), i.e., minimize −P (v).

Therefore, with the partial derivative of −P (v) to w, a and b as
well as optimization algorithm such as the method of gradient
descent or conjugate gradients, we can obtain optimized w, a
and b for RBM.

A single RBM is not the best way to detect features.
Instead, we stack several RBMs in the way that the hidden
layer of the former RBM is the visible layer of the next RBM.
In addition, we connect a classifier to the last RBM in which
the hidden layer of the last RBM is the input layer of the
classifier. The whole network structure is also called Deep
Belief Network (DBN). The power of DBN is it’s ability to
extract a more expressive feature set.

In our algorithm, we use the DBN which contains three
stacked RBMs and a Logistic regression classifier. Since the
dimensions of input (in our case, 14 basic features) and output
(in our case, 2 labels) are fixed, what we can change is the
numbers of hidden layers and the numbers of hidden units. For
the number of hidden layers, we choose three hidden layers,
which is a general configuration followed by Hiton et al. [9].
For the numbers of hidden units, we try a wide range of
numbers using a strategy similar to greedy search. We first
change the number of units in the first hidden layer and fix
the other two, and then we change the number of units in
the second hidden layer and fix the other two, and so on. We
find that the performance do not vary much for a wide range
of configurations. Therefore, the whole network structure we
finally choose has layers of size 14-20-12-12-2, which means
that the first RBM has 14 visible units and 20 hidden units,
the second RBM has 20 visible units and 12 hidden units, the
third RBM has 12 visible units and 12 hidden units, and the
classifier has 12 input units and 2 output units.

D. Classifier Construction

Logistic regression [18] models the relationship between
features and labels as a parametric distribution P (y|x), where
y refers to the label of a data point (in our case: a change),
and x refers to the data point represented as a set of features.
The parameters of this distribution is directly estimated from
the training data. Let x = {xf1 , xf2 , ...xfm} denotes the vector
representation of features of a data point x, and xfi denotes the
value of the i-th feature of x, and W = {w0, w1, w2, ...wm}
denotes the weight vector associated to the features in x, w0

is a bias parameter, and wi, i ∈ {1, 2, ...m} is the weight of
the i-th feature of x (i.e., xfi). Given a new change x, we
compute the confidence scores for x to be buggy and clean,
denoted as Confbuggy(x) and Confclean(x), as follows:

Confbuggy(x) =
1

1 + exp(w0 +
∑m

i=1 wi × xfi)

Confclean(x) =
exp(w0 +

∑m
i=1 wi × xfi)

1 + exp(w0 +
∑m

i=1 wi × xfi)

From the two confidence scores, we compute the output
score Out(x) as:

Out(x) =
Confbuggy − Confclean

LOC(x)

TABLE II. STATISTICS OF THE DATASETS USED IN OUR STUDY

Project Time # Instances % Buggy
Bugzilla 1998.08-2006.12 4620 36%
Columba 2002.11-2006.07 4455 31%

JDT 2001.05-2007.12 35386 14%
Platform 2001.05-2007.12 64250 14%
Mozilla 2000.01-2006.12 98275 5%

PostgreSQL 1996.07-2010.05 20431 25%

In the above equation, LOC(x) refer to the number of
LOC changed in x. If Out(x) ≥ 0, we predict the change as
buggy; else we predict it as clean.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of Deeper. The
experimental environment is an Intel(R) Core(TM) T6570 2.10
GHz CPU, 4GB RAM desktop running Windows 7 (32-bit).
We first present our experiment setup and evaluation metrics
in Sections IV-A and IV-B respectively. We then present 4
research questions and our experiment results that answer the
4 research questions in Section IV-C.

A. Experiment Setup

We evaluate Deeper on six datasets from six well-
known open source projects, which are Bugzilla, Columba,
Eclipse JDT, Eclipse Platform, Mozilla and PostgreSQL. These
datasets are also used by Kamei et al. [1]. Table II summarizes
the statistics of each dataset, containing the period of each
dataset, the total number of instances (i.e., changes), and the
proportions of the defective changes. Note that due to batch
processing of RBM (100 instances per batch) and 10-fold cross
validation, we don’t use all instances for experiments. Instead,
we use the multiples of 1000 instances for simplicity. For
example, Bugzilla has 4620 instances and we only use the
first 4000 instances in our experiments. Also note that all the
datasets are unbalanced. The most unbalanced dataset, Mozilla,
contains only 5% defects, while the most balanced dataset,
Bugzilla, contains 36% defects.

We use 10 times ten-fold cross validation [18] to evaluate
the performance of Deeper. We randomly divide the dataset
into 10 folds, in which 9 folds are used as training dataset, and
the remaining one fold is used as testing dataset. To further
reduce the bias due to training set selection, we run ten-fold
cross validation 10 times and record the average performance.
Cross validation is a standard evaluation setting, which is
widely used in software engineering studies [30], [31].

B. Evaluation Metrics

We use two evaluation metrics to evaluate the performance
of our approach. The first one is cost effectiveness and the
other is F1-score.

1) Cost Effectiveness: Cost effectiveness is often used to
evaluate defect prediction approaches [13], [15], [14]. Cost
effectiveness is measured by computing the percentage of
buggy changes found when reviewing a specific percentage
of the lines of code. To compute cost-effectiveness, given a
number of changes, we firstly sort them according to their
likelihood to be buggy. We then simulate to review the changes
one-by-one from the highest ranked change to the lowest

and record buggy changes found. Using this process we can
obtain the percentage of buggy changes found when reviewing
different percentages of lines of code (1% to 100%).

TABLE III. CONFUSION MATRIX

Predicted Buggy Predicted Clean
True Buggy TP FN
True Clean FP TN

2) F1-score: The F1-score is a commonly-used measure
to evaluate classification performance [18], [16]. It combines
Precision and Recall and can be derived from a confusion ma-
trix, as shown in Table III. The confusion matrix lists all four
possible prediction results. If an instance is correctly classified
as “buggy”, it is a true positive (TP); if an instance is misclas-
sified as “buggy”, it is a false positive (FP). Similarly, there
are false negatives (FN) and true negatives (TN). Based on the
four numbers, Precision, Recall and F1-score are calculated.
Precision is the ratio of correctly predicted “buggy” instances
to all instances predicted as “buggy” (Precision = TP

TP+FP).
Recall is the ratio of the number of correctly predicted “buggy”
instances to the actual number of “buggy” instances (Recall =

TP
TP+FN). Finally, F1-score is a harmonic mean of Precision
and Recall: F1-measure = 2∗Recall∗Precision

Recall+Precision . F1-score is often
used as a summary measure to evaluate if an increase in
precision outweighs a reduction in recall (and vice versa).

C. Research Questions

We compare Deeper against two baselines. The first base-
line is an approach using a standard Logistic Regression.
For this baseline, we ignore unbalanced-data preprocessing
and don’t use DBN. It is referred to as LR in the following
text. The second baseline is the approach proposed by Kamei
et al. [1]. The approach uses Random Under-Sampling and
Logistic Regression but doesn’t use DBN. It is referred to as
Kamei et al.’s approach in the following text. Our experiments
are designed to answer the following research questions:

RQ1 How effective is Deeper?

Motivation. To validate the effectiveness of Deeper, we need
to compare it with the above two baselines. When comparing
with LR, we can test the effectiveness of both unbalanced-
data preprocessing and DBN. When comparing with Kamei’s
approach, we can test the effectiveness of DBN only.

Approach. We use the above two evaluation metrics, i.e.,
cost effectiveness and F1-score, to make comparisons. They
are commonly-used measures to evaluate the performance
of a defect prediction approach. To make our results more
convincing, we perform 10-fold cross validation 10 times and
report the average results.

For cost effectiveness, we record the percentage of buggy
instances found when adding every one percentage of lines
of code reviewed. So we will have 100 average values cor-
responding to the percentage of buggy instances found when
reviewing 1% to 100% lines of code. We specifically focus on
the percentage of buggy instances found when reviewing 20%
lines of code, which is referred to as PofB20 [3]. For F1-score,
we calculate the average of the 100 F1-score values that we
obtain after performing 10 times 10-fold cross validation. We
use this average value to compare with the baselines.

In addition, we also calculate p-value and cliff delta to
better investigate whether or not our approach improve the
baselines significantly.

TABLE IV. POFB20 VALUES OF DEEPER AND THE TWO BASELINES

Project LR(%) Kamei et al.’s (%) Deeper(%)
Bugzilla 21.35 21.44 42.80
Columba 12.52 12.29 41.00

JDT 18.31 17.79 55.77
Platform 25.71 24.92 61.87
Mozilla 18.85 18.13 58.09

PostgreSQL 17.82 18.38 46.70
Average 19.09 18.82 51.04

TABLE V. PRECISION OF DEEPER AND THE TWO BASELINES

Project LR Kamei et al.’s Deeper
Bugzilla 0.7019 0.5475 0.5557
Columba 0.6312 0.4865 0.4693

JDT 0.4527 0.2490 0.2597
Platform 0.5271 0.2321 0.2640
Mozilla 0.5836 0.1240 0.1321

PostgreSQL 0.6988 0.5036 0.4573
Average 0.5992 0.3571 0.3564

TABLE VI. RECALL OF DEEPER AND THE TWO BASELINES

Project LR Kamei et al.’s Deeper
Bugzilla 0.4026 0.7027 0.7207
Columba 0.3104 0.6486 0.6703

JDT 0.0304 0.6613 0.6883
Platform 0.0320 0.7085 0.7003
Mozilla 0.0397 0.6084 0.6820

PostgreSQL 0.2819 0.6016 0.6799
Average 0.1828 0.6552 0.6903

TABLE VII. F1-SCORE OF DEEPER AND THE TWO BASELINES

Project LR Kamei et al.’s Deeper
Bugzilla 0.5106 0.6147 0.6264
Columba 0.4148 0.5550 0.5493

JDT 0.0568 0.3616 0.3769
Platform 0.0603 0.3496 0.3833
Mozilla 0.0742 0.2058 0.2213

PostgreSQL 0.4014 0.5480 0.5463
Average 0.2530 0.4391 0.4506

Results. Tables IV, V, VI and VII present the PofB20, Preci-
sion, Recall and F1-score values of Deeper as compared with
those of the two baselines, respectively. From these tables, we
can conclude several points.

First, from Table IV, we can see that using our approach,
on average, over 50% of the buggy instances can be found by
reviewing only 20% of the lines of code, which is a substantial
improvement as compared to the results achieved by the two
baselines. The PofB20 values of our approach range from 41%
to 62%. For each dataset, the values exceed those of the two
baselines substantially.

Second, from Tables V to VII, we can find that in terms of
Precision, LR is the best performer by achieving an average
precision of 60%. However, in terms of Recall, LR performs
the worst. Instead, in terms of Recall, Deeper is the best
performer by achieving an average recall of 69%. Also, in

terms of F1-score, which is the summary of the above two
indicators, Deeper is the best performer by achieving an
average F1-score of 45%.

Third, although the precision of LR is the best, its recall
value is very low. This is especially the case for three datasets
where the proportions of buggy changes are less than 15%.
For those datasets, LR’s recall values are only about 3%,
while Deeper and Kamei et al.’s approach achieve much larger
recall values of more than 60%. The result indicates that LR
is not good enough for defect prediction and unbalanced-data
processing is essential and important.

Fourth, when comparing Deeper with Kamei et al.’s ap-
proach, we find that almost all the recall values of Deeper
are higher than those of Kamei et al.’s approach, but the F1-
score values of Kamei et al.’s approach are larger than Deeper
in two datasets, which is due to the relatively low precision
of our approach in these two datasets. However, considering
the setting of defect prediction, recall is much more important
than precision, because what we want to find as many buggy
changes as possible even though we need to sacrifice a little
more review cost to inspect non-buggy instances. In summary,
DBN is useful and overall Deeper is more effective than Kamei
et al.’s approach.

TABLE VIII. MAPPINGS OF CLIFF’S DELTA VALUES TO
EFFECTIVENESS LEVELS [32]

Cliff’s Delta (δ) Effectiveness Level
-1 <= δ < 0.147 Negligible

0.146 <= δ < 0.33 Small
0.33 <= δ < 0.474 Medium
0.474 <= δ <= 1 Large

To better demonstrate the superiority of our approach, we
perform the Wilcoxon statistical test and compute the p-value.
We also compute the Cliff’s delta. Wilcoxon statistical test
is often used to check if the difference in two means is
statistically significant (which corresponds to a p-value of less
than 0.05). Cliff’s delta is often used to check if the difference
in two means are substantial. The range of Cliff’s delta is in
[-1, 1], where -1 or 1 means all values in one group are smaller
or larger than those of the other group, and 0 means the data in
the two groups is similar. The mappings between Cliff’s delta
scores and effectiveness levels are shown in Table VIII. By
computing the p-value and Cliff’s delta, the extent of which
our approach improves over the two baselines can be more
rigorously assessed.

TABLE IX. P-VALUES OF DEEPER COMPARED WITH THE TWO
BASELINES IN TERMS OF POFB20

Project With LR With Kamei et al.’s
Bugzilla <2.2e-16 <2.2e-16
Columba <2.2e-16 <2.2e-16

JDT <2.2e-16 <2.2e-16
Platform <2.2e-16 <2.2e-16
Mozilla <2.2e-16 <2.2e-16

PostgreSQL <2.2e-16 <2.2e-16

Tables IX, X, IX and X present p-values and Cliff’s deltas
of Deeper compared with the two baselines for each of the six
datasets. From the four tables, we can see the effectiveness
of our approach more clearly. In terms of cost effectiveness,

TABLE X. CLIFF’S DELTAS OF DEEPER COMPARED WITH THE TWO
BASELINES IN TERMS OF POFB20

Project With LR With Kamei et al.’s
Bugzilla 1(large) 1(large)
Columba 1(large) 1(large)

JDT 1(large) 1(large)
Platform 1(large) 1(large)
Mozilla 1(large) 1(large)

PostgreSQL 1(large) 1(large)

TABLE XI. P-VALUES OF DEEPER COMPARED WITH THE TWO
BASELINES IN TERMS OF F1-SCORE

Project With LR With Kamei et al.’s
Bugzilla <2.2e-16 1.836e-06
Columba <2.2e-16 0.05783

JDT <2.2e-16 <2.2e-16
Platform <2.2e-16 <2.2e-16
Mozilla <2.2e-16 <2.2e-16

PostgreSQL <2.2e-16 0.1955

Deeper improves the performance of the baselines significantly
and substantially in all datasets. In terms of F1-score, Deeper
improves the performance of the baselines significantly and
substantially in four out of the six datasets. In the two datasets
where the performance of Deeper is worse than that of Kamei
et al.’s approach (i.e., Columba and PostgreSQL) the p-values
are larger than 0.05 (not significant) and the Cliff’s deltas
are less than 0.147 (negligible). Thus for these datasets, our
approach is not significantly and substantially worse than
Kamei et al.’s approach.

Deeper is more effective than the two baselines and DBN is
effective in improving the effectiveness of just-in-time defect
prediction. On average, by reviewing only 20% lines of code,
over 50% of the buggy changes can be found with our
approach.

RQ2 How effective is Deeper when different percentages
of LOC are inspected?

Motivation. We have validated the effectiveness of Deeper
in terms of cost effectiveness and F1-score through the first
research question. Deeper has shown a large improvement
in cost effectiveness. We want to go further by showing the
amount of buggy instances found when reviewing different
amount of lines of code using Deeper. Given the same amount
of lines of code reviewed, the more buggy instances found, the
more useful an approach is. Note that since RQ1 has showed
the weakness of LR, we won’t compare our approach with LR
in this and the following research questions.

Approach. We record the percentage of buggy instances found
when adding every one percentage of lines of code reviewed.
So we will have 100 average values corresponding to the
percentage of buggy instances found when reviewing 1% to
100% lines of code. We can generate a figure whose x-
axis represents the percentage of code reviewed and y-axis
represents the percentage of defects found for each dataset. In
each chart there are two lines, one for Deeper and the other
for Kamei et al.’s approach.

Results. Figure 3 shows six charts comparing the cost ef-
fectiveness of our approach and Kamei et al.’s approach for

TABLE XII. CLIFF’S DELTA OF DEEPER COMPARED WITH THE TWO
BASELINES IN TERMS OF F1-SCORE

Project With LR With Kamei et al.’s
Bugzilla 0.9832(large) 0.2645(small)
Columba 0.9956(large) -0.0906(negligible)

JDT 1(large) 0.5295(large)
Platform 1(large) 0.9748(large)
Mozilla 1(large) 0.6531(large)

PostgreSQL 1(large) -0.0484(negligible)

different percentages of LOC inspected. The red solid curve
corresponds to Deeper and the blue dashed curve corresponds
to Kamei et al.’s approach. From the charts, we can see that the
red solid curves are always more convex than the blue dashed
curves, which means that our approach can always detect more
buggy changes than Kamei et al.’s approach in the whole range
of percentages of LOC inspected. Take the project Platform
as an example, when we inspect 20% LOC, Kamei et al.’s
approach can find near 25% buggy instances while Deeper
can find 62% buggy instances. When we inspect 40% LOC
Kamei et al.’s approach can find around 47% buggy instances
while Deeper can find 80% buggy instances. Therefore, the
performance of our approach is much better than Kamei et
al.’s approach in terms of the cost effectiveness.

Deeper can identify more buggy changes than Kamei et al.’s
approach for a wide range of lines of code inspected.

RQ3 What is the effect of varying the amount of training
data on the effectiveness of Deeper?

Motivation. For some projects, the amount of training data
(i.e., changes known to be buggy or non-buggy) can be limited.
Thus, in this research question, we want to investigate the
effectiveness of Deeper when the amount of training data is
reduced.

Approach. In RQ1 and RQ2, we perform 10-fold cross vali-
dations which means that 90% of the data are used for training
and 10% of data are used for testing. In this RQ, we perform
2-fold to 10-fold cross validations on the datasets. To make the
results more convincing, we also perform each kind of cross
validation 10 times. For each dataset, we plot two curves on
one chart showing the F1-score and cost effectiveness values
for 2-folds to 10-folds cross validations.

Results. Figure 4 presents the F1-score (blue dashed line) and
cost effectiveness values (red solid line) for different cross
validations. In the figure, we notice the fluctuations of the
curves are not large. For example, in Bugzilla, its F1-score
achieves the maximum of 0.67 when we perform 8-fold cross
validation and it has the minimum of 0.59 when we perform
6-fold cross validation. The cost effectiveness are all between
0.42 and 0.44. In addition, there is no extraordinary minimum.
For example, in Columba, its F1-score, and cost effectiveness
is from 0.49 – 0.53, and 0.38 – 0.41, respectively. Therefore,
we can note that Deeper can work with different amount of
training data and the performance will not vary much.

Deeper is able to work well for reduced amount of training
data.

RQ4 How much time does it take for Deeper to run?

Motivation. Now that we have examined the effectiveness
and the applicability of our approach (with reduced training
data), we shall test the efficiency of Deeper in the end. The
efficiency of an approach is also an important indicator to
evaluate whether or not the approach is good enough.

Approach. In order to answer the question, we measure the
training and testing time of Deeper. The training time includes
the time taken for data preprocessing, feature selection and
classifier training. The testing time is the time taken to process
the testing dataset until the prediction results are generated.
For Just-In-Time Defect Prediction, the testing time is more
crucial than training time. Training can be done offline and the
resultant statistical model can be used to assign defect labels
to many changes. For each dataset, we consider a collection
of 4000 changes (3,600 are used to build a statistical model,
and 400 are used to test the model).

TABLE XIII. TRAINING TIME OF KAMEI ET AL.’S APPROACH AND
DEEPER (IN SECONDS)

Project Kamei et al.’s Approach Our Approach
Bugzilla 1.17 13.03
Columba 0.69 10.41

JDT 0.62 8.31
Platform 0.81 9.86
Mozilla 0.64 7.60

PostgreSQL 0.78 10.67
Average 0.79 9.98

TABLE XIV. TESTING TIME OF KAMEI ET AL.’S APPROACH AND
DEEPER (IN SECONDS)

Project Kamei et al.’s Approach Our Approach
Bugzilla 0.0022 0.0015
Columba 0.0012 0.0011

JDT 0.0018 0.0031
Platform 0.0021 0.0069
Mozilla 0.0044 0.0098

PostgreSQL 0.0063 0.0028
Average 0.0030 0.0042

Results. Tables XIII and XIV present the training time and
testing time of Deeper and Kamei et al.’s Approach on the six
datasets. From Table XIII, it takes about 10 seconds for our
approach to finish training a statistical model, while Kamei et
al.’s approach only needs less than 1 second. Still, 10 seconds
is not an unacceptable cost. In addition, the testing time of
both approaches are very small.

Deeper needs around 10 seconds to build a statistical model
from 3,600 changes and a negligible amount of time to
predict the defect labels of 400 changes.

D. Threats to Validity

Threats to internal validity relate to errors in our ex-
periments. We have double checked our experiments and
implementations. Still, there could be errors that we did not
notice. Threats to external validity relate to the generalizability
of our results. We have evaluated our approach on 137,417
changes from six open source projects. In the future, we plan to
reduce this threat further by analyzing even more datasets from
more open source and commercial software projects. Threats
to construct validity refer to the suitability of our evaluation

(a) Bugzilla (b) Columba

(c) JDT (d) Platform

(e) Mozilla (f) Postgres

Fig. 3. Cost Effectiveness Trends for the Six Datasets

metrics. We use cost effectiveness and F1-score which are
also used by past software engineering studies to evaluate the
effectiveness of various prediction techniques [7], [12], [16],
[33], [34], [17], [14], [13], [35]. Thus, we believe there is little
threat to construct validity.

V. RELATED WORK

We classify related work into two parts: studies on defect
prediction and studies on deep learning. Due to the page limit,
the survey here is by no means complete.

A. Defect Prediction

There are some prior studies on just-in-time defect predic-
tion. Mockus et al. predict defects at change-level in a telecom-
munication system [19]. They propose a number of measures
that characterize a change including change diffusion, change
size, change purpose and so on, and use logistic regression
to do prediction. All the change measures satisfy three ba-
sic conditions: The measure can be computed automatically
from changes, the measure can be obtained immediately after
changes, and the measure can reflect a property of changes.
Kim et al. predict defects at change-level in 12 open source
projects [7]. They use Support Vector Machine to predict
whether or not a change will lead to a bug. Kamei et al.

perform a large-scale empirical study of just-in-time defect
prediction [1]. They choose 14 change measures that perform
well in traditional defect prediction research and build Logistic
Regression models to predict if changes are defective or not.

There are many studies on traditional defect prediction.
Zimmermann et al. use network analysis to analyze dependen-
cies between various pieces of code, which can help managers
to identify central program units that are more likely to be
defective [5]. Zimmermann et al. propose a cross-project defect
prediction approach; they train a model on a source project
which is selected considering several factors, and use the
model on a given target project [36]. Turhan et al. employ a k-
nearest neighbor algorithm for cross-project defect prediction,
which selects 10 nearest instances from source projects to
be used as training data for a target project [6]. D’Ambros
et al. present a benchmark for defect prediction and provide
an extensive comparison of well-known approaches used for
defect prediction in their survey [4]. Rahman et al. analyze
code metrics from several different perspectives, and build
prediction models across 12 large open source projects to
understand the performance, stability, portability and stasis
of different sets of metrics for defect prediction [13]. Nam
et al. propose TCA+, a novel approach to make feature
distributions in source projects similar to that of target projects,
which can improve the performance of cross-project defect

(a) Bugzilla (b) Columba

(c) JDT (d) Platform

(e) Mozilla (f) Postgres

Fig. 4. Two-to-ten fold validation results on six datasets

prediction [16].

B. Deep Learning

Hinton et al. pioneer the effectiveness of deep networks [9],
[29]. In 2006, Hinton et al. proposed an effective way called
”pretraining” to initialize the weights of deep networks [9].
With pretraining, deep autoencoder networks, which are made
up of a stack of Restricted Boltzmanns Machines, can be
fine-tuned much efficiently to learn low-dimensional codes.
They experiment on many image datasets as well as document
datasets and results demonstrate that deep autoencoder net-
works work much better than principal components analysis
(PCA). They also illustrate that the low-dimensional codes
obtained by deep autoencoder networks can be used for
classification and regression with excellent performance. Also
in 2006, Hinton et al. proposed a fast learning algorithm
for DBN [29]. They use so-called ”complementary priors”
to eliminate the explaining-away effects that make inference
difficult in deep belief networks. The algorithm performs
greedy and layer-wise training by using complementary priors.
They experiment on MNIST dataset and results show that the
algorithm gives better performance than the best discriminative

learning algorithms. In 2007, Hinton writes a paper about
learning feature detectors using multiple-layer networks [10].
He presents the limitations of multilayer generative models
and how RBM becomes the key to finding an efficient learning
algorithm for deep generative models. He also introduces how
to learn many layers of features by composing RBMs in detail.

Nowadays, with the deeper understanding of deep learning,
Deep Belief Networks have been studied and used in more
and more applications and fields such as image processing,
speech recognition, stock prediction and so on [37]. Ranzato
et al. present a novel and efficient algorithm to learn a sparse
representation for DBN [38]. Mohamed et al. achieve better
performance in speech recognition using DBN [39]. Zhu et al.
construct a stock decision support system based on DBN for
helping stock brokers in buying and selling stocks [40]. In
our work, we try to apply DBN to a software engineering task
namely Just-In-Time Defect Prediction.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a deep learning approach for just-
in-time defect prediction. The approach first extracts a set of
expressive features from an initial set of basic change measures

using Deep Belief Network (DBN), and then trains a classifier
based on the extracted features using Logistic Regression. We
evaluate our approach on datasets taken from six large open
source projects and use two evaluation metrics which are F1-
score and cost effectiveness. We compare our approach with
two baselines, i.e., a standard Logistic Regression algorithm
and the approach proposed by Kamei et al. [27]. The results
show that our approach is the best in terms of the two metrics.
Our approach achieve an average recall of 69% and an average
F1-score of 45%. For cost effectiveness, our approach can
identify over 50% defective changes by reviewing only 20%
lines of code, which is much more than the defective changes
that can be identified by the two baselines.

In the future, we plan to improve the performance of
our approach by optimizing parameters of DBN and perform
experiments on more datasets to reduce the threats to external
validity. We also plan to try other classifiers to find if there
exists better classifiers when combined with DBN.

Acknowledgment. This research was partially supported by
China Knowledge Centrefor Engineering Sciences and Tech-
nology (No. CKCEST-2014-1-5), National Key Technology
R&D Program of the Ministry of Science and Technology of
China (No. 2015BAH17F01), and the Fundamental Research
Funds for the Central Universities.

REFERENCES

[1] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” TSE, vol. 39, no. 6, pp. 757–773, 2013.

[2] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
“Defect prediction from static code features: current results, limitations,
new approaches,” Automated Software Engineering, vol. 17, no. 4, pp.
375–407, 2010.

[3] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in ASE,
2013, pp. 279–289.

[4] M. DAmbros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, no. 4-5, pp. 531–577, 2012.

[5] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in ICSE, 2008, pp. 531–540.

[6] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[7] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” TSE, vol. 34, no. 2, pp. 181–196, 2008.

[8] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,
and A. E. Hassan, “Revisiting common bug prediction findings using
effort-aware models,” in ICSM, 2010, pp. 1–10.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[10] G. E. Hinton, “Learning multiple layers of representation,” Trends in
cognitive sciences, vol. 11, no. 10, pp. 428–434, 2007.

[11] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer,
G. Zweig, X. He, J. Williams et al., “Recent advances in deep learning
for speech research at microsoft,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, 2013,
pp. 8604–8608.

[12] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the imprecision of
cross-project defect prediction,” in FSE, 2012, p. 61.

[13] F. Rahman and P. Devanbu, “How, and why, process metrics are better,”
in ICSE, 2013, pp. 432–441.

[14] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.
bias in defect prediction,” in ESEC/FSE, 2013, pp. 147–157.

[15] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data mining techniques
for building fault-proneness models in telecom java software,” in ISSRE,
2007, pp. 215–224.

[16] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in ICSE,
2013, pp. 382–391.

[17] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Multi-objective cross-project defect prediction,” in ICST,
2013, pp. 252–261.

[18] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2006.
[19] A. Mockus and D. M. Weiss, “Predicting risk of software changes,”

Bell Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.
[20] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict

component failures,” in ICSE, 2006, pp. 452–461.
[21] A. E. Hassan, “Predicting faults using the complexity of code changes,”

in ICSE, 2009, pp. 78–88.
[22] N. Nagappan and T. Ball, “Use of relative code churn measures to

predict system defect density,” in ICSE, 2005, pp. 284–292.
[23] A. G. Koru, D. Zhang, K. El Emam, and H. Liu, “An investigation

into the functional form of the size-defect relationship for software
modules,” TSE, vol. 35, no. 2, pp. 293–304, 2009.

[24] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric
of small source code changes,” TSE, vol. 31, no. 6, pp. 511–526, 2005.

[25] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” TSE, vol. 26, no. 7, pp. 653–
661, 2000.

[26] H. He and E. A. Garcia, “Learning from imbalanced data,” TKDE,
vol. 21, no. 9, pp. 1263–1284, 2009.

[27] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Mat-
sumoto, “The effects of over and under sampling on fault-prone module
detection,” in ESEM. IEEE, 2007, pp. 196–204.

[28] T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, “Balancing misclassifi-
cation rates in classification-tree models of software quality,” Empirical
Software Engineering, vol. 5, no. 4, pp. 313–330, 2000.

[29] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[30] X. Xia, Y. Feng, D. Lo, Z. Chen, and X. Wang, “Towards more accurate
multi-label software behavior learning,” in CSMR-WCRE, 2014, pp.
134–143.

[31] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in MSR, 2013, pp. 287–296.

[32] N. Cliff, Ordinal methods for behavioral data analysis, 2014.
[33] X. X. J. S. Yun Zhang, David Lo, “An empirical study of classifier

combination for cross-project defect prediction,” in COMPSAC. IEEE,
2015.

[34] X. X. Y. T. Xiao Xuan, David Lo, “Evaluating defect prediction
approaches using a massive set of metrics: An empirical study,” in SAC.
IEEE, 2015.

[35] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect
prediction,” in MSR, 2013, pp. 409–418.

[36] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in ESEC/FSE, 2009, pp. 91–100.

[37] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised
feature learning and deep learning for time-series modeling,” Pattern
Recognition Letters, vol. 42, pp. 11–24, 2014.

[38] Y.-l. Boureau, Y. L. Cun et al., “Sparse feature learning for deep belief
networks,” in Advances in neural information processing systems, 2008,
pp. 1185–1192.

[39] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 14–22, 2012.

[40] C. Zhu, J. Yin, and Q. Li, “A stock decision support system based on
dbns,” Journal of Computational Information Systems, vol. 10, no. 2,
pp. 883–893, 2014.

