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Abstract Antagonistic communities refer to groups of people with opposite tastes,
opinions, and factions within a community. Given a set of interactions among people in
a community, we develop a novel pattern mining approach to mine a set of antagonistic com-
munities. In particular, based on a set of user-specified thresholds, we extract a set of pairs
of communities that behave in opposite ways with one another. We focus on extracting a
compact lossless representation based on the concept of closed patterns to prevent exploding
the number of mined antagonistic communities. We also present a variation of the algorithm
using a divide and conquer strategy to handle large datasets when main memory is inade-
quate. The scalability of our approach is tested on synthetic datasets of various sizes mined
using various parameters. Case studies on Amazon, Epinions, and Slashdot datasets further
show the efficiency and the utility of our approach in extracting antagonistic communities
from social interactions.

Keywords Antagonistic group · Frequent pattern mining · Closed pattern ·
Social network mining

1 Introduction

In social interactions, people tend to share their opinions, through either sentiments or
ratings. Current technologies enable us to easily share our opinions on specific objects such
as articles, movies, books, people, and softwares. These opinions are important for users to
evaluate a particular object and how the object influences and affects people. It is common
that groups of people or communities are formed based on similarity in opinions. For some
pairs of groups, we observe social interactions in which two groups of the same pair con-
sistently differ in opinions. We call these two groups of people holding opposite opinions
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on some objects as indirect antagonistic communities. Indirect antagonistic communities are
common in various social settings including commerce, lifestyle, politics, religions, sports,
ideology, etc.

Detecting indirect antagonistic communities is one of the first steps in understanding the
dynamics of social interactions. Early detection of antagonistic communities could help to
avert unwanted tensions among opposing communities. In product evaluation, information
about antagonistic communities and their differing opinions could also be used for better
product design, market segmentation, recommendation, etc.

Mining antagonistic communities is relatively new research problem. Several studies on
finding communities in social network [4,12,13] focus on finding cohesive or non-antago-
nistic communities. While cohesive communities are important, understanding the relations
among these communities such as antagonistic relations is also equally important. We enrich
past studies on community finding by discovering not cohesive communities but ones with
opposing subcommunities. We believe these two sources of information could give more
light to the social interactions among users in Web 2.0. In addition, opposing communities
and their nature have been studied in the sociology domain [6–8,14,19,33].

In this paper,1 we design a novel pattern mining algorithm to discover indirect antagonistic
community from social interactions. Each antagonistic community is represented as a pattern.
The algorithm explores opinions on a set of objects and finds all antagonistic communities.
To increase the efficiency, the algorithm prunes away all candidate communities that do not
have enough frequency/support. As a frequent antagonistic pattern would have large number
of subpatterns, we only select closed patterns to output.

We experiment our solution on synthetic datasets of various sizes under various mining
parameters to evaluate its scalability. We also conduct case studies on Amazon, Epinions, and
Slashdot datasets to show the efficiency and the utility of our approach in mining antagonistic
communities.

The contributions of this work are as follows:

1. We propose a new problem of mining indirect antagonistic communities. Mined indirect
antagonistic communities could potentially be used to shed better light on social inter-
actions, prevent unwanted tensions in the communities, improve recommendations and
marketing strategies, etc.

2. We propose a new algorithm to mine indirect antagonistic communities, which is shown
to be scalable.

3. We extract indirect antagonistic communities from real datasets demonstrating antago-
nistic behaviors in real rating datasets.

This paper is organized as follows. We present related work in Sect. 2. In Sect. 3, we
formalize the concepts, properties, and problem of indirect antagonistic community mining.
Our algorithm to discover indirect antagonistic community, Clagmine, is described in Sect. 4.
We discuss the experiment and performance result in Sect. 5. Finally, we conclude our work
in Sect. 6.

2 Related work

In this section, we highlight related work on community finding, signed social networks,
homophily and inter-group antagonism, and frequent pattern mining.

1 This paper is an extension of our conference paper [40] with additional descriptions, case studies, and
analysis.
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2.1 Community finding

Community finding is one of the key problems in social network analysis and it has been
extensively studied [4,12,13,15,20,29,34,36,38]. Previous studies can be divided into three
categories: unsigned, signed, and heterogeneous networks. We list and highlight some of
these studies below. Our list is by no means complete. Different from these studies, our goal
is not to find homogenous communities rather pairs of communities that exhibit antagonistic
behaviors.
Unsigned networks. Girvan et al. and Newman worked on algorithms to mine communities
from undirected networks [15,29]. Their work is based on a basic principle that the links
connecting to different communities must be few, and the shortest paths between any two
nodes from the two different communities must pass through such links. Thus, these links
carry high “betweenness”. Another work by Leicht et al. mined communities in directed
graphs [20]. Previous works on unsigned networks only consider link density when dividing
the networks into communities. The link density within communities should be as dense as
possible, and the link density between communities should be as sparse as possible.
Signed networks. For signed networks, we need to take the signs of links into consideration
when determining communities. The basic criterion is that for positive links, high link density
is desired, but for negative links, the density should be sparse within a community. A two-step
method to mine communities from signed network is introduced by Yang et al. [38]. Their
algorithm is based on the principle that if an agent starts from any node and transits after a few
steps, the probability that it remains in the same community is greater than that of reaching
a different community. Their algorithm is more biased on sign of links, less on the density.
Traag et al. proposed another solution on mining communities from signed networks [34],
which was based on the work by Newman to find communities in unsigned network [29].
Their work only considers communities’ internal links, and the links between communities
are not taken into consideration.
Heterogeneous networks. Cai et al. proposed an approach to mine communities from multi-
relational social networks (i.e., multiple networks on the same set of nodes) [4]. They first
formed the target relationship network (i.e., partial information of the hidden relationship
network, which is inferred from the multi-relational networks) from the labeled nodes, where
nodes in the same community have the same label. Next, they combined the original hetero-
geneous networks to approximate the target relationship networks.

2.2 Signed social networks

There have been a few studies that analyze and mine signed social networks, e.g., [3,11,21].
In [11], Easley and Kleinberg described some basic properties of signed networks. The

authors introduced balanced triangles from social psychology to capture the stable structures,
each consisting of three nodes and their links. If every arbitrary three nodes in a signed net-
work forms a balanced triangle, the network is said to be balanced. A well-known balance
theorem [5,17] holds for the balanced network. This theorem says that if a signed complete
network is balanced, either all the nodes have positive links with each other or the nodes
can be divided into two camps, within each camp the nodes are friends to each other and
across the camps nodes are enemy to each other. Two extensions of balance theorem have
also been studied in [11]. The first extension addresses balance structure of non-complete
networks. The second extension is about approximately balanced networks with only most
of the triangles balanced. Different from the existing studies on balanced network, in this
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study, we do not decide whether a network could be divided into two camps, rather we want
to extract the set of (potentially many) antagonistic communities from signed networks.

Leskovec et al. predicted the polarity of known links [21]. They proposed a logistic regres-
sion classifier for the prediction task using two classes of features. The first class of features
is based on indegree, outdegree, and their combinations—with the signs of the links taken
into consideration. The second class of features is based on “triads” that involve the target
link. In their work, they showed the importance of negative links in predicting positive links.

Bonachich and Lloyd proposed to use eigenvector to measure the centrality or status of
each node in a signed social network [3]. The basic principles are as follows: If a node is
connected positively to a high status node, the node’s status increases. If a node is connected
positively to a low status node, the node’s status decreases. Conversely, if a node is connected
negatively to a high status node, the node’s status decreases. If a node is connected negatively
to a low status node, the node’s status increases.

2.3 Homophily and inter-group antagonism

Homophily. Antagonistic communities are also related to the concept of homophily.
Members of a pair of antagonistic communities intuitively share more preferences with those
in the same community and share less preferences with others from the opposing commu-
nity. There have been a number of studies on homophily in social networks, e.g., [27]. In this
work, our mined communities express not only similar preferences but also opposing pref-
erences. Antagonistic community captures a kind of homophily behavior in sharing objects
the community of users like together, as well as sharing objects they dislike together.
Inter-group antagonism. In sociology, economics, and psychology research communities,
the concept of inter-group antagonism has been studied by various works [7,6,8,14,19,33].
We extend this interesting research question by providing a computation tool to automatically
identify opposing communities from a history of their behaviors. We believe our tool could
potentially be used to help sociologists understand the behaviors of communities from the
wealth of available user interaction data in Web 2.0.

This paper is an extension of our preliminary study on mining indirect antagonistic com-
munity [40] with more comprehensive details on the proposed algorithm, additional experi-
ments on new datasets, and more detailed analysis of the experiment results. In [26], we have
also investigated the problem of mining direct antagonistic communities from explicit trust
networks. Each direct antagonistic community comprises of two sets of people, where people
in each set form a strongly connected component with respect to trust links, and people in
the opposing set form a bi-clique with respect to distrust links. In this work, we focus on
mining indirect antagonistic communities, where there are two kinds of entities: users and
items, and users from opposing sides of an antagonistic community are different based on
their views on the items.

2.4 Frequent pattern mining

Our algorithm belongs to the family of pattern mining algorithms [1,9,16,18,22–25,28,
30,35,37]. There have been a number of pattern mining algorithms including those min-
ing association rules (e.g., [1,30]), frequent sequences (e.g., [22,35]), frequent repetitive
sequences (e.g., [9]), frequent subgraphs (e.g., [37]), etc. There are many recent studies too,
e.g., [16,18,22,23,28]. The closest to our study is the body of work on association rule min-
ing [1]. Association rule mining employs the concept of support and confidence. It extracts
frequent itemsets and relationship between itemsets. On the other hand, we extract two sets
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of opposing users that share many common interests (or form opinions about a common set
of topics, or rate a common set of items), but oppose each other with high likelihood. This
problem is different from association rule mining. We show that a similar apriori-like anti-
monotonicity property holds, but we employ a different algorithm to mine for antagonistic
communities. Similar to the work in [30], we do not report all antagonistic communities,
rather only the closed ones.

3 Preliminary

Indirect antagonistic community is antagonistic communities derived from indirect social
interactions, particularly through ratings or expressing opinions on items such as products,
views, events, or even ideas. With any loss in generality, we use the ratings example as the
representative scenario in this paper. In this setting, users are connected via items they rate.
All rating scores are categorized into three rating polarity levels: high, medium, and low
rating polarity. For example, in 1–5 rating scale, we categorize rating scores 1–2 as low polar-
ity, 3 as medium polarity, and 4–5 as high polarity. We define some preliminary concepts and
the indirect antagonistic community mining problem as follows.

Definition 3.1 (Rating Database) Consider a set of users U and a set of items I . A database
of ratings consists of a set of mappings of item identifiers to a set of pairs, where each pair
consists of user identifier and rating score. There are three types of rating scores: high (hi),
medium (mid), and low (lo). The rating database could be formally represented as:

DBR = {i tid �→ {(usid , score), . . .}|i tid ∈ I ∧ usid ∈ U ∧ score ∈ {hi, mid, lo} ∧ usid

gives i tid a rating of score}

We refer to the size of a rating database DBR as |DBR |, which is equal to the number
of mapping entries in the database. The set of common ratings between two users in DBR

is the number of mapping entries that contain both users. By extension, the set of common
ratings between two sets of users U1 and U2 in DBR is the set of mapping entries that contain
all users in the two sets, or mathematically:

{rating = i tid �→ P AI RSET |rating ∈ DBR ∧ ∀u∈(U1
⋃

U2). ∃(usid ,score)∈P AI RSET . u =
usid}

Definition 3.2 (Opposing Community): Let Ui and U j be two disjoint sets of users. (Ui , U j )

is a pair of user sets we refer to as an opposing community (or simply, o-community).2

The number of common ratings between two sets of users Ui and U j is known as their
support count and is denoted by count (Ui , U j ). The support of the two user sets denoted

as support (Ui , U j ) is defined as
count (Ui ,U j )

|I | where I represents the set of all items. The
extent to which an opposing community is antagonistic is determined by its antagonistic
count antcount (Ui , U j ), which is defined as the number of common ratings between Ui and
U j that satisfy the following three conditions:

– Users from Ui share the same rating polarity pi ;
– Users from U j share the same rating polarity p j ; and
– pi and p j are opposite polarities (i.e., one is high and the other is low).

2 The notion of opposing community is agnostic to the concepts of support and confidence described in the
following paragraphs. It is simply a pair of user sets.
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Table 1 Example rating
database 1

Item User rating

i1 a-hi, b-lo, d-lo

i2 a-hi, b-lo, d-lo

i3 a-hi, b-hi, d-hi

i4 a-hi, b-lo, c-lo

i5 a-hi, b-lo, c-lo

i6 a-hi, b-hi, c-lo

It is obvious that antcount (Ui , U j ) ≤ count (Ui , U j ). The antagonistic support of the two

user sets asupport (Ui , U j ) is defined as
antcount (Ui ,U j )

|I | . We also define the antagonistic

confidence of an opposing community (Ui , U j ) to be acon f (Ui , U j ) = antcount (Ui ,U j )

count (Ui ,U j )
.

Definition 3.3 (Frequent Opposing Community): An opposing community (Ui , U j ) is called
a frequent opposing community (or, frequent o-community for short) if support (Ui , U j ) ≥ λ

and asupport (Ui , U j ) ≥ λ×σ where λ is the minimum support threshold (∈ (0, 1)), and
σ is the minimum (antagonistic) confidence threshold (∈ (0, 1)).

We consider (Ui , U j ) to subsume (U ′i , U ′j ) if: (a) U ′i ⊂ Ui and U ′j ⊆ U j ; or (b) U ′i ⊆ Ui

and U ′j ⊂ U j . We denote this by (U ′i , U ′j ) ⊂ (Ui , U j ). Frequent o-communities satisfy the
important apriori property as stated below.

Property 3.1 (Apriori Property of Frequent O-community): Every size-(k − 1) opposing
community (U ′i , U ′j ) subsumed by a size-k frequent o-community (Ui , U j ) is a frequent
o-community.

Proof Assume an opposing community gk−1 is not a frequent o-community. This would
mean count (gk−1)

|I | < λ or antcount (gk−1)
|I | < λ × σ . If an user uk is added to either user set of

this opposing community, we call the resulting opposing community gk−1 ∪ uk . gk−1 ∪ uk’s
count cannot be more than count(gk−1), and its antagonistic count cannot be more than ant-
count(gk−1). This is because the count is calculated by intersecting the gk−1’s user set’s
ratings and the uk’s ratings: count(gk−1 ∪ uk) ≤ min{count(gk−1),count(uk)}, and similarly,
the antagonistic count is calculated by intersecting gk−1’s user set’s ratings and uk’s ratings
such that the intersected ratings have opposite polarity: antcount(gk−1∪uk)≤ antcount(gk−1).
Therefore, count (gk−1∪uk )

|I | < λ or antcount (gk−1)∪uk
|I | < λ×σ ; that is, gk−1∪uk is not a frequent

o-community neither. By taking its contrapositive, we can prove the property. ��
Definition 3.4 (Indirect Antagonistic Community): An opposing community (Ui , U j ) is an
indirect antagonistic community (or, a-community for short) if it is a frequent o-community
and acon f (Ui , U j ) ≥ σ .

Definition 3.5 (Closed Indirect Antagonistic Community): An a-community (Ui , U j ) is
closed if ¬∃(U ′i , U ′j ), (Ui , U j ) ⊂ (U ′i , U ′j ), count (U ′i , U ′j ) = count (Ui , U j ) and
antcount (U ′i , U ′j ) = antcount (Ui , U j ).

Example 1 Consider the example rating database in Table 1. Suppose λ = 0.5 and σ =
0.5. Both ({a}, {d}) and ({a}, {b, d}) are a-communities. However, since count ({a}, {d}) =
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Table 2 Example rating
database 2

Item User rating

i1 a-hi, b-lo, c-lo

i2 a-hi, b-lo, c-lo

i3 a-hi, b-lo, c-hi

i4 d-hi, e-lo, f -lo

i5 d-hi, e-hi

count ({a}, {b, d}) = 3 and antcount ({a}, {d}) = antcount ({a}, {b, d}) = 2, ({a}, {d})
is not a closed a-community and is subsumed by ({a}, {b, d}). Hence, ({a}, {d}) is con-
sidered redundant or a non-closed a-community. On the other hand, both ({a}, {b}) and
({a}, {b, c}) are closed a-communities, even though both ({a}, {b}) and ({a}, {b, c}) have
the same acon f value, which is 2

3 . This is so as count ({a}, {b}) �= count ({a}, {b, c}) and
antcount ({a}, {b}) �= antcount ({a}, {b, c}).

Note that we need to check count () and antcount () separately for closedness property.
The example in Table 2 shows that count (Ui , U j ) = count (U ′i , U ′j ) does not imply that
antcount (Ui , U j ) = antcount (U ′i , U ′j ) for any (Ui , U j ) ⊂ (U ′i , U ′j ), and vice versa. In this
example, we have count ({a}, {b}) = count ({a}, {b, c}) = 3, but (antcount ({a}, {b}) = 3) >

(antcount ({a}, {b, c}) = 2). We also have antcount ({d}, {e}) = antcount ({d}, {e, f }) =
1,
but (count ({d}, {e}) = 2) > (count ({d}, {e, f }) = 1).

With the above definitions, we are now ready to define the problem of mining indirect
antagonistic communities.

Definition 3.6 (Indirect Antagonistic Community Mining Problem): Given a set of items
I rated by a set of users U (the rating database), the a-community mining problem is to
find all closed a-communities with the given minimum support threshold λ and minimum
(antagonistic) confidence threshold σ .

4 A-community mining algorithm

We develop an algorithm to mine indirect a-communities from a rating database and a divide
and conquer variant of it. The rating database represents people opinions or views on the
rated items. Our algorithm systematically traverses the search space of possible antagonistic
communities and uses a search space pruning strategy to effectively remove unfruitful search
spaces.

4.1 Overview of algorithm

Our a-community mining algorithm runs for multiple passes. In the initialization pass, we
calculate the count and antcount of all size-2 a-community candidates and determine which
of them are frequent o-communities. In the next pass, we generate new potential frequent
o-communities, called candidate set, from the set of frequent o-communities found in the
previous pass. We then count the actual count and antcount values for these candidates.
At the end of this pass, we determine the frequent o-communities from these candidates.
After that, we filter the previous frequent o-community set with the newly generated fre-
quent o-community set to remove non-closed frequent o-communities. Then we move on to
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the next pass. Frequent o-communities of a pass are used to generate frequent o-community
candidates in the next pass. This process continues until no larger frequent o-communities are
found. After successful mining of all closed frequent o-communities, we derive the closed
a-communities from them.

Algorithm 4.1 Mining Algorithm – Clagmine(λ,σ ,DBR ,USet )
Input: min. support thresh. λ; min. conf. thresh. σ ; rating database DBR ; set of users U ; set of items I
Output: closed a-communities of all sizes

1: L1 = {{ui }| count ({ui },{ui })|I | ≥ λ};
2: C2 = {({ui }, {u j })|i < j, ui ∈ L1, u j ∈ L1};
3: for k = 2;k ≤ |U | and |Lk−1| �= 0; k++ do
4: if k > 2 then
5: Ck = antCommunityMining-gen(Lk−1); // See Algorithm 4.2
6: end if
7: root← build HashT ree(Ck ); // See Algorithm 4.4
8: foreach item t ∈ DBR do
9: Ct = subset(t ,root); // See Algorithm 4.5
10: foreach candidate c in Ct do
11: update count and antcount of c;
12: end for
13: end for
14: Lk = {gk ∈ Ck | count (gk )

|I | ≥ λ and antcount (gk )
|I | ≥ λ× σ };

15: Lk−1 = prune(Lk−1, Lk ); // See Algorithm 4.6
16: end for
17: G = {g ∈⋃

k Lk | antcount (g)
count (g)

≥ σ };
18: return G;

Algorithm 4.1 shows our a-community mining algorithm called Clagmine. Two basic data
structures are maintained namely Lk , the intermediary set of frequent o-communities of size
k, and Ck , a candidate set of o-communities of size k. The first two lines of the algorithm
derive size-2 candidates from which the frequent size-2 o-communities are obtained. It forms
the base for subsequent processing. A subsequent pass, say pass k, consists of three phases.
First, at line 5, the o-communities in Lk−1 found in k − 1 pass are used to generate the can-
didate o-community set Ck , using the antCommunityMining-gen method in Algorithm 4.2.
Next, the database is scanned and the count and antcount of candidates in Ck is updated
(lines 7–13). We make use of the hashtree data structure described in [1] to hold Ck , and
we then use a subset function to find the candidates that overlap with the raters of an item.
After we marked all the overlapped candidates, we update the count and antcount of them.
Frequent o-communities can be determined by checking count and antcount against the sup-
port threshold and λ × σ thresholds, respectively. Following that, Lk−1 is filtered with the
newly generated o-communities to remove non-closed o-communities (line 15). After all the
passes, the valid o-communities are determined from the frequent o-community set (line 17).
The following Sects. 4.2–4.5 zoom into the various components of the mining algorithm in
more detail.

4.2 Candidate generation and pruning

The antCommunityMining-gen procedure invoked at line 5 of Algorithm 4.1 and described
in Algorithm 4.2 takes Lk−1, the set of all frequent size-(k − 1) o-communities as input. It
returns a superset of all frequent size-k o-communities. It works as follows. First, we merge
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all the elements in Lk−1 that share the same subcommunity of size-(k-2) (line 3). Each of
them can be merged into a size-k candidate o-community consisting of the common subcom-
munity and the two differing members, as shown in Algorithm 4.3. We add the candidate
o-communities to Ck (line 5). Next, in the pruning stage, we delete gk ∈ Ck if some (k − 1)
subset of gk is not in Lk−1 (lines 6–11).

Algorithm 4.2 antCommunityMining-gen(Lk−1)
Input: size-(k − 1) o-community set Lk−1
Output: size-k candidate o-community set
1: Ck ← ∅;
2: foreach p, q ∈ Lk−1 do
3: gk ← merge(p, q); // See Algorithm 4.3
4: if gk �= null then
5: add gk to Ck ;
6: foreach (k − 1)-subsets s of gk do
7: if s /∈ Lk−1 then
8: delete gk from Ck ;
9: break;
10: end if
11: end for
12: end if
13: end for
14: return Ck ;

Algorithm 4.3 merge(({Ui },{U j }),({U ′i },{U ′j }))
Input: o-community ({Ui },{U j }); o-community ({U ′i },{U ′j })
Output: merged result of the two input o-communities
1: if Ui =U ′i and di f f (U j ,U ′j )=1 then

2: return (Ui ,U j
⋃

U ′j );
3: end if
4: if U j =U ′j and di f f (Ui ,U ′i )=1 then

5: return (Ui
⋃

U ′i ,U ′j );
6: end if
7: if Ui =U ′j and di f f (U j ,U ′i )=1 then

8: return (Ui ,U ′i
⋃

U j );
9: end if
10: if U ′i =U j and di f f (Ui ,U ′j )=1 then

11: return (Ui
⋃

U ′j ,U j );
12: end if
13: return null;

The pruning stage’s correctness is guaranteed by Property 3.1. From the property, if gk is
frequent, all its (k − 1) subsets must be frequent. In other words, if any one (k − 1) subset
of an o-community gk is not frequent, gk is not frequent too. We thus prune such gks. The
correctness of antCommunityMining-gen procedure follows from Lemma 1.

Lemma 1 For k ≥ 3, given a set of all size-(k−1) frequent o-communities, i.e., Lk−1, every
size-k frequent o-community, i.e., Lk , is in the candidate set, i.e., Ck, output by Algorithm
4.2.
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Proof From Property 3.1, any subset of a frequent o-community must also be frequent.
Hence, if we extend each o-community in Lk−1(k ≥ 3) with all possible users and then
delete all those whose (k − 1)-subsets are not in Lk−1, we will be left with a superset of
the o-communities in Lk . In the Algorithm 4.2, first we perform a merge process that is
equivalent to extending Lk−1 with all possible users in the database (line 2), and then at lines
4-8, we delete o-communities whose (k − 1)-subsets are not in Lk−1. Thus, after the merge
and deletion steps, all frequent o-communities must be a subset of the returned candidate set.

��
An example to illustrate the process of candidate generation via merging and deletion is

given below.

Example 2 Let L3 be (({u1}, {u2, u3}), ({u5}, {u2, u3}), ({u1, u4}, {u2}), ({u1, u5},
{u2}), ({u4, u5}, {u2})). After the merge step performed, C4 will contain candidate
o-community (({u1, u5}, {u2, u3}), ({u1, u4, u5}, {u2})). The deletion step, serving as aprior-
i-based pruning, will delete the o-community ({u1, u5}, {u2, u3}), because the o-community
({u1, u5}, {u3}) is not in L3. We will then left with only (({u1, u4, u5}, {u2})) in C4.

Algorithm 4.4 buildHashTree(Ck)
Input: Ck :size-k candidate set
Output: root of the tree
1: create new node root;
2: foreach candidate ci in Ck do
3: sort users in ci by their userID;
4: tempNode← root;
5: foreach user u in ci do
6: if tempNode has a descendant d labeled u then
7: tempNode← d;
8: else
9: create node d with label u;
10: set d as descendant of tempNode;
11: tempNode← d;
12: end if
13: if u is the last user in ci then
14: set tempNode as a leaf node;
15: add ci to tempNode;
16: end if
17: end for
18: end for
19: return root;

4.3 Subset function

Candidate o-communities are stored in a hashtree as mentioned at line 7 of Algorithm 4.1.
Each node of the hashtree contains either a hashtable (interior node) or a list of candidates
(leaf). Each node is labeled with a user identifier representing the user associated with this
node. The hashtable at interior nodes contains mappings to nodes at the next level, with
each hash key being the corresponding user identifier. The building process of the hashtree
is shown in Algorithm 4.4. Every candidate is sorted according to the user identifier and is
then inserted into the hashtree.
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The subset function invoked at line 9 of Algorithm 4.1 finds all the candidate o-commu-
nities among raters of item t . The raters of item t is first sorted by their user identifiers. The
raters are then traversed one by one. A pointer list is kept to maintain a list of nodes that are
visited, which initially has only the root of the hashtree. For a rater u, we traverse through
all the nodes in the pointer list, if a child node of the current node is found with label u, the
child node is further checked to see whether it is an interior or a leaf node. If it is an interior
node, we add it to the pointer list (line 9), and if it is a leaf, every o-community stored in the
leaf is marked as a subset of raters of t (line 11). A node is removed from the pointer list if
all of its child nodes are in the list (i.e., they are visited too) (lines 13–16). The process is
repeated through all the raters of item t . At the end, every candidate that is a subset of raters
of t will be marked.

Algorithm 4.5 subset(t ,root)
Input: t :item in database; root:root of hashtree
Output: set of candidates contained in the set of raters of t
1: Ct ← ∅;
2: pointerRef← empty node vector;
3: pointerRefSuffix← empty node vector;
4: add root to pointerRef;
5: foreach rater u of t (in ascending order of their userIDs) do
6: foreach node nodei in pointerRef do
7: if nodei has descendant di with label u then
8: if di is an interior node then
9: add di to pointerRefSuffix;
10: else
11: add o-communities stored in di to Ct ; // di is a leaf node
12: end if
13: nodei ’s descendant count−−;
14: if nodei ’s descendant count= =0 then
15: remove nodei from pointerRef;
16: end if
17: end if
18: end for
19: append pointerRefSuffix to pointerRef;
20: pointerRefSuffix← empty node vector;
21: end for

4.4 Filtering non-closed antagonistic communities

As a-communities are derived from frequent o-communities, we ensure the a-communi-
ties are closed by filtering out non-closed frequent o-communities. Note that as a closed
frequent o-community could potentially subsume a combinatorial number of subcommu-
nities, removal of non-closed frequent o-communities potentially reduces the number of
frequent o-communities and a-communities significantly.

The filtering of non-closed frequent o-communities is performed by line 15 of Algo-
rithm 4.1. Its pseudo-code is shown in Algorithm 4.6. The procedure works as follows. For
each frequent o-community gk in Lk , we traverse through every frequent o-community gk−1

in Lk−1 (lines 1–2). If gk subsumes gk−1, and the count and antcount of the two frequent
o-communities are equal, gk−1 can be filtered (lines 3–4). This step ensures all the frequent
o-communities in Lk−1 are closed. By iterating through k, we can have all the non-closed
frequent o-communities of any size filtered. Only closed frequent o-communities will remain.
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Algorithm 4.6 prune(Lk−1, Lk)
Input: frequent o-community set Lk−1; frequent o-community set Lk
Output: closed frequent o-community set of size k
1: foreach gk ∈ Lk do
2: foreach gk−1 ∈ Lk−1 do
3: if gk−1 ⊆ gk and count(gk−1)=count(gk ) and antcount(gk−1)= antcount(gk ) then
4: remove gk−1 from Lk−1;
5: end if
6: end for
7: end for
8: return Lk−1;

The correctness of the algorithm is guaranteed by Theorems 1 and 2 stated below. The
theorems guarantee that everything reported are correct, and a complete set of closed indirect
antagonistic communities are reported.

Theorem 1 Mined a-community set G contains all the closed a-communities.

Proof Consider an arbitrary closed a-community g. Since g is an a-community, by definition,
count (g)
|I | ≥ λ and antcount (g)

count (g)
≥ σ . By multiplying the two, g also fulfills antcount (g)

|I | ≥ λ×σ .
By Definition 3.3, g is a frequent o-community. According to Lemma 1, g will be in C|g|. The

a-community g can be captured by line 5 of Algorithm 4.1. As g fulfills both count (g)
|I | ≥ λ

and antcount (g)
|I | ≥ λ × σ , the a-community g will be captured by line 14 of Algorithm 4.1.

Since g is closed, g will remain in L |g| after line 15 of Algorithm 4.1. And finally, since
antcount (g)

count (g)
≥ σ, g will be added to G by line 17 of Algorithm 4.1. Hence, every closed

a-community will be contained in G. ��
Theorem 2 Mined a-community set G contains only the closed a-communities.

Proof Suppose an opposing community g ∈ G is not antagonistic, that is, count (g)
|I | < λ or

antcount (g)
count (g)

< σ . From line 17 of Algorithm 4.1, we can know g ∈⋃
k Lk , and antcount (g)

count (g)
≥

σ . However, every a-community gk in
⋃

k Lk has count (gk )
|I | ≥ λ. Thus count (g)

|I | ≥ λ. It contra-

dicts count (g)
|I | < λ or antcount (g)

count (g)
< σ . Thus, g must be an a-community. Hence, G contains

only a-communities. The closure property of G can be guaranteed by line 15 of Algorithm 4.1.
Every valid a-community in G will be checked to filter out the non-closed ones. The filtering
method will not leave any non-closed a-community in G. Hence, G contains only closed
a-communities. ��
4.5 Scalability variant: divide and conquer strategy

At times, the main memory required to generate all the candidates could be prohibitive. If
there are too many L2 patterns, storing all of them in the memory would not be feasible. To
address this issue, we perform a divide and conquer strategy by partitioning the database,
mining each partition, and merging the partial results. We first state some new definitions
and describe a property.

Definition 4.1 User Containment: Consider a member m = i tid �→ Pair Set in a rating data-
base DBR . We say that a user ui is contained in the entry, denoted by ui ∈m, iff ∃ (ui , score)
where score ∈ {hi, lo, mid} and (ui , score) is in Pair Set . We also say that a user ui is in
an o-community a = (S1, S2) iff (ui ∈ S1 ∨ ui ∈ S2)
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Table 3 Projected rating
database 1 on user d

Item User rating

i1 a-hi, b-lo, d-lo

i2 a-hi, b-lo, d-lo

i3 a-hi, b-hi, d-hi

Example 3 To illustrate, consider the first entry etr in the example rating database shown in
Table 1 (left). The first entry etr contains users a, b, and d; in other words, a ∈ etr, b ∈ etr ,
and d ∈ etr .

Definition 4.2 Database Partition: Consider a user ui and a database of ratings DBR . The
partition of the database with respect to user ui , denoted as DBR[ui ], is defined as: {etr |ui ∈
etr ∧ etr ∈ DBR}

Example 4 To illustrate, projection of the database shown in Table 1 with respect to user d
is the database shown in Table 3.

Using the two definitions above, Lemma 2 describes our divide and conquer strategy.

Lemma 2 Divide and Conquer: Consider a database of ratings DBR, minimum support
threshold λ, and minimum confidence threshold σ . Let U and I be the set of users and items
in DBR. Also, let Cm be the shorthand of the Clagmine procedure described in Algorithm 4.1.
The following is guaranteed:

Cm(λ, σ, DBR, U, I ) =
⋃

ui∈U

{g|ui ∈ g ∧ g ∈ Cm(λ, σ, DBR[ui ], U, I )}

Proof An entry in the database could only be counted as an additional support to an a-com-
munity containing user ui iff the entry contains an item ui . Hence, partitioning the database
with respect to a user ui would return the relevant portion of the database that is relevant
to ui . The support count and antcount of an arbitrary a-community containing ui in the
partitioned database DBR[ui ] would be the same as that in the original database DBR . All
a-communities reported in Cm(λ, σ, DBR[ui ], U, I ) that contains ui would have the correct
support. All a-communities containing ui should be output by Cm(λ, σ, DBR[ui ], U, I ).
However, nothing is guaranteed for a-communities that do not contain ui in the set returned
by Cm(λ, σ, DBR[ui ], U, I )—they could have a wrong support. They should be dropped.

Hence, it could be easily seen that the union of the mining results over the partitions with
various ui s, with removal of results that does not contain ui , would be equal to the results
returned by the mining operation on the entire dataset. ��

Based on Lemma 2, our algorithm to perform divide and conquer is shown in
Algorithm 4.7. The algorithm partitions the database one item at a time and subsequently
calls the original closed antagonistic community mining algorithm defined in Algorithm 4.1.
Theorem 3 guarantees that the mined result is correct, and a complete set of a-communities
are mined by Algorithm 4.7.

Theorem 3 Algorithm 4.7 would return a complete set of closed a-communities, and all
returned a-community would be closed.
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Algorithm 4.7 Clagmine-parti tional(λ,σ ,DBR ,U ,I )
Input: min. support thresh. λ; min. conf. thresh. σ ; rating database DBR ; set of users U ; set of items I
Output: closed a-communities of all sizes
1: G = {};
2: foreach ui ∈ U do
3: G = G ∪ {g|ui ∈ g ∧ g ∈ Clagmine(λ,σ ,DBR [ui ],U ,I )};
4: end for
5: return G;

Proof From Theorems 1 and 2 and Lemma 2, it is easy to see that the above theorem holds.
��

Note that the divide and conquer algorithm reduces memory costs; however, it could
potentially increase the runtime cost since the database would now need to be scanned more
number of times. In Sect. 5, we show the results of running the two algorithms over a number
of datasets.

5 Performance study

In this section, we describe our performance study on synthetic datasets generated by our
synthetic data generator and real datasets from Amazon, Epinions, and Slashdot. In addition
to the performance study results, we also highlight some interesting findings by analyzing
the a-communities mined from these datasets. All experiments are conducted on a desktop
PC with 3.17 GHz CPU and 3 GB RAM.

5.1 Experiments on synthetic datasets

We evaluate the scalability of our algorithm on synthetic datasets generated by a synthetic
data generator on various parameter settings. Our synthetic data generator accepts five input
parameters: number of users |U | (in ’000), number of items |I | (in ’000), the expected num-
ber of users rating an item P , average size of maximal potential large a-community NG , and
number of maximal potential large a-community NL (in ’000). We generate four datasets
using the following parameter settings.

Dataset Parameters
DS1 |U |=10, |I |=100, P=20, NG=6, NL =2
DS2 |U |=50, |I |=100, P=20, NG=6, NL =2
DS3 |U |=10, |I |=100, P=30, NG=6, NL =2
DS4 |U |=50, |I |=10, P=20, NG=6, NL =2

For all the experiments, we have set the minimum confidence threshold σ at 0.7. We
measure the runtime for different support thresholds. The results for dataset DS1 for support
thresholds from 0.002 to 0.006 are shown in Fig. 1. Figure 1a shows the runtime needed to
execute the algorithm at various support thresholds. “Non-Split” and “Split” correspond to
Clagmine algorithm and Clagmine-parti tional algorithm, respectively. We only include
3 data points for “Non-Split”, as mining at lower thresholds took too long to complete.
Figure 1b shows the number of a-communities found at various support thresholds. Finally
in Fig. 1c, we plot a graph showing the number of a-communities of different sizes when we
mine with the minimum support threshold set at 0.002.
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Fig. 1 Runtime and Patterns: DS1 at various minimum support thresholds (i.e., λ) with σ = 0.7
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Fig. 2 Runtime and Patterns: DS2 at various minimum support thresholds (i.e., λ) with σ = 0.7

The result shows that the number of a-community as well as the runtime decreases with
increasing support threshold. Figure 1c also shows that a-communities mined have small
sizes.

For the second dataset, we consider a larger set of users. The results for various support
thresholds with σ = 0.7 are shown in Fig. 2.
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Fig. 3 Runtime and Patterns: DS3 at various minimum support thresholds (i.e., λ) with σ = 0.7
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Fig. 4 Runtime and Patterns: DS4 at various minimum support thresholds (i.e., λ) with σ = 0.7

For the third dataset, we use a smaller set of users and larger expected set of users rating an
item. The results for various minimum support thresholds with σ = 0.7 are shown in Fig. 3.

For the fourth dataset, we consider a smaller set of items and larger set of users. The results
for various minimum support thresholds with σ = 0.7 are shown in Fig. 4.
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Fig. 5 Amazon book ratings dataset: indegree and outdegree distribution

The performance study shows that the algorithm is able to run well on various settings. The
lower the support threshold is, the larger are the runtime and the number of a-communities.
DS1 and DS2 have the same parameter settings except that the number of users of DS2 is
larger than that of DS1. By comparing the runtime of the two, we conclude that the larger the
number of users is, the more time consuming it is to mine a dataset. Similarly, by comparing
DS2 and DS4, we conclude that the larger the number of items is, the more time consuming
it is to mine a dataset. Comparing DS3 and DS1, we conclude that the larger the expected
number of users rating an item is, the more time consuming it is to mine a dataset.

5.2 Experiments on Amazon dataset

We describe the Amazon dataset, the result of the performance study, and the findings of the
efficacy analysis on the resultant mined a-communities.

5.2.1 Dataset description

We obtain the Amazon dataset from Bing Liu’s group in the University of Illinois at Chicago.
In this dataset, there are a total of 99,255 users rating 108,142 books in 935,051 reviews.
Each review is associated with a rating issued to the item by the user. The rating ranges from
1 to 5. We map ratings of 4–5 to high polarity (hi), ratings of 1–2 to low polarity (lo), and
the rest are mapped to medium polarity (mid). Among the 935,051 ratings, 699,925 (74.9 %)
are high, 108,013 (11.6 %) are low, and 104,373 (11.2 %) are medium. The distribution of
number of users rating an item versus number of items (i.e., indegree distribution) and the
distribution of the number of items a user rates versus the number of users (i.e., outdegree
distribution) are shown in Fig. 5.3 They follow power law distribution. This agrees with the
“power law degree distribution” of large networks [2,31], though there are some outliers. In
Fig. 5a, when indegree equals 1 or 2, the number of nodes is much fewer than the expected
values following power law. Similar cases exist in Fig. 5b. This suggests that Amazon book
rating dataset has a small number of nodes (items or users) with extremely low indegrees or
outdegrees.

3 We represent a rating to an item as an inlink to the item. A rating issued by a user is represented as an outlink
from the user.
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Fig. 6 Amazon dataset: runtime and distribution of A-communities

5.2.2 Performance study

The performance study is conducted with σ = 0.5 and different λ values. The results are
shown in Fig. 6. Figure 6c is obtained with absolute λ = 10 (we call λ× |I |, where |I | is the
number of different items, as absolute λ).

Figure 6b shows that the number of a-communities mined is small even with low min-
imum support thresholds. Most of the a-communities are of size 2. This result shows that
Amazon dataset does not contain large groups of people with opposite opinions. A possible
explanation is because Amazon makes use recommendation system extensively so that most
items are shown to users with the same preferences/opinions (thus, reducing the opposing
ratings).

5.2.3 Efficacy analysis

In our efficacy analysis, we investigate whether items rated by an a-community (called
a-community-rated items) differ from other items (called general items). We also investi-
gate whether users participating in an a-community (called a-community users) differ from
other users (called general users). We analyze the a-communities mined with absolute λ = 10
and σ = 0.5.

A-Community-Rated Items versus General Items. We use the following item metrics to
compare a-community-rated items and general items:

1. Item High Rating Ratio (Item HRR) = #high_rating
#high_rating+#low_rating . This metric reflects

the controversial level of an item. The closer the metric to 0.5, the more controversial
the item is.

2. Item Biased Rating (Item BR) = #high_rating + #low_rating. This metric reflects
how many biased ratings (high and low ratings) an item attracts.
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Table 4 Z test of item metrics
for Amazon dataset

Item HRR Item BR

A-community-rated items

Size 1379 1379

Mean 0.767 39.381

SD 0.189 75.148

General items

Size 106582 106763

Mean 0.875 7.059

SD 0.206 12.105

z value −21.137 15.969

For a-community-rated items and general items, we obtain the mean and standard devia-
tion for each of the above metrics. We then perform a z test on each metric to tell whether the
set of a-community-rated items is different from that of general items. Our z test results are
shown in Table 4. For the two sets to be similar with 99 % confidence, we need the z value
to be within [−2.57, 2.57] range. Table 4 shows that the z values of the two metrics are all
outside the range. Hence, we can say with 99 % confidence, the two populations are different
with respect to the two metrics. Furthermore, we observe that

1. In terms of item HRR, both a-community-rated items and general items receive more
high ratings than low ones. The high and low ratings of the a-community-rated items are
more balanced than that of general items. Hence, the a-community-rated items attract
significantly more opposing ratings than general items.

2. In terms of item BR, a-community-rated items attract significantly more biased ratings
than general items.

A-Community Users versus General Users. We use the following user metrics to com-
pare the two user sets:

1. User High Rating Ratio (User HRR) = #high_rating
#high_rating+#low_rating . This metric reflects

whether a user’s opinions are biased toward high or low ratings.
2. User Biased Rating (User BR) = #high_rating + #low_rating. This metric reflects

how many biased ratings (high and low ratings) a user gives..

To compare the two user sets, we only consider users with User BR ≥ (absolute λ)× σ .
This requires users to rate at least (absolute λ) × σ items as high or low. Thus, their user
BRs are at least (absolute λ)× σ . We apply z test to investigate whether the distributions of
the metrics for the two user sets are different. The z test results are shown in Table 5. The
z values of the two metrics are all outside the 99 % confidence interval (i.e., [−2.57,2.57]).
Hence, we can say with 99 % confidence that the two user sets are different with respect to
the two metrics. From the table, we observe that

1. In terms of user HRR, both a-community users and general users give more high ratings
than low ones. A-community users give more balanced high and low ratings than general
users.

2. In terms of user BR, a-community users give significantly more biased ratings than
general users.
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Table 5 Z test of user metrics
for Amazon dataset

User HRR User BR

A-community users

Size 166 166

Mean 0.693 208.572

SD 0.264 634.060

General users

Size 39517 39517

Mean 0.846 15.108

SD 0.196 29.820

z value −7.468 3.931

Fig. 7 Epinions dataset: indegree and outdegree distribution

5.3 Experiments on Epinions dataset

We describe the Epinions dataset, the result of the performance study, and the findings of the
efficacy analysis on the resultant mined a-communities.

5.3.1 Dataset description

We analyze the Epinions dataset downloaded from [10], which contains 49,290 users who
rated 139,738 different items in 664,823 reviews with ratings scale from 1 to 5. Again, we
map ratings of 4–5 to high polarity (hi) and ratings of 1–2 to low polarity (lo). The rest
are mapped to medium polarity (mid). Among the 664,823 ratings, 495,392 (74.5 %) are
high, 93,906 (14.1 %) are low, and 75,525 (11.4 %) are medium. The indegree distribution of
items and the outdegree distribution of the users are shown in Fig. 7. Both the indegree and
outdegree distributions follow power law.

5.3.2 Performance study

The performance study is conducted with σ = 0.5 and different λ values. The results are
shown in Fig. 8. Figure 8c is obtained with absolute λ = 10.

The results of Epinions dataset are similar to that of Amazon dataset. The number of
a-communities is small even with very low support threshold. Most of the a-communities are
of size 2. The antagonistic behavior is not so much apparent in this dataset.
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Fig. 8 Epinions dataset: runtime and distribution of A-communities

Table 6 Z test of item metrics
for Epinions dataset

Item HRR Item BR

A-community-rated items

Size 1503 1503

Mean 0.732 93.582

SD 0.236 124.059

General items

Size 128015 138235

Mean 0.874 3.246

SD 0.293 7.872

z value −23.145 28.229

5.3.3 Efficacy analysis

We analyze a-community-rated items and users for a-communities mined with absolute λ =
10 and σ = 0.5.

A-Community-Rated Items versus General Items. We compare the two sets using the
same item metrics and z test used in analyzing the Amazon dataset. Our z test results are
shown in Table 6. The z values of the two metrics are all outside the 99 % confidence interval
(i.e., [−2.57, 2.57]). Hence, we can say with 99 % confidence that the two sets are different
with respect to the two metrics. We also observe that

1. In terms of item HRR, similar to the Amazon dataset, both of the two sets receive more
high ratings than low ones. The high and low ratings received by a-community-rated
items are more balanced than that of general items.

123



574 K. Zhang et al.

Table 7 Z test of user metrics
for Epinions dataset

User HRR User BR

A-community users

Size 434 434

Mean 0.772 146.150

SD 0.136 128.980

General users

Size 21873 21873

Mean 0.845 22.461

SD 0.132 32.039

z value −11.108 19.966

2. In terms of item BR, a-community-rated items receive significantly more biased ratings
than general items.

A-Community Users versus General Users. We compare the two sets using the same
user metrics and z test used in analyzing the Amazon dataset. Our z test results are shown
in Table 7. The z values of the two metrics are all outside the 99 % confidence interval (i.e.,
[−2.57,2.57]). Hence, we can say with 99 % confidence that the two populations are different
with respect to the two metrics. From the table, we can also observe that

1. In terms of user HRR, similar to the Amazon dataset, both a-community users and gen-
eral users give more high ratings than low ones. A-community users give more balanced
high and low ratings than general users.

2. In terms of user BR, a-community users tend to give significantly more biased ratings
than general users.

5.4 Experiments on Slashdot dataset

We describe the Slashdot dataset, the result of the performance study, and the findings of the
efficacy analysis on the resultant mined a-communities.

5.4.1 Dataset description

Different from our previous two datasets, Slashdot dataset does not contain ratings people
give to products. Rather, it contains ratings people give to other people. In this dataset, a
person rates another as a “friend” (a high polarity rating) or “enemy”(a low polarity rating).
There is no medium polarity rating in this dataset. Items here refer to the people receiving at
least one rating and users refer to the people giving at least one rating.

We analyze the Slashdot dataset downloaded from [32], which contains information on
82,144 individuals. Forty four thousands forty four (53.6 %) of them give at least one rating
and 70,284 (85.6 %) have at least one rating. The difference between the number of people
who have at least one rating and the number of people who give at least one rating is 26,240.
This indicates that some people give many ratings. There are 549,202 links, with 425,072
(77.4 %) of them having high rating and 124,130 (22.6 %) of them having low rating. This
suggests that users in Slashdot dataset give much more high ratings than low ratings. The
indegree and outdegree distributions are shown in Fig. 9. As shown in Fig. 9a, the indegree
is strictly power law distributed. Figure 9b shows that the outdegree follows power law too,
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Fig. 9 Slashdot dataset: indegree and outdegree distribution
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Fig. 10 Slashdot dataset: runtime and distribution of A-communities

except four nodes in the dashed circle. the people giving many ratings and found that there
are few common nodes in their rated node set. They do not form any cliques (voting each
other as friends or enemies) and they do not rate commonly on some communities of nodes.
It seems these nodes rate a lot of other nodes without any special purposes.

5.4.2 Performance study

The performance study is conducted with σ = 0.7 and different λ values. The result is shown
in Fig. 10. Figure 10c is obtained with absolute λ = 20.

Figure 10a shows that the runtime decreases with larger λ. This is due to smaller number
of a-communities as shown in Fig. 10b. Unlike the Epinions and Amazon datasets, most of
the a-communities in this dataset are of size 3 and some large size a-communities are mined.
For example, we have around 200 a-communities of size 8. As the size of a-community
increases, the number of a-communities decreases.
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Table 8 Z test of item metrics
for Slashdot dataset

Item HRR Item BR

A-community-rated items

Size 2556 2556

Mean 0.647 81.172

SD 0.220 147.063

General items

Size 67728 67728

Mean 0.779 5.046

SD 0.347 12.632

z value −28.986 26.167

Table 9 Z test of user metrics
for Slashdot dataset

User HRR User BR

A-community users

Size 399 399

Mean 0.682 182.727

SD 0.344 91.403

General users

Size 7704 7704

Mean 0.790 46.106

SD 0.245 44.925

z value −6.199 29.672

5.4.3 Efficacy analysis

We analyze a-community-rated items and users for a-communities mined with absolute λ =
20 and σ = 0.7.

A-Community-Rated Items versus General Items. We compare the two sets using the
same item metrics and z test used in analyzing the previous two datasets. Our z test results
are shown in Table 8. The z values of the two metrics are all outside the 99 % confidence
interval (i.e., [−2.57,2.57]). Hence, we can say with 99 % confidence that the two sets are
different with respect to the two-item metrics. We also observe that

1. In terms of item HRR, similar to our previous two datasets, both sets receive more high
ratings than low ones. A-community-rated items receive more balanced high and low
ratings than general items.

2. In terms of item BR, a-community-rated items receive significantly more biased ratings
than general items.

A-Community Users versus General Users. We compare the two sets using the same
user metrics and z test used in analyzing the previous two datasets. Our z test results are
shown in Table 9. The z values of the two metrics are all outside the 99 % confidence interval
(i.e., [−2.57,2.57]). The z values indicate that with 99 % confidence we can say the two sets
are different with respect to the two metrics. We also observe that
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Table 10 Interesting examples from Amazon book rating dataset

ID Antagonistic groups Num. of
common
ratings

Num. of
ratings by user
1 (% of
common
ratings)

Num. of
ratings by user
2 (% of
common
ratings)

Num. of
ratings by user
3 (% of com-
mon ratings)

1 ({Johnston},{Weissgarber}) 12 56 (21 %) 13 (92 %) –

2 ({Johnston, Jump},{Weissgarber}) 10 56 (17.8 %) 61 (16.4 %) 13 (76.9 %)

3 ({Johnston, Hill},{Weissgarber}) 10 56 (17.8 %) 106 (9.4 %) 13 (76.9 %)

4 ({Leeper},{Weissgarber}) 10 137 (7.3 %) 13 (76.9 %) –

5 ({Kern},{Sklarski}) 14 452 (3.1 %) 22 (63.6 %) –

1. In terms of user HRR, similar to our previous two datasets, both a-community users
and general users give more high ratings than low ones. A-community users give more
balanced high and low ratings than general users.

2. In terms of user BR, a-community users give significantly more biased ratings than
general users.

5.4.4 Examples of mined a-communities

We show examples of some interesting a-communities are discovered from the Amazon data-
set. The Amazon dataset is particularly rich since it contains ratings of books of various types
and genres, and each rating potentially comes with comments that tell us why a particular
user likes or dislikes a particular item.

We run the mining algorithm on Amazon dataset with absolute λ = 10 and σ = 0.5
and analyze the mined a-communities. The program runs for 930 s with 167 a-communities
generated. A hundred and forty-seven of the a-communities are of size 2, 18 of them are of
size 3, and 2 of them are of size 4. We post-process the a-communities with the following
criterion:

– number_of _commonly_rated_i tems
number_of _rated_i tems : Retain a-communities if at least one user in the a-com-

munity has number_of _commonly_rated_i tems
number_of _rated_i tems > 0.6. This criterion is to ensure that at least

one user behaves highly antagonistically against others.

After post-processing, we note five of the most interesting a-communities. We select those
having highest antagonistic confidence and average number_of _commonly_rated_i tems

number_of _rated_i tems scores
over all constituent users. They are shown in Table 10. We select the first a-community and
observe the following:

– High antagonistic level: We observe that the two users in the first a-community rated
with a high level of antagonism. Among Jason Johnston’s 56 rated books, 12 have ratings
opposite to the ratings by Luke Weissgarber. Similarly for Weissgarber, 12 of all his 13
rated books have ratings opposite to those by Johnston, which means more than 92 % of
Weissgarber’s ratings are opposite to Johnston’s. It is a significantly high figure.

– Antagonistically rated books: We found that books given opposite ratings by Weissgarber
and Johnston are some novels with a similar story background. These books are clearly
liked by Johnston, but not by Weissgarber. Table 11 lists the books rated oppositely by
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Table 11 Johnston and Weissgarber’s ratings on their commonly rated books

ID Book title Johnston’s rating Weissgarber’s rating

1 Armageddon 4 1

2 The remnant: on the brink of Armageddon 4 1

3 Desecration: antichrist takes the throne 4 1

4 The mark: the beast rules the world 4 1

5 The indwelling: the beast takes possession 4 1

6 Assassins 4 1

7 Apollyon: the destroyer is unleashed 4 1

8 Soul harvest: the world takes sides 4 1

9 Nicolae: the rise of antichrist 4 1

10 Tribulation force: the continuing
drama of those left behind

4 1

11 Left behind: a novel of the Earth’s last days 4 1

12 Glorious appearing: the end of days 4 1

Johnston and Weissgarber. When we look into the comments of the ratings made by John-
ston and Weissgarber for the books in Table 11, we find out that the books are deemed as
heretical by Weissgarber, but liked by Johnston.

– Antagonistically behaved users: It is interesting that Weissgarber appears in four out of
five a-communities. His ratings are opposite to other 4 users for at least 10 books. He
tends to rate books against the ratings of others.

6 Discussion

In this section, we discuss several interesting points on the number of non-closed patterns, the
amount of useless patterns mined by the partitioning approach, and the relationship between
the power law nature of the indegree and outdegree distributions with the size of mined
patterns.

Number of non-closed patterns pruned. We perform late pruning (i.e., filtering) of non-
closed patterns. This is done at line 15 of Algorithm 4.1. We would like to investigate the
number of non-closed patterns that are filtered. Tables 12 and 13 show the number of non-
closed patterns that are filtered for the synthetic and real datasets, respectively. We notice
that the number of non-closed patterns filtered for Amazon and Epinions datasets is not that
many. Thus, employing early pruning of non-closed patterns is not useful for these datasets
(at least for the support thresholds considered). Indeed, early pruning of non-closed patterns
typically includes additional checks that incurs computational cost, e.g., [39]. Thus, unless
there are many non-closed patterns, employing early pruning of non-closed patterns would
not improve and might even reduce the efficiency of the mining process. On the other hand,
the number of non-closed patterns filtered for Slashdot and the synthetic datasets are many.
For these cases, employing early pruning of non-closed patterns would be very useful in
improving efficiency. We leave this as a future work.

Number of useless patterns generated. In the partitioning approach (i.e., divide and
conquer strategy described in Sect. 4.5), we might generate useless patterns that are later
filtered, that is, the patterns do not include the user used to create the partition. We would
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Table 12 Number of non-closed
patterns in synthetic datasets

Dataset λ # Non-closed # Closed

DS1 0.002 8,847 8,083

0.003 898 3,411

0.004 177 1,806

0.005 26 1,031

0.006 1 721

DS2 0.002 10,534 8,129

0.003 1,228 3,648

0.004 89 1,699

0.005 11 1,003

0.006 0 705

DS3 0.002 810,881 149,675

0.003 20,425 7,816

0.004 1,674 6,963

0.005 463 2,215

0.006 292 1,736

DS4 0.002 315,092 7,299

0.003 26,721 3,592

0.004 5,450 1,875

0.005 981 1,156

0.006 224 717

Table 13 Number of non-closed
patterns in real datasets

Dataset Absolute λ # Non-closed # Closed

Amazon 10 66 167

20 2 19

30 0 6

40 0 2

50 0 1

Epinions 10 873 586

20 2 19

30 0 1

40 0 0

50 0 0

Slashdot 20 243,236 5,802

30 7,926 551

40 1,279 126

50 494 51

like to analyze the number of such useless patterns. Tables 14 and 15 show the number of
useless patterns that are filtered for the synthetic and real datasets, respectively. We notice
that the number of useless patterns ranges from 0 to 77 % of the number of closed patterns.
This shows a trade-off between speed and memory consumption. Without the partitioning
strategy, there is no such useless patterns; however, the memory consumption needed is too
large for many cases such that the algorithm crashes due to out-of-memory exception.
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Table 14 Number of useless
patterns in synthetic datasets

Dataset λ # Useless # Closed % Useless (%)

DS1 0.002 17,549 8,083 68.47

0.003 5,052 3,411 59.70

0.004 2,415 1,806 57.21

0.005 1,265 1,031 55.10

0.006 826 721 53.39

DS2 0.002 17,676 8,129 68.50

0.003 5,799 3,648 61.38

0.004 2,284 1,699 57.34

0.005 1,263 1,003 55.74

0.006 837 705 54.28

DS3 0.002 529,239 149,675 77.95

0.003 17,092 7,816 68.62

0.004 14,039 6,963 66.85

0.005 3,100 2,215 58.33

0.006 2,444 1,736 58.47

DS4 0.002 14,606 7,299 66.68

0.003 5,829 3,592 61.87

0.004 2,649 1,875 58.55

0.005 1,487 1,156 56.26

0.006 875 717 54.96

Table 15 Number of useless
patterns in real datasets

Dataset Absolute λ # Useless # Closed % Useless (%)

Amazon 10 189 167 53.09

20 21 19 52.5

30 6 6 50

40 2 2 50

50 1 1 50

Epinions 10 662 586 53.04

20 19 19 50

30 1 1 50

40 0 0 0

50 0 0 0

Slashdot 20 18,863 5,802 76.48

30 1,236 551 69.17

40 255 126 69.93

50 104 51 67.10

Power law and pattern size. We notice that the indegree and outdegree distributions for
the three real datasets follow the power law (see Figs. 5, 7, 9). Thus, only a few nodes have
large indegree and outdegree values. This observation matches with the mining result: we
find that in general, most patterns that we mine are of small sizes, and large patterns are less
in number than small patterns (see Figs. 6c, 8c, 10c).
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7 Conclusion

In this study, we propose a new pattern mining algorithm to mine indirect antagonistic com-
munities from social interactions. Our algorithm traverses the search space of possible antag-
onistic communities and uses a pruning strategy to remove unfruitful search spaces that do not
contain any antagonistic community. We also propose a variant of the algorithm that utilizes
a divide and conquer strategy that enables us to mine larger datasets. Performance studies
have been conducted on various synthetic datasets to show the scalability of our approach
on various dataset sizes and parameter values. We also mine antagonistic communities from
Amazon, Epinions, and Slashdot datasets. The results show that the algorithm is effective in
finding indirect antagonistic communities from these datasets. Furthermore, we found that
items rated by, and users participating in, an antagonistic community are significantly differ-
ent from general items and users, respectively. In the future, we plan to further speed up the
mining algorithm and investigate antagonistic communities in other social network settings.
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