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Abstract

Software evolution incurs difficulties in program compre-
hension and software verification, and hence increases the
cost of software maintenance. In this study, we propose a
novel technique, to mine from program execution traces a
sound and complete set of statistically significant temporal
rules of arbitrary lengths. The extracted temporal rules re-
veal invariants that the program observes, and will conse-
quently guide developers to understand the program behav-
iors, and facilitate all downstream applications like verifi-
cations. Different from previous studies that are restricted
to mining two-event rules (e.g.,〈lock〉 → 〈unlock〉), our
algorithm discovers rules of arbitrary lengths. Further-
more, in order to facilitate downstream applications, we
represent the mined rules as temporal logic, so that existing
model checkers or other formal analysis toolkits can read-
ily consume our mining results. We performed case studies
on JBoss Application Server (JBoss AS) and a buggy Con-
current Versions System (CVS) application, and the result
clearly demonstrates the usefulness of our technique in re-
covering underlying program designs and detecting bugs.

1 Introduction

Software changes throughout its lifespan. Software
maintenance deals with the management of such changes,
ensuring that the software remains correct while features
are added or removed. Maintenance cost can contribute up
to 60%-80% of software cost [4]. A challenge to software
maintenance is to keep documented specifications accurate
and updated as program changes. Outdated specifications
cause difficulties in program comprehension which account
for up to 50% of program maintenance cost [4].

In order to ensure software correctness, model check-
ing [5] has been proposed and shown useful in many cases.
It accepts a model, often automatically constructed from the
code, and a set of formal properties to check. However, the
difficulty in formulating a set of formal properties has long
been a barrier to its wide-spread application [2].

Addressing the above problems, there is a need for tech-
niques to automatically mine formal specifications from
program as it changes over time. Employing these tech-
niques ensures specifications remain updated; also it pro-
vides a set of properties to be verified via formal verifica-
tion tools like model checking. This family of techniques is
commonly referred to as “specification mining” [2].

There have been a number of studies on specifica-
tion mining, which relate to either program comprehen-
sion (e.g., [20, 6, 15]) or verification (e.g., [2, 22]). Most
specification mining algorithms extract specifications in the
form of an automaton (e.g., [15, 2, 20, 6]) or two-event
rules (e.g., [22]). While a mined automaton expresses a
global picture of a software specification, mined rules break
this into smaller parts each expressing a program property
which is easily understood. A mined automaton might be
too complex to be comprehended manually. Also, meth-
ods mining automaton-based specifications from traces use
automaton learners which suffer from the issue ofover-
generalization(see [14, 15]), but this is not the case with
mining rules. On the other hand, existing work on mining
rules only mines two-event rules (e.g., 〈lock〉→ 〈unlock〉)
which are limited in their ability to express complex tempo-
ral properties.

The focus of this study is to automatically discover rules
of arbitrary lengthsfrom program execution traces. A trace
can be viewed as a series of events, with each event corre-
sponding to a method which is called when a program is ex-
ecuted. A multi-event rule is denoted byESpre → ESpost,
where ESpre and ESpost are the premise/pre-condition
and the consequent/post-condition, respectively. This rule
means that “Whenever a series of eventsESpre occurs,
eventually another series of eventsESpost also occur.”

The above rules can be expressed in temporal logic,
and belong to two of the most used families of temporal
logic expressions for verification (i.e., response and chain-
response) [7]. Examples of such rules include:(Resource
Locking Protocol)Whenever a lock is acquired, eventually
it is released;(Internet Banking)Whenever a connection to
a bank server is made and an authentication is completed
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and one transfers money, eventually money is transferred
and a receipt is displayed.

From traces, many rules can be inferred, but not all are
important. We therefore utilize the concept of support and
confidence from data mining [8] to identify important rules.
Rules satisfying user-defined thresholds of minimum sup-
port and confidence are referred to asstatistically signifi-
cant. A non-redundantset (see Section 3) ofstatistically
significantrules are the output of our mining algorithm.

As with any program analysis tool, soundness and com-
pleteness are desirable goals to have [19]. Our algorithm
is soundas all mined rules are statistically significant. It
is completeas all statistically significant rules of the form
ESpre → ESpost are mined or represented.

We performed a case study on the transaction component
of JBoss Application Server. The result shows the useful-
ness of our mining technique in recovering the underlying
protocols that the code obeys, thus aiding program compre-
hension. Also, another case study has been performed on
a buggy CVS application built on top of the Jakarta Com-
mons Net [3] adapted from the one studied in [15, 14]. The
result highlights the usefulness of our technique in mining
bug-revealing properties, thus aiding program verification.

The rest of this paper is organized as follows. We first in-
troduce the semantics of discovered rules in Section 2, and
discuss the challenges of rule mining and our proposed so-
lution in Section 3. Section 4 reports on the case studies.
With related work discussed in Section 5, Section 7 con-
cludes this study.

2 Semantics of Mined Rules
In this section, we discuss the semantics of mined rules

and the computation of support and confidence values.
Temporal Logic Semantic. Our mined rules can be ex-
pressed in Linear Temporal Logic (LTL) [5]. There are a
number of LTL operators, among which, we are interested
in the operators ‘G’,‘F’ and ‘X’. The operator ‘G’ specifies
thatgloballyat every point in time a certain property holds.
The operator ‘F’ specifies that either a property holds at that
point in time orfinally (eventually)it holds. The operator
‘X’ specifies that a property holds at thenextevent. Let us
consider two examples of LTL expressions below.

F (unlock)
Meaning:Eventuallyunlock is called

G(lock → XF (unlock))
Meaning:Globallywhenever lock is called,
then from thenextevent onwards,
eventuallyunlock is called

Each of our mined rules states: whenever a series of
premise events occurs eventually a series of consequent
events also occurs. A mined rule denoted aspre → post,
can be mapped to its corresponding LTL expression. Exam-
ples of such correspondences are shown in the table below.

Notation LTL Notation
a → b G(a → XFb)

〈a, b〉 → 〈c, d〉 G(a → XG(b → XF (c ∧XFd)))
The set of LTL rules minable by our technique can be

represented in the Backus-Naur Form (BNF) as follows:
rules := G(pre → post)

pre := event|event → XG(pre)
post := XF (event)|XF (event ∧XF (post))

By simple transformations, the mined rules can also be
expressed in Computational Tree Logic (CTL) [5] and prob-
abilistic CTL [9].
Support and Confidence.There are many possible rules,
and we need to identify important ones. Statistics, such
as support and confidence, adapted from data mining [8],
can be used to distinguish important ones:(Support)The
number of tracesexhibiting the premise of the rule;(Confi-
dence)The likelihood of the rule’s premise being followed
by its consequent in the traces.

The meaning of the above is best illustrated by an exam-
ple. Consider the following set of simplified traces:

Trace 1 lock,use,use,unlock,lock,use
Trace 2 lock,unlock,lock,unlock

Let us consider the rulelock → unlock. Its support value
is two, as all two traces exhibit the premise of the rule. Its
confidence is 0.75, as 75% of the time (3 out of 4)lock
is followed byunlock. Formal definitions of support and
confidence are provided in the technical report [17].

Our technique will only output rules satisfying a user-
defined thresholds of minimum support and confidence.
Rules satisfying these thresholds are referred to as being
statistically significant.

3 Mining Algorithm
This section discusses challenges of mining a sound and

complete set of multi-event LTL rules, and presents our so-
lution and mining algorithm.
Challenges and Solutions. The complexity of mining
multi-event temporal rules is potentially exponential to the
length of the longest trace in the trace-set. A naive approach
is to check each possible rule of length two up to the max-
imum length of the traces. This simply does not work be-
cause a set of traces with a maximum length of 100 and
containing 10 unique events will require10100 checks.

To address the above challenge, we utilize an effective
search space pruning strategy. In particular, the follow-
ing ‘apriori’ properties are used to prune non statistically-
significant rules from the search space:

1 If a rule evsP → evsC doesn’t satisfy the sup-
port threshold, neither does any ruleevsQ → evsC

whereevsQ is a super-sequence ofevsP .
2 If a rule evsP → evsC doesn’t satisfy the con-

fidence threshold, neither does any ruleevsP →
evsD whereevsD is a super-sequence ofevsC .
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Furthermore, we notice that many rules are redundant.
A rule RX is redundant if there exists another mined rule
RY where:

1 The concatenation ofRX ’s premise and consequent is
a proper subsequence of the concatenation of those of
RY . Otherwise, if the concatenations are the same,
RX has a longer premise.

2 Both RX and RY have the same support and confi-
dence values.

To illustrate redundant rules, consider the following set
of rules describing an Automated Teller Machine (ATM):

R1 acceptcard→ enterpin,displaygoodbye,ejectcard
R2 acceptcard→ enterpin
R3 acceptcard→ displaygoodbye
R4 acceptcard→ enterpin,ejectcard
R5 acceptcard→ displaygoodbye,ejectcard

If the above rules have the same support and confidence
values, rules R2-R5 are redundant since they are repre-
sented by rule R1. To keep the number of mined rules
manageable, we remove redundant rules. This can drasti-
cally reduce the number of reported rules. Our performance
study on data mining benchmark datasets shows the number
of rules is reduced by more than 1,000 times lesser whenre-
dundantrules are removed – see our technical report [17].

Without the application of the ‘apriori’ properties and
the removal of redundant rules, the case studies considered
are infeasible as the naive approach requires an exponential
number of checks. A different ‘apriori’ property and redun-
dancy identification have enabled practical use of pattern
mining which would otherwise require exponential running
time [8, 21].
Algorithm Sketch. Inputs of our mining algorithm com-
prise a set of traces and the support and confidence thresh-
olds. The output of our algorithm is a set of rules, each of
which expresses: whenever a series of events occurs at a
point in time (i.e., temporal point), another series of events
will eventually occurs. To generate these rules, we need
to identify interesting temporal points, and for such points,
note what series of events are likely to occur next. Our
mining process is composed of three steps – for full details
see [17]:

Step 1 Mine a set of premises where each has a sup-
port value greater than the minimum support
threshold.

Step 2 For each premisepre, do the following:
a Find all temporal points where the

premisepre occurs
b Extract all rules of the formpre →

post, where the consequencepost hap-
pens with the likelihood greater than
or equal to the minimum confidence
threshold.

Step 3 Remove remaining redundant rules.

We perform an aggressive pruning strategy to remove
redundant rules. Sub search spaces containing redundant
rules are identified “early” and pruned. Rather than generat-
ing all statistically significant rules and removing redundant
ones at Step 3 (i.e., “late” pruning), weavoidgenerating re-
dundant rules in the first place (i.e., “early” pruning). At
step 3, we only remove the remaining redundant rules not
identified by our aggressive pruning strategy. “Early” prun-
ing of redundant rules greatly improves the performance of
our algorithm. In our performance study, unless redundant
rules are pruned “early”, several experiments on a real-life
benchmark dataset at various minimum support and confi-
dence thresholds are practically infeasible – see our techni-
cal report [17].

At the end of the above process, a complete set of non-
redundant multi-event LTL rules of the formESpre →
ESpost satisfying the support and confidence thresholds are
mined.

4 Case Studies

We performed a case study on the transaction compo-
nent of JBoss AS to show the applicability of our method
in providing insight into the protocol that the code obeys –
hence aiding program comprehension. Another case study
on a buggy CVS (Concurrent Versions System) application
adapted from the one previously studied in [15, 14] shows
the utility of mined rules in identifying bugs via model
checking.
JBoss AS Transaction Component.We instrumented the
transaction component of JBoss-AS using JBoss-AOP and
generated traces by running the test suite that comes with
JBoss-AS distribution. In particular, we ran the transaction
manager regression test of JBoss-AS. Twenty-eight traces
of a total size of 2603 events, with 57 unique events, were
generated. Running the algorithm with the minimum sup-
port and confidence thresholds set at twenty-five traces and
ninety-percent respectively, 163 non-redundant rules were
mined. The algorithm completed in 35.1 seconds.

A sample of the mined rules is shown in Figure 1. The
19-event rule in Figure 1 describes that the series of events
〈connection to a server instance events, transaction manager
and implementation set up event〉 (event 1-10) at the start
of a transaction is always followed by the series of events
〈transaction completion events and resource release events〉
(event 11-19) at the end of the transaction. The above rule
describing the temporal relationship and constraint between
the 19 events is hard to identify manually. The rule sheds
light into the implementation detailsof JBoss AS which
are implemented at various locations in (i.e., crosscuts) the
JBoss AS large code base.
CVS on Jakarta Commons Net. A case study was per-
formed on a buggy CVS application built on top of the FTP
library of Jakarta Commons Net to show the usefulness of
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Premise Consequent 

TxManLocator.getInstance() 
TxManLocator.locate() 
TxManLocator.tryJNDI() 
TxManLocator.usePrivateAPI() 
TxManager.getInstance() 
TxManager.begin() 
XidFactory.newXid() 
XidFactory.getNextId() 
XidImpl.getTrulyGlobalId() 
LocalId.associateCurrentThread() 
TransactionImpl.lock() 

TransactionImpl.instanceDone() 
TxManager.getInstance() 
TxManager.releaseTransImpl() 
TransactionImpl.getLocalId() 
XidImpl.getLocalId() 
LocalId.hashCode() 
LocalId.equals() 
TransactionImpl.unlock() 
XidImpl.hashCode() 

Figure 1. A Rule from JBoss-Transaction
mined rules in verification and bug detection. The CVS in-
teraction protocol with the underlying FTP library can be
represented as a 33-state automaton partially drawn in Fig-
ure 2 (see [15, 14] for a more detailed diagram).
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Figure 2. CVS Protocol
We focus on the two scenarios of multiple-file upload

and deletion scenario. The scenarios start with connecting
and logging into the FTP server and end by logging off and
disconnecting from the server. Whenever a new file is added
or a file is deleted a record is made to a system log file.
Multiple versions of the same file are maintained by adding
timestamp to old versions of the file.

The CVS application is buggy, there are 4 bugs that
causesinconsistent system log file. The system log file de-
scribes the state of the CVS repository and should be kept
consistent with the stored files. The 4 bugs are illustrated
by the error transitions (in dashed lines) shown in Figure 3.
Due to the bugs, a file can be added or deleted without a
proper log entry being made. Also, an old version of a file
can be renamed by appending a time-stamp without the new
version being stored to the CVS.

The bugs occur because scenarios are not executed
atomically. Each invocation of a method ofFTPClient

of the FTP library may generate exceptions, especially
ConnectionClosed and IO exception. Hence the code
accessingFTPClient methods need to be enclosed in a
try..catch..finally block. Every time such an ex-
ception happens the program simply logout and disconnect
from the FTP server.

To generate traces, we follow the process discussed
in [15]. First, we instrument the CVS application byte
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Figure 3. Injected Bug

code using an adapted version of Java Runtime Analysis
Toolkit [12]. Next, we ran the instrumented CVS applica-
tion over a set of test cases to generate traces. Via a trace
post-processing step, we then filter events in the traces not
corresponding to the interactions between the CVS applica-
tion and the Jakarta Commons Net FTP library. Thirty-six
traces of a total size of 416 events were generated.

We ran our mining algorithm on the generated traces. It
ran in less in 1.1 second and mined 5 rules with minimum
support and confidence thresholds set at fifteen traces
and ninety percent respectively. Among the mined rules,
the following two rules are the bug-revealing program
properties:

1 Whenever the application is initialized (W), the con-
nection (X) and login (G) to the server are made, file
type is set (T) and an old file is renamed(N),then even-
tually a new file is stored(S), followed by a logout (O)
and a disconnection from server (Y). This isdenoted
as: 〈W,X, G, T,N〉 → 〈S, O, Y 〉

2 〈W,X, G,C, I, D〉 → 〈A,O, Y 〉
We used the model checker described in [10]. We con-

verted an abstract model of the CVS application to the for-
mat accepted by the model checker and checked against the
above two properties. The model checker reported viola-
tions of the above properties. These violations correspond
to 3 out of the 4 bugs (Bug-2,3,4) in the model.

5 Related Work

In [22], Yang et al. present an interesting work on
mining two-event temporal logic rules (i.e., of the form
G(a → XF (b)), whereG, X, and F are LTL opera-
tors [11]), which are statistically significant with respect to
a user-defined ‘satisfaction rate’. The algorithm presented,
however, does not scale to mine multi-event rules of arbi-
trary length. To handle longer rules, Yang et al. suggest a
partial solution based on concatenation of mined two-event
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rules. Yet, the method proposed might miss some multi-
event rules or introduce superfluous rules that are not sta-
tistically significant – it is neither sound nor complete. In
contrast, we mine LTL rules of arbitrary size; scalability is
accomplished by utilizing search space pruning strategies
adapted from the data mining domain. The method is sound
and complete as all mined rules are statistically significant
and all statistically significant rules are mined.

There are many other work on mining frequent pat-
terns [1, 21, 16], automaton [2, 20, 6, 15], Live Sequence
Charts [18], etc. Technique wise, this work is similar to the
family of pattern mining algorithms and has similar worst
case complexity. By employing a pruning strategy, typi-
cal runtimes of pattern mining algorithms can be much less
than the worst case complexity. However, different from
the above existing studies, some of which are our own, in
this work we mine LTL rules which have a different se-
mantic and require different mining strategy than previous
approaches.

6 Discussion and Future Work

Note that the time taken for mining ismuch improved
with search space pruning strategy. Without employing a
search space pruning strategy, the mining process will re-
quire at leastEL check operations, whereE is the number
of unique events andL is the maximum length of the trace.
For traces from JBoss AS considered in Section 4, the min-
ing process (without pruning) will require more than50100

operations. Considering 1 picosecond per operation, it will
only completein about2.501x10148 centurieswhereas we
simply need 35.1 seconds. This highlights the power and
importance of search space pruning strategies in improving
the scalability of the mining process.

In the second case study, Bug-1 cannot be revealed be-
cause the bug-revealing property is outside the bound of
the LTL expressions minable by our algorithm. The bug-
revealing property is: Whenever the application is initial-
ized (W), the connection (X) and login (G) to the server
are made, a file type is set (T),and there is no rename (N)
until a new file is stored (S), then eventually a log entry is
made (A), followed by a logout (O) and a disconnection
from server (Y). To mine the property, we need to mine
rules containing the LTL operators not(¬) and until(U) –
this is a future work.

Another open issue is in improving the scalability of
our method further. One direction we are investigating is
to reduce the size of input traces while retaining the qual-
ity of the specification mined. One can do so by throw-
ing away non-important or less important events. In [23],
Zaidmanet al. identify important key classes using a web-
mining algorithm. Similar approach to that in [23] might
be employed to identify and remove less important events
from the traces. In [13], Kuhn and Greevy partition a trace

into different phases. Rather than mining specifications for
the entire trace, one can separately mine each phase in the
trace. This can be more efficient than mining the entire
trace. If a test-suite is available, one can also perform a
divide-and-conquer strategy by generating traces for each
distinct part of the test suite (i.e., group those testing the
same component together) and analyzing them separately.
Another direction we are investigating is to incorporate lat-
est research in data mining to improve the algorithm further
where approximation in the mining algorithm result can im-
prove mining speed (e.g., [24]).

7 Conclusion
In this paper, a novel method to mine anon-redundantset

of statistically significantrulesof arbitrary lengthsof the
form: “Whenever a series of eventsESPre occurs, eventu-
ally another series of eventsESPost also occurs” is pro-
posed. The problems of potentially exponential runtime
cost and huge number of reported rules have been effec-
tively mitigated by employing a search space pruning strat-
egy and by eliminating redundant rules. Case studies have
been conducted to demonstrate the usability of the proposed
technique for program comprehension and verification.
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