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Abstract. This paper is concerned with automated tuning of param-
eters in local-search based meta-heuristics. Several generic approaches
have been introduced in the literature that returns a ”one-size-fits-all”
parameter configuration for all instances. This is unsatisfactory since
different instances may require the algorithm to use very different pa-
rameter configurations in order to find good solutions. There have been
approaches that perform instance-based automated tuning, but they are
usually problem-specific. In this paper, we propose CluPaTra, a generic
(problem-independent) approach to perform parameter tuning, based on
CLUstering instances with similar PAtterns according to their search
TRAjectories. We propose representing a search trajectory as a directed
sequence and apply a well-studied sequence alignment technique to clus-
ter instances based on the similarity of their respective search trajec-
tories. We verify our work on the Traveling Salesman Problem (TSP)
and Quadratic Assignment Problem (QAP). Experimental results show
that CluPaTra offers significant improvement compared to ParamILS (a
one-size-fits-all approach). CluPaTra is statistically significantly better
compared with clustering using simple problem-specific features; and in
comparison with the tuning of QAP instances based on a well-known dis-
tance and flow metric classification, we show that they are statistically
comparable.

Keywords: instance-based automated tuning parameter, search trajec-
tory, sequence alignment, instance clustering.

1 Introduction

In the last decade there has been a dramatic rise in the design and application
of meta-heuristics such as tabu search and simulated annealing to solve combi-
natorial optimization problems (COP) in many practical applications. The ef-
fectiveness of a meta-heuristic algorithm hinges on its parameter configurations.
For example, a tabu search will perform differently with different tabu lengths.
Previous studies revealed that only 10% of the time is spent on algorithm de-
sign and test; while the rest of the development time is spent on fine-tuning the
parameter settings [1]. The latter process is either a laborious manual exercise
by the algorithm designer, or an automated procedure. The key challenge in
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automated tuning is the large parameter configuration space on even a handful
of parameters.

Given an algorithm (which we call the target algorithm) to solve a given COP,
it has been observed that different problem instances require different parameter
configurations in order for the algorithm to find good solutions (e.g. [6,19,24]).
An interesting research question is whether there are patterns or rules governing
the choice of parameter configurations, and whether such patterns can be learnt.

Several approaches have been proposed to automate the tuning problem, such
as the Racing Algorithm by Birratari et al. [3], Decision Tree Classification Ap-
proach by Srivastava and Mediratta [22], CALIBRA by Andenso-Daz and Laguna
[1], ParamILS by Hutter et al. [12,13] and Randomized Convex Search (RCS) by
Lau and Xiao [14]. These are generic approaches which can be used for various
COP problems. One common shortcoming of such approaches is that they pro-
duce a one-size-fits-all configuration for all instances, which may not perform
well on large and diverse instances. On the other hand, approaches by Patterson
and Kautz [19], Hutter and Hamadi [11], Gagliolo and Schmidhuber [6] and Xu et
al. [24] attempted to deal with instance-based automatic tuning. However, those
approaches are less general in the sense that each of them can only solve a partic-
ular problem by making use of problem-specific features. For example, SATzilla
constructs per-instance algorithm portfolios for SAT [24]. SATzilla07 uses 48 fea-
tures, most of which are SAT-specific features. The caveat is that feature selection
is itself a very complex problem in general which cannot be done automatically but
rather must rely on the knowledge of a domain expert.

Rather than ambitiously attempting instance-based tuning which we believe
to be a computationally prohibitive and unachievable task in the near future
because of the large parameter configuration space and large number of instances,
we turn towards a cluster-based treatment. Our goal extends a preliminary work
on features-based tuning proposed in [14] where instances are clustered according
to some problem-specific features, but unlike [14], we do not rely on problem-
specific features; rather, we propose a generic approach where we make use of the
search trajectory patterns as a feature. A search trajectory pattern is defined as
the path that the target algorithm follows as it searches from an initial solution
to its neighbor iteratively [10]. We then apply a standard clustering algorithm to
segment the training set of instances into clusters based on their search trajectory
patterns similarity.

Motivated by earlier works on the tight correlation between fitness landscape
and search trajectories [7,8], and the tight correlation between the fitness land-
scape and algorithm performance [20], our bold conjecture in this paper is that
trajectory patterns themselves are correlated with parameter configurations; in
other words, we believe that if a parameter configuration works well for a partic-
ular instance, then it will also work well for instances with similar fitness land-
scapes (which can be inferred from the trajectory patterns). Consequently, we
train our automated tuning algorithm by first performing clustering on problem
instances based on their search trajectories similarity, and then apply existing
one-size-fits-all algorithms (such as CALIBRA, ParamILS or RCS) to derive the
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best parameter configurations for the respective clusters. Subsequently, given an
arbitrary instance, we first map its search trajectory to the closest cluster. The
tuned parameter configuration for that cluster is then returned as the parame-
ter configuration for this instance. The result is a fine-grained tuning algorithm
that does not produce a one-size-fits-all parameter configuration, but rather in-
stance (or rather cluster)-based parameter configurations. Even though strictly
speaking, our approach is cluster-specific rather than instance-specific, it is a
big leap from one-size-fits-all schemes. Arguably, our approach, taken to the ex-
treme, can potentially produce instance-based tuning; although we do not know
how to scale it well at the moment. The major contributions in this paper are
summarized as follows:

– We propose CluPaTra, a novel instance-based problem-independent auto-
mated parameter tuning approach based on clustering of patterns of in-
stances by their search trajectories.

– A search trajectory can be derived readily from a local-search based algorithm
without incurring extra computation (other than the task of storing these so-
lutions as the local search discovers them). Hence our approach can be applied
to tune any local search-based target algorithm to solve a given problem.

– We tap into the rich depository of machine learning and data mining, uti-
lizing a clustering method based on two well-studied techniques, sequence
alignment and hierarchical clustering. We apply sequence alignment to cal-
culate a similarity score between a pair of instance search trajectories, and
hierarchical clustering to form the clusters.

CluPaTra is verified with experiments on two classical COPs - Traveling Sales-
man Problem (TSP) and Quadratic Assignment Problem (QAP). For TSP, our
target algorithm is the classical Iterated Local Search (ILS) algorithm (imple-
mented by [8]), whereas for QAP we use a relatively new hybrid metaheuristic
algorithm proposed in [18]. These choices are made on the dual intent to bench-
mark our approach against best published results (showing that it is capable of
producing results compatible to the best-found results), as well as to demon-
strate how our approach can yield significant improvement when applied to tune
a newly designed algorithm.

2 Preliminaries

In this section, we formally define the Automated Parameter Configuration
problem, followed by the concepts of the one-size-fits-all and instance-based
configurators.

2.1 Automated Parameter Configuration Problem

Let A be the target algorithm with n number of parameters to be tuned based on
a given set of training instances I. Each parameter xi can assume a value taken
from a (either continuous or discrete) interval [ai, bi] in parameter configuration
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space Θ. Let the vector x = [x1, x2, ..., xn] represent a parameter configura-
tion and H be a performance metric function that maps x to a numeric score
computed over a set of instances (see details below). The automated parameter
configuration problem is thus an optimization problem seeking to find x ∈ Θ
that minimizes H(x).

Notice that unlike standard optimization problems, the function H is a meta-
function on x is typically highly non-linear and very expensive to compute.
Furthermore, as the parameter space may be extremely large (even for discrete
values, the size is equal to (b1−a1)(b2−a2) · · · (bn −an)), it is generally imprac-
tical to execute a tuning algorithm based on full factorial exploration of good
parameter values. As in [13], to avoid confusion between a algorithm whose per-
formance is being optimized and an algorithm used to tune it, we refer to the
former as the target algorithm and the latter as the configurator.

2.2 One-Size-Fits-All Configurator

Since a one-size-fits-all configurator (such as ParamILS) only produces a single
parameter configuration for a set of instances I, it calculates the function H by
using a specific statistic (such as mean or standard deviation) measured over the
entire set (or distribution) of problem instances. We define the one-size-fits-all
configurator as follows.

Definition 1 (One-Size-Fits-All Configurator). Given a target algorithm
A, a set of training instances I, a set of testing instances It, a parameter con-
figuration space Θ and a meta-function H to measure algorithm A performance,
a one-size-fits-all configurator finds a parameter configuration x ∈ Θ such that
H is minimized over the entire set (or distribution) of I. Subsequently, given a
testing instance in It, that parameter configuration x will be used to execute A.

2.3 Instance-Based Configurator

In this paper, we are concerned with clustering of problem instances. Hence, us-
ing the same notation as the one-size-fits-all configurator, we define the instance-
based configurator as follows.

Definition 2 (Instance-Based Configurator). Given a target algorithm A,
a set of training instances I, a set of testing instances It, a parameter config-
uration space Θ and a meta-function H to measure algorithm A performance,
an instance-based configurator creates a set of clusters C from I and finds a
parameter configuration xc for each cluster c ∈ C that minimizes H for the set
of instances in the respective cluster. For a given testing instance in It, it will
find the most similar cluster c ∈ C and return the parameter configuration xc

which will be used to execute A.
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2.4 Performance Metric

We now define the performance metric function H, for both the training and
testing instances. For training, this value is measured over all training instances,
while for testing, ditto test instances.

Definition 3 (Performance Metric). Let i be a problem instance, and Ax(i)
be the objective value of the corresponding solution obtained by A when executed
under the configuration x. Let OPT (i) denote either (a) the known global optimal
value of i, or (b) where the global optimal value is unknown, the best known
value. H(x) is defined as the mean percentage deviation of Ax(i) from OPT (i),
for all problem instance i in question (training/testing). Obviously, the lower the
deviation value the better it is.

3 Solution Approach

In this section, we present our solution approach CluPaTra by first defining
the search trajectory similarity and describing CluPaTra major components,
namely: search trajectory representation, similarity calculation, and the cluster-
ing method, followed by the overall steps for the training and testing phases.

3.1 Search Trajectory Similarity

A search trajectory is defined as a path of solutions that the target algorithm
A finds as it searches through the neighborhood search space. Two or more
search trajectories are similar if some fragments (several number of consecutive
moves) of the path have identical solution’s attributes. An example of solution’s
attributes is the deviation of its objective value from global optimum (or best
known) value (see section 3.2). The longer the fragments the more similar it is.

As an example, Fig. 1 shows a search trajectory obtained by 10 consecutive
moves of the ILS algorithm for three TSP instances, namely: kroa100, bier127
and eil51 with two very different parameter configurations, namely: configura-
tion I and configuration II. Observe that for the same configuration, kroa100
and bier127 have similar search trajectories, while ei151 has a very different
trajectory. Observe also that even when different configurations result in differ-
ent search trajectories for a given instance, the similarity between kroa100 and
bier127’s trajectories are preserved. This similarity property is what we need
that allows us to perform clustering of instances using an arbitrary parameter
configuration.

Since there is a tight correlation between fitness landscape (or commonly
known as search space) and search trajectories [7,8], and the tight correla-
tion between the fitness landscape and algorithm performance [20], we assume
that instances with similar search trajectories will need the same parameter
configuration.
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 (a) kroa100 – Parameter Configuration I (b) bier127 – Parameter Configuration I (c) eil51 – Parameter Configuration I 

(d) kroa100 – Parameter Configuration II (e) bier127 – Parameter Configuration II (f) eil51 – Parameter Configuration II 

Fig. 1. Search Trajectories of 3 TSP instances kroa100, bier127 and eli51 using two
very different parameter configuration (with z-axis as the objective value and x and y
axis as the search space)

3.2 Search Trajectory Representation

We present the search trajectory as a directed sequence of symbols, each repre-
senting a solution along the trajectory. A symbol encodes a combination of two
solution attributes, namely: the position type and its percentage deviation of
quality from OPT (as defined in section 2.4).

The position type represents in a sense the local property of a solution with
respect to its search neighborhood, and is defined based on the topology of the
local neighborhood [10]. There are 7 position types, determined by evaluating
the solution objective value with all its local direct neighbors’ objective values
- whether it is better, worse or the same. The 7 positions types are given in
Table 1.

The deviation of solution quality measures in a sense the global property of
the solution (since it is compared with the global value OPT ). If the global
optimum value is unknown, we use the best known value. Granted however that

Table 1. Position Types of Solution

Position Type Label Symbol < = >

SLMIN (strict local min) S + - -
LMIN (local min) M + + -
IPLat (interior plateau) I - + -
SLOPE P + - +
LEDGE L + + +
LMAX (local max) X - + +
SLMAX (strict local max) A - - +

’+’ = present, ’-’ = absent; referring to the presence of neighbors
with larger (’<’), equal (’=’) and smaller (’>’) objective values
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the best known value is not the same as the global optimal value, it provides
a reasonably good upper bound (for a minimization problem); and since our
aim is to find similar patterns of the transition from one solution to the next,
and not to measure the actual absolute performance of the algorithm, the best
known value suffices in providing a good proxy to the global optimal value for
our purpose of representing the trajectory.

These two attributes are combined into a symbol with the first two digits
being the deviation of the solution quality and the last digit being the position
type. Note that the attributes are generic in the sense that they can be easily
retrieved/computed from any local-search-based algorithm albeit different prob-
lems. Being mindful that some target algorithms may have cycles and (random)
restarts, we intentionally add two additional symbols: ’CYCLE’ and ’JUMP’;
’CYCLE’ is used when the target algorithm returns to a position that has been
found previously, while ’JUMP’ is used when the local search is restarted.

In order to obtain the search trajectory for a given problem instance, we natu-
rally need to execute the target algorithm with a certain parameter configuration
and record all the solutions visited. We refer to this configuration as the initial
sequence configuration .

An example of the sequence representing the eil51 search trajectory in Fig. 1
is 15L-11L-09L-07L-07P-06P-04S-05L-J-21L-19L. Notice that after position 8,
the target algorithm performs a random restart, hence we add ’JUMP’ symbol
after position 8.

3.3 Similarity Calculation

Having represented trajectories by linear sequences, it is natural to use pairwise
sequence alignment to determine the similarity between a pair of trajectories. In
pairwise sequence alignment [9], the symbols of one sequence will be matched
with those of the other sequence while respecting the sequential order in the
two sequences. It can also allow gaps to occur if symbols do not match. There
are two kinds of alignment strategies: local and global. In local alignment, only
portions of the sequences are aligned, whereas global alignment aligns over the
entire length of the sequences. Because search trajectory sequences have varying
lengths, we find local alignment best fits our need.

To measure the similarity score between two search trajectory sequences, a
metric based on the best alignment is used. The matched symbol contributes a
positive score (+1), while a gap contributes a negative score (-1). The sum of
the scores is taken as the maximal similarity score of the two sequences. We may
find situations as follows: (a) a search trajectory sequence is a subsequence of
another one thus having a very high similarity score or (b) longer sequences get
higher similarity score. To avoid these situations, the final similarity score will
be divided by 1

2 × (|Sequence1| + |Sequence2|).
Our sequence alignment is implemented using standard dynamic programming

[9], with a complexity of O(n2). As an example, the sequence alignment for the
kroa100 and bier127 search trajectories from Fig. 1 is illustrated in Table 2.
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Table 2. Example of Sequence Alignment from 2 TSP instances search trajectory,
kroa100 and bier127

kroa100 19L 19P 18P 17P 16P 15P 14P 13P 11P 10P
| | | | | | | | |

bier127 19P 18P 17P 15P 13P 11P 10P 09P 08P

score +1 +1 +1 -1 +1 -1 +1 +1 +1

To cluster instances (see the subsection below), we need to compute similarity
scores for all possible pairs of training instances. Hence, the total time complexity
for sequence alignment is O(m2×n2), where n is the maximum sequence length
of the sequences and m is the number of instances in the training set.

3.4 Clustering Method

Here, our goal is to group similar instances according to their search trajec-
tory similarity. A typical clustering algorithm requires a distance measure be-
tween data points. For the distance measure we use 1

similarity score . After such
a measure is known, a standard clustering algorithm could be employed. For
our purpose, we adopt the well-known hierarchical clustering approach AGNES
(AGglomerative NESting) to cluster the instances [9]. AGNES works by plac-
ing each instance initially in a cluster of its own. It then iteratively merges two
closest clusters (i.e., a pair of clusters with the smallest distance) resulting in
lesser number of clusters of larger sizes. The process is repeated until all nodes
belong to the same cluster unless a termination condition applies. Examples of
termination conditions are minimal number of cluster is reached or the maximal
inter-cluster distance goes below a certain value. The complexity of AGNES is
O(n2) with n being the number of instances.

Since the learning is unsupervised, we need to determine the number of clus-
ters to be used. For this purpose, we apply the L method from [21] which makes
use of an evaluation graph where the x -axis is the number of clusters and the
y-axis is the value of the evaluation function at x clusters. The evaluation func-
tion can be any evaluation metric based on distance, similarity, error or quality.
In this paper, we use the average distance among all instances in two different
clusters. It determine the number of clusters by finding the point that has min-
imum root mean square error for both the left and right side. It is calculated
using the following formula:

c∗ = min

[
RMSE(L)

nL
+

RMSE(R)
nR

]
(1)

where:
Notation Definition
RMSE(L) root mean squared error of points in the left side of c
nL number of points in the left side of c
RMSE(R) root mean squared error of points in the right side of c
nR number of points in the right side of c
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This method only requires AGNES algorithm to be run once, since all the clusters
created by AGNES can be recorded in one run. And since we want to produce a
compact set of clusters, we limit the number of clusters to be less then 10. Thus,
for the x -axis, we only use the number of clusters from 1 to 10.

3.5 Training and Testing Phases

The steps involved in the training and testing phases are shown in Fig. 2 (which
are quite self-explanatory, and details are skipped in the interest of space).

Procedure TrainingPhase
Inputs: A: Target Algorithm;

I : Training instances;
Θ: Parameter Configuration Space;
xi: Initial Sequence Configuration;

Outputs: C: A set of clusters;
X: Parameter configurations for each cluster in C;

Method:
1: Let TRAJ = A search trajectory from A for I using xi;
2: Let SEQ = A transformation from TRAJ to sequence;
3: Let Score = A mapping from I x I to scores;
4: For each (i,j) in I X I

5: Let s1 = SEQ(i);
6: Let s2 = SEQ(j);
7: Score[s1,s2] = similarity(s1,s2);
8: Let C = Run AGNES using Score;
9: Let X = A mapping from clusters to configuration;
10: For each cluster c in Clusters;
11: X[c] = Run One-size-fits-all configurator on instances in c with respect to Θ;
12: Output C, X;

Procedure TestingPhase
Inputs: i: An Arbitrary Testing instance;

C: Set of clusters;
X: Parameter configurations for each cluster in C;

Outputs: BestConfig: A recommended configuration;
Method:
1: Let Score = A mapping from C to scores;
2: For each cluster c in C

3: Score[c] = Average similarity from i to each instance in c;
4: Let BestClust = c, where for all c′ not equals to c in C, Score[c] >= Score[c′];
5: Let BestConfig = X[BestClust];
6: Output BestConfig;

Fig. 2. Training and Testing Phase
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4 Experimental Design

In this section, we provide information on the experiments presented in the
following section. First, we present our experiment settings. Second, we present
our validity and statistical significant measurement. And finally, we describe the
low-level details of our experimental setup.

4.1 Experiment Settings

Here we briefly explain the target algorithm, one-size-fits-all configurator, bench-
mark instances and initial sequence configuration.

Target Algorithm. We used two different target algorithms respectively for
solving two different problems. The first algorithm is a variant of a well-known
Iterated Local Search (ILS) algorithm [15] for solving the classical TSP, as im-
plemented in [8]. It has 5 discrete-value parameters to be tuned. The second
algorithm is a new hybrid Simulated Annealing and Tabu Search (SA-TS) algo-
rithm for solving QAP (presented in [18]). It has 4 parameters; some are discrete
while the others are continuous.

One-Size-Fits-All Configurator. In order to derive meaningful experimen-
tal comparison, we deliberately chose to use ParamILS [13] as our configurator.
ParamILS is itself an iterated local search algorithm used for tuning discrete
parameters. Since ParamILS works only with discrete parameters, we first dis-
cretize the values of the parameters if the target algorithm has parameters that
assume continuous values.

Benchmark Instances. For TSP, we applied our target algorithm to 70 bench-
mark instances extracted from TSPLib. Fifty six random instances were used
as training instances and the remaining 14 instances as testing instances. The
problem size (the number of cities) varies from 51 to 3038. For QAP, we used
50 benchmark instances from QAPLib, and randomly picked 40 instances for
training and 10 for testing. The problem size (number of facilities) varied from
20 to 150.

Initial Sequence Configuration. The initial sequence configuration is a ran-
dom configuration from the configuration space Θ.

4.2 Validity and Statistical Significant Measurement

To ensure unbiased evaluation, we used a 5-fold cross-validation [9]. The over-
all result is recorded to be the average performance over all iterations. We also
performed a statistical test to compare the significance of our result. We per-
formed a t-test [17]; we consider p-value below 0.05 to be statistically significant
(confidence level 5%).
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4.3 Experimental Setup

All experiments were performed on a 1.7GHz Pentium-4 machine running Win-
dows XP. We measured runtime as the CPU time on this machine. As an input
to the one-size-fits-all configuratior, we fairly set cutoff times of 10 seconds per
run for TSP target algorithm and 100 seconds for QAP target algorithm and
allowed each configuration process to execute the target algorithm for a maxi-
mum of two CPU hours and to call the target algorithm for a maximum of 10 x
n times, where n is the number of instances in the cluster.

5 Empirical Evaluation

In this section, we present our experiment results on the effectiveness of CluPa-
Tra. First, we compare CluPaTra against one-size-fits-all configurator. Then, to
analyze the effectiveness of our generic feature, we compare it with simple spe-
cific feature. In addition to that, we also compare CluPaTra against an existing
classification of QAP instances based on distance and flow metrics [23]. Next
we analyze the effect of different initial sequence configurations to our result.
We also present the computational time of CluPaTra. Finally, a brief discussion
regarding the experiment is presented. For the entire experiment, we measure
the performance by using the performance metric described in Definition 3.

5.1 Performance Comparison

We evaluated the effectiveness of CluPaTra against the vanilla one-size-fits-all
configurator (ParamILS). In Fig. 3a, we show the performance achieved by the
two approaches for two target algorithms. This result is an average from each of
the 5-fold results. The average improvement using CluPaTra is 7.78% for TSP
training instances, 12.31% for TSP testing instances, 14% for QAP training
instances and 21.78% for QAP testing instances. CluPaTra performed better
and the difference was statistically significant.

5.2 Comparison on Feature Selection

To evaluate the effectiveness of the generic feature (i.e. search trajectory) used
by CluPaTra, we compared CluPaTra with a simple problem-specific feature
clustering for TSP and QAP, and a known instance classification for QAP.

First, we compared CluPaTra with simple specific feature clustering
(SpecFeat). For the specific feature cluster, we used the number of cities (for
TSP) [14] and the number of facilities (for QAP). Besides using different features,
steps in training and testing phase for both approaches are the same. In Fig. 3b,
we present the average performance achieved using 5-fold cross-validation by the
two approaches for two target algorithm. CluPaTra always perform better and
the differences are statistically significant.

Next, we compared CluPaTra against an existing well-studied classification
of QAP instances based on the distance and flow metrics, due to [23]. We refer
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Fig. 3. Performance Comparison (a) CluPaTra and ParamILS, (b) CluPaTra and Spe-
cific Feature

to this as the Natural Cluster (Natural). (We conducted this comparison only
for QAP since the classification of QAP benchmark instances is already well-
studied and well characterized). Under this classification, QAP instances are
divided into 5 groups: (1) random and uniform distances and flows, (2) random
flows on grids, (3) real-life problems, (4) characteristics of real-life problems
and (5) non-uniform, random problems. Due to the target algorithm limitation
(it does not solve groups (4) and (5) problems), we can only provide results on
groups (1), (2) and (3). The average performance of 5 folds is shown in Table 3. It
shows that CluPaTra performs slightly better but the results are not statistically
significant. Nonetheless, we can claim that the performance of CluPaTra is not
inferior to tuning based on the natural classification.

Table 3. Comparison between CluPaTra and Natural Clustering

CluPaTra Natural Difference(%) p-value

Training 4.36 4.54 3.96 0.84108
Testing 4.13 4.14 0.24 0.61976

5.3 Sensitivity Analysis on Different Initial Sequence Configurations

Being mindful that our results may be biased depending on the initial sequence
configuration used (to find the trajectories), we consider here two different pa-
rameter configurations - a configuration derived from running ParamILS versus
a random configuration. Table 4 shows no statistically significant difference be-
tween these two initial sequence configurations.

5.4 Computational Results

The two most time-consuming processes in the training phase are those of calcu-
lating the similarity of trajectories and running the one-size-fits-all configurator
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Table 4. Comparison between Different Initial Sequence Configurations

Random ParamILS Different(%) p-value

TSP Training 4.74 4.66 1.69 0.94486
Testing 4.63 4.72 (1.95) 0.40181

QAP Training 4.36 3.97 8.94 0.1499
Testing 4.13 4.5 (8.96) 0.54516

(ParamILS) for each cluster. For the 56 TSP instances with a maximal sequence
length of 1560, the time taken for similarity computation is approximately 3 min-
utes; and for 40 QAP instances with a maximal sequence length of 520, the time
taken is approximately 1 minute. For all clusters in one fold, the time needed
to run ParamILS was approximately 44 minutes for TSP and 1 hour and 45
minutes for QAP. The total time needed to run the training phase for each fold
is hence approximately 48 minutes on TSP and 1 hour and 47 minutes on QAP.
While the time needed to run ParamILS alone for each fold is approximately 45
minutes on TSP and 1 hour and 40 minutes on QAP.

For the testing phase, we need to find the best cluster to fit the testing in-
stances. For TSP instances, it took approximately 1.5 minutes in total; while for
QAP instances, it took approximately 42 seconds.

5.5 Discussion

As shown from the results, compared to the vanilla one-size-fits-all configuration
ParamILS, CluPaTra gives a significant improvement in performance (with re-
spect to the performance metric we defined) with a small additional computation
time. The additional computation time is needed to cluster the instances (ap-
proximately 6.66% for TSP and 7% for QAP from ParamILS run time). Based
on this observation, we claim that dividing the instances into cluster using Clu-
PaTra before running one-size-fits-all configurator provides a better parameter
configuration for each instance and significantly improves the performance with
minor additional computational time.

The effectiveness of using the search trajectory as the generic feature is eval-
uated by comparing it with problem-specific features. For the simple specific
feature tried (number of cities for TSP and number of facilities for QAP), our
approach is significantly better. Furthermore for QAP, we benchmarked against
the natural clustering proposed in [23]. CluPaTra is statistically equivalent with
the existing natural clustering approach. This shows that search trajectory can
be used as a generic feature to cluster the instances without deep prior knowl-
edge of the problem structure. We also evaluated the effect of different initial
sequence configurations. Even though different initial sequence configurations
may create different search trajectories, the effect of different initial sequence
configurations is not significant.
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6 Conclusion and Future Works

In this paper, we presented CluPaTra, a computationally efficient approach for
generic instance-based configurator via clustering of patterns according to the in-
stance search trajectories. We verified our approach on TSP and QAP and ob-
served a significant improvement compared to a vanilla one-size-fits-all approach.

We see two limitations of our proposed approach. First, in terms of scope, our
approach can only be applied to target algorithms which are local-search-based,
since our approach uses search trajectory as feature. Second, there is an inher-
ent computational bottleneck introduced by the method used for sequence align-
ment whose worst-case time complexity is O(m2×n2) (where m is the number
of instances in the training set and n is the maximum length of the sequences).
As future work, one may investigate the effects of exploiting a less computation-
ally intensive sequence alignment algorithm such as [5] or limit the length of the
sequences.

There are also a number of challenges that remain to be explored. On the fea-
ture selection method, we proposed a single generic feature, search trajectory. It
will be interesting to see if the accuracy can be improved if we combine several
fitness landscape features, such as fitness distance correlation, run time distribu-
tion and density of local optima. On the metric and clustering method, we use
only one metric (sequence alignment) and one clustering method (agglomerative
clustering). It may also be interesting to learn how different possible metrics
and how different clustering methods can influence the performance. And on a
separate front, our approach is to learn to set parameter values based on training
instances. This contrasts and complements the volume of works which seek to
adaptively adjust the parameter configuration dynamically during search (such
as the works of reactive search by Battiti (e.g. [2]) and many others). In adaptive
scenario, the parameter values are modified in response to the search algorithm’s
behavior during its execution. It will be interesting to see if synergies can be ex-
ploited to create better instance-based configurators.
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