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Abstract
It is often very expensive and practically infeasible to generate test
cases that can exercise all possible program states in a program.
This is especially true for a medium or large industrial system. In
practice, industrial clients of the system often have a set of input
data collected either before the system is built or after the deploy-
ment of a previous version of the system. Such data are highly valu-
able as they represent the operations that matter in a client’s daily
business and may be used to extensively test the system. How-
ever, such data often carries sensitive information and cannot be
released to third-party development houses. For example, a health-
care provider may have a set of patient records that are strictly
confidential and cannot be used by any third party. Simply mask-
ing sensitive values alone may not be sufficient, as the correlation
among fields in the data can reveal the masked information. Also,
masked data may exhibit different behavior in the system and be-
come less useful than the original data for testing and debugging.

For the purpose of releasing private data for testing and debug-
ging, this paper proposes the kb-anonymity model, which combines
the k-anonymity model commonly used in the data mining and
database areas with the concept of program behavior preservation.
Like k-anonymity, kb-anonymity replaces some information in the
original data to ensure privacy preservation so that the replaced data
can be released to third-party developers. Unlike k-anonymity, kb-
anonymity ensures that the replaced data exhibits the same kind of
program behavior exhibited by the original data so that the replaced
data may still be useful for the purposes of testing and debugging.
We also provide a concrete version of the model under three par-
ticular configurations and have successfully applied our prototype
implementation to three open source programs, demonstrating the
utility and scalability of our prototype.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Symbolic Execution/Testing tools; H.2.8 [Database Appli-
cations]: Data Mining; K.4.1 [Public Policy Issues]: Privacy

General Terms Algorithms, Experimentation, Reliability, Secu-
rity

Keywords k-anonymity, behavior preservation, privacy preserva-
tion, third-party testing and debugging, symbolic execution
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1. Introduction
It is common for companies in healthcare, banking, and other in-
dustries to employ third-party software houses to develop software
systems for their day-to-day business. These software systems are
used to manage and process various datasets containing person-
specific information. Building perfect software for these industries
in the first attempt is hard; extensive testing and debugging are
needed to detect and fix bugs.

From a software developer’s point of view, real data that would
be processed by the software system in the field may contain more
relevant test cases and rare cases that are bug-revealing. Being able
to use such real data can be very helpful for testing and debugging.

A data owner, on the other hand, wants high-quality software
systems for their daily business, and helping developers (e.g., pro-
viding real data for testing) aligns with their interest. However,
much of the data is sensitive or confidential. Such data cannot be
released to third parties without proper anonymization or desensiti-
zation. For example, data in a hospital could contain the list of dis-
eases each patient has; data in a bank could contain all transaction
records of a client. Sending these datasets directly to third-party
software developers could pose security risks and privacy concerns.
Even though legal mechanisms, such as non-disclosure agreements
(NDAs), can be applied to protect the data from leaking further, it
can be very costly for the data owners to recover from any damage
caused by violations of NDAs. It would be much safer to avoid un-
necessary releases of sensitive or confidential data in the first place.

One solution for protecting privacy is to mask away (i.e., re-
place, or remove) identifiers in all data points that can be used to
(uniquely) identify an individual, such as names and full addresses,
before releasing the data to a third party. However, due to data spar-
sity, a quasi-identifier, which is a set of fields that can uniquely
identify a data point, may still exist in the dataset. For example,
Golle and Sweeney found that about 63%-87% of the U.S. popu-
lation can be uniquely identified by gender, 5-digit US ZIP code,
and full date of birth [17, 37]. Simply masking away all possible
quasi-identifiers would result in much less useful data, and thus a
more sophisticated masking scheme is needed.

Another solution is to mask away sensitive or confidential in-
formation in all data points so that no actual private information is
seen even though each data point uniquely identifies an individual.
The main issue of this solution for the purposes of testing and de-
bugging is that particular sensitive information can be important for
triggering and thus testing a particular functionality in a software
system. For example, in a healthcare application, there might be
code implementing a special process for patients with lung cancer.
Thus, we cannot simply mask away all possible sensitive informa-
tion; a more sophisticated masking scheme is needed.

In this work, we propose a model for anonymizing privacy data
that addresses the following challenges:



• The resulting dataset should not leak individual-identifying in-
formation.

• The resulting dataset should still preserve the utility of the
original dataset for the purposes of testing and debugging.

We address these challenges by performing selective data value
replacement in the original dataset at a data owner’s site. The value
replacement will generate a new dataset satisfying the following
requirements. Each data point in the new dataset can still be used as
a test case but cannot identify any individual in the original dataset.
Also, the behavior of a program on a new data point should be the
same as the behavior of the program on some original data point.
This would allow failures exhibited by the original dataset to be
exhibited by the new dataset, or the test coverage achieved by the
original dataset to be achieved by the new dataset.

More specifically, our model and its implementation are mainly
a combination and extension of two ideas: the k-anonymity model
from the data mining and database research communities [7, 32,
38] that can provide guidance on choosing data fields to mask,
and concolic execution [16, 36] that can guide the generation of
new test cases based on known ones and make sure the new test
cases satisfy certain properties. Merging the two ideas in various
configurations enables us to achieve both privacy and program
behavior preservation in various degrees. We call our model kb-
anonymity1 to highlight that it can preserve behavior and satisfy
requirements similar to k-anonymity.

Note that another important difference between k-anonymity
and kb-anonymity is that the new data points generated by kb-
anonymity may not correctly reflect the original data points, as fake
values may be introduced and some original data points may be
lost. Certain statistics of the original data (e.g., the geographical
distribution of all persons contained in the original dataset or the
percentage of persons having cancer) can thus be distorted, render-
ing the new dataset unsuitable for purposes (e.g., data mining and
epidemiological studies) other than testing and debugging. How-
ever, we believe that maintaining statistics of the original dataset is
not necessary for testing and debugging, as long as the new dataset
can exhibit the same kinds of behavior as the original dataset.

We present our privacy and program behavior preservation
model in Section 3 and 4. We have built a prototype of the
model on top of Java Pathfinder (JPF) [39], JFuzz (an exten-
sion of JPF) [18], and an approximation algorithm for creating
k-anonymized datasets [7]. The main contributions of this work
are as follows:

1. We propose a new problem of privacy preservation for testing
and debugging.

2. We propose a new model for preserving both privacy and be-
havior when generating and releasing data for testing and de-
bugging, and analyze various configurations of the model.

3. We propose several algorithms to implement various configura-
tions of the model.

4. We empirically evaluate our solution on several sliced real pro-
grams and show the feasibility of our model and implementa-
tion in generating useful anonymized test and debugging data.

The outline of this paper is as follows. Section 2 summarizes
necessary concepts and definitions related to k-anonymity and pro-
gram behavior. We present our model and its privacy and behavior
preservation properties in Section 3, and describe various configu-
rations of our model in Section 4. Section 5 elaborates our empiri-
cal evaluation. We discuss some further considerations and threats
to validity in Section 6. Section 7 describes related work. Finally,
we conclude with future work in Section 8.

1 b stands for behavior

2. Preliminaries
In this section, we introduce some concepts and definitions relevant
to our work.

2.1 On Privacy Preservation

DEFINITION 2.1 (Data). Each dataset is a set of data points; each
data point in a dataset is a tuple t of the same number of fields:
t = 〈f1, f2, . . . , fn〉. The value of each field is from a domain
specific to the field. We use t[i] to denote the value of the ith field
in a tuple t, and t[i1, . . . , ij ] to denote the sequence of values from
the ith1 , . . . , ithj fields.

Given a dataset D, D[i] denotes the set of values from the ith

field of all tuples in D, which can also be viewed as a tuple when
the values are arranged in an arbitrary order.

DEFINITION 2.2 (Raw Data). A raw dataset is a set of raw tuples;
each raw tuple is a tuple whose fields may contain person-specific
values. Releasing raw tuples to any third party may violate the
privacy requirements of the data owner.

EXAMPLE 1. Consider a raw dataset containing four patient
records, each of which has seven fields (NID means national iden-
tification number which is abbreviated to 3 digits here):

Name NID Age Gender Address Doctor Disease

Bob 254 53 Male Clementi Dr. Joe Cancer
Tom 284 53 Male Clementi Dr. Joe Cancer
Bob 893 37 Male Jurong Dr. Anne Hypertension
Sue 283 34 Female Jurong Dr. Jill Flu

Some fields in the raw dataset (e.g., NID) uniquely identify an
individual, and thus are referred to as identifiers. Some sets of
fields can also uniquely identify an individual when used together
(e.g., the set of fields {name, age, gender, and address} in
this example); they are referred to as quasi-identifiers. Some other
fields are usually not used to identify an individual, but provide
information about an individual (e.g., Disease); they are referred
to as sensitive fields.

DEFINITION 2.3 ((In-)distinguishable Tuples). For two tuples t1
and t2, t1 is indistinguishable from t2 if for every identifier or
quasi-identifier field f , t1[f ] = t2[f ].

We cannot release the raw dataset as it is, since each tuple can
uniquely identify an individual through either the identifiers or the
quasi-identifiers, leaking the patient’s privacy. We transform the
raw dataset into an anonymized dataset by replacing the values of
some fields in the raw tuples with some generic values or masking
them away with asterisks. Here is an anonymized dataset for Ex-
ample 1, with which it is impossible to pinpoint a person having
a particular disease when the receivers of the anonymized dataset
have no other knowledge about the raw dataset. Notice that the val-
ues of the identifier field (NID) and the quasi-identifier fields (name,
age, gender, and address) of each patient are equal to those of
some other patient.

Name NID Age Gender Address Doctor Disease

Patient * 53 Male Clementi Dr. Joe Cancer
Patient * 53 Male Clementi Dr. Joe Cancer
Patient * 30–39 * Jurong Dr. Anne Hypertension
Patient * 30–39 * Jurong Dr. Jill Flu

A well-known privacy protection model, k-anonymity [32, 38],
provides guidance on choosing data fields to mask:

DEFINITION 2.4 (k-Anonymity). A dataset K is said to satisfy k-
anonymity if each tuple in K is indistinguishable from at least k–1
other tuples in K.



1: void processAPatient (int patient_id, int disease_id, int age) {
2: switch ( disease_id ) {
3: case 1: // Cancer
4: if (age >= 60) {
5: if (patient_id <= 1000) // VIP
6: treatment("Premium intensive cancer");
7: else
8: treatment("Intensive cancer");
9: } else {

10: if (patient_id <= 1000)
11: treatment("Premium standard cancer");
12: else
13: treatment("Standard cancer");
14: }
15: ...

Figure 1. An example to illustrate path conditions

The above example dataset is obviously 2-anonymized with
respect to the first five fields. If we also consider Doctor as part
of the quasi-identifier, only the first two anonymized tuples satisfy
2-anonymity. Without loss of generality, this paper considers the
set of all fields in a dataset as one quasi-identifier for simpler
exposition, unless some fields are explicitly identified as sensitive.
Thus, we can simply denote two indistinguishable tuples t1 and t2
as t1=t2.

DEFINITION 2.5 (Value Replacement Function). Given a dataset
R with tuples having n fields, a function F : R → RU , where RU

denotes the set of all possible tuples with n fields, is a value re-
placement function for R, if ∀ t∈R, ∀ i∈{1, . . . , n}, F (t)[i] is
defined or equals *.

The number of value replacements induced by F for R is
∑

t∈R

n∑

i=1

I(F (t)[i]�=t[i] ), where I(·) is an indicator function, which

returns 1 if its parameter is true, and 0 otherwise.

DEFINITION 2.6 (Minimal k-Anonymity). Given a raw dataset
R and a k-anonymized dataset K, K is said to be minimal k-
anonymized if there exists a value replacement function from R to
K that requires the fewest number of value replacements among
all possible replacement functions from R to any k-anonymized
dataset.

Constructing minimal k-anonymized datasets for a given raw
dataset has been proved to be NP-complete [7], but there exist
algorithms that can approximate minimal solutions in quadratic
time [7].

2.2 On Program Behavior

For software testing and debugging, we are also concerned with
concepts related to program states, program execution paths, pro-
gram inputs and outputs, etc.

DEFINITION 2.7 (Program State). A program state corresponds
to the complete status of a program at a point at runtime, which
can include the values of all program variables, the location of
the program counter, the environment on which the program relies
(e.g., the file system status), etc. An execution of a program can be
viewed as a sequence of program state transitions.

DEFINITION 2.8 (Path Condition). A path condition for an exe-
cution through a control flow path in a program is the conjunction
of all the conditionals along the path.

Example. Consider the program shown in Figure 1. For the input
arguments: patient id==10, disease id==1, and age==65, the
path condition is: disease id==1∧ age�60∧ patient id�1000.

PROPERTY 1. For each program execution, there is only one path
condition. Two executions following the same control flow paths
have equivalent path conditions, although the executions may fol-
low different sequences of program state transitions.

Last but not least, software testing and debugging is often con-
cerned with reproducible bug reports and test cases, which requires
the concept of equivalent program behavior. There exist various
definitions for this concept. In this paper, we define equivalence
based mainly on path conditions:

DEFINITION 2.9 (Behavior Equivalence). Two program execu-
tions are said to have equivalent behavior if their corresponding
path conditions are equivalent (i.e., they follow the same control
flow paths).

3. Privacy and Behavior Preservation Model
In this section, we aim to establish a formal privacy preservation
model, kb-anonymity, that can guide the construction and evalu-
ation of algorithms and tools that generate datasets suitable to be
released to third parties for testing and debugging purposes.

3.1 Objectives

There are two dimensions that we need to consider in this work:

Privacy Preservation. We assume that the raw data points contain
person-specific information, and the objective of our model is
to ensure that the identity of every person whose information is
contained in the raw dataset cannot be revealed in the released
dataset.

Behavior Preservation. The other objective of our model is to en-
sure that the program behavior exhibited by the raw dataset can
be reproduced by the released dataset to a certain extent without
compromising privacy. How program behavior is defined can
vary in different configurations of the model.

The above two goals are inversely related. The more privacy is
desired, the more values in the raw dataset may need replacement,
and the harder it is to preserve program behavior. Similarly, the
more behavior preservation is desired, the harder it is to preserve
privacy. In the worst case, for a particular level of behavior preser-
vation, it may not be possible to preserve any privacy. We elaborate
on our privacy and behavior model in the following subsections.

3.2 Privacy Preservation

k-anonymity [32, 38], summarized in Section 2, is a well-known
privacy protection model that requires every released data point to
be indistinguishable from at least k–1 other released data points
with respect to all identifier and quasi-identifier fields.

Simply conforming to the k-anonymity model does not fit our
needs because of the following issues:

• The k-anonymity model allows duplicated data points in the
dataset to be released, which may not be meaningful for testing
and debugging due to redundant test cases;

• The k-anonymity model often implies that certain values in
raw tuples would be replaced with a more generic value (e.g.,
replacing California, USA with USA) or an asterisk (*, which
means “Don’t tell”). This may lead to unusable test cases since
testing and debugging often require concrete data values.2

2 A “concrete data value” refers to any value in the domain of program
inputs. In the above example, if the program accepts any location as an
input, then both California, USA and USA are concrete, but * is not; if the
program requires a state name as part of its inputs, then only California,
USA is concrete.



Our kb-anonymity model addresses the issues by requiring a
value replacement function to satisfy the following requirements:

R1: All values in a released dataset are concrete so that each data
point can be directly used to execute programs;

R2: All released tuples are distinguishable from each other so as
to reduce redundant test cases;

R3: For each raw tuple and its corresponding released tuple gen-
erated by applying the value replacement function on the raw
tuple, there exist at least k–1 other raw tuples that are mapped
by the same function to a tuple indistinguishable from this re-
leased tuple.

Intuitively, kb-anonymity aims to provide a similar guarantee
as k-anonymity (R3), but avoid generic values (R1) and dupli-
cate data points (R2). However, note that kb-anonymity is differ-
ent from k-anonymity. k-anonymity considers k indistinguishable
tuples within the released dataset while kb-anonymity considers
k indistinguishable tuples with respect to replacements of the raw
dataset. If the number of raw tuples is m, the number of the re-
leased tuples will be at most 	m/k
, while k-anonymity will still
have m tuples. The following Theorem 1 states that the R2 and R3
requirements can be easily achieved by applying k-anonymity and
suppressing indistinguishable tuples.

3.2.1 R2 +R3 ≡ k-Anonymity Modulo Uniqueness

LEMMA 1. Given a raw dataset R and its k-anonymized version
K, K satisfies R3.

PROOF. Let the value replacement function used to generate the
tuples in K from the tuples in R be F : R → K. According
to the definition of k-anonymity, for each t′1 in K, there exist at
least k–1 tuples in K, t′2, . . . , t

′
k, such that ∀i∈{2, . . . , k}, t′1 =

t′i. Since F maps each raw tuple in R to at most one tuple in
K, there must exist at least k raw tuples t1, . . . , tk such that
∀i∈{1, . . . , k}, F (ti) = t′i. By transitivity of indistinguishability,
∀i∈{1, . . . , k}, F (ti) = t′1.

THEOREM 1. Given a raw dataset R and its k-anonymized version
K, construct a new dataset K′ as follows: for each group of
indistinguishable tuples in K, add exactly one tuple from the group
into K′. Then, K′ satisfies R2 and R3.

PROOF. i) K′ trivially satisfies R2 due to the removal of indis-
tinguishable tuples. ii) For each tuple t′ in K′, there must exist at
least k tuples in K that are indistinguishable from t′ (otherwise, t′

would not appear in K′); thus R3 is true based on the same reason-
ing as Lemma 1.

Theorem 1 provides us a base to build a dataset satisfying R2–
R3. The other issue is to replace certain values and asterisks in K′

to satisfy R1 while maintaining R2 and R3. Depending on which
values to replace and how to perform replacement, we have various
choices corresponding to various levels of privacy preservation.
The following subsections introduce two options in our model.

3.2.2 No Field Repeat

This subsection proposes the no field repeat option for replac-
ing values from raw data points. Its intuition is to ensure every value
in the released dataset has not appeared in any raw data point. For
example, if age==30 appears in the raw dataset, 30 would not be
used for the age field in the released dataset.

DEFINITION 3.1 (No Field Repeat Option). Given a raw dataset
R, a released version X of R satisfies the no field repeat
option if X satisfies the following: i) X satisfies R1–R3; ii) ∀ i∈
{1, . . . , n}, ∀ t∈R,∀ t′∈X , t[i] �= t′[i].

In some cases, no field repeat is impossible. For example,
when both male and female have appeared in the gender field
in the raw dataset, we may have to use one of two values (unless
the program could handle a more generic gender value, such as
unknown). Thus, we also need a less restrictive option.

3.2.3 No Tuple Repeat

This subsection proposes the no tuple repeat option. This op-
tion ensures that every released tuple is distinguishable from every
raw tuple, but allows them to share some field values.

DEFINITION 3.2 (No Tuple Repeat Option). Given a raw dataset
R, a released version X of R satisfies the no tuple repeat op-
tion if X satisfies the following: i) X satisfies R1–R3; ii) ∀ t∈R,
∀ t′∈X, t �= t′.

Note that the no field repeat option subsumes the no
tuple repeat option, meaning that a released dataset satisfying
no field repeat also satisfies no tuple repeat.

In summary, we have the following four levels of privacy preser-
vation: (i) None which imposes no restriction on released tuples,
(ii) Standard k-Anonymity modulo uniqueness, (iii) No Tuple
Repeat, and (iv) No Field Repeat.

3.3 Behavior Preservation

The second objective of our kb-anonymity model is to ensure the
following:

R4: For each released tuple b and each raw tuple t that is mapped
to b, b and t must exhibit the same behavior when run on the
subject program.

As mentioned in Section 2, various definitions of program be-
havior and equivalence exist and affect our model that is mainly
for the purposes of software testing and debugging. The personnel
and tools performing testing and debugging often consider program
runs with reusable or reconstructible program execution paths, pro-
gram inputs and outputs, and program states. Thus, we consider the
following four levels of behavior equivalence in this paper: None,
Same Path, Same Path with Input Restrictions, and Same
Program States.

The lowest level, none, is used as a baseline that allows arbi-
trary program behavior to be exhibited by the released dataset and
provides no guarantee on behavior preservation.

The second level, same path, requires each released data point
to follow the same execution path as the path followed by the raw
data point mapped to it:

R4-1: A released tuple b is path preserving for a raw tuple t
mapped to it if b and t follow the same execution path in subject
programs.

If every raw data point could be mapped to a released data point,
the resulting dataset would have the same path coverage (which is
a commonly used test sufficiency criterion) as the raw dataset.

The third level, same path with input restrictions,
aims to consider more program behaviors beyond execution paths,
such as particular input values. This is useful for cases when two
program runs have different observable effects even if they follow
the same path. For example, the following Java function, which
accepts the original bank account balance (orig) and the with-
drawal (amt), and returns the final balance, has a functional error
when a negative amt is fed to it:

double reduceBalance(double orig, double amt) {
return orig - amt;

}



The error can be observed (e.g., by an auditor) if the raw dataset
contains the input 〈5.0,−2.0〉. If the released dataset only contains
〈5.0, 2.0〉, the error cannot be observed even though the same path
is executed.

Thus, the third level introduces additional restrictions on pro-
gram inputs, aiming to preserve more program behaviors. The re-
strictions may be expressed in terms of various constraints (e.g.,
amt==-2.0 for the above example). In this paper, we consider
only one type of input restrictions: some (arbitrary) fields of the
released data points shall preserve their original values. We refer
to this as input preservation. The framework allows future exten-
sions including the consideration of constraints provided by users
and expressed as general first-order predicates. However, this paper
utilizes a minimal k-anonymization algorithm to decide the input
preservation constraints (cf. Section 4.4) without the need for user-
specified constraints. Even though the minimal k-anonymization
algorithm cannot guarantee to retain all desired values (e.g., –2.0
in the above example), we still have the following benefits: (1) the
total number of replaced values in the released dataset can be mini-
mized so that more program behaviors may hopefully be preserved;
(2) the need for user-specified constraints is avoided so that there is
no risk of leaking privacy data by incorrectly specified constraints.

R4-2: A released tuple b is path and input preserving for a raw
tuple t if b is path preserving for t and it satisfies the given
input constraints.

The fourth level, same program states, is an extreme level
used as a reference point where the sequence of program states
exhibited by each release tuple and the raw tuple mapped to it
should be the same.

The following subsection discusses the various combinations of
privacy and behavior preservation levels in our model.

3.4 Combining Privacy and Behavior Preservation

Since we have four levels of privacy preservation and four levels of
behavior preservation, privacy and behavior presevation could be
combined in 16 possible ways, as shown in Figure 2.

Behavior 
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High

None Same
Path

Same Path
with Input 

Restrictions

Same 
Program 

States

No Field
Repeat

No Tuple 
Repeat
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k-Anonymity

None

Privacy 
Preservation

HighLow

N/I

N/I

N/I

N/I

N/I

N/I N/I

N/I N/I

Figure 2. Privacy vs. behavior preservation

Some combinations marked with “X” are impossible to achieve.
Many others marked with “N/I” are not interesting for the purpose
of preserving privacy and behavior. Those marked with a tick are of

interest and possible to achieve. The following paragraphs describe
the combinations in more details.3

PROPERTY 2. The privacy preservation level none is not interest-
ing.

PROPERTY 3. Standard k-anonymity alone is not interesting
since it cannot satisfy R1 required by our kb-anonymity model.

PROPERTY 4. The behavior preservation level none is not inter-
esting for the purposes of software testing and debugging.

PROPERTY 5. It is impossible to pair same program states
with any privacy preservation level (except none).

EXPLANATION: Since program states include input values to a
program, same program states implies the same input values.
Thus, the released tuple must be the same as a raw tuple, which
is only allowed when the raw dataset is already k-anonymized or
when there is no desire for privacy.

PROPERTY 6. It is impossible to pair same path with input
restrictions with no field repeat.

EXPLANATION: In this paper, we consider input restrictions to
be constraints that require some (arbitrary) input fields to have the
same values as found in raw tuples. Thus, by definition, datasets
complying with same path with input restrictions cannot
also conform to no field repeat.

With the combination of k-anonymity and behavior preserva-
tion, we have the following property stated in Theorem 2. This
property can be used to efficiently check whether a dataset can be
kb-anonymized (cf. Section 4.1).

THEOREM 2. For each behavior exhibited by a released tuple sat-
isfying R1–R4, there must exist at least k raw tuples that exhibit the
same behavior.

PROOF. The requirement R1 ensures that a released tuple can
be used to run a program, as all raw tuples can. R3 ensures that at
least k raw tuples map to each released tuple. R4 ensures that a raw
tuple only maps to a released tuple with the same behavior. Thus,
it must be the case that for each released tuple, there are at least k
raw tuples that map to it and they all have the same behavior.4

In a nutshell, our kb-anonymity model requires R1–R4 alto-
gether, and there are three interesting configurations:

• (same path, no field repeat)
• (same path, no tuple repeat)
• (same path with input restriction, no tuple-
repeat)

As shorthand notations, we refer to these as P-F, P-T, and
I-T, respectively. The next section presents our realization of these
configurations. In cases when some raw data points cannot be
mapped to a released tuple, we simply output error messages.

4. Model Realization
In this section, we describe the algorithms and tools used to realized
the three configurations of our kb-anonymity model: P-T, P-F,
and I-T. The overall framework of our realization is illustrated in
Figure 3.

3 We do not consider cases where the raw dataset satisfies k-anonymity.
These uninteresting cases happen in situations, such as when k=1, or when
there is no identifier or quasi-identifier.
4 R2 is unnecessary for proving Theorem 2, but it eliminates indistinguish-
able tuples and thus may help to save the cost of testing and debugging.



4.1 Overall Framework

All three configurations require path preservation, which means we
need to collect the execution paths of all raw tuples. The Program
Execution module takes raw tuples and executes a program with
each of the tuples, then it collects the path conditions exercised
by each execution. We assume that each tuple is processed by
the program independently; we do not consider any dependency
among program states or path conditions that may be introduced by
multiple runs of the program with different tuples. Theoretically,
two executions having the same path condition follow the same
execution path. Thus, this module can group raw tuples based on
the equivalence of their path conditions. At the end of this step,
groups of size less than k are discarded due to Theorem 2.

For each of the groups left, the k-Anonymization module may
replace some field values with asterisks and make sure that each
tuple is indistinguishable from at least k–1 other tuples in the
group. Then, it outputs a set of unique tuples a la Theorem 1.

Next, the Constraint Generation module takes the set of unique
tuples from the k-Anonymization module and the path conditions
for every tuple associated with the unique tuple. Various constraints
are then generated for each of the unique tuple according to each of
the three configurations.

Last, the Constraint Solver takes the constraints for each of
the unique tuple and tries to generate one new tuple satisfying the
constraints. If the solver finds a satisfying tuple, this tuple will be
part of the released dataset. When the solver cannot find a satisfying
tuple, our framework simply outputs error messages.

Theorems 3, 4, and 5 state that the datesets outputted by the
algorithms satisfy kb-anonymity (R1–R4) and can be released for
software testing and debugging.
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Figure 3. Overall framework of our model realization

The overall parameterized Algorithm 1 realizes the three con-
figurations. At Lines 3–4, we obtain the path condition for every
raw tuple. At Lines 2–7, we group the raw tuples into different
buckets based on their path conditions. At Lines 8–11, we remove
buckets of size less than k because of Theorem 2. In an extreme
case when all buckets are of size less than k, the released dataset
will be empty. The remaining buckets are those that require value
replacement satisfying the given configuration. Then, Lines 14 and
15 run a k-anonymization algorithm for every bucket and generate
the anonymized version a la Theorem 1, and Lines 16–21 store the
k-anonymized buckets that satisfy certain conditions. Note that for
configuration I-T, we require Line 13 to invoke the approximate
minimal k-anonymization, and only store an anonymized tuple if it
contains some concrete values. We can simply discard a tuple if it
contains no concrete value (Lines 17–20) since it means no values
in the corresponding raw tuples can remain and the I-T configura-
tion cannot be satisfied for these tuples. Then, for each bucket that
can be k-anonymized (Line 22), Lines 23–29 construct sufficiently
strong constraints for the given configuration, feed the conjunction

Algorithm 1 A Realization of kb-Anonymity
Input: R: Raw dataset

k: Level of anonymization
P : A subject program
O: Configuration option: P-T, P-F, or I-T.

Output: R′: Anonymized dataset for release

1: R′ ← ∅
// The Program Execution module

2: PCBuckets← ∅, which groups tuples based on path conditions
3: For each t in R
4: Execute P with t and collect the path condition pc
5: If PCBuckets does not contains pc
6: PCBuckets ← PCBuckets ∪ {〈pc, ∅〉}
7: PCBuckets[pc] ← PCBuckets[pc] ∪ t
8: For each Bucket = 〈pc,B〉 ∈ PCBuckets
9: If |B| < k
10: PCBuckets ← PCBuckets − {Bucket}
11: Output “Error: unsatisfiable case” and continue

// The k-Anonymization module

12: A← ∅, holding intermediate k-anonymized datasets
13: For each 〈pc,B〉 ∈ PCBuckets
14: Invoke a k-anonymization algorithm on B,
15: and get its result B′ with no duplicates a la Theorem 1
16: For each tuple b′ ∈ B′

17: If O = I-T

18: If |b′| <= 1 or no field in b′ contain concrete values
19: Output “Error: unsatisfiable case”
20: continue
21: A← A ∪ {〈b′, pc, B〉}
// The Constraint Generation module

22: For each 〈b′, pc,B〉 ∈ A
// Construct constraints for various configurations

23: If O = P-F
24: S ← Invoke Algorithm 2 on R
25: Else If O = P-T
26: S ← Invoke Algorithm 3 on B
27: Else If O = I-T

28: S ← Invoke Algorithm 4 on 〈B, b′〉
29: Else Output “Error: unimplemented option” and continue
30: S ← Conjunction of S and pc

// The Constraint Solver module
31: Invoke a constraint solver on S, and get its result r
32: If r is not an error
33: R′ ← R′ ∪ {r}
34: Return R′

of the constructed constraints and the path condition for this bucket
(Line 30) into a constraint solver (Line 31), and add a valid solution
from the solver into the resulting dataset (Lines 32–33). We finally
output the dataset for release (Line 34).

We have implemented a prototype of this framework. This pro-
totype uses Java PathFinder (JPF) [39] and jFuzz [18], one of JPF’s
extensions that supports the combination of concrete and symbolic
executions of Java programs, to emulate executions of our subject
programs and collect path conditions. We rely on JPF’s internal
canonical representation of path conditions and use string compar-
ison to check for equivalent path conditions. At the same time, we
have implemented an approximate algorithm that can construct k-
anonymized datasets [7]. Also, we have extended JPF to allow ma-
nipulation of the collected path conditions and generation of the
desired constraints. Finally, we utilize the constraint solver used in
JPF—Choco [1]—to generate new tuples from the constraints. For
now, we only handle constraints with integers and real numbers. In
the future, with the coming support for string constraints in JPF [2],
we hope our framework can handle programs with strings easily.

The following subsections describe more details and properties
for each of the three configurations in our model.



4.2 Same Path, No Field Repeat (P-F)

To realize this configuration option, we perform Algorithm 2 within
Algorithm 1 at Line 24.

Algorithm 2 Generation of Constraints for P-F
Input: T : A set of (raw) tuples
Output: S: A (conjunctive) set of constraints for P-F

For each field i
Construct its constraint variable vi
For each t ∈ T
S ← S ∪ {vi 	= t[i]}

Return S

The realization of this configuration basically generates new
data values different from all of the original ones (via Line 24 in
Algorithm 1) to ensure no violation of privacy, and ensure preserva-
tion of program behavior (via Line 30 in Algorithm 1). Algorithm 2
is invoked on the whole raw dataset to ensure no field repeat
for all tuples, which of course imposes more constraints and makes
it harder for the constraint solver to find a tuple. Alternatively,
we could relax the no field repeat requirement and invoke
Algorithm 2 on B instead (Line 24) without compromising privacy.

Note that there is no particular input restrictions or minimal
anonymization requirements in this configuration. It is not neces-
sary to run minimal k-anonymization algorithms (Line 14). We just
need to ensure that there are at least k tuples in a bucket B having
the same path (Lines 8–11) via Theorem 2 and simply treat all tu-
ples in B as one equivalence partition in its anonymized version.
Doing so may only produce one new tuple for each B, but help to
speed up the anonymization process. Also, it is not necessary to re-
move duplicated, intermediate tuples (Line 15), although doing so
may help to prevent redundant operations at Lines 22–33 and make
the control flows for different configuration options simpler.

THEOREM 3. An output dataset from Algorithm 1 along with Al-
gorithm 2 satisfies kb-anonymity (R1–R4).

Proof Sketch: Each dataset generated at Line 14 satisfies R2 and
R3 according to Theorem 1; Each tuple generated at Line 31 is
obviously path-preserving (via Line 30) and satisfies R4 and R1 (all
values concrete). Also, the constraints imposed by P-F, P-T, or I-T
ensure no tuples from the raw dataset will appear at Line 31. Thus,
the resulting dataset R′ at Line 34 satisfies kb-anonymity. �

4.3 Same Path, No Tuple Repeat (P-T)

To realize this configuration, we perform Algorithm 3 within Al-
gorithm 1. Similar to the realization for P-F, P-T generates new
data values and tuples to ensure privacy, although its privacy re-
quirement is weaker than that of P-F. Some data values from the
raw dataset may remain even though there are no tuples in the in-
tersection between the raw and the released datasets. In particular,
Algorithm 3 in this paper only considers changing the first field
of all tuples to satisfy no tuple repeat. Alternatively, we could
choose a random field of all tuples or some random fields from each
tuple to strengthen privacy protection.

Also similar to P-F, it is not necessary to run minimal k-
anonymization algorithms (Line 14), as there is no need to satisfy
any input constraint or maximize the number of released tuples.

THEOREM 4. An output dataset from Algorithm 1 along with Al-
gorithm 3 satisfies kb-anonymity.

Proof Sketch: Similar to that of Theorem 3. �

Algorithm 3 Generation of Constraints for P-T
Input: T : A set of (raw) tuples
Output: S: A (conjunctive) set of constraints for P-T

For the first field in T
Construct its constraint variable v1

For first field in each t in T
S ← S ∪ {v1 	= t[1]}

Return S

4.4 Same Path & Some Input, No Tuple Repeat (I-T)

To realize this configuration, we perform Algorithm 4 within Algo-
rithm 1. Different from the previous realizations, we need to ensure
that some—arbitrary one or a few—raw input values are preserved.
To do this, we need to run a minimal k-anonymization algorithm at
Line 14 in Algorithm 1 to decide the minimal number of field val-
ues that need to be masked away to realize k-anonymity. By doing
this, we can retain the maximal number of raw concrete values in
released tuples (i.e., input preservation) so as to preserve more pro-
gram behaviors. The process has been proven to be NP-complete,
thus we run a variant of k-anonymization [7] to achieve approx-
imate results. After applying the k-anonymization algorithm, we
could simply output an error message (Lines 17–20) for tuples for
which all fields need to be masked away (i.e., no concrete values
can be preserved).

Algorithm 4 Generation of Constraints for I-T
Input: T : A set of (raw) tuples

b: A tuple with generic values or ’*’
Output: S: A (conjunctive) set of constraints for I-T

// The If-Else ensures No Tuple Repeat
If b contains no generic values or ’*’
S ← Invoke Algorithm 3 on T
i← 1

Else
For the first field i in b containing a generic value or ’*’

Construct its constraint variable vi
For each t in T
S ← S ∪ {vi 	= t[i]}

// The following helps to ensure some fields maintain their values
For each field j in b containing a concrete value c and j 	= i

Construct its constraint variable vj
S ← S ∪ {vj = b[j]}

Return S

THEOREM 5. An output dataset from Algorithm 1 along with Al-
gorithm 4 satisfies kb-anonymity.

Proof Sketch: Similar to that of Theorem 3. �

5. Empirical Evaluation
We evaluate the capability and scalability of the realization of
our kb-anonymity model with three sample programs: OpenHos-
pital [4], iTrust [3], and PDManager [5]. All experiments are per-
formed on an Intel Xeon server with a 2.53GHz quad-core E5540
CPU and 24 GiB of RAM running 64-bit Windows Server 2008
R2 Standard. Algorithm 1 is implemented in Visual C#.Net, while
Algorithms 2, 3 and 4 are implemented in Java within jFuzz [18].

5.1 OpenHospital

OpenHospital is an open source hospital management system.
It provides various functionalities including managing patient
records, pregnancy management, disease information, drug con-
trol, pharmacy management, etc. All patient records are stored in a



backend database. We convert a part of the program into an integer
program that reads inputs from a file, as our current implementa-
tion based on jFuzz does not handle string constraints or database
queries.

The part that we convert, denoted as OHc, is comprised of
three Java classes which validate a patient record before storing
to database. It validates private information of a patient, including
first name, last name, age, gender, address, city, number of siblings,
telephone number, birth date, blood type, mother’s name, mother’s
deceased status, father’s name, father’s deceased status, insurance
status, and whether parents live together. Many of the input fields
are of string type. We then manually convert them into integers
based on their value domains and change corresponding string
operations into integer operations.

Even though the program is not big, it demonstrates that our
prototype implementation is capable of anonymizing data for test-
ing and debugging, for a large set of inputs. The following example
shows sample output for a given set of raw tuples under the P-T
configuration.

Example. We randomly create synthetic tuples as a raw dataset
and run our tool on OHc with this set. Table 1 shows the raw
tuples as well as the results of our tool using P-T configuration
for k = 2. There is an error message for the fifth tuple as it could
not satisfy our kb-anonymity requirements. This tuple should not
then be released to third-party developers.

No Raw Data Point Released Tuple
1 〈90207, 10125, 2, -1, 16261, 22549, 69883,

914, 8201, -2, 68353, -1, -53, -1, -1, -2〉
〈-9999, 10000, 0,
-10000, 16261,
22549, 69883, 914,
8201, -2, 68353, -1,
-53, -1, -1, -2〉

2 〈19892, 16536, 78, 1, 36688, 88797, 172,
7519, 50896, -1, 44500, 1, 7452, -2, -1, 1〉

3 〈35778, 21908, 89, -1, 89965, 41493, 35861,
50182, 79181, 1, 30668, -1, 34926, -2, -1, 1 〉

4 〈9543, 23693, 48, 1, 18133, 75043, -173,
38100, 14912, 1, 69504, 0, 14969, -1, -2, 1〉

5 〈42164, 40607, -6, 1, 46920, 21328, 15089,
42147, 81975, 1, 24382, -2, -252, -2, -1, -1〉

Error Message

Table 1. Sample raw tuples and the output tuples after anonymiza-
tion for OpenHospital. The integers could be mapped to real values.
For example, the 3rd field directly maps to age; The 10th field in
the tuples corresponds to blood types: 0 means type O, 1 means A,
2 means B, 3 means AB, and negative numbers mean unknown.

Scalability Evaluation. The computational complexities of k-anon-
ymization algorithms and constraint generation and solving are po-
tentially exponential to the number of raw tuples. To investigate
the scalability of our proposed approach, we stress test our tool
by increasing the number of raw tuples to be anonymized. We ex-
periment with 2,000, 4,000, 6,000, 8,000, and 10,000 tuples, and
evaluate the runtime of our tool using the P-T and P-F configu-
rations for k set to 2, and I-T configurations for k set to 2 and
5. We plot the results in Figure 4. Figure 4(a) shows that the run-
time per tuple remains practically constant when we increase the
number of tuples from 2,000 to 10,000 for all configurations. This
implies that in practice the runtime increases linearly with the num-
ber of tuples to be processed. Figures 4(a) & (b) show that the I-T
configuration is slower than the P-T and P-F configurations. This
is because we run a minimal k-anonymization algorithm only for
I-T configuration (see Section 4) which can take quadratic time.
Furthermore, almost all raw tuples were successfully anonymized.
In our experiments, at most two tuples out of the thousands of raw
tuples failed to be anonymized. This occurred when using I-T con-
figuration with k set to 5, while the other configurations were only
unable to anonymize at most one tuple.

Figure 4. OHc runtime: per tuple (left) & all tuples (right)

5.2 iTrust

iTrust is an open source medical application that enables patients
to maintain their medical history, records, and communications
with their doctors. All patient records are also stored in a back-
end database. Similar to OpenHospital, we convert a part of the
program into an integer program that reads input from a file.

The part that we convert, denoted as iT rustc, is comprised of
ten Java classes that validate the insurance record of a patient. It
involves private and sensitive information including: 1) first name,
last name, email, address, city, state, postal code, insurance number,
credit card type, credit card number, and telephone number of
the patient, 2) name, address, city, state, and postal code of the
insurance company, and 3) name and telephone number of an
emergency contact person.

Example. Table 2 shows a sample output from our tool for a set of
synthetic integer tuples under the P-F configuration and k = 2.

No Raw Data Point Released Tuple
1 〈70, 549, 288, 499, 490, 246, 15, 110, 137,

519, 840, 91, 128, 31, 3, 28, 466, 113〉 〈 0, 200, 100, 200,
200, 201, 10, 40, 40,
200, 200, 0, 6, 10, 0,
10, 200, 40〉

2 〈508, 147, 195, 491, 277, 224, 32, 48, 210,
275, 147, 97, 119, 11, 3, 36, 314, 160 〉

3 〈754, 418, 72, 779, 437, 69, 13, 91, 94, 567,
710, 203, 104, 34, 1, 20, 848, 79〉

4 〈585, 727, 295, 662, 304, 125, 26, 49, 83, 398,
313, 10, 77, 26, 4, 50, 338, 62〉

5 〈141, 280, 68, 249, 267, 149, 11, 67, 139, 748,
669, 173, 105, 14, 2, 24, 739, 146〉

Table 2. Sample raw tuples and the corresponding output after
anonymization for iTrust

Scalability Evaluation. Similar to OHc, we stress test our tool with
various numbers of raw tuples, i.e., 2,000, 4,000, 6,000, 8,000 and
10,000, and evaluate the runtime for P-T and P-F configurations
for k set to 2, and I-T configurations for k set to 2 and 5. The
performance results shown in Figure 5 are similar to those of OHc.
For iTrust, for each configuration and number of raw tuples, all raw
tuples were successfully anonymized.

Figure 5. ITc runtime: per tuple (left) & all tuples (right)

5.3 PDManager

PDManager is an open source insurance agent management system
that provides features to manage clients, contracts, and commis-



sions. Similar to OpenHospital and iTrust, we also convert a part of
the program into an integer program that reads input from a file.

The part that we convert, denoted as PDMc, is comprised of
eight Java classes that validate the record of an insurance client of
an agent. PDMc takes in 13 input fields representing insurance’s
name, agent’s name, as well as the first name, surname, gender,
address, city, state, postal code, telephone number, fax, mobile
number, and email of each client.

Example. Table 3 shows sample output of our tool for a set of
synthetic integer tuples under the I-T configuration with k = 2.
Note that the 8th fields of the tuples are unchanged.

No Raw Data Point Released Tuple
1 〈1003, 7865, 9479, 1956, 8223, 203, 53, 2,

133, 4707, 1124, 37, 1570 〉
〈 -9999, 10000, 1,
-10000, 1, -59, -38,
2, 97, 3505, 600,
289, 809 〉

2 〈1461, 9877, 1786, 4948, 5486, -59, -38, 2, 97,
3505, 600, 289, 809 〉

3 〈1305, 4352, 994, 6664, 2163, -97, 129, 2, 130,
7458, 9671, -51, 288 〉

4 〈4629, 1672, 8447, 586, 1072, 112, -42, 1, 93,
3426, 8158, 74, 6900 〉

〈 -9999, 10000, 1,
-10000, 1, 112, -42,
1, 93, 3426, 8158,
74, 6900 〉

5 〈7274, 5952, 3798, 3813, 8113, 488, 104, 1,
107, 6176, 7896, -62, 6186 〉

Table 3. Sample raw tuples and the output tuples for PDManager

Scalability Evaluation. Similar to OHc and iT rustc, we stress
test our tool with various numbers of raw tuples and evaluate the
runtime for P-T and P-F configurations for k set to 2, and I-T
configurations for k set to 2 and 5. The results plotted in Figure 6
are similar to those of OHc and iT rustc. In our experiments, at
most 8 tuples failed to be anonymized for I-T and k = 5, at most
4 for other configurations, and only 1 failure for all configurations
with 2,000 raw tuples.

Figure 6. PDMc runtime: per tuple (left) & all tuples (right)

6. Discussion

Other privacy preservation models. In this paper, we build our
kb-anonymity model mainly on top of k-anonymity. There are vari-
ous other models proposed in the literature, such as l-diversity [25],
m-invariance [41], and t-closeness [22]. We leave the possible ex-
tensions to cover other privacy preservation models as future work.

Handling more complex programs. In this work, our implemen-
tation only handles programs involving integers and real numbers,
and cannot solve non-linear or string constraints. In the future, with
the advances of symbolic execution, in particular JPF [2], we hope
to be able to handle programs with strings and evaluate our proto-
type implementation on larger, more complex programs.

Also, this paper assumes that each tuple is processed indepen-
dently. Privacy-related programs, such as healthcare management
systems, often deal with individuals and thus only take one tuple as
its input, and program states or path conditions for one tuple are not

dependent on others. However, there are indeed real-world appli-
cations that use multiple individuals’ records together (e.g., when
analyzing a patient’s family medical history), and our current ap-
proach will treat those records as one combined tuple. If a piece of
code involves multiple tuples in a “batch mode” (e.g., when iterat-
ing over a set of patients and printing out each record), it is possible
and interesting future work to explore automated program slicing
techniques to extract the essential code that deals with one patient
only, and then investigate the applicability of our model.
Attacks. We have not considered attack models beyond the natural
mappings that come with value replacement functions. We have
assumed attackers can only link a released tuple back to a raw
tuple through the inverse of a value replacement function. Based
on Theorem 2, reversing the function would give no less than k
raw tuples and would not breach kb-anonymity. However, it is
worthwhile to discuss other kinds of attacks.

k-anonymity is proposed to address the linking attack [32, 38]
against released datasets that only remove identifier fields. The
linking attack works as follows: Some publicly available data (e.g.,
the voter list of a particular state) contains real values for the
identifiers (e.g., a person’s name) and the quasi-identifiers that are
also contained in a released dataset; then, the values of the quasi-
identifiers in the released dataset and the publicly available data
may be uniquely matched to recover the values of the identifiers
and the sensitive fields of each person. k-anonymity addresses this
attack by ensuring that at least k released tuples are indistinguish-
able from each other. kb-anonymity also addresses the attack by
ensuring that each released tuple is mapped to at least k raw tuples.
Other attacks against k-anonymity, such as unsorted matching at-
tack, complementary release attack, and temporal attack, can also
be addressed by minor modifications of how k-anonymity is ap-
plied [32, 38]. kb-anonymity can address these attacks in a similar
way by treating all fields together as one quasi-identifier.

k-anonymity, however, cannot address other attacks, such as ho-
mogeneity attack due to the lack of diversity among the values of
sensitive fields [25]. Consider the example 2-anonymized dataset in
Section 2. One can identify that both Bob and Tom have cancer just
by knowing that their age is 53 and their records are in the dataset.
As an advantage, our model can address this issue when applied
with the no field repeat configuration. In this configuration,
the disease would be replaced by another value that does not ex-
ist in the dataset. There are also other attacks against k-anonymity
discussed in the literature [22, 41]. We will investigate the suscep-
tibility of our model to those attacks in future work.

In addition, program versioning may also lead to a privacy con-
cern: our current kb-anonymity model may generate different re-
leased datasets for various versions of the same program and at-
tackers may link these versions together to increase the probability
of identifying an individual in the raw dataset. Similarly, program
back doors may even be a bigger concern. Also, data owners may
be tricked into applying our model to programs that violate our
assumptions (e.g., a hacker may construct a program whose execu-
tion is dependent on not only the current input tuple, but also pre-
vious executions with different tuples), then the released data may
be used to infer original data. These potential attacks mean that kb-
anonymity model needs to be enhanced or applied with appropriate
policies to disable undesirable information linkage among various
data sources. We leave this as future work.
Data Distortion. As noted in Section 1, kb-anonymity may gener-
ate values that do not correctly reflect raw data values. Also, many
raw tuples may be suppressed into one released tuple (a la Algo-
rithm 1), causing loss of information. For example, there may be
only two released tuples for the example in Section 2, as shown in
Table 4, and some sensitive but useful information (e.g., the exis-
tence of hypertension) is lost.



Name NID Age Gender Address Doctor Disease

Joel 999 54 Female Bishan Dr. Joe Cancer
Bar 888 32 Female Changi Dr. Anne Flu

Table 4. Sample kb-anonymized tuples that lose information.

Our algorithms may be adapted to remedy the issues for certain
cases: Change Line 31 in Algorithm 1 to produce more than one
tuple for each path condition so that the values in the released tuples
may contain any desired information. However, whether generating
additional released tuples is cost-effective or robust against known
or unknown attacks is still a question for future investigation. As a
result, kb-anonymized datasets are only suitable for the purposes of
testing and debugging, where preserving statistics of raw datasets
is not a concern.

Threats to Validity. To address threats to construct validity, we
have evaluated our model and its realization both qualitatively (by
some examples) and quantitatively (by the stress tests for scalabil-
ity). To reduce threats to external validity on the generalizability
of our results, we have evaluated our approach on three different
programs. There may still be threats to internal validity (e.g., se-
lection bias) as we choose and slice the three sample programs by
ourselves in a similar way. To reduce the threats further, it is possi-
ble to include more subject programs and realistic datasets into our
evaluations, which we leave as future work. In particular, we plan
to employ our model to help a partner in the healthcare industry to
anonymize their data and obtain their feedback. In the future, we
hope that there will be more interest in this area and a comprehen-
sive benchmark could be built to evaluate similar methodologies
and tools.

7. Related Work
In this section, we describe some related threads of work on privacy
preservation, symbolic execution, testing & debugging, and legal
issues in software engineering.

Privacy Preservation. Motivated by many threats to privacy and
issues raised from identity thefts, there have been various studies on
privacy preservation. Samarati and Sweeney propose the concept of
k-anonymity [32,38]. There have been various studies on applying
and extending their work [6, 7, 10]. Aggarwal et al. [7] prove
that finding the minimum number of value substitutions to ensure
k-anonymity is an NP-complete problem; they thus propose an
approximation algorithm to ensure approximate k-anonymity in a
dataset. We leverage their algorithm in the realization of our kb-
anonymity model (cf. Section 4).

There are also other models for privacy preservation, including
l-diversity by Machanavajjhala et al. [25], m-invariance by Xiao
and Tao [41], and t-closeness by Li et al. [22]. In this study, we
only focus on k-anonymity as the model for privacy preservation.

Information Flow Security. In the areas of programming language
and security research, many studies use variants of taint analysis
and information flow for protecting sensitive information [24, 26,
31]. There are also studies on removing sensitive information from
program execution records, such as core dumps, stack frames, and
profiles [11, 40]. Some recent studies focus on monitoring the
flow of sensitive information in and across applications, such as
TaintDroid [14] and TaintEraser [45], so as to prevent misuse of
users’ private information.

Our approach is different from all these techniques that we do
not allow sensitive information going into a program in the first
place, while they detect, block, and remove sensitive information
from within programs. However, information flow and taint anal-
ysis may be helpful to scale up our approach to identify parts of
program and program inputs that involve sensitive information.

Symbolic Execution. Symbolic execution [21] is a program anal-
ysis technique that tracks variable values symbolically. A common
use of symbolic execution is to compute and manipulate path con-
ditions associated with an execution, and when combined with con-
straint solvers, to guide program analysis, testing, etc. It has been
widely used for various software engineering tasks, including test-
ing, debugging, program analysis, and model checking [9, 20, 29,
34, 42]. Recent studies combine symbolic execution with concrete
execution to improve its utility and scalability [12, 16, 36].

For Java PathFinder (JPF) [39], there is also a symbolic execu-
tion extension [8]. Jayaraman et al. [18] provide a concolic white-
box fuzzer, jFuzz, on top of JPF that allows both symbolic and
concrete executions. We use jFuzz to collect the path condition
corresponding to each test case, which is similar to many existing
studies. However, we utilize path conditions for a quite different
purpose, which is to guide test data anonymization.

Testing & Debugging. There are numerous studies on testing and
debugging. Many test case generation techniques are based on sym-
bolic and concrete executions [12, 15, 36]. Test case prioritization
and selection have received much research interest [30,33]. This is
also the case with automated fault localization [19, 23, 35, 43, 44].

In this work we propose a new line of research on data anonymiza-
tion for testing and debugging. This complements the other re-
search directions on testing and debugging, although it shares some
fundamental techniques with them. There might be further interest-
ing research issues raised by combining anonymization problems
with test case prioritization, selection, and even fault localization.
We leave this research direction as future work.

Legal Issues in Software Engineering. Recently, there have been
studies investigating legal issues in software engineering [13, 27,
28]. Metayer et al. [27] propose a set of methods and tools to define
and establish software liability. Di Penta et al. [28] investigate the
evolution of software licensing. Cleland-Huang et al. [13] propose
a machine learning approach for tracing regulatory code to require-
ments. Technically, these studies are all concerned with software
itself, while our study is concerned more about the data that soft-
ware executes with. However, our study on privacy issues could
potentially impact legal aspects in software engineering.

8. Conclusion and Future Work
In this paper, we propose a new problem of privacy preserving test-
ing and debugging. We address the problem of lack of test cases on
a developer’s side by allowing sensitive yet available test cases to
be shipped from software users and data owners to third-party soft-
ware vendors through anonymization. Anonymization by naively
masking away identifiers and sensitive information would not work
well due to the issues with quasi-identifiers and ineffectiveness of
masked data for testing and debugging. Our approach combines the
concept of privacy preservation and program behavior preservation
in some interesting ways, and provides guidance on replacing pri-
vate data values. We build a framework on the top of k-anonymity
and concolic execution and implement several configurations. Our
empirical evaluations on three sliced real programs show the utility
of our prototype on providing effective anonymization for testing
and debugging purposes. Our approach would help users to con-
vey more testing and debugging information to software vendors
without disclosing private information.

In the future, we plan to address other privacy preservation
criteria aside from k-anonymity, incorporate further progress on
symbolic execution that is able to handle strings and more complex
data structures in programs, and carry out larger case studies.



Acknowledgements
We would like to thank for valuable feedback from the anonymous
reviewers and our shepherd Michael Burke. We also thank Julia
Lawall and Zhendong Su for their useful comments. Their insight-
ful advice helped to improve our paper.

References
[1] Choco solver. http://www.emn.fr/z-info/choco-solver/.

[2] Fujitsu develops technology to enhance comprehensive testing of
java programs. http://www.fujitsu.com/global/news/pr/
archives/month/2010/20100112-02.html.

[3] iTrust. http://sourceforge.net/projects/itrust/.

[4] Open hospital. http://sourceforge.net/projects/angal/.

[5] PDmanager. http://sourceforge.net/projects/pdmanager/.

[6] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy,
D. Thomas, and A. Zhu. Achieving anonymity via clustering. In
PODS, pages 153–162, 2006.

[7] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,
D. Thomas, and A. Zhu. Approximation algorithms for k-anonymity.
In Int. Conf. on Data Theory, 2005.

[8] S. Anand, C. Pasareanu, and W. Visser. JPF-SE: A symbolic execution
extenion to Java PathFinder. In TACAS, 2007.

[9] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test generation for
effective fault localization. In ISSTA, pages 49–60, 2010.

[10] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou
r3579x? Anonymized social networks, hidden patterns, and structural
steganography. In WWW, pages 181–190, 2007.

[11] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system for gener-
ating secure crash information. In 12th USENIX Security Symposium,
pages 273–284, 2003.

[12] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams. In OSDI, pages 209–224, 2008.

[13] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A
machine learning approach for tracing regulatory codes to product
specific requirements. In ICSE, pages 155–164, 2010.

[14] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. In OSDI, 2010.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, pages 213–223. ACM, 2005.

[16] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox
fuzz testing. In NDSS, 2008.

[17] P. Golle. Revisiting the uniqueness of simple demographics in the US
population. In 5th ACM Workshop on Privacy in Electronic Society
(WPES), pages 77–80, 2006.

[18] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun. jFuzz: A
concolic tester for NASA Java. In NASA Formal Methods Workshop,
2009.

[19] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using value
replacement. In ISSTA, pages 167–178, 2008.

[20] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In TACAS, pages 553–568,
2003.

[21] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

[22] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In Int. Conf. Data Eng., 2007.

[23] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In PLDI, pages 141–154, June 2003.

[24] V. B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin:
Specification inference for explicit information flow problems. In
PLDI, pages 75–86, 2009.

[25] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam. l-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl.
Discov. Data, 1(1), 2007.

[26] S. McCamant and M. D. Ernst. Quantitative information flow as
network flow capacity. In PLDI, pages 193–205, 2008.

[27] D. L. Métayer, M. Maarek, V. V. T. Tong, E. Mazza, M.-L. Potet,
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