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ABSTRACT

Bug resolution refers to the activity that developers perform to diagnose, fix, test, and document bugs
during software development and maintenance. Given a bug report, we would like to recommend the
set of bug resolvers that could potentially contribute their knowledge to fix it. We refer to this problem
as developer recommendation for bug resolution. In this paper, we propose a new and accurate method
named DevRec for the developer recommendation problem. DevRec is a composite method that
performs two kinds of analysis: bug reports based analysis (BR-Based analysis) and developer based
analysis (D-Based analysis). We evaluate our solution on five large bug report datasets including
GNU Compiler Collection, OpenOffice, Mozilla, Netbeans, and Eclipse containing a total of
107,875 bug reports. We show that DevRec could achieve recall@5 and recall@10 scores of
0.4826–0.7989, and 0.6063–0.8924, respectively. The results show that DevRec on average improves
recall@5 and recall@10 scores of Bugzie by 57.55% and 39.39%, outperforms DREX by 165.38%
and 89.36%, and outperforms NonTraining by 212.39% and 168.01%, respectively. Moreover, we
evaluate the stableness of DevRec with different parameters, and the results show that the
performance of DevRec is stable for a wide range of parameters. Copyright © 2015 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Because of the complexity of software development, bugs are inevitable. Bug resolution, which is
the diagnosis, fixing, testing, and documentation of bugs, is an important activity in software
development and maintenance. Bug tracking systems, such as Bugzilla and JIRA, help
developers manage bug reporting, bug resolution, and bug archiving processes [1]. However,
despite the availability of bug tracking systems, bug resolution still faces a number of
challenges. The large number of new bug reports submitted to bug tracking systems daily
increases the burden of bug triagers. For Eclipse, it was reported in 2005 that the number of
bug reports received daily (around 200 reports/day) are too many for developers to handle [2].
As there are many bug reports requiring resolution and potentially hundreds or even thousands
of developers working on a large project, it is non-trivial to assign a bug report to the
appropriate developers.

Although only one developer is recorded as the final bug fixer, bug resolution is
fundamentally a collaborative process [1, 3, 4]. Various developers contribute their knowledge,
ideas, and expertise to resolve bugs. Figure 1 shows a bug report from Eclipse with
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BugID=215252.†† In the figure, we notice that there are many developers that contribute their
knowledge and post comments to resolve the bug. The bug reporter is Chris Recoskie, who
provides detailed information of the bug. Seven other people, Steffen Pingel, Mik Kersten,
Felipe Heidrich, Dirk Baeumer, Dani Megert, Boris Bokowski, and Steve Northover
participated in the resolution of this bug report and contribute their expertise to the bug
resolution process. The nine developers are the bug resolvers of this report. Among the nine
developers, Steve Northover is recorded as the fixer of the bug (as specified in the assigned to
field of the bug report).

In this paper, we are interested in developing an automated technique that processes a new bug
report and recommends a list of developers that are likely to resolve it. We refer to this problem as
developer recommendation for bug resolution (or developer recommendation, for short) [3, 4]. This
is a part of the bug triaging problem [5] that would only recommend the fixer of a new bug report.
Since bug fixing is a collaborative activity, aside from the final bug fixer, other developers involved
in the bug resolution process also play a major role.

We propose a technique named DevRec that performs two kinds of analysis: bug report based
analysis (BR-Based) and developer based analysis (D-Based). The combination of these two
components would improve the overall performance further (Section 4.3). In our BR-Based analysis,
we first measure the distance among bug reports. Given a new bug report, we find other similar past
bug reports and recommend developers based on the developers of these past similar bug reports. In
our D-Based analysis, we measure the distance between a potential developer with a bug report. We
characterize the distance between a developer and a bug report by considering the characteristics of
bug reports that the developer helps to resolve before. Given a new bug report, we would find

Figure 1. Bug report of Eclipse with BugID=215252 – some comments are omitted or truncated.

††https://bugs.eclipse.org/bugs/show_bug.cgi?id=215252
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developers with smallest distance to the new bug report. DevRec combines BR-Based and D-Based
analyses to assign a score to each potential developer. A list of top-k most suitable developers
would then be output.

There are a number of recent studies that are related to ours. The state-of-the-art work on
automated bug triaging is the study by Tamrawi et al. that propose a fuzzy set method
named Bugzie to recommend fixers given a new bug report [5]. Wu et al. address bug
resolution problem by proposing a k-nearest neighbor search method named DREX to
recommend developers given a bug report [3]. These two algorithms are the most recent
studies related to the developer recommendation problem. Both of them return a list of
candidate developers that are the most relevant for a bug report. Thus, we use these
algorithms as baselines that we would compare with. Moreover, considering that the
aforementioned approaches need to train a model based on historical bug reports, we also
compare our method with an approach named NonTraining, which does not require any
training phase.

We evaluate our approach on five datasets from different software communities: GNU Compiler
Collection (GCC) [6], OpenOffice [7], Mozilla [8], Netbeans [9], and Eclipse [10]. In total, we
analyze 107,875 bug reports. We measure the performance of the approaches in terms of recall@k.
For the five datasets, DevRec could achieve recall@5 and recall@10 scores of up to 0.7989 and
0.8924, respectively. DevRec on average improves recall@5 and recall@10 scores of Bugzie by
57.55% and 39.39%, respectively. DevRec outperforms DREX by improving the average recall@5
and recall@10 scores by 165.38% and 89.36%, respectively. DevRec also outperforms NonTraining
by improving the average recall@5 and recall@10 scores by 212.39% and 168.01%, respectively.
Moreover, we evaluate the stableness of DevRec with different parameters, and the results show that
DevRec is a stable approach.

This paper extends our preliminary study, published as a research paper in a conference [11].
It extends the preliminary study in various ways: more comparisons of DevRec over other state-
of-the-art approaches are added, three additional research questions that explore the stableness
of DevRec under different sets of parameters are investigated, more detailed descriptions of
datasets and DevRec are added, the related work section is expanded, and a qualitative
analysis of DevRec is added.

The main contributions of this paper are:

1. We propose DevRec, which performs both BR-Based analysis and D-Based analysis, to solve the
developer recommendation problem.

2. We experiment on a broad range of datasets containing a total of 107,875 bugs to demonstrate the
effectiveness of DevRec. We show that DevRec outperforms Bugzie [5], DREX [3], and
NonTraining on the developer recommendation problem by a substantial margin. Statistically,
tests show that the improvements are significant.

3. We evaluate DevRec on different sets of parameters, and the results show DevRec is robust on
different parameters, which means developers do not need to spend much effort and time to con-
figure our tool.

The remainder of the paper is organized as follows: We present the empirical study and
preliminary materials in Section 2. We present our approach DevRec in Section 3. We present
our experiments in Section 4. We present related work in Section 5. We conclude and mention
future work in Section 6.

2. EMPIRICAL STUDY AND PRELIMINARIES

In this section, we first provide an example of bug resolution process in Section 2.1. Then, we present
a simple empirical study on our collected datasets to understand developer recommendation
problem in Section 2.2. Next, we introduce the preliminary materials, that is, Euclidean distance
metric, multi-label k-nearest neighbor (ML-kNN) [12], and topic modeling [13], which would be
used in our proposed approach DevRec, presented in Section 3.
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2.1. An example

Figure 1 presents an example bug resolution process. We notice different people have different roles in
the bug resolution process. After Chris Recoskie reported the bug, Steffen Pingel found that ‘startup
warnings are most likely unrelated to the problem’. Then, Mik Kersten provided more information
for this bug; Felipe Heidrich marked another bug as a duplicated bug of this one and pointed out the
running environment and platform of the bug. Next, Dirk Baeumer, Dani Megert, and Boris
Bokowski continue to contribute their knowledge for fixing the bug. Finally, Steve Northover fixed
this bug.

In this paper, we focus on recommending three types of bug resolvers: bug fixers, bug contributors,
and bug triagers. Bug fixers refer to developers who finally fix the bug (e.g., Steve Northover in
Figure 1). Bug contributors refer to developers who contribute their knowledge to fix the bug (e.g.,
Steffen Pingel, Mik Kersten, Felipe Heidrich, Dirk Baeumer, DaniMegert, and Boris Bokowski in
Figure 1). Bug triagers refer to developers who manage bug reports, such as mark duplicate bug
reports, mark blocking bug reports, and assign bug reports to fixers. A person may have more than
one role, for example, a bug triager may also be a bug fixer or a bug contributor. For example, in
Figure 1, Felipe Heidrich is one of the bug triagers because he/she not only marked the duplicate
bug report but he also provided the runtime environment of the bug. Thus, he/she is also a bug
contributor. Notice although bug triagers do not directly contribute their knowledge for fixing bugs,
they also play an important role for bug resolution. For example, a bug triager may contribute
his/her knowledge to find a suitable fixer, or after he/she marks bug reports to be a duplicate of one
another, other developers could find more information from other related bugs [14, 15]. Because of
the importance of bug triagers, in this paper, we also recommend triagers. In this paper, for
simplicity reason, unless otherwise specified, a developer can be a bug fixer, a bug contributor, or a
bug triager.

2.2. Empirical study

A typical bug report contains many fields, such as reporter, fixer, creation time, modification time, bug
version, platform, CC list, and comment list. In this work, we collected five pieces of information from
the bug report fields including bug summary, bug description, product affected by the bug, component
affected by the bug, and developers participated in the bug resolution process (i.e., bug resolvers). The
details of these pieces of information, illustrated based on the bug report shown in Figure 1, are
presented Table I.

In this paper, we collected the following five datasets from different software development
communities: GCC, OpenOffice, Mozilla, Netbeans, and Eclipse. Table II shows the statistics of the
five datasets that we collected. The columns correspond to the project name (Project), the time
period of collected bug reports (Time), the number of collected reports (# Reports), the number of
unique bug resolvers (# Resolvers), the number of terms (i.e., words) in the bug reports (# Terms),
the average number of bug resolvers per bug report (# Avg.Re.), the number of different products
(# Pro.), and the number of different components (# Comp.), respectively. All bug reports and their
data are downloaded from their bug tracking systems. We collected bug reports with status ‘closed’
and ‘fixed’. For these reports, the set of bug resolvers has been identified. Unless the bug is
reopened in the future, no additional resolver would be added. Note that the average number of

Table I. Collected information from bug reports.

Information Details Example

Summary Brief description of a bug. frequent ‘invalid thread access’
Description Detailed description of a bug. I’m not sure 100% where the problem …
Product Product affected by the bug. Platform
Component Component affected by the bug. Standard Widget Toolkit
Developers Bug resolvers, that is, developers that

contribute to the bug resolution process
excluding the reporter.

Steffen Pingel, Mik Kersten, Felipe Heidrich, Dirk
Baeumer, Dani Megert, Boris Bokowski, Steve
Northoverr, Olivier Thomann, and Grant Gayed
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resolvers represents the activity degree of the development community; the higher the average number
of developers is, the more active is the community. In our dataset, Mozilla is the most active
community; for each bug report, on average, there are 2.89 developers that help to resolve the bug.

We identify bug resolvers by looking at the ‘assigned to’ field and the list of comments in the bug
reports. A bug resolver can be a developer who participates or contributes idea in a bug discussion or a
developer who contributes code to fix a bug. In this paper, we do not differentiate between them; we
recommend all developers who contribute to the bug resolution activity. We notice that for many
bug reports, the ‘assigned to’ fields are set to generic names that do not specify developers. In GCC,
45.29% of the bug reports are assigned to ‘unassigned’; In OpenOffice, 12.99% of the bug reports
are assigned to generic names such as ‘issues’, ‘needsconfirm’, and ‘swneedsconfirm’; In Mozilla,
15.1% of the bug reports are assigned to ‘nobody’; In Netbeans, 8.59% of the bug reports are
assigned to ‘issues’; In Eclipse, 20.12% of the bug reports are assigned to generic names like
‘platform-runtime-inbox’, ‘webmaster’, and ‘AJDT-inbox’. Because these generic names are not
actual developers, in this paper, we do not want to recommend them, and thus, they are excluded
from our datasets.

Finally, we also explore the relationship between bug resolvers, bug reports, and the product and
component fields. A software system contains many products, and each product may contain various
components. For example, Eclipse has 114 products and 540 components. Columns #Product and
#Component of Table II show the number of products and components for the five software
projects. We show some products and components of Eclipse in Figure 2. Table III presents some
statistics on the number of bug resolvers and bug reports per product. Table IV presents similar
statistics on the number of bug resolvers and bug reports per component. The first two columns list
the maximum and average number of bug resolvers per product (or per component) for each
software project. There are variations in the maximum and average number of bug resolvers per
product (or per component) across the five projects. The last column lists the proportion of bug
reports for the top ten products or components with the most number of bug resolvers. We notice

Table II. Statistics of collected bug reports.

Project Time # Reports # Resolvers # Terms # Avg.Re. # Pro. # Comp.

GCC 2008-01-01–2010-10-28 5,742 650 3,916 2.56 2 40
Openoffice 2007-03-01–2013-04-07 15,448 1,656 8,291 2.60 37 100
Mozilla 2009-6-23–2010-06-03 26,046 3,812 10,232 2.89 56 511
Netbeans 2008-01-01–2010-01-11 26,240 2,274 10,255 2.45 38 336
Eclipse 2005-01-01–2008-07-23 34,399 3,086 11,234 1.88 114 540

Figure 2. Some products and components of Eclipse.

Table III. Relationship between number of bug resolvers and bug reports with the product field.

Project Max Avg Top 10

GCC 634 331 100%
OpenOffice 607 104 74.97%
Mozilla 1641 143.52 70.57%
Netbeans 567 155.32 45.27%
Eclipse 707 50.85 54.32%
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that the number of bug reports per product (or per component) is skewed. Most of the bug reports are
for the top ten products and components, and for these products and components, there are many bug
resolvers. We notice, for example, for OpenOffice, 74.97% and 76.07% bug reports belong to the top
ten products (out of 37 products) and top ten components (out of 100 components). For Eclipse,
54.32% and 31.64% bug reports belong to the top ten products (out of 114 products) and top ten
components (out of 514 components). Thus, information of the product and the component that is
affected by the bug is not sufficient to decide suitable developers to be involved in the bug
resolution process.

2.3. Preliminaries

2.3.1. Bug report representation and Euclidean distance metric. A bug report b can be
represented by a vector of feature values. A feature represents one characteristic of the bug
report b. In this paper, we use four types of features, that is, term, topic, product, and
component (Section 3.1). For example, in Figure 1, we extract words from the summary and
description texts as term features, and we extract topic features from these words by using topic
models [13]; we also use the product and component field values as the product and component
feature values. Thus, a bug report b can be denoted as (p1, p2, p3,…,pn), where pi, i∈ {1, 2,… n},
is the value of b’s ith feature.

Suppose that there are two different bug reports b1 = (p1, p2,…,pn) and b2 = (q1, q2,…, qn), then the
Euclidean distance between b1 and b2 is defined by the following:

Distance b1; b2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 � q1ð Þ2 þ⋯þ pn � qnð Þ2

q
(1)

2.3.2. Multi-label classification. The task of multi-label classification is to predict for each data
instance, a set of labels that applies to it [16]. Standard classification only assigns one label to each
data instance. However, in many settings, a data instance can be assigned by more than one label.
For developer recommendation problem, each data instance (i.e., a bug report) can be assigned by
multiple labels (i.e., developers).

Multi-label k-nearest neighbor is a state-of-the-art algorithm in the multi-label classification
literature [12]. For a new instance Xnew, ML-KNN processes its k-nearest neighbors KNN(Xnew) in
the training dataset. For a label dl in the label set D, it computes the number of training data
instances in KNN(Xnew) with label dl. We denote the number of data instances with label dl as
CXnew dlð Þ.

Based on the aforementioned count, ML-KNN computes the estimated probability of the new
instance Xnew to belong to label dl (denoted as Hl

1 Xnewð Þ) and the estimated probability of the new
instance to NOT belong to label dl (denoted as Hl

0 Xnewð Þ). These two estimates do not necessarily
sum up to 1. The aforementioned two estimated probabilities are computed for every label in the
label space D. If Hl

1 is larger than Hl
0 , the label dl would be assigned to Xnew. More than one label

satisfying the aforementioned two estimated probabilities could be assigned to Xnew. Instead of
outputting predicted labels for Xnew, we modify ML-KNN to output a score that combines the two
probability estimates for each label dl as follows:

Table IV. Relationship between number of bug resolvers and bug reports with the component
field.

Project Max Avg Top 10

GCC 264 49.93 85.38%
OpenOffice 818 49.62 76.07%
Mozilla 895 34.28 38.11%
Netbeans 515 32.16 31.48%
Eclipse 472 17.31 31.64%
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ScoreML�KNN Xnew; dlð Þ ¼ Hl
1 Xnewð Þ

Hl
0 Xnewð Þ þ Hl

1 Xnewð Þ

This score is the relative likelihood of dl to be assigned to Xnew.

2.3.3. Topic modeling. A textual document of a particular topic is likely to contain a particular set of
terms (i.e., words). For example, a document about a user interface bug is likely to contain terms such
as window and button. A document can be a mixture of several topics. Topic modeling models this
phenomenon. In our setting, a document is a bug report, and a topic is a higher-level concept
corresponding to a distribution of terms. With topic modeling, given a new bug report, we extract a
set of topics along with the probabilities that they appear in the bug report.

Latent Dirichlet allocation (LDA) is a well-known topic modeling technique [13]. LDA is a
generative probabilistic model of a textual corpus (i.e., a set of textual documents) that takes as
inputs: a training textual corpus and a number of parameters including the number of topics (K)
considered. In the training phase, for each document s, we would get a topic proportion vector θs,
which is a vector with K elements, and each element corresponds to a topic. The value of each
element in θs is a real number from 0 to 1, which represents the proportion of the words in s
belonging to the corresponding topic in s. After training, the LDA is used to predict the topic
proportion vector θm for a new document m. By this, we map the terms in the document m into a
topic proportion vector θm, which contains the probabilities of each topic to be present in the document.

After training, the LDA can be used to predict the topic for every term in a new document. For a new
document m, considering K topics, we compute its topic vector zm based on the topics assigned to its
constituent terms as

zm ¼< t1;…; tK >; where

ti ¼ # words assigned the ith topic in m

# words in m

(2)

By this, we map the terms in the document m into a topic vector that contains the probabilities of
each topic to be present in the document.

3. DEVREC: A COMPOSITE OF BR-BASED AND D-BASED ANALYSIS

In this section, we propose our DevRec method, to solve the developer recommendation problem. This
section includes three parts: In Section 3.1, we present BR-Based analysis. In Section 3.2, we present
D-Based analysis. Finally, in Section 3.3, we present a composite of BR-Based and D-Based analyses
that would result in DevRec.

3.1. BR-Based analysis

Bug reports based analysis takes in a new bug report BRnew whose resolvers (i.e., developers that
contribute to bug resolution) are to be predicted and outputs a score for each potential resolver. BR-
Based analysis finds the k-nearest bug reports to BRnew whose resolvers are known and based on
these resolvers, recommend developers for BRnew. There are two things that we need to do to realize
our BR-Based analysis. First, we need to find the k-nearest neighbors of BRnew (i.e., k-nearest bug
reports to BRnew). Next, we need a machine learning technique that could infer the resolvers of
BRnew from the resolvers of its k-nearest neighbors. We describe how we perform these two steps in
the following subsections.

3.1.1. Finding k-nearest neighbors. To find k-nearest neighbors of BRnew, we first need to find a
set of features that characterize bug reports. Next, we need a distance metric that measures the
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distance between one bug report to another. We use the following features to characterize a bug
report:

1. (Terms) This is a multi-set of stemmed non-stop words [17] that appear in the summary and de-
scription of the bug report. Stop words are words that carry little meaning, for example, I, you,
he, and she. We remove all such stop words. We also remove the numerical values. Stemming
is the process of reducing a word to its root form, for example, both ‘reading’ and ‘reads’ can
be stemmed to ‘read’. Each of the words is a feature. The value of each feature is the number
of times the corresponding word appears in a bug report.

2. (Topics) This is a set of topics that appears in the summary and description of the bug report. We
make use of latent Dirichlet allocation described in Section 2, which reduces a document into a
set of topics along with the probabilities of the document to belong to each of the topics in the set.
Each of the topics is a feature. The value of each feature is the probability of the corresponding
topic to belong to the bug report.

3. (Product) This is the product that is affected by the bug as recorded in the bug report. Each pos-
sible product is a binary feature. The value of each of these features is either 0 or 1 depending if
the bug report is for the corresponding product or not.

4. (Component) This is the component that is affected by the bug as recorded in the bug report.
Each possible component is a binary feature. The value of each of these features is either 0 or
1 depending if the bug report is for the corresponding component or not.

Each bug report would then be represented as a vector of feature values (aka. a feature vector),
which contains all of the four feature types, that is, terms, topics, product, and component
features. The distance between two bug reports could be calculated by simply computing the
Euclidean distance of two vectors (Section 2). In our approach, for each of the four feature
types, we assign the same weights. Based on this distance, we can find the k-nearest neighbors
of a new bug report.

3.1.2. Infer resolvers of BRnew. Given the k-nearest neighbors, we would like to predict the
resolvers of BRnew based on the resolvers of its k-nearest neighbors. We consider each
developer as a class label, each bug report as a data point, and each bug report with known
resolvers as a training data point. Under this setting, the problem is reduced to a multi-label
classification problem: given a data point (i.e., a bug report), predict its labels (i.e., its
resolvers).

We leverage the state-of-the-art work on multi-label learning namely ML-KNN proposed by
Zhang and Zhou [12]. We have provided a short description of this approach in Section 2. The
ML-KNN approach outputs the relative likelihood of a label to be assigned to a data point.
After the application of this approach, we would have assigned for each potential developer
d, a score that denotes the likelihood of this developer d to be a resolver of BRnew, denoted
by BRScoreBRnew dð Þ.

3.2. D-Based analysis

For D-Based analysis, we model the affinity of a developer to a bug report. A developer might
have resolved past bug reports before. This experience of the developer could be used to model
the affinity of the developer to various features of a bug report. We consider four types of
features: terms, topics, component, and product. Similar features are used by the BR-Based
analysis. However, in D-Based analysis, rather than finding distances between bug reports, we
measure distances between bug reports and developers. We call the distance between a developer
and a term, a topic, a component, and a product in a bug report as term affinity, topic affinity,
component affinity, and product affinity, respectively. We describe how the scores measuring the
affinity of a term, topic, component, and product with a bug report could be computed in the
following subsections.

3.2.1. Terms affinity score. We use the following formula to compute the term affinity score of a bug
report b to a developer d:
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Termsb dð Þ ¼ 1�∏
t∈b

1� nd;t
nt þ nd � nd;t

� �
(3)

where t refers to the terms in b and nd, nt, and nd,t refer to the number of bug reports that a developer d
has contributed to bug resolution activities; the number of reports term t appears and the number of
reports resolved by developer d that contains term t. We characterize each developer by the top TC
terms of the highest affinity scores. The default number of terms (i.e., TC) for each developer is set
to 10. The aforementioned formula is based on [5].

3.2.2. Topics affinity score. In natural language processing, a topic represents a distribution of
terms (or words), and a document (in our setting, a bug report) is a distribution of topics. We
use LDA [13] to get the topic distribution for each bug report. Section 2 provides a description
of LDA. Using LDA, we map the term space of the original document into the topic space.
Each document or bug report corresponds to one topic vector where a topic vector is simply a
set of mappings from topics to the probabilities of the corresponding document to belong to
these topics.

Consider a set of topic vectors T corresponding to the set of all bug reports. Let Td refers to the topic
vectors corresponding to bug reports that developer d helps in the bug resolution process. Also, given a
topic vector v, let v[t] denotes the probability of the corresponding bug report to belong to topic t – it is
an entry in the topic vector v corresponding to topic t. For a bug report b, we denote b[t] as the
probability of the bug report b to belong to topic t. The topic affinity score of b to a developer d is
given by the following:

Topicsb dð Þ ¼ 1�∏
t∈b

1� ∑v∈Td
v t½ �

∑v ′∈T v
′ t½ � �b t½ �

� �
(4)

t∈ b denotes a topic contained in the bug report b. Informally put, the aforementioned formula
would be very small if the bug reports that developer d helps in the bug resolution process
share very little topics with the topics contained in bug report b. It would be large if they
share a lot of common topics.

3.2.3. Product and component affinity scores. A developer d might be biased toward certain products
and components. The definitions of product and component affinity score defined here are different
from those of terms and topics affinity scores. This is so because each bug report has only one
product and one component.

Consider a bug report collection B. Let Bd refers to bug reports where a developer d participated
before. Also, given product p, let b[p] denotes whether bug report b is for product p: b[p] = 1 if b is
for product p and b[p] = 0 otherwise (notice that for all the products, only one product p has b[p]
= 1). Also, let pb denotes the value of the product field of bug report b. The product affinity score
Productb(d) for bug report b and developer d is given by the following:

Productb dð Þ ¼ ∑b∈Bd
b pb½ �

∑b′∈B b
′ pb½ � (5)

Similarly, given component c, let b[c] denotes whether bug report b is for component c, b[c] = 1 if b
is for component c, and b[c] = 0 otherwise (notice that for all the components, only one component c
has b[c] = 1). Also, let cb denotes the value of the component field of bug report b. The component
affinity score Componentb(d) for b to a developer d is given by the following:

Componentb dð Þ ¼ ∑b∈Bd
b cb½ �

∑b′∈B b
′ cb½ � (6)

Informally put, the aforementioned two scores would be very small if the bug report b does not share
any product or component with past bug reports that developer d participated before. The two scores
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would be high if many bug reports that developer d participated before share the same product and
component as bug report b.

3.2.4. An example. To illustrate topic affinity, product affinity, and component affinity scores, we
take an example bug report dataset shown in Table V, which has two topics, two types of product,
three types of component, and two developers. The bug report with identifier ‘Test 1’ is the bug
report whose resolvers are to be predicted.

Developer 1 participated in two bug reports, ‘Train 1’ and ‘Train 2’. Developer 2 participated in
three bug reports, ‘Train 2’, ‘Train 3’, and ‘Train 4’. The topic affinity score of developer D1 and
bug report ‘Test 1’ can be computed as

TopicsTest1 D1ð Þ ¼ 1� 1� 0:1þ 0:8
0:1þ 0:8þ 0:5

�0:4

� �
�

1� 0:9þ 0:2
0:9þ 0:2þ 1þ 0:5

�0:6

� �
¼ 0:4458

The value of the product field of bug report ‘Test 1’ is P1. In the training set, there are three bug
reports with their product field set as P1 (i.e., ‘Train 1’, ‘Train 2’, and ‘Train 4’). For ‘Train 1’ and
‘Train 2’, developer D1 participated in the bug resolution activity. The product affinity score of
developer D1 and bug report ‘Test 1’ can be computed as follows:

ProductTest1 D1ð Þ ¼ 2
1þ 1þ 1

¼ 0:67

The value of the component field of bug report ‘Test 1’ is C1. In the training set, there are two bug
reports with their product fields set as C1 (i.e., ‘Train 1’ and ‘Train 4’). For ‘Train 4’, Developer 1
participated in the bug resolution activity. The component affinity score of developer D1 and bug
report ‘Test 1’ can be computed as

ComponentTest1 D1ð Þ ¼ 1
1þ 1

¼ 0:5

For developer D2, a similar analysis can be performed to compute the topic, product, and
component affinity scores.

3.2.5. D-BASED SCORE

In the previous subsections, we define the affinity scores for term, topic, product, and component.
Definition 1 defines a way to combine all of these scores into a single score referred to as D-
Based score.

Table V. An example dataset with two topics, two products, three components, and two Developers. PART =
Participate. X = Does not participate.

BugID Topic 1 Topic 2 Prod. Comp. Dev 1 (D1) Dev 2 (D2)

Train 1 0.1 0.9 P1 C1 PART X
Train 2 0.8 0.2 P1 C2 PART PART
Train 3 0 1 P2 C3 X PART
Train 4 0.5 0.5 P1 C1 X PART
Test 1 0.4 0.6 P1 C1 ? ?
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Definition 1
(D-Based Score.)Consider a bug report b and a developer d. Let us denote its term affinity score,
topic affinity score, product affinity score, and component affinity score as Termsb(d), Topicsb(d),
Productb(d), and Componentb(d), respectively. The D-Based score for developer d and bug report b
is given by the following:

DScoreb dð Þ ¼ β1�Termsb dð Þ þ β2�Topicsb dð Þþ
β3�Productb dð Þ þ β4�Componentb dð Þ (7)

Where β1, β2, β3, β4∈ [0, 1] represent the different contribution weights of the various affinity scores
to the overall D-Based score.

Algorithm 1 EstimateWeights: Estimation of γ1, γ2, γ3, γ4, and γ5 in DevRec

1: EstimateWeights(B,D,T,EC, ITER, SampleSize)
2: Input:
3: B: Bug Report Collection
4: D: Developer Collection
5: T: Bug Report Topic Distribution
6: EC: Evaluation Criterion
7: ITER: Maximum Number of Iterations (Default Value = 10)
8: SampleSize: Sample Size
9: Output: γ1, γ2, γ3, γ4, γ5
10: Method:
11: Build BR-Based Analysis component using B;
12: Build D-Based Analysis component using B;
13: Sample a small subset SampB of B of size SampleSize;
14: for all bug report b∈ SampB, and developer d∈D do
15: Compute the BR-Based score, i.e., BRScoreb(d)
16: Compute the Terms Affinity score, i.e., Termsb(d)
17: Compute the Topic Affinity score, i.e., Topicsb(d)
18: Compute the Product Affinity score, i.e., Productb(d)
19: Compute the Component Affinity score, i.e., Componentb(d)
20: end for
21: while iteration times iter < ITER do
22: for all i from 1 to 5 do
23: Choose γi=Math. random()
24: end for
25: for all i from 1 to 5 do
26: γbesti = γi
27: repeat
28: Compute the DevRec scores according to Equation 9
29: Evaluate the effectiveness of the combined model on SampB and D based on EC
30: If EC score of γi is better than that of γbesti then
31: γbesti = γi
32: end if
33: Increase γi by 0.01
34: Until γi ≥ 1
35: γi = γbesti

36: end for
37: end while
38: Return γ1, γ2, γ3, γ4, γ5 which give the best result based on EC
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3.3. DevRec: a composite method

As shown in previous sections, we can get the BR-Based score and D-Based scores for each new bug
report b. In this section, we propose DevRec, which is a composite method that combines both BR-
Based analysis and D-Based analysis. A linear combination of the BR-Based and D-Based scores
defined in Definition 2 is used to compute the final DevRec score.

Definition 2
(DevRec Score.)Consider a bug report b and a developer d. Let the BR-Based score and D-Based
score be BRScoreb(d) and DScoreb(d), respectively. The DevRec score that computes the expert rank-
ing score of developer d with respect to bug report b is given by the following:

DevRecb dð Þ ¼ α1�BRScoreb dð Þ þ α2�DScoreb dð Þ (8)

Where α1,α2∈ [0, 1] represent the contribution weights of BRScore and DScore to the overall
DevRec score. If we unfold DevRecb(d), we get the following:

DevRecb dð Þ ¼ γ1�BRScoreb dð Þ þ γ2�Termsb dð Þ
þγ3�Topicsb dð Þ þ γ4�Productb dð Þ þ γ5�Componentb dð Þ (9)

Where γ1, γ2, γ3, γ4, γ5∈ [0, 1].
To automatically produce good γ values for DevRec, we propose a sample-based greedy method.

Because of the large size of bug report collection B, we do not use the whole collection to estimate
gamma weights, instead, we randomly sample a small subset of B. In this paper, by default, we set
the sample size as 10% of the number of bug reports in B.

Algorithm 3.3 presents the pseudocode to estimate good γ values. We first build the BR-Based
analysis component and the D-Based analysis component using the whole bug report collection B
(Lines 11 and 12). After we sample a small subset SampB from B (Line 13), we compute the BR-
based score, term affinity score, topic affinity score, component affinity score, and product affinity
score for each bug report in SampB and each developer in the whole developer collection D (Lines
14–20). Next, we iterate the whole process of choosing good γ values ITER times (Line 22). For
each iteration, we first randomly assign a value between 0 to 1 to each γi, for 1≤ i≤ 5 (Lines 22–24).
Next, for each γi, we fix the values of γp where 1≤ p≤ 5 and p≠ i, and we increase γi incrementally
by 0.01 at a time and compute the EC scores (Lines 25–36). By default, we set the input criterion
EC as Recall@k [18, 19] (Definition 3). Algorithm 3.3 would return γ1, γ2, γ3, γ4, γ5, which give the
best result based on EC.

4. EXPERIMENTS

We evaluate our DevRec method on the collected datasets described in Table II. We compare our
method with Bugzie [5] and DREX [3]. The experimental environment is a Windows 7 64-bit, Intel
(R) Xeon(R) 2.53 GHz server with 24 GB RAM.

4.1. Experimental setup

For each bug report, we extract its bug ID, bug summary and description information, bug
product, bug component and bug resolvers. We extract the stemmed non-stop terms (i.e.,
words) from the summary and description information. We do some pre-processing for the bug
report collections similar to DREX [3]: For the small-scale bug report collections, such as
GCC and OpenOffice, we delete the terms that appear less than 10 times; while for large-scale
bug report collections, such as Mozilla, Netbeans, and Eclipse, we delete the terms that appear
less than 20 times. For each of the five bug report collections, we remove developers who
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appear less than 10 times. Because they are not active, recommending these developers does not
help much in bug resolution.

To simulate the usage of our approach in practice, we use the same longitudinal data setup described
in [5, 20]. The bug reports extracted from each bug repository are sorted in chronological order of
creation time and then divided into 11 non-overlapping frames (or windows) of equal sizes. The
validation process proceeds as follows: First, we train using bug reports in frame 0 and test the bug
reports in frame 1. Then, we train using bug reports in frame 0 and frame 1 and use the similar way
to test the bug reports in frame 2 and so on. In the final fold, we train using bug reports in frame 0–9
and test the bug reports in frame 10. In the training data, we have, for each report, both the features
that characterize the bug report and the set of resolvers. We use these to train DevRec, Bugzie, and
DREX. In the test data, for each bug report, we use the features that characterize the bug report to
predict the set of resolvers. We use the resolvers recorded in the bug repository as the ground truth.

DevRec accepts an evaluation criteria EC as a parameter. In this work, we consider two evaluation
criteria to compare DevRec with Bugzie and DREX: recall@5 and recall@10. These measures are
well-known information retrieval measures [17], and recall@10 has also been used to evaluate
DREX [3]. DevRec uses LDA that accepts a number of parameters. For LDA, we set the maximum
number of iterations to 500 and the hyperparameters α and β to 50/T and 0.01, respectively, where T
is the number of topics. By default, we set the number of topics T to 5% of the number of distinct
terms (i.e., words) in the training data. We use JGibbsLDA§ as the LDA implementation. We use
percentages rather than a fixed number as the amount of training data varies for different datasets
and different test frames (following longitudinal study setup [5, 20] described in Section 4.1). If
there are more distinct terms, there are likely to be more topics. For the BR-Based analysis of
DevRec, by default, we set the number of neighbors to 15.

Bugzie was first proposed for the bug assignment problem. However, since it can rank each
developer based on the developer’s suitability to a bug report, we can use it for our problem too.
For Bugzie, there are two parameters: the developer cache size and the number of descriptive terms.
We use 100% developer cache size and set the number of descriptive terms to 10. These settings
have been shown to result in the best performance [5]. DREX was proposed to address the same
problem as ours. We compare our approach to the simple frequency variants of DREX, which has
been shown to result in the best performance [3]. We set the number of neighbors of DREX to 15
(the same as that of DevRec). Notice all of DevRec, Bugzie, and DREX require a training phase,
which a model is built based on the historical bug reports.

To reduce the effort due to the training, we also propose a method named NonTraining.
NonTraining still needs a number of historical bug reports but does not need to build any machine
learning model based on the historical bug reports. Considering that there is no machine learning
model built on the historical bug reports, we refer to this approach as NonTraining. To recommend
the developers for a new bug report, NonTraining first finds the top-k most similar bug reports in
the training data based on our proposed four types of features, that is, terms, topics, products, and
component. Based on developers who resolve these bug reports, NonTraining then recommends
developers by using frequency counting. We set top 15 similar bug reports as we do for DevRec to
make a fair comparison, and we use Euclidean distance as the similarity metric.

We evaluate the performance of our DevRec with two metrics, that is, recall@k and precision@k.
The definitions of recall@k and precision@k are as follows:

Definition 3
(Recall@k and Precision@k.)Suppose that there are m bug reports. For each bug report bi, let
the set of its actual bug resolvers be Di. We recommend the set of top-k developers Pi for bi according
to our method. The recall@k and precision@k for the m bug reports are given by the following:

Recall@k ¼ 1
m
∑
m

i¼1

Pi ∩Dij j
Dij j (10)

§http://jgibblda.sourceforge.net/
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Precision@k ¼ 1
m
∑
m

i¼1

Pi ∩Dij j
Pij j (11)

For example, suppose there are two bug reports and three developers participated in the bug
resolution process. For bug report 1, the resolvers are {1,2,3}, and for bug report 2, the resolvers are
{1}. The top 2 predicted developers are {1,3} and{2,3} for bug reports 1 and 2, respectively. Then
the recall@2 and precision@2 are

Recall@2 ¼ 1
2

1; 3f g∩ 1; 2; 3f gj j
1; 2; 3f gj j þ 2; 3f g∩ 1f gj j

1f gj j
� �

¼ 1
3

(12)

Precision@2 ¼ 1
2

1; 3f g∩ 1; 2; 3f gj j
1; 3f gj j þ 2; 3f g∩ 1f gj j

2; 3f gj j
� �

¼ 1
2

(13)

We are interested to answer the following research questions:

RQ1 How effective is our proposed DevRec? How much improvement could our proposed approach
gain over Bugzie, DREX, and NonTraining?
Tamrawi et al. propose a fuzzy set method named Bugzie to recommend fixers given a new bug

report [5]. Wu et al. address bug resolution problem by proposing a k-nearest neighbor search
method named DREX to recommend developers given a bug report [3]. In this research
question, we investigate the extent our approach (DevRec) outperforms these state-of-the-art
approaches. We also compare our approach with NonTraining, which directly recommends
developers without a training phase. Answer to this research question would shed light to
whether our proposed approach advances existing state-of-the-art approaches. To answer this
research question, we compare the Recall@5, Recall@10, Precision@5, and Precision@10
scores of DevRec with those of Bugzie, DREX, and NonTraining. For each bug report, we
could compute its Recall@5, Recall@10, Precision@5, and Precision@10 scores by using
DevRec, Bugzie, DREX, and NonTraining, respectively. Thus, for each technique and each
metric, we have a list of scores. We then apply the Wilcoxon signed-rank test [21] on these
lists of scores to test whether the improvements of DevRec over Bugzie, DREX, and
NonTraining are significant (at α=0.05).

RQ2 What is the performance of the BR-based component and D-based component?
DevRec has two components (i.e., BR-based and D-based components); we would like to

investigate the performance of each of them. We want to see whether the combination of the
two components results in better or poorer performance. To answer this research question, we
compare the Recall@5, Recall@10, Precision@5, and Precision@10 scores of DevRec with
those of BR-based component and D-based component. We also apply Wilcoxon signed-rank
test [21] to test whether the improvements of DevRec over BR-based and D-based components
are significant.

RQ3 What is the effect of varying the number of topics to the performance of DevRec?
Latent Dirichlet allocation generates topics from a set of documents; however, the number of topics

needs to be manually specified. Previous study shows that different numbers of topics would affect the
performance of LDA in several software engineering tasks [22]. Thus, in this research question, we
would like to investigate how the performance of DevRec varies for various numbers of topics.
Ideally, since users do not know how to choose the best number of topics for a new dataset, the
performance of DevRec should be relatively stable for different numbers of topics, as long as they
are within a reasonable range. For the other research questions, by default, the number of topics is
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set to be 5% of the number of distinct terms in our training dataset. To answer this research question,
we vary the number of topics from 1%, 3%, 5%, 7%, 9%, and 11% of the number of distinct terms in
our training data.

RQ4 What is the effect of varying the number of neighbors to the performance of DevRec?
In the BR-based component, for a new bug report, DevRec would find its k-nearest neighbors. The

value of k needs to be manually specified. In this research question, we would like to investigate
whether different numbers of k would affect the stableness of DevRec. Ideally, because users do not
know how to choose the best value of k for a new dataset, the performance of DevRec should be
relatively stable for different numbers of neighbors k, as long as they are within a reasonable range.
For the other research questions, by default, k is set to be 15. To answer this research question, we
vary the number of neighbors k from 5, 10, 15, 20, and 25.

RQ5 What is the effect of varying the number of terms for each developer to the performance of
DevRec?
In the term affinity score in D-based component, we characterize each developer by the top TC terms

of the highest affinity scores. In this research question, we would like to investigate whether different
number of terms TC would affect the stableness of DevRec. Ideally, because users do not know how to
choose the best value of TC for a new dataset, the performance of DevRec should be relatively stable
for different number of terms TC, as long as they are within a reasonable range. For the other research
questions, by default, the number of terms (i.e., TC) for each developer is set to 10. To answer this
research question, we vary the TC from 5, 10, 15, 20, and 25.

4.2. RQ1: performance of DevRec

In this section, we compare DevRec with other state-of-the-art methods, namely Bugzie and DREX.
Table VI presents the recall@5, recall@10, precision@5, and precision@10 of DevRec compared
with Bugzie and DREX and the improvement of DevRec over Bugzie (Impro.B.) and over DREX
(Impro.D.), respectively. The statistically significant improvements are marked in bold. The p-values
for all the Wilcoxon signed-rank tests are less than 2.2e� 16, which indicate that the results are
statistically significant. The recall@5 and recall@10 of DevRec vary from 48.26% to 79.89% and
from 60.63% to 89.24%, respectively. The precision@5 and precision@10 of DevRec vary from
21.00% to 31.96% and 13.31% to 18.59%, respectively.

From Table VI, the improvement of our method over Bugzie is substantial and statistically
significant. DevRec outperforms Bugzie by 57.55% and 39.39% for average recall@5 and
recall@10, respectively. For the Eclipse dataset, DevRec achieves the highest improvement of
108.79% and 78.55% over Bugzie for recall@5 and recall@10, respectively. We notice that the
result shown in Table VI is different from the result presented in [5] because of several reasons:
First, the problem considered there is different from ours. In [5], it addresses bug triaging problem,
that is, one bug report has only one fixer. In this work, we address the developer recommendation
problem, that is, one bug report has multiple bug resolvers. Second, we drop generic names, for
example, nobody, issues, unassigned, as they do not identify particular developers.

From Table VI, the improvement of our method over DREX is substantial and statistically
significant. DevRec outperforms DREX by 165.38% and 89.36% for average recall@5 and
recall@10, respectively. For the Mozilla dataset, DevRec achieves the highest improvement of
426.08% and 136.67% over DREX for recall@5 and recall@10, respectively.

From Table VI, the improvement of our method over NonTraining is substantial and statistically
significant. DevRec outperforms NonTraining by 212.39% and 168.01% for average recall@5 and
recall@10, respectively. For the Eclipse dataset, DevRec achieves the highest improvement of
481.86% and 357.88% over NonTraining for recall@5 and recall@10, respectively. Comparing
DevRec, Bugzie, DREX, and NonTraining, we notice in general that NonTraining has the lowest
recall@k and precision@k values. This is the case because NonTraining does not build any machine
learning model based on the historical bug reports.
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Notice that the values of precision might seem low. However, notice that the number of bug
resolvers per bug report is low. Thus, the optimal precision@k value is low. For example, in
Eclipse, the average number of bug resolvers per bug report is 1.88. If we recommend top 10
developers, the best precision@10 would be around 0.188. The precision@10 of DevRec for the
Eclipse dataset is 0.1431, which is close to the optimal value. From Table VI, the improvement of
our method over Bugzie is substantial and statistically significant. DevRec outperforms Bugzie by
32.83% and 24.61% for average precision@5 and precision@10, respectively. From Table VI, the
improvement of our method over DREX is also substantial and statistically significant. DevRec
outperforms DREX by 121.22% and 76.06% for average precision@5 and precision@10,
respectively. From Table VI, the improvement of our method over NonTraining is also substantial
and statistically significant. DevRec outperforms NonTraining by 200.50% and 162.30% for average
precision@5 and precision@10, respectively. The results show that clearly DevRec outperforms
Bugzie, DREX, and NonTraining, which are the state-of-the-art techniques.

4.3. RQ2: performance of BR-based and D-based components

Table VII presents the recall@5, recall@10, precision@5, and precision@10 scores of DevRec
compared with those of BR-based and D-based components. DevRec outperforms the BR-based
component by 5.17% and 4.83% for average recall@5 and recall@10, respectively. DevRec
outperforms the D-based component by 6.07% and 2.99% for average recall@5 and recall@10,

Table VI. Recall@5, Recall@10, Precision@5, and Precision@10 of DevRec compared with Bugzie and
DREX, and the improvement of DevRec over Bugzie (Impro.B.) and over DREX (Impro.D.). The last row
shows the average Recall@5, Recall@10, Precision@5, and Precision@10 scores of DevRec, Bugzie, and

DREX, and the average improvement. Statistically significant improvements are highlighted in bold.

2*Projects Recall@5

DevRec Bugzie Impro.Bugzie DREX Impro.DREX NonTraining Impro.Non

GCC 56.33% 47.43% 18.77% 52.17% 7.97% 39.95% 41.00%
OpenOffice 48.26% 40.42% 19.38% 16.95% 184.46% 17.56% 174.83%
Mozilla 55.92% 32.14% 73.98% 10.63% 426.08% 16.56% 237.68%
Netbeans 70.73% 42.40% 66.81% 48.53% 45.74% 31.22% 126.55%
Eclipse 79.89% 38.26% 108.79% 30.45% 162.44% 13.73% 481.86%
Average 62.22% 40.13% 57.55% 31.75% 165.38% 23.80% 212.39%

2*Projects Recall@10
DevRec Bugzie Impro.Bugzie DREX Impro.DREX NonTraining Impro.Non

GCC 70.72% 67.24% 5.17% 64.94% 8.90% 51.88% 36.31%
OpenOffice 60.63% 53.64% 13.05% 25.11% 141.48% 26.67% 127.33%
Mozilla 67.55% 44.16% 52.96% 28.54% 136.67% 22.41% 201.43%
Netbeans 80.21% 54.48% 47.24% 56.29% 42.50% 36.95% 117.08%
Eclipse 89.24% 49.98% 78.55% 41.08% 117.28% 19.49% 357.88%
Average 73.67% 53.90% 39.39% 43.19% 89.36% 31.48% 168.01%

2*Projects Precision@5
DevRec Bugzie Impro.Bugzie DREX Impro.DREX NonTraining Impro.Non

GCC 24.53% 20.77% 15.33% 23.14% 6.01% 17.69% 38.67%
OpenOffice 21.00% 17.40% 17.14% 8.52% 146.48% 8.00% 162.50%
Mozilla 24.71% 14.56% 41.08% 6.64% 272.14% 7.61% 224.70%
Netbeans 31.96% 19.53% 38.89% 22.87% 39.75% 15.20% 110.26%
Eclipse 25.09% 12.12% 51.69% 10.38% 141.71% 4.43% 466.37%
Average 25.46% 16.88% 32.83% 14.31% 121.22% 10.59% 200.50%

2*Projects Precision@10
DevRec Bugzie Impro.Bugzie DREX Impro.DREX NonTraining Impro.Non

GCC 15.99% 15.14% 5.32% 14.93% 7.10% 11.61% 37.73%
OpenOffice 13.31% 11.92% 10.44% 6.18% 115.37% 5.87% 126.75%
Mozilla 15.46% 10.43% 32.54% 7.23% 113.83% 5.31% 191.15%
Netbeans 18.59% 12.68% 31.79% 13.55% 37.20% 9.03% 105.87%
Eclipse 14.31% 8.16% 42.98% 6.92% 106.79% 3.18% 350.00%
Average 15.53% 11.67% 24.62% 9.76% 76.06% 7.00% 162.30%
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respectively. DevRec outperforms the BR-based component by 2.00% and 3.04% for average
precision@5 and precision@10, respectively. DevRec outperforms the D-based component by
8.77% and 3.93% for average precision@5 and precision@10, respectively. The results show that it
is beneficial to combine the BR-based and D-based components. Statistical tests show that DevRec
significantly improves recall@5 (recall@10) scores of BR-based component on all of the five
projects and four out of the five projects, respectively. DevRec also significantly improves recall@5
and recall@10 scores of the D-based component on four out of the five projects. Furthermore,
DevRec significantly improves the precision@5 and precision@10 scores of BR-based component
on three out of the five projects and those of D-based component on four out of the five projects.

4.4. RQ3: effect of varying the number of topics

Figure 3 presents the recall@5, recall@10, precision@5, and precision@10 of DevRec for various
numbers of topics for GCC, OpenOffice, Mozilla, Netbeans, and Eclipse, respectively. It can be
seen that the performance of DevRec over the different numbers of topics only varies slightly. Thus,
DevRec is robust to different numbers of topics, within a reasonable range.

To answer why DevRec is stable for various numbers of topics, we manually check the term
distributions under each topic when we vary the number of topics from 1% to 11% of the number of
distinct terms in our training data. We find that even when we choose the number of topics as 1% of

Table VII. Recall@5, Recall@10, Precision@5, and Precision@10 of DevRec compared with BR-based
(BR.) component and D-based (D.) component, and the improvement of DevRec over BR-based (BR.)

component (Impro.BR.) and over D-based (D.) component (Impro.D.). Statistically significant
improvements are highlighted in bold.

2*Projects Recall@5

DevRec BR-Based. Impro.BR. D-Based. Impro.D.

GCC 56.33% 48.20% 16.87% 55.24% 1.97%
OpenOffice 48.26% 46.70% 3.34% 47.83% 0.90%
Mozilla 55.92% 54.87% 1.91% 50.53% 10.67%
Netbeans 70.73% 69.74% 2.24% 63.83% 11.70%
Eclipse 79.89% 78.73% 1.47% 76.02% 5.09%
Average 62.22% 59.65% 5.17% 58.69% 6.07%

2*Projects Recall@10
DevRec BR-Based. Impro.BR. D-Based. Impro.D.

GCC 70.72% 64.90% 8.97% 69.52% 1.73%
OpenOffice 60.63% 57.28% 5.85% 60.59% 0.07%
Mozilla 67.55% 65.67% 2.86% 63.13% 7.00%
Netbeans 80.21% 78.73% 2.65% 77.94% 3.70%
Eclipse 89.24% 85.95% 3.93% 87.08% 2.48%
Average 73.67% 70.51% 4.83% 71.65% 2.99%

2*Projects Precision@5
DevRec BR-Based. Impro.BR. D-Based. Impro.D.

GCC 24.53% 24.17% 1.49% 20.93% 17.20%
OpenOffice 21.00% 20.28% 3.55% 20.80% 0.96%
Mozilla 24.71% 24.14% 2.36% 22.29% 10.86%
Netbeans 31.96% 31.45% 1.62% 29.39% 8.74%
Eclipse 25.09% 24.60% 1.99% 23.65% 6.09%
Average 25.46% 24.93% 2.00% 23.41% 8.77%

2*Projects Precision@10
DevRec BR-Based. Impro.BR. D-Based. Impro.D.

GCC 15.99% 15.63% 2.30% 14.54% 9.07%
OpenOffice 13.31% 12.78% 4.15% 13.27% 0.30%
Mozilla 15.46% 15.08% 2.52% 14.60% 5.56%
Netbeans 18.59% 18.17% 2.31% 18.10% 2.64%
Eclipse 14.31% 13.77% 3.92% 14.01% 2.10%
Average 15.53% 15.09% 3.04% 14.90% 3.93%
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the number of distinct terms, the terms under many topics show relatively good semantic relationships.
Table VIII presents the top 10 terms under several topics learned from our Eclipse dataset when we set
the number of topic as 1% of the number of distinct terms. Notice that these terms show good semantic
relationships. For example, the terms in Topic 1 describe various components of the Eclipse user
interface (e.g., button, table, documentation, and image); the terms in Topic 2 describe various
operations (e.g., click, import, and export); the terms in Topic 3 describe various programming
languages (e.g., C, Java, HTML, and Javascript), and the terms in Topic 4 are related to debugging
(e.g., stack, trace, exception). Our findings suggest that the number of topics does not matter as long
as the topics capture a reasonable abstraction of a set of terms.

4.5. RQ4: effect of varying the number of neighbors

We vary the number of neighbors k from 5 to 25 to investigate the sensitivity of DevRec on this
parameter. Figure 4 presents the experiment results for GCC, OpenOffice, Mozilla, Netbeans, and
Eclipse. The results show that the performance of DevRec is stable for various numbers of neighbors.

Figure 3. Recall@5, Recall@10, Precision@5, and Precision@10 for different numbers of topics (1–11% of
the number of distinct terms in the training data).

Table VIII. Top 10 terms under four topics in Eclipse when the topic number is 1% of
the number of distinct terms.

Topic 1 Topic 2 Topic 3 Topic 4

Button Click Java Exception
UI Save C Stack
Explorer Import J2EE Trace
Table Export Code Debug
URL Edit Language Org
Interface Insert HTML Eclipse
Image Open JavaScript Reproduce
Document New JSON Step
Package Print Framework Error
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To investigate why DevRec is stable for various numbers of neighbors, we check the list of top k
neighbors of several bug reports in our dataset for k = 5–25. We find that in many cases, the set of
main resolvers involved in the top 5 most similar bug reports is similar to the set of main resolvers
involved in the top 25 most similar bug reports. Our findings suggest that as long as the ground
truth resolvers are also actively involved in at least k similar bug reports before, the exact value of k
does not matter much.

4.6. RQ5: effect of varying the number of terms

Because our DevRec uses terms affinity score as shown in Section 3.2.1, we set the descriptive term
number for each developer from 5 to 25 to validate the stability of DevRec. Figure 5 presents the
experiment results for GCC, OpenOffice, Mozilla, Netbeans, and Eclipse. The results show that the
performance of DevRec is stable for various numbers of terms, and the differences between different
numbers of terms are slight.

One rationale why the performance of DevRec remains stable for various numbers of terms is
due to the fact that DevRec combines different analyses (i.e., BR-Based and D-Based analyses)
and the number of terms is only one parameter that affects a small part of the D-Based
analysis (i.e., term affinity score). Also, the weights of various scores in DevRec are fine-tuned
based on its performance on a training data. Scores that lead to poorer performance are given
lower weights. This might offset any adverse effect that is caused by varying the number of
terms.

4.7. Discussion

4.7.1. Effectiveness of different components. In this paper, we automatically identify good γ weights
for DevRec following Algorithm 1. The γ weights would be optimized (and thus are different) for
different datasets and training frames in our longitudinal data setup. Table IX presents the average
weights of the term, topic, product, and component affinity scores in the D-based component and

Figure 4. Recall@5, Recall@10, Precision@5, and Precision@10 for different numbers of neighbors
(from 5 to 25).
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the average weight of the BR-based component for each dataset. We compute the average weights
across the 10 folds of the longitudinal data setup. We note that the weights for different datasets are
different. For example, for GCC, BR-based component has the highest weight; and for Eclipse, the
component affinity score has the highest weight.

4.7.2. Mean average precision. Considering our developer recommendation is based on the ranking
scores of each developers; we also investigate the performance of our DevRec with one more
evaluation metric, mean average precision (MAP) [23], which is a single-figure evaluation metric to
measure the quality of information retrieval. In our case, we consider a bug report as a ‘query’ and
the developers who join the bug resolution process as the ‘relevant results (i.e., instances)’. In
information retrieval, a query q could have multiple relevant results, thus the average precision
(AveP) for the query q is

AvePq ¼ ∑M
k¼1P kð Þ�rel kð Þ

Number of relevant instances
(14)

Table IX. Average weights for the term, topic, product, and component affinity scores in D-based
components and the BR-based components.

Projects Term Topic Product Component BR-based

GCC 0.3934 0.0100 0.5150 0.2651 0.7392
OpenOffice 0.4539 0.0100 0.3714 0.3695 0.6775
Mozilla 0.1268 0.0100 0.4862 0.4697 0.7323
Netbeans 0.2779 0.0100 0.5013 0.3966 0.6086
Eclipse 0.3815 0.1000 0.5150 0.6836 0.5025

Figure 5. Recall@5, Recall@10, Precision@5, and Precision@10 for different numbers of terms (from 5 to
25).
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In the aforementioned equation, k is the rank, M is the number of instances (i.e., total number of
developers) retrieved, and rel(k) indicates whether the instance (aka. developer) in the rank k is
relevant or not. P(k) is the precision at the given cut-off rank k and is computed as follows:

p kð Þ ¼ Number of relevant instances in top k position

k
(15)

Mean average precision for a set of queries (aka. bug reports) is the mean of the average precision
values for all queries. Considering a total of Q queries, MAP is computed as follows:

MAP ¼ ∑Q
q¼1AveP qð Þ

Q
(16)

In developer recommendation, a bug can be resolved by multiple developers. We use MAP to
measure the average performance of DevRec for recommending the developers. The higher the
MAP value, the better the performance of our DevRec.

Table X presents the MAP scores of DevRec compared with Bugzie and DREX and the
improvement of DevRec over Bugzie (Impro.B.) and over DREX (Impro.D.), respectively. The
statistically significant improvements are highlighted in bold. The MAP scores of DevRec vary from
0.4041 to 0.6377. From Table X, the improvements of our method over Bugzie, DREX, and
NonTraining are substantial and statistically significant. On average across five projects, DevRec
improves the MAP scores of Bugzie, DREX, and NonTraining by 61.50%, 205.86%, and 158.03%,
respectively.

4.7.3. Qualitative analysis. Here, we want to perform a qualitative analysis on why our new types of
features (i.e., topics, products, and components) worked in DevRec and why we need to combine BR-
based component and D-based component.
4.7.3.1. Features. Figures 6, 7, and 8 present three bug reports from Eclipse. These three bug reports
share some commonalities: they are in the same product JDT and component CORE, and some of the
bug resolvers are the same. For example, bug reports #102780 and #230944 both have Olivier
Thomann, Frederic Fusier, Eric Jodet, and Kent Johnson as resolvers. Also, these three bug reports
all describe bugs about graphical user interface problems in Eclipse, that is, they share some latent
commonalities. However, the textual description of these three bug reports are different, thus, if we
use Bugzie or DREX, which are only based on the terms in bug reports, and recommend resolvers
for bug report #230944, Bugzie or DREX cannot effectively leverage information from bug reports
#102780 and #148859, which causes inaccurate recommendation. Our DevRec uses topic model to
detect the latent commonalities behind the textual description of bugs and also considers the product
and component information, which results in better recommendations.
4.7.3.2. Combination. In our dataset, when we recommend resolvers for bug report #230944 just
using BR-based component, the top 5 developers are Eric Jodet, Frederic Fusier, Olivier Thomann,

Table X. MAP scores of DevRec compared with Bugzie and DREX and the improvement of DevRec over
Bugzie (Impro.B.) and over DREX (Impro.D.). The last row shows the average Recall@5, Recall@10,
Precision@5, and Precision@10 scores of DevRec, Bugzie, and DREX and the average improvement.

Statistically significant improvements are highlighted in bold.

Projects DevRec Bugzie Impro.Bugzie DREX Impro.DREX NonTraining Impro.Non

GCC 0.4488 0.3561 26.03% 0.3509 27.90% 0.3132 43.30%
OpenOffice 0.4041 0.3300 22.45% 0.0941 329.44% 0.1457 177.35%
Mozilla 0.4616 0.2640 74.85% 0.0432 968.52% 0.1372 236.44%
Netbeans 0.6002 0.3357 78.79% 0.2878 108.55% 0.2779 115.98%
Eclipse 0.6377 0.2946 116.46% 0.0585 990.09% 0.1152 453.56%
Average 0.5105 0.3161 61.50% 0.1669 205.86% 0.1978 158.03%
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Philipe Mulet, and Markus Keller, that is, Recall@5 = 3/5=0.6. And when we just use D-based
component, the top 5 developers are Frederic Fusier, Olivier Thomann, Kent Johnson, Jerome
Lanneluc, and Michael D. Elder, that is, Recall@5 = 3/5=0.6. DevRec combines BR-based and D-
based components and produces the following top 5 developers: Frederic Fusier, Olivier Thomann,
Eric Jodet, Kent Johnson, and Jerome Lanneluc, that is, Recall@5 = 4/5 =0.8. Thus, the
combination of these two components utilizes the advantages of each component and achieves a
better performance.

4.8. Threats to validity

Threats to internal validity relates to errors in our experiments. We have double checked our datasets
and experiments, still there could be errors that we did not notice. Notice that although a bug triager
does not directly contribute knowledge for bug fixing, they also play an important role for bug
resolution. For example, a bug triager may contribute his/her knowledge to find a suitable fixer, or
after he/she marks duplicate or blocking bug reports, the other developers could find more
information from other related bug reports [14, 15]. Moreover, a bug triager could also be a bug
contributor or a bug fixer too (Figure 1). In this work, we assume bug triagers, bug contributors, and
bug fixers are equally important and we do not differentiate them in our recommendation process. In
the future, we plan to develop a new technique that would recommend developers along with their
likely roles.

Figure 6. Bug report #102780 of Eclipse.

Figure 7. Bug report #148859 of Eclipse.

Figure 8. Bug report #230944 of Eclipse.
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Threats to external validity relates to the generalizability of our results. We have analyzed 107,875
bug reports from five large software systems. Also, in this paper, we recommend three types of bug
resolvers: bug fixer, bug contributor, and bug triager.

Threats to construct validity refers to the suitability of our evaluation measures. We use recall@k
and precision@k, which are also used by past studies to evaluate the effectiveness of developer
recommendation [3, 4], and also many other software engineering studies [19]. Thus, we believe
there is little threat to construct validity.

5. RELATED WORK

In this section, we briefly review several studies related to our paper. To our best knowledge, DREX
[3], which will be introduced in Section 5.1, is the most related work to our paper. We highlight
some of bug triaging studies especially Bugzie [5] in Section 5.2. In Section 5.3, we present other
related studies on bug report management.

5.1. DREX

The most related work to our paper is DREX [3], which recommends developers for bug resolution.
The main idea behind DREX is that the k-nearest neighbors of a bug report can help to recommend
developers for the bug report. In DREX, for a new bug report, it first finds the new bug report’s k-
nearest neighbors based on the textual description of historical bug reports. And based on the
neighbors’ information, it uses simple frequency counting, and some other social network analysis,
such as degree, in-degree, out-degree, betweeness, closeness, and PageRank to recommend potential
developers for bug resolution.

Our approach DevRec is different from DREX in several ways: (1) We perform not only BR-Based
analysis but also D-Based analysis; (2) For the BR-Based analysis, we make use of multiple features
that are not only terms but also topics, product, and component; (3) Also, for the BR-Based
analysis, we make use of the state-of-the-art work on multi-label classification namely ML-KNN;
and (4) We consider a larger dataset consisting of more than 100,000 bug reports from five projects
to evaluate our approach and compares it with DREX and Bugzie. We show that our approach
outperforms DREX by a substantial margin.

5.2. Bug assignment

Bug assignment refers to the task of finding the most appropriate developer to fix the bug [5, 20, 24, 25,
26, 27]. From the machine learning perspective, the problem can be mapped to single-label learning
problem, where each bug report is assigned to only one developer. The title, description, and
summary fields of bug reports are extracted to train classifiers. Anvik et al. and Cubranic et al. use
machine learning technologies such as Naive Bayes, support vector machine, and C4.8 for bug
assignment [24, 25]. Tamrawi et al. propose a method called Bugzie, which is based on the fuzzy
set theory [5]. It caches the most descriptive terms that characterize each developer and uses them to
measure the suitability of a developer to a new bug report. Baysal et al. represent the expertise of a
developer by analyzing the history of bugs previously resolved by the developer and apply vector
space model to recommend experts for fixing bugs [28]. Guo et al. perform an empirical study of
bug reassignment phenomenon, and they find that bug reassignment could help to determine the best
person to fix a bug [29]. Jeong et al. investigate bug reassignment in Eclipse and Mozilla and
propose a graph model based on Markov chain to improve bug triaging performance [26].
Bhattacharya et al. reduce tossing path lengths and improve the accuracy of the approach by Jeong
et al. further [20]. Lin et al. study bug assignment using bug reports that are written in Chinese, and
they find that text data are useful to assign bug reports [30]. Yang et al. propose an approach that
uses topic model to identify past historical bug reports that are similar to the new bug report and
recommends fixers of the past historical bug reports to new bug report [31].

In this work, different from the aforementioned studies, we consider bug fixing as a collaborative
effort. The aforementioned studies focused on recommending the developer that is assigned to fix
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the bug (aka. bug fixer). However, more than one people often work together to resolve a bug. In this
work, we would like to recommend everyone that contribute to the bug resolution process (the bug
resolvers). Notice both our work and the aforementioned studies would also recommend a list of
people (i.e.,top-n people). However, among these n people, the aforementioned studies only have at
most one developer who is considered to have fixed the bug, while in our work, we could have
multiple (one or more) people who are involved in the bug resolution process.

Anvik and Murphy point out that bug assignment is one of the activities of a bug triager [27].
Moreover, a bug triager would also make other decisions, for example, mark duplicate bug reports,
categorize bug reports by components or products, and check for reproducibility and validity [27].
From this perspective, both bug assignment and developer recommendation for bug resolution are in
the bug triaging process, and they have different targets: bug assignment aims to find the most
appropriate developer to fix the bug and developer recommendation aims to find developers who
could help in the bug resolution process in various ways.

Recently, other information sources aside from bug reports (e.g., commits and source code) have
been used to recommend appropriate developers. Matter et al. propose a tool named Develect that
models developer expertise based on the vocabulary used in their source code contributions and
recommends bug fixers based on the similarity between the words in a bug report and those in the
vocabulary of the fixers [32]. Kagdi et al. use feature location technology to find program units
(e.g., files or classes) that are related to a change request (i.e., bug report or feature request) and
then mine commits in version control repositories that modify those program units to recommend
appropriate developers [33]. Linares-Vásquez et al. propose a method to recommend developers
by also employing feature location to find relevant files; however, rather than analyzing version
control repositories, they recommend developers by looking to the list of authors at the header
comments of the relevant files [34]. Kevic et al. recommend developers to a bug report by
finding other similar bug reports, recovering the files that are changed to fix the previous similar
bug reports, and analyzing developers that changed those files [35]. Shokripour et al. propose a
two-phased location-based approach to assign bug reports to developers [36]. In their approach,
they first determine bug location information by utilizing a noun extraction process on multiple
information sources, and then a simple term weighting scheme is used to recommend a list of
potential bug fixers. Different from the aforementioned studies, in this work, we only analyze
information available in bug reports. Hossen et al. propose iMacPro, which considers the authors
and maintenances in source code and commit logs to recommend developers for a change
request [37]. Hossen et al. propose iMacPro that amalgates source code authors, maintainers, and
change proneness to assign a developer to a change request [37]. iMacPro first identifies source
code files that are relevant to a change request using Latent Semantic Indexing. Next, the
relevant files are ranked based on their change proneness. Finally, the authors and maintainers of
these files are ranked and recommended to the change request. Often there is an issue in linking
bug reports to commits that fix the bug [38, 39]. Still, it would be interesting to combine our
approach with the aforementioned approaches when the links between bug reports and relevant
commits are well maintained.

5.3. Other studies on bug report management

A number of studies have been proposed to automatically detect duplicated bug reports [40–43]. Hiew
proposes the problem of duplicated bug report detection [44]. For a new bug report, Hiew computes the
distance between the new bug report and existing bug reports. Runeson et al. measure the similarity of
two bug reports by using various similarity metrics based on the terms appearing in the bug reports
[40]. Wang et al. propose a duplicate bug report detection approach that considers execution traces
in addition to terms appearing in the bug reports [41]. Our work is orthogonal to the aforementioned
studies. Sun et al. propose a discriminative model-based approach, which leverages support vector
machine, to identify bug reports that are duplicate of one another [43]. In a latter work, Sun et al.
extend BM25 for duplicate bug report detection [42]. Our work is orthogonal to the aforementioned
studies; also, the set of bug reports that we experimented on is non-duplicate bug reports – for each
set of bug reports whose members are duplicate of one another, we only keep the master report.
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A number of studies have been proposed to predict the severity labels of bug reports [45, 46]. Severis,
proposed by Menzies and Marcus, performs multi-class classification to predict the five severity labels
of bug reports in NASA [45]. Their work is extended by Lamkanfi et al., which predict two severity
labels (severe versus not severe) of bug reports in a number of Bugzilla bug tracking systems of open
source programs [47]. In a latter work, Lamkanfi et al. further investigate the performance of a
number of classification methods to predict the severity of bug reports [48]. Tian et al. predict fine-
grained severity labels by using extended BM25 and nearest neighbor classification [46]. Our work
complements the aforementioned studies; after the severity of a bug report could be determined, our
approach could be employed to recommend a suitable developer to fix the bug.

Huang et al. propose a machine learning approach that predicts the categories of bug reports based
on their impact; the category labels include: capability, security, performance, reliability, requirement,
and usability [49]. Gegick et al. perform text mining to recover security bug reports [50].

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a new method DevRec to automatically recommend developers for bug
resolution. We consider two kinds of analysis: bug report based analysis (BR-Based analysis) and
developer based analysis (D-Based analysis). DevRec takes the advantage of both BR-Based and D-
Based analyses and composes them together. The experiment results show that, compared with the
other state-of-the-art approaches, DevRec achieves the best performance. The results show that
DevRec on average improves recall@5 and recall@10 scores of Bugzie by 57.55% and 39.39%,
outperforms DREX by 165.38% and 89.36%, and outperforms NonTraining by 212.39% and
168.01%, respectively. Moreover, we evaluate the stableness of DevRec with different parameters,
and the results show that DevRec is a stable approach.

In the future, we plan to improve the effectiveness of DevRec further (for example, integrate the
LDA-GA method proposed by Panichella et al. [22] or employ other text mining solutions, e.g.,
[51]). We also plan to experiment with even more bug reports from more projects and perform a
case study by surveying developers of both open source and industrial projects to study the viability
of our proposed approach.
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