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a  b  s  t  r  a  c  t

A  number  of  techniques  that infer  finite  state  automata  from  execution  traces  have  been  used to  support
test  and  analysis  activities.  Some  of  these  techniques  can produce  automata  that  integrate  informa-
tion  about  the  data-flow,  that  is,  they  also  represent  how  data  values  affect the  operations  executed  by
programs.

The integration  of  information  about  operation  sequences  and  data  values  into  a  unique  model  is  indeed
conceptually  useful  to  accurately  represent  the  behavior  of  a program.  However,  it is still  unclear  whether
handling  heterogeneous  types  of  information,  such as  operation  sequences  and  data  values,  necessarily
produces  higher  quality  models  or not.
ehavioral models In  this  paper,  we  present  an  empirical  comparative  study  between  techniques  that  infer  simple
automata  and  techniques  that  infer  automata  extended  with  information  about  data-flow.  We  inves-
tigate  the  effectiveness  of  these  techniques  when  applied  to  traces  with  different  levels  of  sparseness,
produced  by  different  software  systems.  To  the  best  of our  knowledge  this  is the  first  work  that  quantifies
both  the  effect  of adding  data-flow  information  within  automata  and  the  effectiveness  of  the  techniques
when  varying  sparseness  of traces.

quantified constraints, compared to simple FSAs. However it is
. Introduction

In the recent years, several techniques that automatically derive
ehavioral models from execution traces have been used to sup-
ort validation and verification activities (Lorenzoli et al., 2008;
allmeier et al., 2006; Ernst et al., 2001; Hangal and Lam, 2002;
enkel and Diwan, 2003; Mariani and Pastore, 2008; Raz et al.,
002; Ammons et al., 2002). A kind of model that is both com-
only used to represent program behaviors and largely supported

y model generation techniques is Finite State Automaton (FSA)
Lorenzoli et al., 2008; Dallmeier et al., 2006; Mariani and Pastore,
008; Ammons et al., 2002; Biermann and Feldman, 1972).

Recent results highlighted that many program behaviors can-
ot be accurately represented with FSAs, but require models that

nclude not only the information about the possible sequences
f events executed by programs but also data-flow information
Lorenzoli et al., 2008; Mariani and Pastore, 2008; Mariani et al.,
011a). For instance, the parameters that a program uses to open

 file can influence the way the file will be successively used (e.g.,

pening a file with the read option does not allow values to be writ-
en into the file). Simple FSAs can represent the different ways a file

∗ Corresponding author.
E-mail address: mariani@disco.unimib.it (L. Mariani).

164-1212/$ – see front matter ©  2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.04.001
© 2012 Elsevier Inc. All rights reserved.

can be used (e.g., reading or writing), but cannot relate the specific
usage to the opening mode.

For instance gkTail (Lorenzoli et al., 2008) and KLFA (Mariani
and Pastore, 2008) are two  techniques that can extract FSAs that
incorporate data-flow information. In particular, gkTail builds FSAs
where transitions are annotated with data-flow information con-
sisting of algebraic constraints. The algebraic constraints associated
with transitions specify the concrete values that can be assigned to
attributes, thus representing with a single transition a large (pos-
sibly infinite) set of events. Fig. 1 shows an example EFSA1 inferred
by gkTail. KLFA builds simple FSAs with transition labels that incor-
porate data-flow information consisting of universally quantified
constraints. Universally quantified constraints specify how data
values can reoccur across events. Also in this case the inferred
FSA can represent a (possibly infinite) set of events with a single
transition. Fig. 2 shows an example EFSA inferred by KLFA.

The models generated by KLFA and gkTail can effectively rep-
resent data-flow information through algebraic and universally
still unclear whether automatically inferred models extended with
data-flow information are generally more accurate than simple

1 In the rest of the paper we will interchangeably use the terms extended FSA
(EFSA) and FSA with data-flow information to indicate models extended with either
algebraic or universally quantified constraints.

dx.doi.org/10.1016/j.jss.2012.04.001
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:mariani@disco.unimib.it
dx.doi.org/10.1016/j.jss.2012.04.001
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ig. 1. An extended FSA that describes how a file is used taking into account how
he  file is opened (mode = 1 corresponds to read/write access, mode = 2 corresponds
o  read access). This kind of FSA can be inferred by gkTail.

SAs or not. In particular, processing multiple types of information
event sequences and data-flow) is harder than processing event
equences only, and the quality of the resulting model can be com-
romised by the complexity of the inference process. In addition,
rocessing more data means spending more time for the inference.

n some cases, the time necessary to produce the models can be
xtremely important.

In this paper, we present an empirical comparative study between
echniques that infer FSAs and techniques that infer EFSAs. The
tudy focuses on event traces,  that is traces with event names anno-
ated with attribute values (e.g., sequences of method invocations
nnotated with parameter values), collected with passive meth-
ds (i.e., we simply monitor and record event traces). Event traces
an be easily collected from any software system by monitoring
nteractions between components without requiring access to the
omponent state (black-box monitoring). We  do not consider infer-
nce of FSAs from state traces,  that is traces with event names and
tate values (e.g., sequences of method invocations annotated with
he values of the state variables of the objects that process the
nvocations), because their applicability is restricted by the need
f a strategy for recording the value of state variables (white-box
onitoring).

The objective of this comparison is to study the tradeoff

etween inferring FSAs and EFSAs, with specific reference to models
xtracted from software systems.  The empirical study evaluates

ig. 2. An EFSA that describes how two files are sequentially opened and closed.
his kind of FSA can be inferred by KLFA.
 Software 85 (2012) 2063– 2076

the effectiveness of these techniques while varying the set of
available traces from sparse,  which is an extremely common case
when traces are collected by testing software systems, to dense,
which only happens for thoroughly tested systems. We  compare
techniques that infer FSAs and EFSAs according to the quality of
the inferred models and the time required to obtain them. We  con-
clude our study providing remarks about how to choose a proper
model generation technique according to the kind of analysis it
should support and the characteristics of the available traces.

According to our investigation of the state of the art, the only
inference techniques that can generate FSAs annotated with alge-
braic and universally quantified constraints from event traces, and
have been used to build behavioral models from real software sys-
tems, are KLFA (Mariani and Pastore, 2008) and gkTail (Lorenzoli
et al., 2008). Since KLFA and gkTail are obtained by adding a con-
straint identification stage to kBehavior (Mariani et al., 2011b)  and
kTail (Biermann and Feldman, 1972), which are algorithms that
can infer simple FSAs, this empirical study compares the perfor-
mance of these four techniques on a same set of case studies. In this
way, differences on both the quality of the models and the perfor-
mance strictly result from the inference of data-flow information
within the models. These differences carry insights that software
engineers can use to decide, case by case, if data-flow information
should be considered or not. Since the study focuses on constraints,
we do not consider techniques that can decorate models with anno-
tations different from constraints, such as probabilities (Ammons
et al., 2002; Cook and Wolf, 1998), and techniques that can infer
simple FSAs with a process that is unrelated with the processes
used by KLFA and gkTail, e.g., approaches that actively issue queries
to end users or generate new test cases (Raffelt and Steffen, 2006;
Walkinshaw et al., 2007; Bertolino et al., 2009).

To the best of our knowledge, this paper is the first empirical
study that (1) compares and quantifies the tradeoffs between the
techniques that infer simple FSAs and the techniques that incorpo-
rate data-flow information within FSAs; (2) measures the impact of
the sparseness of the traces on the model; and (3) compares a core
set of techniques using 10 models extracted from third-party soft-
ware systems. Most of previous studies in inference of behavioral
models from software systems validated the techniques with fewer
cases without always including direct comparison with similar
techniques (Ramanathan et al., 2007; Walkinshaw and Bogdanov,
2008; Lo and Maoz, 2009; Thummalapenta and Xie, 2009; Zhong
et al., 2009).

The main findings reported in this paper are:

• the recall and precision of the models decrease if data-flow infor-
mation is incorporated in the model: the loss depends from the
kind of information that is added to the model and the sparseness
of the traces;
–  in the empirical validation the maximum loss of recall has been

0.2 when adding algebraic constraints and 0.54 when adding
universally quantified constraints;

– in the empirical validation the maximum loss of precision has
been 0.33 when adding algebraic constraints and 0.64 when
adding universally quantified constraints;

• good simple FSAs can be inferred even from sparse sets of exe-
cutions: according to our experiments a set of executions that
covers all the states in the model to be inferred, but not all tran-
sitions, is sufficient to generate FSAs with good precision and
recall;

• good FSAs with algebraic or universally quantified constraints
require a dense set of executions to be inferred: according to our

experiments a set of executions that covers all the transitions in
the model to be inferred is usually needed;

• the inference of FSAs with algebraic constraints is multiple
orders of magnitudes slower than the inference of FSAs with
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ig. 3. A simple FSA that describes the usage of a file. This kind of FSA can be inferred
y both kTail and kBehavior.

universally quantified constraints or simple FSAs: on average
inference with gkTail required 38 min  compared to few seconds
required by KLFA, kTail and kBehavior.

The paper is organized as follows. Section 2 describes the goals
f the empirical validation presented in this paper and defines the
ain research questions that are investigated. Section 3 shortly

escribes the techniques that are compared in the empirical study.
ection 4 presents the empirical process that we follow to answer
ach research question. Section 5 describes the toolset used to
un the empirical validation. Section 6 presents and discusses the
mpirical data. Section 7 summarizes the main findings of our
mpirical work. Section 8 discusses the threats to the validity of
he empirical validation. Section 9 discusses related work. Finally,
ection 10 summarizes the contributions of this paper.

. Goals of the assessment

Software systems have more complex behaviors than those that
an be represented with simple FSAs. For instance, the simple FSA in
ig. 3 represents how an application uses a file. The real usage of the
le is abstracted in several ways. The choice between reading only,
r reading and writing values, is presented as a non-deterministic
hoice, while in reality it is determined by the opening mode. This
ack of information can result in an imprecise model-based analysis.
or instance, such FSA, when used for analysis, cannot detect that an
pplication opens a file with read mode and then illegally attempts
o write values into the file.

Simple FSAs can be extended with constraints that can com-
actly represent behaviors like the one exemplified above. For
xample, a more detailed model for the file reading/writing sce-
ario is shown in Fig. 1. Although this extension is indeed useful

rom a conceptual point of view, EFSAs are more challenging to be
nferred than simple FSAs. The attempt to learn an EFSA could end
p with an imprecise model that improperly represents both com-
lex and simple behaviors. On the contrary, the inference of an FSA,
ven if not including any data-flow information, could end up with a
odel that precisely represents at least the simple behaviors. In the

iterature, there exists no comparative and quantitative empirical
tudy that confirms or rejects the hypothesis that more accurate
odels can be learnt by using techniques that learn EFSAs than

hose that learn FSAs. The goal of our empirical study is to quantify

nd compare the performance of techniques that infer simple FSAs
ith techniques that infer EFSAs.

Our empirical comparison investigates the following three
esearch questions:
 Software 85 (2012) 2063– 2076 2065

R1 Do inference techniques producing extended FSAs gen-
erate models that can better identify legal behaviors as
compared to those producing simple FSAs?

R2 Do inference techniques producing extended FSAs gen-
erate models that can better reject illegal behaviors as
compared to those producing simple FSAs?

R3 What is the performance difference between the gener-
ation and the checking of extended FSAs as compared to
those of simple FSAs?

Note that these research questions are extremely important
when these models are used to support automated software anal-
ysis, but they are not necessarily critical when models are used
for other purposes. For instance if the models must be manually
inspected, human readability can be more relevant than model
accuracy. We  refer interested readers to Cornelissen et al. (2009)
for a survey of dynamic analysis techniques that can be used to
support program comprehension.

3. FSA inference techniques

In this section, we  shortly present the inference techniques com-
pared in our empirical evaluation.

3.1. kTail

kTail is a technique that generates a FSA from a set of traces in
two steps (Biermann and Feldman, 1972). In the first step it builds a
Prefix Tree Acceptor (PTA), which is a tree where edges are labeled
with event names. The language accepted by the PTA exactly con-
sists of the set of event sequences recorded in the traces. In the
second step kTail transforms, through a heuristic, the PTA into a
FSA. The heuristic consists of merging two states if they share the
same future of length k. The future of length k of a state is defined
as the set of the event sequences of maximum length k that can be
accepted from the state. The final automaton is obtained by merging
every pair of states with the same future of length k.

Fig. 3 shows a sample automaton that can be inferred by kTail.

3.2. kBehavior

kBehavior is a technique that incrementally generates a FSA
from a set of traces (Mariani et al., 2011b). When a new trace
is submitted to kBehavior, kBehavior first identifies sub-traces of
the input trace that are accepted by sub-automata in the current
automaton (the sub-traces must have a minimal length k, other-
wise they are considered too short to be relevant). Then kBehavior
extends the automaton with the addition of new branches that
suitably connect the identified sub-automata, producing a new
version of the automaton that accepts the entire input trace. In com-
plex cases, kBehavior can work recursively to extend a model with
newly generated automata rather than branches. We  refer inter-
ested readers to Mariani et al. (2011b) for a detailed description.

Fig. 3 shows a sample automaton that can be inferred by kBe-
havior.

3.3. gkTail

gkTail is a technique that generates an EFSA from a set of traces
that incorporate information about both the event sequences and
the values of the parameters associated with event sequences
(Lorenzoli et al., 2008). The technique can be seen as an extension

of kTail to produce FSAs with transitions annotated by algebraic
constraints.

gkTail works in four steps. In the first step, gkTail merges similar
traces, that is traces that share the same event sequence but differ
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n the values assigned to parameters. Merging a set of similar traces
roduces a single trace where each event is annotated with the set
f values obtained as the union of every value assigned to this same
vent in every merged trace. In the second step, gkTail mines an
lgebraic constraint from the values associated with each event.
n the third steps, gkTail uses the event sequences annotated with
lgebraic constraints to build a PTA where transitions are annotated
ith constraints. In the last step, the states with the same future of

ength k are merged.
In the case of EFSAs, the future of a state consists of a set of

vent sequences annotated with algebraic constraints. The future
f two states is equivalent if the states accept the same sequences of
vents and the events in the future are annotated with equivalent
onstraints, that is the first constraint logically implies the second,
nd vice versa. The final EFSA is obtained after merging every pair
f states with the same future. Fig. 1 shows a sample automaton
hat can be inferred by gkTail.

.4. KLFA

KLFA is a technique that generates an FSA from a set of traces
hat incorporate information about both the event sequences and
he values of the attributes associated with events (Mariani and
astore, 2008). The generated FSA has special transition labels that
nclude data-flow symbols (e.g., A and B in Fig. 2) in addition to
he event name. A data-flow symbol is a string that encodes a uni-
ersally quantified constraint. Universally quantified constraints
epresent how attribute values reoccur across events.

KLFA works in two steps. In the first step, KLFA analyzes the
races to discover universally quantified constraints. KLFA encodes
hese constraints in the event names by replacing concrete values
ith symbols that represent the discovered recurrence patterns.
n a syntactical point of view, the rewritten traces are pure event

equences. In the second step, KLFA uses kBehavior to generate the
SA from the rewritten traces.

KLFA implements multiple rewriting strategies that can handle
ifferent types of patterns. For example, the global ordering rewrit-

ng strategy consistently replaces the same concrete value with a
ame symbol. In this way, the model is independent from the con-
rete values that occur in the traces (concrete values are replaced
ith symbols), but still captures how the same value re-occurs

mong events (this case is captured by the same symbol repeated
mong multiple events). For instance, the symbol A associated with
vents open and close in the FSA shown in Fig. 2 indicates that the
ame file is opened and then closed.

To properly use symbols, KLFA heuristically separates param-
ter values into multiple groups of homogeneous values (e.g., a
roup for values in meters and a different group for values in Kelvin)
nd then rewrites the values in each group independently from the
ther groups. If too many symbols are necessary to rewrite the val-
es in one group, KLFA heuristically assumes that a proliferation
f symbols is the consequence of the lack of patterns that can be
iscovered. In that case, KLFA drops the values in the group and
ses events without data-flow information for the inference of the
odel.
In this paper we use the global ordering rewriting strategy

ecause it is the strategy used when no information about the
ature of the traces is available. See Mariani and Pastore (2008)

or details about the other rewriting strategies.
Fig. 2 shows a sample automaton that can be inferred by KLFA.
. Empirical setup

In the empirical assessment, kTail, kBehavior, gkTail and KLFA
re used to learn 10 models extracted from 10 third-party software
 Software 85 (2012) 2063– 2076

systems: Jfreechart (2011),  Lucane (2011),  Thingamablog (2011),
Jeti (2011),  Columba (2011),  Open Hospital (2011), Rapid Miner
(2011), Heritrix (2011),  Jargs (2011) and TagSoup (2011).

We selected the models according to the following process. We
browsed the Internet for open-source software developed by inde-
pendent parties. We  focused on open-source software because we
need to manually derive the ideal models that should be learned by
the techniques from the source code. We  found the 10 applications
considered in this study by browsing SourceForge (2011) and the
related web  sites looking for applications from different domains.
This heterogeneity is useful to avoid selecting multiple applica-
tions from the same domain, which may bias the study. In each
application, we concentrated on models that represent the method
invocations that can be generated when executing a method of the
program. We  choose such scale of models, opposed to models that
represent the entire execution flow of a program, for two reasons:
(1) many testing and analysis techniques use model inference to
produce models of that scale (Dallmeier et al., 2010; Ammons et al.,
2002; Reiss and Renieris, 2001; Lorenzoli et al., 2008), thus it is
considered an important scale by the scientific community; (2) it
is feasible to manually produce the ideal models from the source
code. A representation of the ideal models that must be learnt is
necessary to measure the quality of the inferred models. Consider-
ing huge models that represent the entire behavior of an application
would make the manual derivation of the ideal models very hard
or even practically infeasible. Finally, to avoid that a particular pro-
gramming style adopted by an application could bias the results of
our study, we  designed the study to cover as many diverse appli-
cations as possible. In this way  the impact of any factor specific
to a single application on the study is minimized. In the practice
we selected one method per application resulting in 10 methods
extracted from 10 applications.

We identified the methods for our empirical study by looking at
methods with behaviors of increasing complexity. We  evaluated
the complexity of a method by manually deriving the corre-
sponding model (that should be learned by techniques) and then
measuring its cyclomatic complexity (CC). CC indicates how com-
plex the structure of the graph (hence the FSA) is. To avoid studying
trivial cases, we selected methods with CC > 5, and we  classified
the methods, and hence the FSAs to be learned, in three classes:
CC < 10, 10 ≤ CC ≤ 15 and CC > 15. Since we  want to evaluate and
compare the effectiveness of techniques for inferring FSAs and
EFSAs, we also required that the behavior of the selected meth-
ods includes exchanging parameters with other methods. Columns
Application and Method name in Table 1 indicate the applications
and the methods used in the empirical study, respectively. Column
CC specifies the cyclomatic complexity of the behavior produced
by each method considered in the empirical evaluation.

To evaluate the quality of an inferred model, we  need an ideal
model that represents the behavior of the method under analysis.
To produce such a model, we analyzed the source code, manually
produced the EFSA that matches the behavior of the program, and
executed test cases to check the correctness and verify the feasibil-
ity of the behaviors represented in the model.

We  represented each ideal model extracted from the source
code as an EFSA with the following semantics:

• transitions labels are method signatures and represent method
invocations.

• transition constraints are Boolean expressions that represent con-
straints on the values that can be assigned to program variables
and parameters. For example, a constraint file.status == 0

associated with the transition label open(file, mode) indicates
that only a closed file is accepted as a parameter.

• parameter names have global semantics, that is if the same vari-
able name reoccurs in different signatures and constraints, its
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Table  1
Data about the reference EFSAs.

Application CC Num. states Num. transitions Num. constraints Method name

Class Value

Lucane
CC < 10

7 11 16 26 MessageHandler.run
Columba 7 13 18 14 FetchNewMessagesCommand.execute
Jeti  8 12 18 38 Jeti.actionPerformed

ThingamaBlog

10  ≤ CC ≤ 15

10 10 18 18 ParagraphComboHandler.actionPerformed
Open  Hospital 11 23 32 23 PatientBillEdit.getJButtonSave
Rapid  Miner 15 19 32 16 DBScan.generateClusterModel
Heritrix 15 19 32 23 ExtractorHttp.innerProcess
JArgs  15 15 28 28 CmdLineParser.parse

JFreeChart
CC  > 15

17 11 26 38 ChartFactory.createPieChart
Tagsoup 27 10 35 14 HTMLScanner.scan

C zed method. Columns CC, Num. states, Num. transitions and Num. constraints indicate
t e number of constraints in the ideal model extracted from the method under analysis,
r

r
a
p
c
l
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m

Table 2
Mapping from transition to method and constraint ids.

Edge Method Constraints

t1 m1 {}
t2 m1 {}
t3  m1 {c1, c2, c3}
t4  m1 {c1, c2, c3}
t5  m2 {c4}
t6  m3 {!c1, !c2, !c3, !c4}
t7  m4 {c5}
t8  m5 {c6}
t9 m6 {c7}
t10 m5 {!c7}
t11 m7 {c5, c7, c8}
t12 m8 {c6, c9}
olumn application indicates the name of the application that contains the analy
he  cyclomatic complexity, the number of states, the number of transitions and th
espectively. Column method name specifies the analyzed method.

value in an execution must always be the same. This semantics
allows the generation of traces that are coherent with the behav-
ior of the programs. If a parameter with the same name must be
assigned with different values in different transitions, we  simply
change the name of the parameter in the different transitions to
preserve the global semantics.

For the rest of the paper, we refer to the ideal EFSAs as the
eference EFSAs. Fig. 4 shows the reference EFSA for the Lucane
pplication, which is one of the case studies considered in this
aper. Table 2 specifies identifiers of labels and constraints asso-
iated with each transition. Table 3 specifies the actual values of
abels and constraints for each identifier. Detailed data about the

FSAs used for the empirical assessment is presented in Table 1:
olumns Num. states, Num. transitions and Num. constraints specify
he number of states, transitions and constraints in the reference

odel, respectively.

Fig. 4. The reference EFSAs extracted from Lucane.

t13  m9 {c8, c9, !c10}

t14 m9 {c8, c9, c10}
t15 m10  {}
t16 m11 {}

The effectiveness of the techniques experienced in our evalua-
tion is influenced by two  main factors: the value of the parameter k,
which determines how much the inference techniques generalize
the behavior represented by traces, and the completeness of the

set of traces used to infer the models. In this study, the primary
goal is to evaluate the effectiveness of the inference techniques
when varying the completeness of the available traces. Intuitively,
it corresponds to measuring the effectiveness of the techniques

Table 3
Mapping from ids to actual methods and constraints.

Identifier Definition

m1  run()
m2  handleServerMessage()
m3  handleServiceMessage()
m4 getName()
m5  getApplication()
m6  ServiceManager.getInstance().getService()
m7  getUser()
m9  Store.getServiceStore().getService()
m10 isAuthorizedService()
m11  sendAck()
m12  process()
c1 !isAlreadyConnected
c2 !isAuthenticationMessage
c3 !isServerInfoMessage
c4 message.getApplication().equals(”Server”)
c5 userName
c6 serviceName
c7 s
c8 user
c9 service
c10 isAuthorizedService
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filter those traces that do not traverse the mutated constraint, and
068 D. Lo et al. / The Journal of System

ccording to the thoroughness of the test suites available for exe-
uting the program under analysis. We  do not intend to study the
ensitivity of the techniques to the choice of the parameter k, espe-
ially because there exist a number of studies that already shows
hat values of k between 2 or 3 are good choices when the inferred

odels represent sequences of method invocations produced by an
pplication (Reiss and Renieris, 2001; Cook and Wolf, 1998; Mariani
t al., 2011b).  In line with these results, we run the inference tech-
iques with a value of k equals to 2.

To study the effectiveness of the techniques according to differ-
nt levels of completeness of the traces, we inferred the models
rom traces that satisfy three coverage criteria: state coverage,
ransition coverage, and 2-transition coverage. The coverage crite-
ia are expressed with respect to the reference model. Intuitively,
tate coverage corresponds to a sparse set of executions that cov-
rs all the states in the model but do not exercise all the method
nvocations, (i.e., transitions). Transition coverage corresponds to a
ood set of executions that samples all methods invocations, but
oes not invoke the methods in all the possible execution contexts,
or instance loops are not necessarily executed multiple times.
-transition coverage corresponds to a thorough test suite that sam-
les each method invocation at least twice, increasing the chance
o execute method invocations in different contexts. We  do not
onsider stronger coverage criteria because they would represent
nrealistic scenarios with fairly complete sets of executions that
re extremely hard to obtain in the practice.

We produce traces from a reference model by randomly travers-
ng the EFSA from the initial state to a final state. If a final state
as outgoing transitions, we randomly choose to either end the
race or continue producing a longer trace. When traversing a tran-
ition that has one or more parameters, we randomly generate a
alue that satisfies the constraints associated with the transition.
e continue generating traces until the selected coverage crite-

ion is satisfied. We  produce traces based on a random strategy to
void obtaining empirical data biased by the strategy used to cover
odels.
A final remark is about the constraints considered in the refer-

nce EFSAs. We  do not consider algebraic constraints that include
perators that cannot be inferred by gkTail. We  are not interested
n investigating the complexity of the constraints that gkTail can
nfer (which is evaluating the constraint generation engine, that is
aikon (Ernst et al., 2001)), but rather we intend to evaluate the
ffectiveness of gkTail to both associate the right constraints at the
ight transitions and merge the right states when the evaluation of
heir futures include the comparison of the constraints, which only
epend on the heuristics implemented in gkTail. Thus, the reference
FSAs only include constraints that can potentially be inferred by
aikon, and hence gkTail.

In the following, we describe the empirical process that we fol-
ow to answer the three research questions investigated in this
aper.

.1. Research question 1

Do inference techniques producing extended FSAs generate
odels that can better identify legal behaviors as compared to

hose producing simple FSAs?
To answer this research question, we compute the recall (also

nown as true positive rate) of the models inferred with kTail, kBe-
avior, gkTail and KLFA, for all the coverage levels and reference
odels considered in our empirical assessment. Recall is a com-
on  measure used in information retrieval (Manning et al., 2008).
n our setting it measures the ability of the model in identifying cor-
ect behaviors. The intention here is to verify whether considering
odels more complex than simple FSAs results in an increment or

 loss in recall.
 Software 85 (2012) 2063– 2076

To compute recall, we followed the process shown in Fig. 5.
We first generated three training sets from the reference mod-
els. Each of the training sets satisfies one of the three coverage
criteria described earlier. We applied the four model-generation
techniques considered in this study to infer models from the train-
ing sets. To compute the recall of the inferred models we generated
a new set of traces, namely the evaluation traces, from the reference
model. To deeply compare the reference and inferred models, the
evaluation traces satisfy 10-transition coverage, i.e., traces cover
each transition at least 10 times. We  finally computed the recall
of the inferred models as the fraction of the evaluation traces that
are correctly accepted by the inferred models. The more traces are
accepted, the higher the recall of the inferred model is.

4.2. Research question 2

Do inference techniques producing extended FSAs generate
models that can better reject illegal behaviors as compared to
those producing simple FSAs?

In order to answer this research question, we measure how
many illegal behaviors are erroneously included into the models
inferred by kTail, kBehavior, gkTail and KLFA. In our context, a
behavior can be illegal for any of the two following reasons: it
includes an illegal sequence of operations, or it includes an ille-
gal parameter value. Since only extended models can detect illegal
parameter values, we  evaluate the quality of the models with
respect to these two  classes of illegal behaviors separately. In this
way, we can specifically compare and measure how much the capa-
bility of rejecting illegal behaviors due to the presence of illegal
parameter values, which is a unique capability of EFSAs, impacts
on the capability to reject illegal behaviors due to the presence of
illegal sequences of operations.

Fig. 6 shows the process that we followed to investigate this
research question. To measure how many illegal sequences of
operations are erroneously included into inferred models we com-
pute precision (Manning et al., 2008). The precision quantifies the
percentage of illegal behaviors that have been (erroneously) incor-
porated into the inferred models. A low precision indicates that
many illegal behaviors are present in the inferred model, thus com-
promising its rejection capability. A high precision indicates that
few illegal behaviors are present in the model, thus the model has
an excellent rejection capability. Precision is computed by gener-
ating traces from the inferred models and checking the fraction of
those traces that are accepted by the reference model. To obtain
accurate precision value, we generate traces until all transitions in
the inferred model are covered 10 times. Thus, the generated traces
cover each single operation in multiple usage contexts. When gen-
erating traces from extended models, we only generate traces with
event sequences ignoring the parameter values, which are studied
separately.

Furthermore, to study the capability to reject illegal behaviors
due to illegal parameter values we  measure specificity. Specificity
(also known as true negative rate) (Manning et al., 2008) is obtained
by producing illegal traces from the reference model and checking
the fraction of traces that are correctly rejected by the inferred mod-
els. To produce the traces with illegal parameter values, we  mutated
the reference automata by producing automata that exactly match
the original ones with the exception of a randomly selected con-
straint that is negated. We  then generate traces from the automata
with the requirement to cover each transition 10 times. Finally, we
we measure the fraction of traces correctly rejected by the inferred
automata. We  perform this evaluation only for gkTail and KLFA
because we  know in advance that kTail and kBehavior cannot reject
any trace based on only the parameter values.
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Fig. 5. The empirical proce

.3. Research question 3

What is the performance difference between the generation
nd the checking of extended FSAs as compared to those of sim-
le FSAs?

To answer this research question, we measured both the time
pent by the techniques to perform the inference and the time
equired to check traces. These measures give hints about the
ossible usages of the techniques. For instance, techniques that
equire a long time to generate models can be used when the set
f the traces is quite stable over time, and cannot be effectively

sed when this set frequently changes. Similarly, techniques that
equire a substantially long time to check traces can be used for
ffline analysis, but might not be suitable to be used in a deployed
ystem since they can compromise performance. Note that the

Fig. 6. The empirical process for the comp
 the computation of recall.

reported inference time includes all the operations necessary to
obtain the models from the traces. For example, in the case of
KLFA, this includes the time needed to run the rewriting strategy.

5. Toolset

In order to support the empirical study described in this paper
we developed three new tools (the trace generator, the mutant gen-
erator and the targeted trace generator)  and extended the QUARK
platform (Lo and Khoo, 2006). Fig. 7 shows the tools that we  used
in the empirical validation.
The trace generator tool can automatically generate traces from
EFSAs according to a given coverage criterion. Trace generation is
achieved by randomly walking the EFSA. When a value that satisfies
a constraint needs to be generated, the trace generator randomly

utation of precision and specificity.
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 in the empirical evaluation.
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Table 4
Min, max  and average number of generated traces.

State coverage Transition
coverage

2-Transition
coverage

10-Transition
coverage

Minimum 11 15 23 41

tial comparing KLFA to kBehavior (0.16 on average). We used the
Mann–Whitney U test (Wohlin et al., 2000) (which does not expect
the empirical data to follow normal distribution) to check if the
difference in recall between the techniques that ignore data-flow
Fig. 7. The toolset used

roduces a value that satisfies it. The trace generator is used in our
mpirical validation in three different cases: (1) to generate the
races from the reference models to build the inferred models with
nference engines, (2) to generate traces from the reference EFSA to
ompute recall, and (3) to generate traces from the inferred models
o compute precision.

The mutant generator is a tool that can produce a mutated EFSA
y randomly negating a constraint in the EFSA. The tool is exe-
uted in our empirical validation to build the mutated EFSAs used
o compute specificity.

The targeted trace generator is equivalent to the trace genera-
or with the exception that it generates only traces that cover the

utated constraint. In our empirical validation this tool is used to
enerate traces from mutated EFSAs to compute specificity.

QUARK is a tool that can compute various goodness measures
iven a set of traces and a FSA (Lo and Khoo, 2006). We  extended
he QUARK framework to support the computation of precision,
ecall and sensitivity for EFSAs, and we used the extended version
f QUARK to compute these metrics in our empirical validation.

Finally, the inference algorithms compared in this work have
een integrated in our toolset as black box components.

Interested readers can find links to the tools used for the com-
arison and the models used in our case study at the following web
age: http://www.lta.disco.unimib.it/papers/model assessment/.

. Empirical results

In this section we present and discuss the empirical result
btained according to the processes described in Section 4.

.1. Research question 1

To answer the first research question we computed the recall of
he inferred models for a total of 30 cases per technique, obtained
y experimenting with the three coverage levels (state, transition,
nd 2-transition) for each of the 10 case studies. Table 4 specifies
he minimum, maximum and average number of traces generated
n the experiments according to the coverage level. Note that 10-
ransition coverage is not used for inferring the models, but it is

sed to generate the evaluation set.

Table 5 shows the empirical results about recall. Fig. 8 shows
he box-plot of the recall of each technique, grouped by coverage
riteria. A box-plot graphically represents a distribution of values
Maximum 215 393 1405 1929
Average 64.6 120.6 279.8 700.6

with a rectangle, which is delimited by the first and third quartile,
a solid line, which indicates the median, and two whiskers, which
end with the minimum and maximum values. Gray boxes show the
recall of techniques that ignore data-flow information (i.e., kTail
and kBehavior), while white boxes show the recall of techniques
that infer data-flow information (i.e., gkTail and KLFA).

We can notice from the plot that considering data-flow infor-
mation causes a loss of recall. In the case of gkTail, compared to
kTail, the loss is moderate (0.03 on average), while it is substan-
Fig. 8. Recall for different coverage levels.

http://www.lta.disco.unimib.it/papers/model_assessment/
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Table  5
Empirical results about recall.

Application kTail gkTail

State Transition 2-Transition State Transition 2-Transition

JFreeChart 0.31 0.54 0.82 0.26 0.4 0.61
Lucane 0.79 0.87 0.92 0.79 0.87 0.91
ThingamaBlog 0.92 0.98 0.99 0.91 0.97 0.99
Jeti 0.8  0.83 0.95 0.76 0.87 0.9
Columba 0.68 0.88 0.85 0.68 0.88 0.85
Open  Hospital 1 1 1 0.95 1 1
Rapid Miner 0.76 0.85 0.93 0.74 0.85 0.89
Heritrix 1 1 1 0.98 0.99 1
JArgs 0.94 0.98 0.98 0.79 0.9 0.89
Tagsoup 0.6 0.65 0.77 0.6 0.67 0.73

Median 0.82 0.87 0.95 0.79 0.89 0.9

Application kBehavior KLFA

State Transition 2-Transition State Transition 2-Transition

JFreeChart 0.71 1 1 0.3 0.59 0.7
Lucane 0.92 0.98 0.97 0.81 0.83 0.88
ThingamaBlog 0.94 1 1 0.88 0.99 0.99
Jeti  0.95 0.9 0.98 0.8 0.68 0.82
Columba 1 1 1 0.46 0.76 0.54
Open  Hospital 1 1 1 0.9 0.92 0.97
Rapid Miner 0.92 0.98 0.99 0.84 0.97 0.91
Heritrix 1 1 1 0.99 0.99 0.99
JArgs  0.99 1 1 0.74 0.75 0.71
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Tagsoup 0.89 1 1 

Median 0.95 1 1 

nformation and the techniques that consider data-flow informa-
ion is significant. Since we do not know in advance the effect of
ata-flow information we used a two-tailed test. We  considered p-
alues below 0.05 to be significant. Table 6 summarizes the results.
he addition of algebraic constraints to kTail introduces a statisti-
ally significant loss of recall only when traces satisfy 2-transition
overage. This result suggests that kTail can better take advantage
f the availability of many traces than gkTail, while this capabil-
ty has no statistically significant effect when traces satisfy state
r transition coverage. Inferring universally quantified constraints
as a more negative effect on the inference process. In fact KLFA
onsistently produced FSAs with worse recall than kBehavior, and
his result is statistically significant for all coverage levels.

The size of the boxes, which represents how varying the recall
s, increases when introducing universally quantified constraints in
Behavior. In fact the recall of KLFA varies a lot compared with the
ecall of kBehavior, which is quite close to its median value. The
ame effect is not observable for gkTail. The higher variability of
LFA indicates that it is harder to correctly learn universally quan-

ified constraints, as performed by KLFA, than learning algebraic
onstraints on data values, as performed by gkTail. This is particu-
arly true when the data used for the inference comes from method
xecutions, where thousands of different methods are executed

ach with a different set of parameters.

If we look at the recall while the level of coverage increases, we
ave another interesting result. The recall and the stability of the
esults improve faster for techniques that do not consider data-flow

able 6
est of significance for difference in recall (p-value <0.05 is considered significant).

kTail/gkTail kBehavior/KLFA

p-Value Sig p-Value Sig

State cov 0.07 No <0.01 Yes
Trans cov 0.39 No <0.01 Yes
2  Trans cov 0.03 Yes <0.01 Yes
0.74 0.97 0.99

0.81 0.87 0.9

information (boxes are smaller and closer to the top of the diagram).
The slow improvement of gkTail and KLFA is due to the amount of
extra information needed by those techniques to produce accurate
models: covering each transition twice is not always sufficient to
discover enough data-flow information to significantly improve the
model. Intuitively, the same method invocations should be exe-
cuted several times with different parameter values to produce
enough data to let the inference techniques understand that these
values satisfy some constraints or reoccur according to a pattern.

Our empirical study about recall also provides information
about the absolute effectiveness of the techniques when varying
the number of traces (i.e., test cases). When traces are generated
with state coverage criterion, kBehavior is the only technique with
its box entirely above 0.75. The results are more encouraging for all
the techniques when traces are generated with transition coverage
criterion (the boxes of three out of the four techniques are entirely
above 0.75), and are good for 2-transition coverage. These results
suggest that FSAs with good recall can be effectively extracted even
from a sparse set of executions, while EFSAs require thoroughly
tested software to derive models with good recall, that is, it requires
at least a set of execution traces that covers the program under test
following the transition coverage criterion. An important research
direction is thus the development of techniques that can produce
test cases that well exercise the program under analysis, as inves-
tigated in Dallmeier et al. (2010).

We  have another interesting result from the detailed data
reported in Table 5. We  expect inference techniques produce bet-
ter models when more traces are available. In fact, if the additional
data are not suitably generalized, some behavior might be improp-
erly represented in the model, especially if data-flow information
must be handled in addition to event sequences. This is the case for
KLFA when analyzing Jeti, Columba, Rapid Miner and JArgs, where

an increased coverage sporadically causes the generation of models
with poorer recall. These sporadic losses of recall are caused by the
identification of imprecise recurrent patterns. When KLFA infers
a model from a limited number of traces (e.g., state or transition
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Table  7
Average recall values according to model complexity.

kTail gkTail kBehavior KLFA

Easy (CC < 10) 0.84 0.83 0.97 0.73
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Medium (10 ≤ CC ≤ 15) 0.96 0.94 0.99 0.9
Hard (CC > 15) 0.62 0.55 0.93 0.72

overage), it identifies few clear patterns. While when KLFA infers
he model from a higher number of traces (e.g., transition or
-transition coverage) the amount of available data increases
ausing the incidental identification of patterns that do not hold in
eneral. Having even more data would have eliminated these cases.
ince the likelihood to have a pattern represented in the model is
ependent on the amount of data that support those patterns, it is
atural to observe some statistical fluctuations in KLFA results.

Finally, we investigated the recall of the four techniques on var-
ous model complexity levels. Table 7 shows the average value of
ecall with respect to the complexity of the model (we use the cyclo-
atic complexity as indicator of complexity). We  can notice that

nference techniques based on state merging heuristics (i.e., kTail
nd gkTail) handle easy and medium complexity cases well, but
re weak on the hard cases. On the contrary, inference techniques
ased on behavioral patterns (i.e., kBehavior and KLFA) degrade
racefully with model complexity. Finally, all techniques consis-
ently inferred models with better recall for medium complexity
ases, indicating that inference techniques can inappropriately
eneralize simple and complex models.

.2. Research question 2

To answer the second research question, we measured both

he fraction of legal sequences of operations that can be generated
rom the inferred models and the fraction of operation sequences
hat include illegal parameter values that are correctly rejected
y the inferred models. The former is known as precision and it is

able 8
recision (limited to operation sequences).

Application kTail 

State Transition 2-Transi

JFreeChart 1 1 1 

Lucane 1 1 0.99 

ThingamaBlog 1 1 1 

Jeti  1 1 1 

Columba 1 1 1 

Open Hospital 1 1 1 

Rapid Miner 0.92 0.94 0.86 

Heritrix 0.97 0.98 0.97 

JArgs 0.91 0.82 0.87 

Tagsoup 0.98 0.99 0.98 

Median 1 1 0.99 

Application kBehavior 

State Transition 2-Transi

JFreeChart 0.41 0.23 0.49 

Lucane 1 0.97 0.47 

ThingamaBlog 0.29 0.19 0.96 

Jeti  0.86 1 1 

Columba 0.83 1 0.58 

Open Hospital 0.69 0.07 0.1 

Rapid Miner 0.38 0.18 0.1 

Heritrix 0.15 0.23 0.44 

JArgs 0.7 0.62 0.12 

Tagsoup 0.29 0.7 0.68 

Median 0.55 0.42 0.48 
Fig. 9. Precision for different coverage levels.

computed for all the techniques. The latter is known as specificity
and it is computed for techniques that can infer EFSAs.

Table 8 shows the empirical data about precision. Fig. 9 shows
the box plot of precision for all techniques, grouped by coverage
criteria.

The empirical data about precision suggests that extending tech-
niques for the inference of FSAs with the capability of handling
data-flow information tends to improve precision, with the excep-
tion of KLFA when applied to traces collected with 2-transitions
coverage. To confirm this intuition we  employ the Mann–Whitney

U test to check if the differences in precision between kTail and
gkTail, and between kBehavior and KLFA are statistically significant.
Table 9 shows the results.

gkTail

tion State Transition 2-Transition

1 1 0.67
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
0.78 0.8 0.8
1 1 0.99
1 0.99 0.99

1 1 1

KLFA

tion State Transition 2-Transition

1 0.06 0.09
1 1 1
0.96 0.1 0.89
0.96 1 1
1 0.52 0.66
0.54 0.68 0
0.07 0.19 0
0.17 0.08 0.08
0.7 0.65 0.11
0.5 0.71 0.04

0.83 0.59 0.1
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Table 9
Test of significance for difference in precision.

kTail/gkTail kBehavior/KLFA

p-Value Sig p-Value Sig

State cov 0.02 Yes 0.01 Yes
Trans cov 0.07 No 0.33 No
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Table 10
Average precision values according to model complexity.

kTail gkTail kBehavior KLFA

Easy (CC < 10) 0.99 1 0.86 0.9

T
S

2  Trans cov 0.22 No 0.02 Yes

We  can notice that the improvement on precision produced by
kTail and KLFA over kTail and kBehavior respectively are statisti-
ally significant when traces satisfy state coverage. Thus, when few
races are available the incorporation of data-flow information in
he models is beneficial for precision. The difference in precision is
ot anymore significant when the number of the traces increases.
here is one exception, that is KLFA. In fact, KLFA shows a loss of pre-
ision compared to kBehavior that is statistically significant when
races satisfy 2-transitions coverage.

If we look at the results in absolute terms, it is evident that
kTail and kTail have better precision than the other techniques.
his suggests that when precision is important compared to other
spects (e.g., recall), one of these two algorithms should be pre-
erred, depending on the necessity to have data-flow information
ncorporated in the inferred model.

We  can also notice that increasing the number of available sam-
les does not evidently improve the precision of the techniques. The
etailed data reported in Table 8 also confirms this trend: the pre-
ision is not strictly increasing when the number of available traces
ncreases. In a few cases the precision decreases even if more traces
re available. This suggests that merely increasing coverage is not
nough to guarantee better results, at least in term of precision.
hese fluctuations on the results are due to the generalization capa-
ilities of the techniques. This over-generalization can be avoided
y further increasing the number of traces, that is not easy to do

n practice, and by extracting negative traces, for instance by using
tatic analysis to identify infeasible behaviors (Mariani et al., 2010).
nvestigating techniques to extract negative traces from systems
s a promising research direction because a number of learners
an provide extremely good effectiveness when both positive and
egative traces are produced. In general, it is necessary to further

nvestigate the relationships between the kind of coverage that is
chieved and the quality of the inferred model.

Finally, we investigated the precision of the four techniques
ccording to the complexity of the behavior that is analyzed.
able 10 shows the average value of the precision with respect
o the complexity of the model. We  can notice that inference

echniques based on state merging heuristics (i.e., kTail and
kTail) handle well models of any complexity, while the preci-
ion of inference techniques based on behavioral patterns (i.e.,

able 11
pecificity (limited to parameter values).

gkTail 

State Transition 2-Transi

JFreeChart 0.79 1 1 

Lucane 1 1 1 

ThingamaBlog 0.94 1 1 

Jeti  1 1 1 

Columba 1 1 1 

Open Hospital 1 0.91 0.91 

Rapid Miner 1 1 1 

Heritrix 0.96 1 1 

JArgs 0.94 0.99 0.99 

Tagsoup 0.93 0.98 1 

Med  spec 1 1 1 
Medium (10 ≤ CC ≤ 15) 0.95 0.96 0.35 0.35
Hard (CC > 15) 0.99 0.94 0.46 0.4

kBehavior and KLFA) significantly degrades with increasing model
complexity.

Table 11 shows the empirical data about the specificity of the
inferred models, computed with traces that should be rejected
because they include illegal parameter values. We  only report data
about gkTail and KLFA because the specificity is 0 for kTail and
kBehavior. We  can notice that models inferred by gkTail have high-
specificity in all the cases, while models inferred by KLFA have
widely varying specificity, from extremely low (0) to extremely
high (1).

The specificity of models obtained with gkTail indicates that
most of the algebraic constraints are correct and annotate the right
transition. On the contrary, KLFA well represented only a subset of
the constraints, with a decrease on the specificity when traces sat-
isfy transition coverage rather than state coverage. This difference
on the results are affected by two main factors: the kind of models
used for the inference and the way KLFA works.

A major aspect affecting the value of the specificity is the kind
of data-flow information represented in the models. While gkTail
can potentially identify all the constraints in the reference models,
this is not true for KLFA. In fact, KLFA represents the way parameter
values reoccur across method invocations and does not represent
the concrete values that are allowed for a parameter in a given
method invocation. Thus KLFA can successfully identify that a value
is illegal only if such a value occurs in a data-flow pattern, which
is not always the case. In addition, KLFA can lose specificity when
the number of traces increases because KLFA automatically dis-
cards the recurrence patterns that do not apply well to a large
subset of the traces. In other words, KLFA favors the identification
of few relevant patterns to the identification of many, but noisy,
patterns. Thus the lower level of specificity is somehow expected
and inherent to an the algorithm that produces only relevant pat-
terns. This strategy is demonstrated to be useful when KLFA is used
for the analysis of log files (Mariani and Pastore, 2008), but appar-
ently is less effective when applied to traces consisting of method
invocations.

In conclusion, gkTail has a higher specificity than KLFA when
applied to our reference models. However, both techniques
are important because gkTail and KLFA focus on complimen-

tary aspects: algebraic constraints versus universally quantified
constraints, and they can detect different kinds of anomalous
behaviors.

KLFA

tion State Transition 2-Transition

0.93 0.68 0.51
0.67 0.64 0.64
0.6 0.07 0.01
0.55 0.66 0.47
0.63 0.24 0.55
1 1 1
0.96 0.42 0.46
0.01 0.02 0.02
1 1 1
0.96 0.07 0

0.67 0.64 0.52



2074 D. Lo et al. / The Journal of Systems and

Table  12
Average time to infer and check models.

kTail kBehavior gkTail KLFA

Inference 5 s 2 s 38 min  3 s
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Checking 9 s 8 s 13 s 4 s

.3. Research question 3

To answer the third research question we computed the aver-
ge time spent by kTail, kBehavior, gkTail and KLFA to produce the
odels and evaluate traces for acceptance (see Table 12). The aver-

ge is computed over the 30 cases (10 case studies analyzed with 3
overage levels each) considered for each technique. For the evalu-
tion, we used a standard desktop computer (Intel Core Duo 2 GHz,

 GB RAM).
The inference of the models is fast for all the techniques (on aver-

ge less than 5 s to process hundreds of traces), with the exception
f gkTail that required an average of 38 min  to generate the mod-
ls. The long inference time is due to the many executions of the
aikon learner (Ernst et al., 2001) that is integrated in gkTail and is
sed to produce the algebraic constraints included in the PTA. Thus
kTail can be effectively used only if the traces used to generate the
odels are quite stable over time, while the other techniques can

e used more flexibly.
All the techniques can check traces fast. We  have an excep-

ional time for KLFA, while we have longer times for kBehavior
nd kTail. This difference is mostly related to KLFA that integrates
n optimized version of kBehavior, while the implementation of
Tail and the stand-alone version of kBehavior are not optimized.
e have reason to believe that these differences would not occur

f all the algorithms had been implemented in an optimized way.
kTail requires more time than the other techniques to check traces
ecause it must execute a constraint solver to verify if data values
atisfy constraints. We  can also observe that checking constraints
mpacts the performance, but it has no dramatic effect, according
o our empirical experience.

. Final remarks

The main conclusions that can be derived from our empirical
ork are:

Adding algebraic constraints to FSAs does not compromise quality
ut negatively affects performance: gkTail does not introduce signif-
cant differences on the quality of the inferred models compared
o kTail: the only statistically significant differences have been
bserved for recall when many traces are available (i.e., small loss of
ecall when traces satisfy 2-transition coverage) and for precision
hen few traces are available (i.e., small improvement of precision
hen traces satisfy state coverage). gkTail produces models with
igh specificity, thus algebraic constraints are well captured by the

nference engine. Unfortunately, gkTail has an extremely long infer-
nce time compared to other techniques: on average, half an hour
ersus a few seconds.

Adding universally quantified constraints to FSAs negatively affects
ecall: KLFA introduces a statistically significant loss of recall at all
overage levels compared to kBehavior. Precision is significantly
etter for traces that satisfy state coverage, but it is significantly
orse for traces that satisfy 2-transitions coverage. KLFA does not

ignificantly affect the inference time. These results indicate that
ecurrence patterns can be added to FSAs without compromising

he inference time, but negatively affecting the quality of the model.

Adding traces is important but not enough: in the empirical valida-
ion, increasing the number of traces positively correlates to recall.

e notice that the improvement in recall is higher for the inference
 Software 85 (2012) 2063– 2076

of  simple FSAs compared to that of extended FSAs when the number
of traces is increased. On the contrary, there is no clear trend in pre-
cision. This is due to the difficulty in controlling over-generalization
when only positive samples are available. The over-generalization
should be controlled with negative samples, which are typi-
cally hard to find in practice. The study of techniques that
extract negative traces is an important research direction for the
future.

State merging heuristics have good precision but poor recall: In the
empirical validation, techniques based on a state-merging heuristic
(i.e., kTail and gkTail) produced models with good precision inde-
pendently from the complexity of the model, while recall dropped
for the hard cases.

Behavior merging heuristics have good recall but poor precision: In
the empirical validation, techniques based on a behavior-merging
heuristic (i.e., kBehavior and KLFA) produced models with good
recall independent of the complexity of the models, while precision
dropped for the medium and hard cases.

State coverage is enough to produce useful models:  the models
inferred from traces that satisfy state coverage have good recall and
precision, and results generally improve with transition coverage.
Such empirical results suggest that the inference techniques inves-
tigated in this study can be applied in the practical cases where
coverage is often partial.

“Hard” models are hard: inferring hard models, that is models
with CC > 15, from positive traces is challenging. In fact, state- and
behavior-merging heuristics have low recall and precision respec-
tively, when inferring hard models.

8. Threats to validity

A threat to validity is the generalization of our results. We  have
tried to address this threat and improve the generalizability of our
results in several ways. First, we  analyzed 10 models that are both
realistic (they have been extracted from real software systems)
and relevant to our comparative assessment study (they include
an interplay of aspects relevant to all the compared techniques).
The number of considered models is larger than most of prior stud-
ies (Ramanathan et al., 2007; Walkinshaw and Bogdanov, 2008;
Lo and Maoz, 2009; Thummalapenta and Xie, 2009; Zhong et al.,
2009). Moreover, we selected models from multiple software sys-
tems rather than extracting multiple models from few systems to
avoid the generation of results biased by a specific programming
style. The set of samples used for the inference have been produced
taking into account the partial coverage that test suites usually
provide in practice. We  thus believe that the empirical experience
reported in this paper provides relevant insights on the inference
of automata from software and highlights important aspects that
should be taken into account when using model inference to sup-
port testing and analysis techniques. However, a different set of
models might produce different results.

Another threat to the validity of the empirical validation is the
use of a single value for the parameter k, which influences the
behavior of all the compared techniques. Studying the impact of
the choice of k to the results even if interesting, is outside the scope
of this work. Past studies have shown that small values of k, such
as 2 or 3, are good choices. In this study we set k to 2.

An additional threat is the exclusion of the algebraic constraints
that cannot be addressed with Daikon from the reference EFSAs
used for the empirical study. Still, we believe Daikon’s constraints
characterize most (or at least a significant proportion) of useful

constraints exhibited in various software systems. A final threat is
related to the correctness of the tools that we used for the empir-
ical validation. We  manually validates the tools with a number of
small artificial models that replicate several common situations.
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oreover, we manually checked the correctness of the results
or a random selection of the traces generated in the empirical
tudy. These activities gave us confidence on the correctness of the
esults.

. Related work

In this section we discuss closely related studies on learning
SAs, learning other models, and comparative and empirical stud-
es.

.1. Learning FSAs

Techniques that generate models from execution traces have
een used to support a number of software engineering tasks.
SAs is one of the most commonly inferred models (Biermann
nd Feldman, 1972; Mariani and Pezzè, 2007; Dallmeier et al.,
006; Ammons et al., 2002; Raffelt and Steffen, 2006; Walkinshaw
t al., 2007; Antunes et al., 2011; Bertolino et al., 2009; Schneider
t al., 2010). FSAs are simple and useful abstractions that can well
epresent the possible ordering of events generated by programs.
owever, FSAs completely neglect aspects related to data and the

nterplay between data and event sequences.
Some novel techniques define mechanisms to infer FSAs

xtended with information about the data-flow (Lorenzoli et al.,
008; Mariani and Pastore, 2008; Krka et al., 2010). On a conceptual
oint of view extended FSAs can indeed represent all the behav-

ors that can be represented with simple FSAs, with the addition of
ehaviors that cannot be represented. However, the generation of
odels more complex than simple FSAs is challenging and higher

xpressiveness can introduce inaccuracies.
In this paper we empirically compared the quality of the

xtended FSAs produced by gkTail (Lorenzoli et al., 2008) and KLFA
Mariani and Pastore, 2008) with the simple FSAs produced by kTail
Biermann and Feldman, 1972) and kBehavior (Mariani and Pezzè,
007). Other algorithms are related with the algorithms empirically
ompared in this paper.

The work by Krka et al. (2010) could mine FSAs extended with
lgebraic constraints. However, the approach has only been eval-
ated on one relatively small example and its scalability to larger
ases is still unclear. Furthermore, although extended FSAs could
e derived from Krka et al’s learned FSAs, the main goal of Krka
t al.’s work is not to extend FSAs with algebraic constraints rather
o use algebraic constraints to improve the quality of the learned
imple FSAs.

There are many simple FSA learners (Biermann and Feldman,
972; Mariani and Pezzè, 2007; Dallmeier et al., 2006; Ammons
t al., 2002; Raffelt and Steffen, 2006; Walkinshaw et al., 2007;
ntunes et al., 2011; Bertolino et al., 2009; Schneider et al.,
010). The approach ranges from passive (i.e., only analyze exe-
ution traces) to active (i.e., ask queries to users or generate
est cases), such as (Raffelt and Steffen, 2006; Walkinshaw et al.,
007; Bertolino et al., 2009). These learners also analyze differ-
nt kinds of execution traces, from standard program execution
races, to network traces (Antunes et al., 2011), WSDL descrip-
ions (Bertolino et al., 2009), and system logs (Schneider et al.,
010). We  do not analyze many of these studies because there
re no corresponding extensions of these approaches that can
ine extended FSAs, either by the incorporation of algebraic

r universally quantified constraints. The incorporation of these

onstraints in the mining process is not trivial. Thus in this
tudy we focus on k-Tail (Biermann and Feldman, 1972) and k-
ehaviors (Mariani and Pezzè, 2007) which have been extended
o mine FSAs extended with algebraic and universally quantified
onstraints.
 Software 85 (2012) 2063– 2076 2075

9.2. Learning other models

Several techniques can infer models differing from FSAs to
describe relations between events. Temporal relations between
events can be represented by other models, such as patterns of
events (Lo et al., 2007; Safyallah and Sartipi, 2006) and temporal
logic rules (Yang et al., 2006; Lo et al., 2008). In this work, we focus
on techniques explicitly deriving FSAs, with a particular emphasis
to study the costs and tradeoffs of incorporating data-flow informa-
tion within FSAs. Comparing the effectiveness of different kinds of
models in capturing the relations between events is an interesting
research direction that we  plan to investigate in the future.

9.3. Comparative and empirical studies

The closest empirical study available, in addition to the empir-
ical study reported in this paper, shows that software programs
include behaviors that could only be represented by extended
models (Lorenzoli et al., 2008; Mariani and Pastore, 2008). How-
ever, neither empirical results about the overall quality of the
extended models nor comparative empirical results of correspond-
ing techniques that infer simple FSAs and extended FSAs have been
reported yet. The results obtained in this paper provide an early
picture of the tradeoffs between the different learners and give
testers quantitative information to guide them into the choice of
the inference technique.

There are also other studies that compare the quality of learning
techniques that infer simple FSAs. Lo et al. propose a technique
named QUARK that measure the quality of a learned automaton
based on its language similarity with the target automaton (Lo and
Khoo, 2006). Bogdanov and Walkinshaw (2009) and Pradel et al.
Pradel et al. (2010) propose techniques that measure the quality
of a learned automaton based on its structural similarity with the
target automaton. In this study, we extend the above studies by
comparing the quality of learners that infer simple FSAs to those
that infer extended FSAs (i.e., FSAs extended with algebraic and
universally quantified constraints).

There are also interesting surveys on program analysis tech-
niques; one of those is a survey by Cornelissen et al. (2009) which
focuses on the usage of dynamic analysis to aid program com-
prehension. In this work, we  perform a comparative study on a
subtopic of dynamic analysis namely behavioral model inference.

10. Conclusions

A number of techniques can generate behavioral models from
execution traces. A kind of model that is commonly used to rep-
resent the behavior of a software program and that can be easily
inferred from execution traces is FSA. In the recent years, it has been
shown that several program behaviors that cannot be represented
with FSAs, can be inferred and represented with extended FSA
(Lorenzoli et al., 2008; Mariani and Pastore, 2008). Thus, extended
FSAs are more expressive than simple FSAs. However, learning
extended FSAs is challenging and the inferred models can be inac-
curate. In this paper, we  presented an early empirical comparative
study that investigates both the tradeoffs between techniques that
infer simple FSAs and those that infer extended FSAs and the effec-
tiveness of these techniques when varying the number of available
traces. In particular, we  evaluated kTail (Biermann and Feldman,
1972), kBehavior (Mariani and Pezzè, 2007), gkTail (Lorenzoli et al.,
2008) and KLFA (Mariani and Pastore, 2008) with a set of 10 case

studies extracted from real software systems.

The empirical results show the tradeoffs between techniques.
The interpretation of the collected data highlights costs, draw-
backs and benefits of each model inference solution, with specific
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