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ABSTRACT
Bug localization refers to the task of automatically process-
ing bug reports to locate source code files that are respon-
sible for the bugs. Many bug localization techniques have
been proposed in the literature. These techniques are often
evaluated on issue reports that are marked as bugs by their
reporters in issue tracking systems. However, recent findings
by Herzig et al. find that a substantial number of issue re-
ports marked as bugs, are not bugs but other kinds of issues
like refactorings, request for enhancement, documentation
changes, test case creation, and so on. Herzig et al. report
that these misclassifications affect bug prediction, namely
the task of predicting which files are likely to be buggy in the
future. In this work, we investigate whether these misclas-
sifications also affect bug localization. To do so, we analyze
issue reports that have been manually categorized by Herzig
et al. and apply a bug localization technique to recover a
ranked list of candidate buggy files for each issue report. We
then evaluate whether the quality of ranked lists of reports
reported as bugs is the same as that of real bug reports. Our
findings shed light that there is a need for additional clean-
ing steps to be performed on issue reports before they are
used to evaluate bug localization techniques.
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1. INTRODUCTION
To improve the quality of software systems, developers of-

ten open an issue tracking system for people to submit issue
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reports. An issue report can contain a description of a bug,
a new feature request, a request for re-documentation, a re-
quest for additional test cases, and so on. One of the most
important issue reports are bug reports since these bugs can
affect the reliability of software systems. For large systems,
the number of bug reports, could be too large for developers
to handle. A Mozilla developer, as quoted by Anvik et al.,
mentions that “Everyday, almost 300 bugs appear that need
triaging. This is far too much for only the Mozilla program-
mers to handle” [1]. Thus, there is a need for techniques that
can help developers resolve bug reports faster. The core part
of this activity would be the identification of buggy files that
are responsible for the bugs.

To address the above need, researchers have proposed
techniques that take as input a bug report and use infor-
mation within the bug report to identify source code files
that are likely to be related to the report. These tech-
niques are often referred to as bug localization and many
such techniques have been proposed recently, e.g., [7, 10, 13,
11]. Among these techniques, standard information retrieval
based techniques that compute the similarity between the
textual description of a bug report and textual description
of a source code file are often employed with relative success.
For each bug report, these techniques return a ranked list of
source code files sorted based on their likelihood to be the
ones responsible for the bug. To evaluate these techniques,
often historical closed and fixed issue reports marked as bugs
are collected from issue tracking systems. The goal of the
evaluation is to see if the ranked list of files returned by bug
localization technique contains actual buggy files that need
to be modified to resolve the bug report.

Recently, Herzig et al. have manually analyzed more than
7,000 issue reports from the issue tracking systems of 5
software projects: HTTPClient, Jackrabbit, Lucene-Java,
Rhino, and Tomcat5 [5]. They reported that more than
40% of the issue reports are wrongly classified. About ev-
ery 1 out of 3 issue reports that are marked as bugs are not
bugs. They have also shown that misclassification affects
defect prediction which is the task to predict which files are
likely to be buggy in the future. In this study, we extend
Herzig et al.’s work by asking this question: does misclassi-
fication affect bug localization? Similar with Herzig et al.’s
work our goal is to investigate if there is a threat that affects
the validity of the evaluations performed by studies on bug
localization including those of our own, e.g., [13].

To investigate whether misclassification affects bug lo-
calization, we reuse the manually categorized bug report
datasets of Herzig et al. which is made publicly avail-
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able at: http://www.st.cs.uni-saarland.de/softevo/

bugclassify/. Herzig et al.’s datasets contain bug re-
ports from Jira and Bugzilla issue reports. Past studies
have shown that many bug reports in Bugzilla are poorly
linked [3, 2, 12], however, bug reports in JIRA are often well
linked due to the fact JIRA provides add-ons that can con-
nect issues to commits in version control systems [4]. Thus,
we only use Herzig et al.’s bug report datasets that origi-
nate from a JIRA issue tracking system. These include 5,591
bug reports from HTTPClient’s, Jackrabbit’s, and Lucene-
Java’s JIRA issue tracking systems. From these bug reports,
we can compare the accuracy of a bug localization technique
on issue reports that are marked as bugs by their reporters
(reported) to the accuracy of the bug localization technique
on those that are actual bug reports (actual).

In our study, we use a bug localization technique based
on vector space model (VSM), which is a standard infor-
mation retrieval method. This technique has been shown
to outperform many other information retrieval methods in
a past study by Rao and Kak [10]. Extended vector space
models have also been used by state-of-the-art bug localiza-
tion techniques [13, 11]. In this work, we choose to use the
original VSM as if the performance of this base technique
is affected due to misclassification, other techniques derived
from it would also likely to be affected. To measure the
performance of a bug localization technique, we make use of
average precision which is a standard information retrieval
metric, and it has also been used in past bug localization
studies, e.g., [10, 13, 11].

In this work, we would like to answer three research ques-
tions:

RQ1 Does the performance of a bug localization technique
differs for issue reports reported as bugs and actual
bug reports?

RQ2 Which misclassification types have more impact to a
bug localization technique?

RQ3 What can we do to mitigate the impact of misclas-
sification to a bug localization technique?

The contributions of this paper are as follows:

1. We are the first to analyze the impact of misclassifi-
cation on bug localization. Our work extends Herzig
et al.’s work that study the impact of misclassification
on bug prediction. Bug localization and bug prediction
are related but differ in terms of the inputs considered
(bug reports vs. history) and task solved (predict spe-
cific buggy files responsible for a report vs. predict
future buggy files).

2. We analyze the types of misclassifications that have
more impact on the performance of bug localization
techniques and suggest what can be done to mitigate
the effects of these misclassifications.

The structure of this paper is as follows. In Section 2,
we describe preliminary information on issue reports, text
pre-processing, and a bug localization technique that we use
in this paper. In Section 3, we present our empirical study
methodology. In Section 4, we present our empirical study
results. We discuss related work in Section 5. We finally
conclude and mention future work in Section 6.

2. PRELIMINARIES

Issue Reports: An issue report contains a number of fields
and each of them carries a piece of information. In this
work, three fields are particularly interesting to us: (1) short
summary, (2) longer description, and (3) issue category.

Text Preprocessing: Text preprocessing is an essential
task in information retrieval based bug localization tech-
niques. There are three text preprocessing steps: text
normalization, stop word removal, and stemming. These
steps have been performed by past bug localization stud-
ies, e.g., [13]. At the end of these preprocessing steps, each
bug report and source code file is represented as a bag (i.e.,
multi-set) of words.

In the text normalization step, we remove punctuation
marks, special symbols, and number literals from bug re-
ports, and source code files. To normalize source code
files, we utilize JDT library1 to extract Abstract Syntax
Trees (ASTs) from source code. We keep texts in AST
nodes corresponding to identifiers and string literals. Fur-
thermore, we split identifiers into word tokens following
Camel casing convention. In the stop word removal step,
we remove from bug reports commonly occurring English
words (e.g., “I”, “you”, “we”, “are”, etc.); we use the stop
word list from: http://dev.mysql.com/doc/refman/5.6/

en/fulltext-stopwords.html. We also remove program-
ming language keywords from source code files (e.g., pub-
lic, class, if, for, etc.). We remove these stop words as
they carry little meaning. Next, we convert all word to-
kens into lower case. In the stemming step, we reduce a
word to its root form. For example, we reduce “mapping”,
“mapped”, and “maps” to “map”. To do this, we apply the
well known Porter Stemming Algorithm and use its imple-
mentation made publicly available at: http://tartarus.

org/martin/PorterStemmer/.

Bug Localization Using VSM: We implement a bug lo-
calization technique that is based on vector space model
(VSM). It takes as input a query (i.e., preprocessed bug re-
port), and a corpus of documents (i.e., preprocessed source
code files) and outputs a ranked list of documents sorted by
their textual similarity to the input query. VSM represents
a document as a vector of weights, where each weight corre-
sponds to a word in the document. The weight of each word
is usually computed using the product of its term frequency
and its inverse document frequency, following the standard
tf-idf weighting scheme [9]. The following is the tf-idf weight
of word w in document d given a set of documents D (de-
noted as tf-idf(w, d,D)):

tf-idf(w, d,D) = log(f(w, d) + 1)× log
| D |

| {di ∈ D : w ∈ di} |

In the above equation, f(w, d) is the number of times word
w occurs in document d, and w ∈ di denotes that word w
appears in document di. Textual similarity between query
q and document d is obtained by computing the cosine sim-
ilarity between the two vectors representing q and d [9].

Evaluation Metric: We evaluate bug localization tech-
niques using average precision [9], which is a widely used
metric in information retrieval and it has been used to eval-
uate many past bug localization techniques [10, 13, 11]. A
bug localization technique outputs a ranked list of source
code files given an input bug report. Given a ranked list for

1http://www.eclipse.org/jdt/
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a bug report r, we can compute an average precision score
as follows:

AvgP (r) =

Dr∑
k=1

P@k × rel(k)

Total number of relevant files

P@k =
# relevant files in the top-k elements

k

In the above equations, Dr is the size of the ranked list;
P@k is the precision at k, which is the ratio between the
number of relevant files (i.e., source code files that need to be
modified to resolve bug report r) among the top-k elements
in the ranked list; rel(k) is a function that returns 1 if the
file at position k is relevant (i.e., it needs to be modified to
resolve the bug), and 0 otherwise.

3. STUDY APPROACH
Our empirical study methodology consists of several steps:

data acquisition, bug localization, effectiveness measure-
ment, and statistical test. We describe each of these steps
in the following paragraphs.

Data Acquisition: We download Herzig et al.’s datasets
which include the identifiers of issue reports that they
have manually analyzed from www.st.cs.uni-saarland.

de/softevo/bugclassify. We download the actual issue
reports from the corresponding JIRA repositories. We ex-
tract the textual contents of the summary and description
fields of these issue reports and perform the preprocessing
steps described in the previous section. After this step, each
bug report is represented as a bag-of-words. We also analyze
history data from version control systems to find the com-
mits that are linked to the various issue reports. In JIRA, it
is easy to identify these commits as the identifier of an issue
report would appear as the first few characters in a commit
log. Given these commits, we also extract the source code
files in the code base prior to the commits that address the
issue, and the set of source code files that are modified to
resolve the issue. For each source code file in the code base,
we extract words that appear in the file and perform the pre-
processing steps described in the previous section. After this
step, each source code file is represented as a bag-of-words.

Bug Localization: At the end of the data acquisition step,
we have for each issue report, the textual content of the issue
reports, the textual content of each source code file in the
code base prior to the fix, and a set of source code files that
are modified in the commits that resolve the issue report.
We input the textual content of the issue reports and source
code files to a bug localization technique which would output
a ranked list of files in the code base sorted based on their
similarity to the bug report. We use the VSM-based bug
localization technique presented in the previous section.

Effectiveness Measurement: At the end of the bug lo-
calization step, we have for each issue report, a ranked list
of source code files. We also have the set of files that are
modified to address the issue report – which we treat as the
ground truth. We compare the ranked list with the ground
truth and for each report, we compute the average precision
score presented in the previous section.

Statistical Test: At the end of the previous step, we have
a set of average precision scores. Note that each dataset con-
tains issue reports that are marked by their reporters as bugs

(Reported), and issue reports that are actual bug reports,
i.e., they are labeled by Herzig et al. as bugs (Actual). We
extract a set of average precision scores for Reported and
Actual. We then compute the mean of these scores and
perform the well-known Mann-Whitney U test [8] to see if
the differences in the means are significant.

4. STUDY RESULTS
In the following paragraphs we describe the answers to the

research questions that we pose in the introduction section.

RQ1-Effect of Misclassification on Bug Localization:
The Mean Average Precision (MAP) scores for the two cases:
reports marked as bugs (Reported), and actual bug reports
(Actual) are shown in Table 1. We can note that there is a
-2.33%–12.25% difference in terms of the MAP scores. We
have also performed a Mann-Whitney U test at 0.05 level of
significance and we find that the differences are significant.
Thus, misclassification significantly affects bug localization
results.

Table 1: Mean Average Precision (MAP) Scores for Re-

ported and Actual

Project Reported Actual Difference
HTTPClient 0.429 0.419 -2.33%
Jackrabbit 0.302 0.339 12.25%

Lucene-Java 0.301 0.322 6.98%

RQ2-Effect of Different Misclassification Types: To
answer this research question, we modify our study method-
ology slightly by omitting issue reports that suffer from a
misclassification type (e.g., RFE misclassified as BUG (RFE
to BUG)), one type at a time and recalculate the MAP
scores. We would like to find the misclassification type
that has the most impact to the difference in the MAP
scores for Reported and Actual. In Herzig et al.’s dataset,
they identify 13 different categories of issue reports: BUG,
RFE, IMPROVEMENT, DOCUMENTATION, REFACTORING, BACKPORT,
CLEANUP, SPEC, TASK, TEST, BUILD_SYSTEM, DESIGN_DEFECT,
and OTHERS 2. The results are shown in Table 2. We note
that the misclassification types with the most impact are
TEST to BUG and IMPROVEMENT to BUG.

RQ3-Mitigation Strategy: To suggest what can be done
to mitigate the impact of misclassification on bug localiza-
tion, we analyze TEST to BUG and IMPROVEMENT to BUG mis-
classification cases which have been shown in the answer
to RQ2 to be the dominant causes of the performance dif-
ference. We find that many these cases correspond to bug
reports where no source code files are modified (TEST to
BUG), and bug reports whose summary or description fields
explicitly specify the buggy files (IMPROVEMENT to BUG). For
example, the summary field of bug report HTTPCLIENT-
1036 is “StringBody has incorrect default for characterset”
and the relevant file is StringBody.java.

Thus, to mitigate effect of misclassification in the eval-
uation of bug localization technique, we can omit all bug
reports where no source code files are modified to resolve
them, or whose summary or description already explicitly
specify the buggy files. For the latter case, there is no need

2In their paper, 6 categories are identified. We use the cate-
gories in their publicly downloadable dataset which include
14 categories. We merge UNKNOWN to OTHERS.
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Table 2: Mean Average Precision (MAP) Scores when

Issue Reports of a Particular Misclassification Type are

Omitted. Omit. = Omitted, Misclass. = Misclassifica-

tion, HC = HTTPClient, JB = Jackrabbit, LJ = Lucene-

Java. The last column is the MAP of all three projects.

Omit. Misclass. Type HC JB LJ Overall
(Actual to Reported)

None 0.429 0.302 0.301 0.312
RFE to BUG 0.427 0.303 0.304 0.313

DOCUMENTATION to BUG 0.43 0.304 0.305 0.315
IMPROVEMENT to BUG 0.416 0.299 0.295 0.307
REFACTORING to BUG 0.428 0.301 0.301 0.311

BACKPORT to BUG 0.43 0.303 0.300 0.313
CLEANUP to BUG 0.429 0.303 0.303 0.314

SPEC to BUG 0.435 0.302 0.303 0.312
TASK to BUG 0.432 0.302 0.301 0.312
TEST to BUG 0.429 0.328 0.313 0.334

BUILD_SYSTEM to BUG 0.429 0.306 0.303 0.315
DESIGN_DEFECT to BUG 0.424 0.301 0.301 0.311

OTHERS to BUG 0.439 0.303 0.301 0.313

for bug localization as developers can localize the buggy files
by just reading the reports.

Threats to Validity: The validity of our study is largely
dependent on the accuracy of the category labels that are
created by Herzig et al. during their manual investigation
of the issue reports which is a threat to internal validity.
Also, we have only investigated 5,591 issue reports from
three projects which is a threat to external validity.

5. RELATED WORK
In this section, we describe studies that analyze bias in

software engineering and bug localization studies. Our sur-
vey here is by no means complete.

Bias in Software Engineering: The most closely related
work to ours is the work by Herzig et al. [5]. In that study,
they investigate if issue report misclassification affects bug
prediction. In this work, we extend their study to investi-
gate if issue report misclassification affects bug localization.
There are other studies that analyze bias in software engi-
neering: Bird et al. note that only a fraction of bug fixing
activities are labelled in version control systems and investi-
gate the effect of this on the performance of bug prediction
techniques [3]. Kim et al. investigate the level of noise that
can affect the performance of defect prediction and propose
an approach that can detect and eliminate noise [6].

Bug Localization: Lukins et al. propose the usage of
a popular topic modeling algorithm, named Latent Dirich-
let Allocation (LDA), to rank source files [7]. Rao and
Kak evaluate the performance of a number of standard IR
methods for bug localization and demonstrate that simpler
approaches like vector space modeling and smoothed uni-
gram model perform the best [10]. Zhou et al. propose
a bug localization approach which uses an extended vector
space model, named rVSM, that considers the size of source
code files [13]. Wang and Lo propose a new bug localiza-
tion approach that considers version history, similar report
and bug report structure that outperforms many other ap-
proaches [11].

6. CONCLUSION AND FUTURE WORK
Herzig et al. have shown that more than 40% of the issue

reports are wrongly classified. In this work, we investigate if
these misclassifications affect bug localization. We compare
the effectiveness of a bug localization tool on issue reports
marked as bugs by their reporters (Reported) and issue re-
ports that are actual bug reports (Actual). Comparing the
results for Reported and Actual, our empirical study finds
that there are -2.33%, 12.25%, and 6.98% differences in the
mean average precision scores for HTTPClient, Jackrabbit,
and Lucene-Java, respectively. Using Mann-Whitney U test,
we find that the differences are significant. We have also
studied the misclassification types that have the most im-
pact to bug localization and make some recommendations
to mitigate this impact.

In the future, we intend to investigate the impact of
misclassification on other bug localization techniques, and
the relative performance of these techniques on a cleaned
dataset.
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