
A Machine Learning Approach for Vulnerability Curation
Yang Chen
Veracode

ychen@veracode.com

Andrew E. Santosa
Veracode

asantosa@veracode.com

Ang Ming Yi
Veracode

mang@veracode.com

Abhishek Sharma
Veracode

absharma@veracode.com

Asankhaya Sharma
Veracode

asharma@veracode.com

David Lo
Singapore Management University

davidlo@smu.edu.sg

ABSTRACT
Software composition analysis depends on database of open-source
library vulerabilities, curated by security researchers using various
sources, such as bug tracking systems, commits, and mailing lists.
We report the design and implementation of a machine learning
system to help the curation by by automatically predicting the
vulnerability-relatedness of each data item. It supports a complete
pipeline from data collection, model training and prediction, to
the validation of new models before deployment. It is executed
iteratively to generate better models as new input data become
available. We use self-training to significantly and automatically
increase the size of the training dataset, opportunistically maximiz-
ing the improvement in the models’ quality at each iteration. We
devised new deployment stability metric to evaluate the quality of
the new models before deployment into production, which helped
to discover an error. We experimentally evaluate the improvement
in the performance of the models in one iteration, with 27.59%
maximum PR AUC improvements. Ours is the first of such study
across a variety of data sources. We discover that the addition of the
features of the corresponding commits to the features of issues/pull
requests improve the precision for the recall values that matter. We
demonstrate the effectiveness of self-training alone, with 10.50%
PR AUC improvement, and we discover that there is no uniform
ordering of word2vec parameters sensitivity across data sources.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→ Software maintenance tools.

KEYWORDS
application security, open-source software, machine learning, clas-
sifiers ensemble, self-training
ACM Reference Format:
Yang Chen, Andrew E. Santosa, Ang Ming Yi, Abhishek Sharma, Asankhaya
Sharma, andDavid Lo. 2020. AMachine LearningApproach for Vulnerability
Curation. In 17th International Conference on Mining Software Repositories

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387461

Figure 1: Software Composition Analysis

(MSR ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3379597.3387461

1 INTRODUCTION
Modern information infrastructure relies heavily on open-source
libraries provided by Maven central, npmjs.com, PyPI, etc. Unfor-
tunately, they may contain vulnerabilities that compromise the
security of the applications using them. Software Composition Anal-
ysis (SCA) automatically reports vulnerabilities in the open-source
libraries used by an application, so that they can be remediated by
the application’s developers. SCA is widely used in industry, with
commercial offerings from various companies [1, 6–8]. Figure 1
shows its typical workflow. A SCA system scans an application to
report the vulnerable dependencies (libraries) used, using the data
from a library vulnerability database. Security researchers curate
this database using various sources, such as tickets and bug reports,
pull requests, and commit messages [50]. This curation is necessary
as many open-source vulnerabilites are not identified in the na-
tional vulnerability database (NVD), the main public information
source on vulnerabilities [46]. The design of a state-of-the-art SCA
product is discussed in an article [19].

In this article, we report the design and implementation of a
machine learning system to help with the curation of a library
vulnerability database. This system predicts each input data item
as either vulnerability related or not, which is then passed as an
input to a team of security researchers who curate the database.
We train one model for each data source (e.g. Jira tickets), using
a stacking ensemble of classifiers, which are reported to perform
well for unbalanced datasets and natural language processing in the
literature [50]. Our system provides a complete iterative pipeline
from data collection, model training and prediction, to the validation
of new models before deployment. We use scikit-learn 0.20 [5] and
word2vec [27] from gensim 3.6.0 [2] for word embedding.

https://doi.org/10.1145/3379597.3387461
https://doi.org/10.1145/3379597.3387461

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Chen et al.

Previous approach [50] uses manually-labeled data from the
curated database for training new models, however, in this way, a
large amount of data remains unused. This unused set includes data
items that fail our initial keyword-based filtering, and data items
that are predicted as not related to vulnerability by the current
production models. To maximize the utilization of these data items,
our system performs semi-supervised learning [12], in particular
self-training (as defined by Nigam and Ghani [28]), in which we
re-apply our production models to the unlabeled data in order to
significantly increase the amount of labeled data for training new
models. This opportunistically maximizes the improvement in the
quality of models at each iteration of the pipeline.

Our pipeline produces a suite of new models at each iteration.
Before deploying these models into production, we need to guar-
antee that they will perform better than the current production
models. For this, we conduct the following two validations:

• Performance validation. We deploy a new model into pro-
duction only when the new model has a better performance
than the production model it is replacing.

• Stability validation. We check for each new model that its
true positives and true negatives do not vary too much to
that of the production model. To measure this, we compute
a new metric called deployment stability, which is the sum
of the numbers of the common true positives and common
true negatives of the new and production models, divided
by the total number of data items.

In summary, our contribution is on the design and implemen-
tation of a machine learning system to support manual curation
of a library vulnerability database. Our system supports the whole
pipeline of machine learning, including data collection, training,
prediction, and validation. The pipeline is executed iteratively to im-
prove the model continually, and has been deployed in production.
We use the k-fold stacking ensemble of classifiers from existing
work [50], but we advance further in these directions:

(1) From the technical perspective, we designed and implemented
a complete system which uses self-training. In our experi-
ment, self-training improves PR AUC by 10.50%.

(2) We introduce a complete model validationmethodologywith
a novel deployment stability metric.

(3) We add emails and reserved CVEs (NVD entries that are
not yet confirmed as vulnerabilities) [3] into the suite of
input data sources, and use more commit features. Previous
work [50] uses only commit messages due to concerns about
accuracy, however, the quality of the developer significantly
affects the quality of the code [26]. We hypothesize that the
developers more familiar with security issues are more likely
to fix a vulnerability and therefore include Github user name
into our commit feature set. We also in addition include
patched file paths, and the commit patch itself. For the recall
of 0.72 reported by the existing work [50] we more than
doubled the precision from 0.34 to 0.69.

In this article, we detail our pipeline, evaluate its performance for
one iteration as a case study, with PR AUC improvements of at
most 27.59%. Ours is the first of such study across a variety of
data sources. We discover that the addition of the features of the

Table 1: Dataset Sizes

Data Collected No. Positive
Source Size Positive Ratio

Jira Tickets 17,427 911 5.23%
Bugzilla Reports 39,801 20,250 50.88%
Github Issues 50,895 5,147 10.11%
Commits 157,450 5,181 3.29%
Emails 20,832 11,756 56.43%

Reserved CVEs 31,056 7,245 23.33%

corresponding commits to the features of issues/pull requests im-
prove the precision for the recalls that matter. We demonstrate
the effectiveness of self-training alone, with 10.50% PR AUC im-
provement, and we discover that there is no uniform ordering of
word2vec parameters’ sensitivity across data sources. We show how
the deployment stability metric helped to discover an error.

We provide an overview of our system in Section 2. We discuss
our data collection and feature engineering in Section 3, and our
model training including self-training in Section 4. We discuss our
validation methodologies in Section 5 and provide an evaluation
of our approach in Section 6 before discussing the limitations of
our approach and proposing future work in Section 7. We present
related work in Section 8, and conclude our paper in Section 9.

2 OVERVIEW
Figure 2 shows the flow chart of our system. Our system runs itera-
tively, where in each iteration it produces a new suite of models. We
collect data from six sources including Jira tickets, Bugzilla reports,
Github issues (including pull requests), Github commits, emails
from relevant mailing lists and reserved CVEs from NVD (Figure 2
Box A). These data are highly unbalanced, with a very small pro-
portion of positives. To mitigate this issue, we use keyword-based
filtering to select relevant data (detailed in Section 3.1). Initially,
security researchers review the filtered-in data and label them man-
ually (Figure 2 Box B). On this data, we used supervised learning
to obtain the initial model for each data source. In the subsequent
iterations, the security researchers only review and label those data
that are predicted by the current suite of models as vulnerability-
related. Although we may miss some positives due to the impreci-
sion of the models, here we reduce the manual labeling cost. Aside
from the manually-labeled data, there is much larger amount of
unlabeled data, consisting of the predicted-negative data and the
data filtered-out by the keyword-based filtering, an ideal situation
for the application of semi-supervised learning [12], particularly
self-training (as defined by Nigam and Ghani [28]), where we auto-
matically label the unlabeled data (Figure 2 Box C and detailed in
Section 4.3). The data are then combined with the manually-labeled
data to train new models. The new models are then compared with
the current production models to decide if any of the new model
can replace a current model (see Section 5).

3 DATA COLLECTION
3.1 Data Sources
In their day-to-day tasks, the security researchers find information
on vulnerabilities from a number of data sources. These include both
textual data sources as well as code sources. The data sources are

A Machine Learning Approach for Vulnerability Curation MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 2: System Pipeline Data Flow Diagram

Use HTTPS to resolve dependencies in Maven Build. This
is a security fix for a vulnerability in Apache Maven pom.xml
file(s). The build files indicate that this project is resolving
dependencies over HTTP instead of HTTPS. This leaves build
vulnerable to allowing a Man in the Middle (MITM) attackers
to execute arbitrary code on local computer or CI/CD system.
Figure 3: Vulnerability-Related Jira Ticket Title and Body

Jira tickets, Bugzilla reports, Github issues (including pull requests),
Github commits, mailing lists, and reserved CVEs (a CVE entry
with an id, but unconfirmed as a vulnerability) from NVD. Table
1 summarizes the data that we collected for the first iteration of
our pipeline, including the total collected data sizes (2nd column),
the number of data labeled vulnerability-related for training and
validating the new model in Section 6.1 (3rd column), and its ratio
to the collected data (4th column). The labeled dataset is the result
of manual vulnerability curation effort for over a year from 2017
employing a team of 2-3 security researchers. Although we collect
the same set of features from Jira Tickets, Bugzilla reports, and
Github issues, we separate them as different sources as they have
different characteristics. Table 1 also shows that Bugzilla reports are
likely to be vulnerability related when compared to the other two,
possibly because Bugzilla reports are specifically about bugs which
include vulnerabilities, whereas Jira tickets and Github issues in
addition also discuss feature requests and implementation details.

At the time of writing we have collected Bugzilla reports, Jira
tickets, and Github issues (including pull requests) from 24 Bugzilla
servers, 82 Jira servers, and 20,447 open-source library repositories
hosted on Github. We build our list of servers and repositories based

Bumps [tar](https://github.com/npm/node-tar) from 4.4.1 to
4.4.13. **This update includes security fixes.**
- [Release notes](https://github.com/npm/node-tar/releases)
- [Commits](npm/node-tar@v4.4.1...v4.4.13)
Signed-off-by: dependabot-preview[bot]
<support@dependabot.com>

Figure 4: Vulnerability-Related Commit Message

on the open-source libraries that we frequently encounter in cus-
tomer scans. The set of Bugzilla and Jira servers spans the areas of
software security, library, platform and infrastructure, and utilities.
Due to lack of space, we list only some representative libraries in
the first two columns of Table 2. Figure 3 shows an example of the
title and body of a vulnerability-related Jira ticket [10]. The commit
data we use are from the same 20,447 Github repositories. Since a
Github issue may be related with multiple commits, the number of
commit data is much larger than the number of issues (see Table 1).
We use the commit data both to improve the results for the Github
issue prediction models, as well as independently to train models
used in predicting vulnerability-related commits. Figure 4 shows
the message of a vulnerability-related commit [9]. To obtain email
data, we subscribe to 18 open-source software projects mailing list.
We only list some of them in the third column of Table 2 due to
lack of space. For reserved CVEs, we retrieve the data from NVD.

Some data may not provide any useful information. The data for
most of our sources are highly unbalanced, with a large proportion
of them to be irrelevant to security vulnerability (see the fourth
column of Table 1). For all of the data sources except emails and
reserved CVEs, we perform a keyword-based filtering with security-
related keywords, including security, advisory, authorized, NVD, etc.

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Chen et al.

Only data items whose text contains any of the keywords are used
as inputs to the next stage. Those that do not contain any of the
keyword are to be used for self training. The numbers shown in the
second column include those that pass as well as fail the filtering.
We do not apply this filtering to the email data since from our
experience the degree of imbalance is low. There are also other
possible ways of filtering, such as based on the timeliness of the
data item, however, such complex filterings are unnecessary.

3.2 Feature Engineering and Selection
We show the features of the data that we use in Table 3. Most of
the features are textual and used as inputs to word2vec (see Section
4.1), however, there are some numerical features that are directly
included in the input vectors. From Jira tickets and Bugzilla reports,
we extract the same sets of features, however, we note that the
notion of issue severity and the typical number of attachments may
differ between various data sources. We use the Github issue data
(including pull requests) to train two different models, depending
on whether the issue has associated commits or not. We name the
data source without commits as Github_Basic, and the data source
with commits as Github_Combined. For Github_Basic, we extract
the same sets of features as for Jira tickets and Bugzilla reports. For
Github_Combined, we in addition extract commit message, Github
user name, patched files paths, patch lines added, and patch lines
deleted (we treat program code as text). For Github issues, we use
the Github_Basic model for prediction when the data has no com-
mits information, otherwise we use the Github_Combined model.
Section 6.1 shows that Github_Combined has a better precision
than Github_Basic for the recalls that matter. For reserved CVEs,
each item typically only contains a number of web page URLs.
We include the set of URLs as feature as each include host names
and parameters that may point to security websites. Although a
reserved CVE is more relevant to vulnerabilities than some other
types of sources, the web pages may not describe a vulnerability,
and therefore we also include their content as a feature.

Our feature selection is based on our experiences on whether the
feature actually helps in improving performance. For instance, we
avoid using date features since they reduce the prediction precision.
At one time we observed a low prediction performance due to Jira
tickets, Bugzilla reports, Github issues were predicted as positive
(vulnerability-related) with a newly-trained suite of models. If a date
value was of the year 2019, the prediction result would be positive,
and if we changed its value to 2017 or 2018, the prediction result
would mostly be negative. Intuitively, the date features should not
be as relevant to vulnerability compared to other features, and we
thus exclude them as features.

4 MODEL TRAINING
4.1 Word Embedding
Most of the data features that we consider are textual (e.g., commit
messages and commit patches for commits data; see Table 3). Tomap
a textual feature to an input feature vector, we use word2vec [27], a
popular approach for word embedding. Here we use the implemen-
tation of word2vec in gensim 3.6.0. Before inputting to word2vec,
we clean each textual feature by removing all non-alphabetic char-
acters, except for commit patches, where we remove brackets and
comment delimiters such as #, //, /**/ from the code. Word2vec

1 for i := 1, . . . ,k :
2 Li := Random subset of L of size |L|/k

s.t. ∀j · 1 ≤ j < i ⇒ Li ∩ Lj = ∅

3 for i := 1, . . . ,k :
4 Ltest ,Ltrain := Li , L − Li
5 for each t ∈ ClassifierTypes:
6 basicModelt,i := t .fit(Ltrain, labels(Ltrain))
7 vt := basicModelt,i .predict(Ltest)
8 Mi := (vt1 . . .vt6) s.t. [t1, . . . , t6] = ClassifierTypes

9 M :=
©«

M1
...

Mk

ª®®¬
10 LRModel := logisticRegression.fit(M, labels(L))

Figure 5: k-Fold Stacking Ensemble Pseudocode.
ClassifierTypes is the sequence of six basic classifier types:
RF, Gaussian Naive Bayes, k-NN, SVM, gradient boosting,
and AdaBoost. The procedure’s input is the labeled dataset
L, and it outputs the models LRModel and basicModelt,i for
all t ∈ ClassifierTypes, and 1 ≤ i ≤ k .

also requires a corpus for each data source. Generally, larger corpus
results in better vector model. For non-commit data sources, we
train word2vec model based on the collected data alone, however,
for commits, we in addition expand our corpus by using an existing
3,212,690 unlabeled extra commit data items already collected from
various sources such as Github.

Word2vec employs neural network to learn vector representa-
tion of words in one of two ways, either by predicting central word
from context word, called continuous bag of words (CBOW) (which
is the approach that we select), or by predicting context words
from central word, called continuous skip-gram.Window size, mini-
mal count and vector size are three important parameters to train
word2vec models. Window size is the maximum distance between
the current and predicted word within a sentence.Minimal count is
the count to ignore all words if their total frequency is lower than
this value. Vector size is the vector size for one word. We list the
parameter values in Table 4 by data source, as the result of a tuning
process. We show in Section 6.3 that the performance of the model
is not significantly sensitive to any one of the parameters in Table
4. The output of word2vec is a mapping of each word into a vector.
Given a textual feature, we compute a vector average of all the
vectors that the words are mapped into. The vector averages of the
textual features are combined with numerical values of non-textual
features to construct a composite vector that is input to a learner.
We train a word2vec model separately for each textual feature as
each textual feature may have unique characteristics.

4.2 Training
We use supervised learning to build our prediction models using
scikit-learn 0.20 [5], one model for each data source. For this task,
there are different types of possible classifiers to use, such as random
forest (RF) or support vector machine (SVM), but here we follow
previous work [50] to use an ensemble of classifiers which has a
better performance than each individual classifier. Our stacking

A Machine Learning Approach for Vulnerability Curation MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 2: Example Data Sources
Bugzilla Servers Jira Servers Mailing Lists
https://bugzilla.suse.com https://issues.apache.org/jira announce@apache.org
https://bugzilla.mozilla.com https://jira.sakaiproject.org dev@jspwiki.apache.org
https://bugs.eclipse.org https://java.net/jira security@apache.org
https://bugzilla.novell.com https://jira.sonarsource.com replies@oracle-mail.com
https://bugs.webkit.org https://issues.jboss.org rubyonrails-security@googlegroups.com
https://bugzilla.gnome.org https://0xdata.atlassian.net security@suse.de
https://bugs.kde.org https://jira.mongodb.org debian-security-announce@lists.debian.org

Table 3: Features per Data Source. ∗ = non-textual numeric
feature. We input only the textual features to word2vec.

Data Source Features Used
Jira Tickets, title, body, source, severity, state, labels,

Bugzilla Reports, comments, number of attachments∗,
Github_Basic number of comments∗

Github Github_Basic features, commit message,
_Combined user name, patched files paths,

patch lines added, patch lines deleted
Commits commit message, user name,

patched files paths,
patch lines added, patch lines deleted

Emails email subject, body, sender, and status
Reserved CVEs URL, content of the URL link, URL length∗,

content length∗

Table 4: Word2vec Parameters

Data Window Minimal Vector
Source Size Count Size

Jira Tickets 20 50 200
Bugzilla Reports 20 50 200
Github Issues 20 50 200
Commits 10 50 200
Emails 10 20 200

Reserved CVEs 10 10 200

ensemble consists of six basic classifiers, which are RF, Gaussian
Naive Bayes, k-nearest neighbor (k-NN), SVM, gradient boosting, and
AdaBoost, and employs a logistic regression as the meta learner.

We use the value 1 to label a vulnerability-related data item,
and 0 otherwise. Since the labels that we use to fit the model are
represented by values of 0 or 1, when a model is used to predict
a vulnerability relatedness of a data item, the output is therefore
a value from 0 to 1, which we call the probability of vulnerability
relatedness (PVR). A PVR is a degree of confidence on whether the
data item is related to a vulnerability.

We randomly select 75% of the labeled dataset, hereafter called L,
for model training and the remaining 25% for performance testing
(see Section 5.1). Figure 5 shows the pseudocode for training a k-fold
stacking ensemble [50] model for each data source. As shown, we
further randomly split L into k disjoint subsets (Lines 1–2 of Figure
5). We use k = 10, which we discovered to perform better than
k = 12 used in the literature [50]. We choose one of the k subsets
as the testing set, and the union of the remaining k-1 subsets as the

Table 5: Labeled and Unlabeled Datasets Sizes

Data Collected Labeled Unlabeled
Source Data Size Data Size Data Size

Jira Tickets 17,427 13,028 4,399
Bugzilla Reports 39,801 22,553 17,253
Github Issues 50,895 17,230 33,665
Commits 157,450 22,856 134,594
Emails 20,832 16,573 4,259

Reserved CVEs 31,056 18,399 12,657

training set (Line 4 of Figure 5). For each one of the k such splits,
and for each of the six basic classifiers that we use, we fit a model
on the training set (Line 6), and then apply the model for prediction
to the testing set (Line 7). Now, for each data item in the testing set,
the prediction outputs a PVR from 0 to 1. Since we apply the model
to the whole testing dataset, the result of the prediction is a vector
of PVRs whose length is the size |L|/k of the testing set. In Figure
5, this is the column vector vt (Line 7). We combine all the column
vectors for all basic classifiers into a (|L|/k) × 6 matrixMi (Line 8).
After performing k fittings and predictions for a basic classifier, we
obtain a |L| ×6matrixM whose elements are PVRs. Line 9 of Figure
5 shows the construction of matrix M from M1, . . . ,Mk . We use
this matrix, and the column vector of the labels of each data item
(denoted as labels(L) in Figure 5) as inputs to a logistic regression
to generate a model LRModel (Line 10 of Figure 5). This logistic
regression model combined with all of the 6 × k basic classifier
models are the outputs of the algorithm. We call this output suite
as an ensemble model, or simply a model. We initially trained new
models for all data sources once a week, however, we discovered
that their performance does not change significantly on a weekly
basis, and therefore we presently only train new models monthly.

When using the models for prediction, we apply a threshold
on the PVR called PVR threshold to predict if the data item is
vulnerability-related. Given PVR threshold τ , when a PVR of a
data item is strictly greater than τ , the data item is predicted as
vulnerability-related (positive), otherwise it is predicted as vulne-
rability-unrelated (negative). This prediction is given to the security
researchers to finally label the data item.

4.3 Self-Training
SCA security researchers only label the data predicted as vulnerability-
related. Besides these, there are actually a large amount of other
data which are made up of two parts. One is the dataset that fail
the keyword-based filtering (dataset A), and another is the dataset
predicted as unrelated to vulnerability by the current production

https://bugzilla.suse.com
https://issues.apache.org/jira
https://bugzilla.mozilla.com
https://jira.sakaiproject.org
https://bugs.eclipse.org
https://java.net/jira
https://bugzilla.novell.com
https://jira.sonarsource.com
https://bugs.webkit.org
https://issues.jboss.org
https://bugzilla.gnome.org
https://0xdata.atlassian.net
https://bugs.kde.org
https://jira.mongodb.org

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Chen et al.

model (dataset B). Table 5 shows the labeled and unlabeled data
sizes for each data source. The existence of a relatively large amount
of unlabeled data is a typical scenario where semi-supervised learn-
ing [12] is applicable, especially for the commit data source where
the number of unlabeled data items is about six times that of labeled
data items. Here we label the unlabeled data automatically, and use
them for training. This is self-training, a widely-used technique in
semi-supervised learning (see Section 8.3).

For the automated labeling, we first need to obtain the PVRs of
the dataset A and dataset B. For dataset A, we apply the production
models to compute their PVRs, and for dataset B, we already have
their PVRs computed by the productionmodels, but here we use spe-
cial PVR thresholds for their labeling. We set a high PVR threshold
τh and a low PVR threshold τl . Given a threshold τ currently used
for prediction in production, we have that τl < τ < τh . If the PVR
of a data item is greater than τh , we label it as vulnerability-related.
If the PVR is less than τl , we label the data item as vulnerability-
unrelated. We do not label the data item if its prediction score is
between the high threshold and low threshold. We determine the
values for τh and τl based on our previous experiences for different
data sources, where the chosen values we expect to result in high
prediction accuracy. We note that in this way, the dataset labeled as
vulnerability-unrelated by the self-training mechanism is a subset
of the dataset predicted as such by the current production model,
as τl < τ . We combine the automatically-labeled dataset with the
manually-labeled dataset for use in training our models for the
next iteration. We use self-training data labels for model training
only and not inputting them to the security research team since
the labels have unacceptable precision for this purpose, although
they are good enough for self-training.

5 MODEL VALIDATION
5.1 Performance Validation
The first validation step ensures that any new model replacing a
production model has a better performance. Note that here we have
a labeled dataset that keeps increasing in size for every iteration of
our pipeline. We randomly select 75% of this dataset for training,
and use 25% of it for validation (see Section 4.2)1. For validation we
collect precision and recall metrics, where:

precision =
|TP |

|TP | + |FP |
recall =

|TP |
|TP | + |FN |

with TP , FP , and FN are respectively the sets of true positives, false
positives, and false negatives. Precision is the ratio of true positives
vs. all predicted positives. A high precision saves manual work in
removing false positives. Recall indicates the coverage to identify
all truly vulnerability-related items. The higher the recall, the more
likely any real vulnerability-related item gets predicted as such
(less false negatives). Here our models are not optimized on one of
the metrics, as both precision and recall are important.

Given the same model and dataset, each PVR threshold (0.01,
0.02, . . ., 0.99) fixes a precision and recall pair. Using each pair as
a coordinate, we plot a precision-recall (PR) curve in a Cartesian
system with the recall values as the abscissa and precision values

1Using k -fold validation instead of 75%–25% split is doable, however, whether further
split on top of the k -fold split already done on the 75% part for the model training
(Section 4.2) would improve performance significantly is a subject of future research.

as the ordinate. Higher curve indicates better performance. This
we use to compare the performance of a new model with another
model already deployed in production. There is an alternative di-
agnostic tool called receiver operating characteristic (ROC) curve,
however, ROC is not suitable to us since our data have a high ratio
of imbalance [16] (see Table 1).

5.2 Stability Validation
In the starting phase of our model deployments, to decide if a model
in production should be replaced with a model trained on more
training data, we used only the metrics of precision and recall as
described in 5.1. If a new model had higher precision and recall
it was pushed as a production model. However, we found issues
with this approach. Sometimes a new model even though having
better overall performance on precision and recall metrics, would
have very different prediction results from the previous model. In
some case many human labeled vulnerabilities, which was being
predicted correctly by old models would be misclassified by new
model as not a vulnerability. Such erroneous predictions led to our
security researchers questioning the usefulness and reproducibility
of the production models. This practical challenge forced us to
design a new metric we call deployment stability which is used a
second validation step. We define the metric as follows:

deployment stability =
|TPn ∩ TPp | + |TNn ∩ TNp |

test dataset size
where TPn and TPp refer to respectively the true positives of the
new and the (current) production models, and TNn and TNp refer
to the true negatives of the new and the production models, re-
spectively. A higher value indicates less risk in deploying the new
model as both the new and the production models agree on more
of the predictions.

For this validation, we build a test dataset for each data source
from half of the positively-labeled data, and half of the negatively-
labeled data, such that the test dataset has half the size of the
labeled data, but with the same distribution of labels. For the pro-
duction model, we use the PVR threshold value that is used in the
deployment, and for the new model, we select a threshold based on
model performance report, where both the precision and recall are
higher than those of the production model (when the new model is
deployed, this will be the new PVR threshold used in production).

6 EVALUATION
6.1 Models Deployment Case Study
Here we use the testing methodologies of Section 5 for illustrating
the performance improvements in an iteration. The case study
is from the initial iteration of our pipeline when we introduced
self-training into the system. This iteration improves the models
performance for most of the data sources. Here, we use production
models that are trained using a set of manually-labeled data only.
The new models are on the other hand, trained using both the
manually-labeled and the self-training-labeled data from our data
sources introduced in Section 3. The manually-labeled dataset used
to generate the production models is a subset of the manually-
labeled dataset for training the new models.

A Machine Learning Approach for Vulnerability Curation MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 6: PR Curve for Jira, Github_Combined,
Github_Basic, and Reserved CVEs

Figure 7: PR Curve for Bugzilla, Email, Commit

Performance Validation. Here we use the performance validation
technique of Section 5.1 which employs 25% of the available labeled
data. Figures 6 and 7 compare the PR curves for all the data sources
(separated into two figures for clarity). In both figures, each data
source has two curves: one for the new model and another for the
production model. Table 6 shows for each data source how much
the new model improves the area under curve of the PR curves (PR
AUC) for the recalls where we have precision data. The PR AUC
tends to increase across all data sources except for Bugzilla reports
where the improvement is negligible. To help evaluate our results,
we show the ratio of positive data among all labeled data when
training the new models in Table 7.

For Jira tickets, the proportion of positive labels is only 6.99%
(Table 7), implying extreme imbalance. However, data imbalance
has a negative impact on the performance only when it does not
match a balanced world. The discussion topics of Jira tickets are
by nature unbalanced, encompassing feature and documentation
requests, and design and implementation issues unrelated to bugs
and vulnerabilities. Therefore, the performance for Jira tickets is
still reasonable, albeit comparatively lower (Figure 6). From Table 6
we see that the increase in labeled data combined with self-training

Table 6: New Models Improvement over Production Models

Data Source Recall Range % PR AUC Inc.
Jira Tickets 0.24–0.72 8.50

Bugzilla Reports 0.90–0.94 0.00
Github_Basic 0.49–0.89 27.59

Github_Combined 0.01–0.97 2.88
Commits 0.06–0.73 8.01
Emails 0.92–0.98 0.95

Reserved CVEs 0.81–0.99 2.52

Table 7: Ratio of Positive Vs. All Labeled for New Models

Data Source Ratio Data Source Ratio
Jira Tickets 6.99% Commits 22.67%

Bugzilla Reports 89.79% Emails 70.93%
Github Issues 29.87% Reserved CVEs 39.38%

managed to moderately improve the PR AUC. Assuming the in-
crease in labeled data is small as they have to be labeled manually
(recall from Section 4.3 that we do not use the self-training labels as
input to researchers), we can conclude that self-training has been
effective in improving the model performance for this data source.

The prediction models for Bugzilla reports have very high per-
formance. Bugzilla is specifically for reporting bugs (including vul-
nerabilities), resulting in a very high proportion of positive labels of
89.79% (Table 7) for training the new model. The world of Bugzilla
tickets is by nature unbalanced in the same way as the training
data, and hence the high precision. Here, most data items are pre-
dicted positive, which matches expectation. Due to the already high
performance of the production model, the improvement between
the production and new models (Table 6) is negligible.

Figure 6 shows that Github_Basic model has moderately high
performance for the new model. The seems to correspond to a
moderate data imbalance, were ratio of positively-labeled data is
29.87% (Table 7). Table 6 shows significant PR AUC improvements
of 27.59% for Github_Basic. Here also we can assume that increase
in manually-labeled data is small and therefore self-training also
appears to be effective for this data source.

Given the same recall, Github_Combined has a better precision
than Github_Basic for the production model, however, the result
is not as straightforward for the new model. Table 8 shows the PR
AUC increase for the Github_Combined vs. Github_Basic PR curves.
Overall, for all of the recall values for which we have prediction data
(0.18–0.93), Github_Combined has a worse performance; however,
for the recall ≥ 0.80, it has a better precision than Github_Basic.
We discovered that addition of commit features improves the
precision for the recalls that matter. It appears that the commit
messages and code comments in security-related commits have
characteristics that are useful for the identification of vulnerability-
related Github issues. In Table 6 we observe improvements in the
PR AUC when comparing Github_Combined production and new
models, suggesting that self-training has been effective.

In Figure 7, we observe that the models for commits have mod-
erate prediction performance. This correlates with moderate data
imbalance where the ratio of positive data is 22.67% (Table 7). PR

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Chen et al.

Table 8: Github_Combined Improvement over Github_Basic

Recall Range % PR AUC Increase
0.18–0.93 -0.40
0.80–0.93 0.34

Table 9: Stability Validation Dataset Sizes

50% of 50% of
Data Positively Negatively Total
Source Labeled Labeled Size

Jira Tickets 455 6,059 6,514
Bugzilla Reports 10,125 1,151 11,276
Github Issues 2,573 6,042 8,615
Commits 2,590 8,838 11,428
Emails 5,878 2,408 8,286

Reserved CVEs 3,622 5,577 9,199

Table 10: Stability Validation Results

Data Source Deployment Stability
Jira Tickets 0.93

Bugzilla Reports 0.93
Github_Basic 0.93

Github_Combined 0.77
Commits 0.88
Emails 0.91

Reserved CVEs 0.73

AUC improvement is 8.01% for this data source (Table 6), suggest-
ing that self-training has also been effective. This is confirmed
further in Section 6.2 with an experiment without the addition of
manually-labeled data in training a new model.

Figure 7 shows amarkedly good performance of the email models.
Recall from Section 3.1 that there is already a high proportion of
vulnerability-related data within the email dataset such that we
do not apply keyword-based filtering for it (irrelevant emails in
the dataset include release announcements, etc.). Similar to the
case of Bugzilla, the result suffers from extreme imbalance where
the ratio of positive labels is 70.93% (Table 7), causing most data
predicted positive, matching expectation. Table 6 shows that emails
has the lowest non-zero PR AUC improvement. The already-high
performance for this data source leaves little space for improvement.

Figure 6 indicates that the reserved CVEs’ model has a good
performance. The new model training data has a relatively good
balance of 39.38% (Table 7), therefore, it appears that the perfor-
mance can be attributed to the good quality of training data. Table 6
shows 2.52% PR AUC improvement for this data source, which also
suggests that self-training has been effective, since it is unlikely
that the number of labeled reserved CVEs increased significantly
between the training of the old and the new models.

Stability Validation. Here we apply the validation method of Sec-
tion 5.2. Recall that the test is performed on half of the labeled
data for each data source, chosen such that they have the same
balance of positives and negatives with the original dataset. Table
9 shows the dataset size details. We input this same test dataset to
both the production model and the new model. Table 10 shows the

Table 11: Dataset Sizes for Self-Training Experiment
Manual Self-Training Total

Positive 3,989 849 4,838
Negative 16,011 44,672 60,683
Total 20,000 45,701 65,701

deployment stability results. We observe that most of the deploy-
ment stability values are around 0.9 which means in most cases,
both the production model and the new model agree on 90% of the
prediction results, so there is not too much risk to deploy the new
model. Github_Combined’s deployment stability at 0.77 is lower
than most others. This indicates that the new model behaves some-
what differently to the production model on the same input dataset.
The likely cause of this is the change in the input data for train-
ing, where the new models are trained with more training data,
including self-training data. However, although the deployment
stability is low, in this case the new model has a much better quality
(see Figure 6), and we still replace the current production model
with the new model. Reserved CVEs’ deployment stability at 0.73 is
also low. We discovered that both models consistently mispredict
some amount of positive data as negative. In this case, we do not
have a confidence to deploy the new model into production. We
discovered the reason is that in this initial iteration, there is an
error in our implementation where the features that are used for
Reserved CVEs model training become reordered in the prediction
stage. This demonstrates that the deployment stability metric
has been effective in helping to discover an error.

6.2 Self-Training Experiment
In the case study above, although the results suggest that self-
training has been effective in improving the performance of the
models, the addition of new manually-labeled data in training the
new model could have also contributed. To ascertain the effec-
tiveness of self-training, here we present an experiment with two
models, one is trained with a dataset of 20,000 manually-labeled
Github commits, and another is trained with a larger dataset with
only self-training data added to the same manually-labeled dataset.
The sizes of the datasets that we use are shown in Table 11. The
second column shows the numbers of positives and negatives for
the manually-labeled data. The third column shows the sizes of
the datasets labeled by self-training. We note that this is the ideal
situation for self-training, where the automatically-labeled dataset
size is much larger than the size of the manually-labeled dataset.

We first train a k-fold stacking ensemble model (see Section 4.2)
in a supervised manner using the 20,000 manually-labeled data.
For labeling, we use PVR low and high thresholds (see Section 4.3)
to predict whether a particular commit with its PVR is positive
(vulnerability-related) or negative (vulnerability-unrelated). For the
low and high thresholds, we use the values 0.22 and 0.88, respec-
tively. 0.22 and 0.88 are the thresholds such that we can use our
model to decide that a commit is negative, and respectively positive,
with high precisions of 0.93 and 0.91, respectively. We next use the
supervised training model to label the unlabeled data, and add them
into our labeled dataset, resulting in total 65,701 labeled commit
data. Using these data, we train another k-fold stacking ensemble
model. Figure 8 shows the PR curves of both models. For any of the
recall in the range 0.23 to 0.79 with complete precision data, the

A Machine Learning Approach for Vulnerability Curation MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 8: PR Curve for Self-Training Experiment
model with self-training consistently has a better precision,
with 10.50% PR AUC improvement of the PR curves. This result
demonstrates the effectiveness of self-training for commit data.

6.3 Sensitivity to Word2vec Parameters
Here we measure the sensitivity of the model’s performance to the
values of the word2vec parameters (see Section 4.1). We experiment
using Jira tickets’, Bugzilla reports’, and commits’ data sources. To
compute the sensitivity, we use the parameter values of Table 4 as
a baseline. From the baseline, we change 50% of the value of one
parameter in both positive and negative directions, while fixing the
values of the other parameters, and we record the performance of
the resulting models (one for each change in the positive or negative
direction). As the performance measure, we use the PR AUC of the
trainedmodels for a uniform recall range for each data source where
we have precision data available (0.1–0.61 for Jira tickets, 0.88–1.0
for Bugzilla reports, and 0.13–0.67 for commits). The sensitivity is
computed as the percentage of the absolute change in the PR AUC
for each percentage of absolute change in the input value, which
is then averaged for both the positive and negative changes. From
the results in Table 12, we see that the performance for Jira tickets
is most sensitive to the change in window size, minimal count, and
vector size, in that order. The prediction performance for Bugzilla
reports is already very high (see Figure 7) and is therefore hard
to change by tuning the word2vec parameters. For commits, the
result is different to that of Jira tickets, where the performance
is most sensitive to minimal count, followed by vector size, and
lastly window size. Our results indicate that there is no uniform
ordering of sensitivity across data sources.

7 LIMITATIONS AND FUTUREWORK
We identify the limitations of our work as follows:

• Limitation to textual data. A vulnerability can be intro-
duced into an open-source library by a commit, but we can-
not identify such vulnerabilities unless they are discussed in
any of the data sources. This can be addressed in the future
by analyzing library code for vulnerabilities [13, 21, 39, 47].

• Weakness to data imbalance. Our results in Section 6.1
indicates that the model performance is still relatively low
for Jira tickets despite the use of k-fold stacking ensemble.

Table 12: Sensitivity to Word2vec Parameters
Data
Source Parameter Sensitivity

Jira Tickets Window Size 0.102
Minimal Count 0.056
Vector Size 0.016

Bugzilla Reports Window Size 0.003
Minimal Count 0.002
Vector Size 0.002

Commits Window Size 0.003
Minimal Count 0.016
Vector Size 0.007

This can be addressed in the future by limiting our keyword-
based filtering to the set of terms appearing in our labeled
dataset may reduce input imbalance.

• Ignoring label change. The labels in the SCA library vul-
nerability database may change. We assume in this work
that the amount of such change can be ignored.

For more future work, firstly, we can study the usage of alternative
machine learning approaches to mitigate data imbalance further
(see Section 8.2), such as off-the-shelf ensemble approaches [14, 18,
25]. Secondly, at the moment we train one word2vec model per data
source, with the intention of capturing the special characteristics of
each data source. We can instead experiment with a single model
trained for all data sources, or for a relevant external large cor-
pora. Thirdly, for word embedding, we can also explore word2vec
alternatives [17, 31].

8 RELATEDWORK
8.1 Vulnerability Identification
There is a large number of works in the area of vulnerability discov-
ery, where the problem is in the discovery of unknown vulnerabili-
ties, with a variety of approaches including static and dynamic pro-
gram analyses, and even machine learning [4, 13, 20, 21, 24, 40, 45,
47, 49], as well as attack surface approximation [37, 38]. In contrast,
our work is on the identification of vulnerabilities, where the vulner-
abilities are known in various forms such as fix commits, tickets, and
mailing list discussions, but not explicitly identified as such. In this
area, machine learning techniques are prominent. Wijayasekara et
al. [46] point to the criticality of unidentified vulnerabilities, which
they call hidden impact vulnerabilities. They show that 32% and 64%
of Linux kernel and MySQL vulnerabilities discovered from January
2006 to April 2011 respectively were unidentified vulnerabilities,
and that their numbers have increased in both software 53% and
10% respectively. Perl et al. [30] classify commits as related to a
CVE or not using SVM model, but this requires prior identification
of the vulnerabilities in the NVD. Zhou and Sharma [50] explore
the identification of vulnerabilities in commit messages and issue
reports/pull requests. Their approach discovers hidden vulnerabil-
ities in more than 5,000 projects spanning over six programming
languages. Although we use the same k-fold stacking ensemble, we
implement a complete iterative pipeline that improves model preci-
sion at each iteration withmore data sources and features. Our work
also uses self learning [28] and a novel deployment stability metric.
For the identification of vulnerability-related commits, Sabetta and

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Chen et al.

Bezzi propose feature extraction also from commit patches in ad-
dition to commit messages [34]. As ours, they consider patches as
natural language text, however, their work is limited in scope to
commits data only. Wan considers vulnerability identification from
commit messages using deep learning [41] with higher F1 scores
compared to Zhou and Sharma’s k-fold stacking ensemble [50],
however, the models are trained using a dataset labeled without
automated filtering. This alone includes 167K Linux kernel commits.
In contrast, our approach considers more data sources, and is aimed
at practical applicability by employing keyword-based filtering and
self learning. This only requires the manual labeling of a small
proportion of the data. Beyond identifying vulnerabilities, Chen et
al. applies extreme multi-label (XML) learning to identify libraries
from vulnerabilities data in the NVD for SCA [15].

8.2 Learning with Unbalanced Data
Handling unbalanced data is an important research area in ma-
chine learning, with a number of literature surveys [22, 23, 36, 44].
The main approaches include preprocessing, cost-sensitive learning,
and ensemble. Preprocessing is further classified into re-sampling
and feature-selection. Re-sampling is further categorized into un-
dersampling, oversampling, and hybrid. To balance the data, un-
dersampling removes data from the majority class in the dataset,
while oversampling synthesizes data for the minority class in the
dataset. Feature-selection removes irrelevant features from the fea-
ture space, resulting in more balanced data with only features that
are relevant. Cost-sensitive learning assumes higher costs for the
misclassification of minority class samples compared to majority
class samples, with the algorithm optimizes towards lower cost.

Ensemble is a popular solution for unbalanced learning [22]. It
can be classified into three: bagging, boosting, and stacking [35].
In bagging, the dataset is split into disjoint subsets, and a different
classifier is applied to each subset. The results are then combined
using either voting for classification, or averaging for regression.
In boosting, we serially combine weak classifiers to obtain a strong
classifier. In stacking, which includes the k-fold stacking ensemble
that we use, the classifiers are coordinated in parallel and their
results are combined using ameta classifier ormeta regressor, which
in our case is logistic regression.

In software engineering, Wang and Yao consider the prediction
of defective modules for the next software release based on past
defect logs [43]. The data is therefore unbalanced, as the number of
non-defective modules is far larger than the defective ones. They
consider data re-sampling, cost-sensitive, and ensemble learning
methods. One of the best results is achieved by AdaBoost.NC en-
semble [42]. Rodriguez et al. also review classifiers for unbalanced
data for the software defect prediction problem [32]. They consider
12 algorithms, with C4.5 and Naive Bayes as base classifiers. They
discovered that ensemble, including SMOTEBoost and RUSBoost
provide better results than sampling or cost-sensitive learning. Dif-
ferent to these approaches, we use stacking instead of boosting en-
semble to be more adaptive to variations in the input data sources,
nevertheless, the literature justifies our usage of ensemble.

8.3 Self-Training
Self-training is a widely-used semi-supervised learning [12] ap-
proach. It is applied when the training dataset disproportionately

includes only a small amount of labeled data. This situation arises
when labeled data are expensive and time consuming to get, yet
the unlabeled data are easier to collect. Nigam and Ghani define
self-training as an algorithm that initially builds a single classifier
using the labeled training data. It then labels the unlabeled data and
converts the most confidently-predicted data item of each class into
a labeled training example, iterating until all data are labeled [28]2
Nigam et al. use expectation-maximization (EM), a related algorithm
which iteratively uses the initial Naive Bayes classifier to label the
unlabeled text data from the web to learn new parameters for the
classifier until there is no change in the parameters [29]. The use
of EM reduces classification error by up to 33%. Yarowsky uses an
algorithm akin to EM for word sense disambiguation [48], however,
here problem-specific constraints are applied to build the initial
training data as well as filtering the automatically-generated labels
at each iteration. The author reports testing accuracy exceeding
95%. Rosenberg et al. [33] use self-training as defined by Nigam
and Ghani [28] (which stops when all data are labeled) for object
detection with results comparable to traditional supervised learning
using a much larger set of fully-labeled data. In our application of
self-training, we use high and low PVR thresholds (Section 4.3) to
obtain the most-confidently-predicted data, and we stop in just one
self-training iteration without attempting to label all data.

9 CONCLUSION
We described a design and implementation of a machine learn-
ing system to help security researches curate a library vulnera-
bility database. It trains machine learning models to predict the
vulnerability-relatedness of each item from publicly-available data
sources including NVD, bug tracking systems, commits, andmailing
lists. The system supports a complete pipeline from data collection,
model training and prediction, to the validation of new models be-
fore deployment. It is executed iteratively to generate better models
as new input data become available. We employ self-training to
significantly and automatically increase the size of input dataset
used in training new models to maximize the improvement in the
quality of the generated models at each iteration. We also proposed
a new deployment stability metric to aid the decision in deploying
the newly-trained model at each iteration. Our case study of one
iteration of the pipeline demonstrated PR AUC improvements of at
most 27.59%. Ours is the first of such study. Here we discovered that
the addition of the related commit features to Github issues (includ-
ing pull requests) improve the precision for the recalls that matter,
and that there is no uniform ordering of word2vec parameters sensi-
tivity across data sources. We also showed how self-training results
in better precision, with 10.50% PR AUC improvement, and how the
deployment stability metric was useful to help discover an error.

ACKNOWLEDGMENT
We thank Darius Foo and Spencer Hao Xiao (in alphabetical order)
for their comments on our draft, Hanley Shun for data retrieval,
and the whole Veracode Security Research team for maintaning the
library vulnerability database.

2We distinguish self-training from co-training [11], where another model for a different
set of features is used to automatically label the training data for a model.

A Machine Learning Approach for Vulnerability Curation MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] [n.d.]. Black Duck Software Composition Analysis. https://www.synopsys.com/

software-integrity/security-testing/software-composition-analysis.html.
[2] [n.d.]. gensim: Topic Modelling for Humans. https://radimrehurek.com/gensim/

index.html.
[3] [n.d.]. NVD - Home. https://nvd.nist.gov/.
[4] [n.d.]. rough-auditing-tool-for-security. https://code.google.com/archive/p/

rough-auditing-tool-for-security/.
[5] [n.d.]. scikit-learn: Machine Learning in Python. http://scikit-learn.org/stable/.
[6] [n.d.]. Software Composition Analysis. https://www.flexera.com/products/

software-composition-analysis.
[7] [n.d.]. Software Composition Analysis — Veracode. https://www.veracode.com/

products/software-composition-analysis.
[8] [n.d.]. Vulnerability Scanner. https://www.sonatype.com/appscan.
[9] 2019. [Security] Bump tar from 4.4.1 to 4.4.13. https://github.com/bevry/extendr/

commit/306cab9a9816f137ac763b8f5ee702a67296bb65.
[10] 2020. Use HTTPS to resolve dependencies in Maven Build. https://issues.apache.

org/jira/browse/GORA-642.
[11] A. Blum and T. M. Mitchell. 1998. Combining Labeled and Unlabeled Data with

Co-Training. In 11th COLT. ACM, 92–100.
[12] O. Chapelle, B. Schölkopf, and A. Zien. 2006. Semi-Supervised Learning. MIT

Press.
[13] T. Chappelly, C. Cifuentes, P. Krishnan, and S. Gevay. 2017. Machine learning

for finding bugs: An initial report. In MaLTeSQuE ’17. IEEE Comp. Soc., 21–26.
[14] T. Chen and C. Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In

22nd SIGKDD. ACM, 785–794.
[15] Y. Chen, A. E. Santosa, A. Sharma, and D. Lo. 2020. Automated Identification of

Libraries from Vulnerability Data. In ICSE-SEIP ’20. ACM.
[16] J. Davis and M. Goadrich. 2006. The relationship between Precision-Recall and

ROC curves. In 23rd ICML (ACM International Conference Proceeding Series),
Vol. 148. ACM, 233–240.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. CoRR
abs/1810.04805 (2018).

[18] A. V. Dorogush, V. Ershov, and A. Gulin. 2018. CatBoost: Gradient boosting with
categorical features support. CoRR abs/1810.11363 (2018).

[19] D. Foo, J. Yeo, X. Hao, and A. Sharma. 2019. The Dynamics of Software Composi-
tion Analysis. CoRR abs/1909.00973 (2019). arXiv:1909.00973

[20] S. M. Ghaffarian and H. R. Shahriari. 2017. Software Vulnerability Analysis
and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey.
ACM Comput. Surv. 50, 4 (2017), 56:1–56:36.

[21] G. Grieco, G. L. Grinblat, L. C. Uzal, S. Rawat, J. Feist, and L. Mounier. 2016.
Toward Large-Scale Vulnerability Discovery using Machine Learning. In 6th
CODASPY. ACM, 85–96.

[22] H. Guo, Y. Li, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing. 2017. Learning
from class-imbalanced data: Review of methods and applications. Expert Syst.
Appl. 73 (2017), 220–239.

[23] H. He and E. A. Garcia. 2009. Learning from Imbalanced Data. IEEE Trans. Knowl.
Data Eng. 21, 9 (2009), 1263–1284.

[24] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon, and M. Harman.
2019. The importance of accounting for real-world labelling when predicting
software vulnerabilities. In FSE ’19. ACM, 695–705.

[25] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. 2017.
LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In NIPS 30. 3146–
3154.

[26] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates. 2013.
When a Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing

Commits. In ESEM ’13. IEEE Comp. Soc., 65–74.
[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word

Representations in Vector Space. CoRR abs/1301.3781 (2013). arXiv:1301.3781
[28] K. Nigam and R. Ghani. 2000. Analyzing the Effectiveness and Applicability of

Co-training. In CIKM ’00. ACM, 86–93.
[29] K. Nigam, A. McCallum, S. Thrun, and T. M. Mitchell. 1998. Learning to Classify

Text from Labeled and Unlabeled Documents. In AAAI ’98. AAAI Press / The
MIT Press, 792–799.

[30] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar.
2015. VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to
Assist Code Audits. In 22nd CCS. ACM, 426–437.

[31] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. 2018. Deep contextualized word representations. CoRR abs/1802.05365
(2018).

[32] D. Rodríguez, I. Herraiz, R. Harrison, J. Javier Dolado, and J. C. Riquelme. 2014.
Preliminary comparison of techniques for dealing with imbalance in software
defect prediction. In 18th EASE. ACM, 43:1–43:10.

[33] C. Rosenberg, M. Hebert, and H. Schneiderman. 2005. Semi-Supervised Self-
Training of Object Detection Models. In 7th WACV/MOTION. IEEE Comp. Soc.,
29–36.

[34] A. Sabetta and M. Bezzi. 2018. A Practical Approach to the Automatic Classifica-
tion of Security-Relevant Commits. In 34th ICSME. IEEE Comp. Soc.

[35] V. Smolyakov. [n.d.]. Ensemble Learning to Improve Machine Learning Results.
https://blog.statsbot.co/ensemble-learning-d1dcd548e936.

[36] Y. Sun, A. K. C. Wong, and M. S. Kamel. 2009. Classification of Imbalanced Data:
a Review. IJPRAI 23, 4 (2009), 687–719.

[37] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. A. Williams. 2015. Approx-
imating Attack Surfaces with Stack Traces. In 37th ICSE, Vol. 2. IEEE Comp. Soc.,
199–208.

[38] C. Theisen, K. Herzig, B. Murphy, and L. Williams. 2017. Risk-Based Attack
Surface Approximation: How Much Data Is Enough?. In ICSE-SEIP ’17. IEEE
Comp. Soc., 273–282.

[39] Y. Tian, J. L. Lawall, and D. Lo. 2012. Identifying Linux bug fixing patches. In
34th ICSE. IEEE, 386–396.

[40] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. 2000. ITS4: A Static Vulnerability
Scanner for C and C++ Code. In 16th ACSAC. IEEE Comp. Soc., 257.

[41] L. Wan. 2019. Automated Vulnerability Detection System Based on Commit Mes-
sages. Master’s thesis. Nanyang Technological University.

[42] S.Wang, H. Chen, and X. Yao. 2010. Negative correlation learning for classification
ensembles. In IJCNN ’10. IEEE, 1–8.

[43] S. Wang and X. Yao. 2013. Using Class Imbalance Learning for Software Defect
Prediction. IEEE Trans. Reliability 62, 2 (2013), 434–443.

[44] G. M. Weiss. 2004. Mining with rarity: a unifying framework. SIGKDD Explo-
rations 6, 1 (2004), 7–19.

[45] D. A. Wheeler. [n.d.]. Flawfinder Home Page. https://www.dwheeler.com/
flawfinder/.

[46] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen. 2012. Mining Bug
Databases for Unidentified Software Vulnerabilities. In 5th HSI. IEEE, 89–96.

[47] F. Yamaguchi, F. Lindner, and K. Rieck. 2011. Vulnerability Extrapolation: Assisted
Discovery of Vulnerabilities Using Machine Learning. In 5th WOOT. USENIX
Assoc., 118–127.

[48] D. Yarowsky. 1995. Unsupervised Word Sense Disambiguation Rivaling Super-
vised Methods. In 33rd ACL. Morgan Kaufmann Publishers / ACL, 189–196.

[49] M. Zalewski. [n.d.]. American Fuzzy Lop (2.52b). http://lcamtuf.coredump.cx/afl/.
[50] Y. Zhou and A. Sharma. 2017. Automated identification of security issues from

commit messages and bug reports. In 11th FSE. ACM, 914–919.

https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/index.html
https://nvd.nist.gov/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
http://scikit-learn.org/stable/
https://www.flexera.com/products/software-composition-analysis
https://www.flexera.com/products/software-composition-analysis
https://www.veracode.com/products/software-composition-analysis
https://www.veracode.com/products/software-composition-analysis
https://www.sonatype.com/appscan
https://github.com/bevry/extendr/commit/306cab9a9816f137ac763b8f5ee702a67296bb65
https://github.com/bevry/extendr/commit/306cab9a9816f137ac763b8f5ee702a67296bb65
https://issues.apache.org/jira/browse/GORA-642
https://issues.apache.org/jira/browse/GORA-642
https://arxiv.org/abs/1909.00973
https://arxiv.org/abs/1301.3781
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://www.dwheeler.com/flawfinder/
https://www.dwheeler.com/flawfinder/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Overview
	3 Data Collection
	3.1 Data Sources
	3.2 Feature Engineering and Selection

	4 Model Training
	4.1 Word Embedding
	4.2 Training
	4.3 Self-Training

	5 Model Validation
	5.1 Performance Validation
	5.2 Stability Validation

	6 Evaluation
	6.1 Models Deployment Case Study
	6.2 Self-Training Experiment
	6.3 Sensitivity to Word2vec Parameters

	7 Limitations and Future Work
	8 Related Work
	8.1 Vulnerability Identification
	8.2 Learning with Unbalanced Data
	8.3 Self-Training

	9 Conclusion
	References

