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This paper is concerned with automated classification of Combinatorial Optimization Problem
instances for instance-specific parameter tuning purpose. We propose the CluPaTra Framework, a
generic approach to CLUster instances based on similar PAtterns according to search TRAjectories
and apply it on parameter tuning. The key idea is to use the search trajectory as a generic feature for
clustering problem instances. The advantage of using search trajectory is that it can be obtained from
any local-search based algorithm with small additional computation time. We explore and compare
two different search trajectory representations, two sequence alignment techniques (to calculate
similarities) as well as two well-known clustering methods. We report experiment results on two
classical problems: Travelling Salesman Problem and Quadratic Assignment Problem and industrial
case study.
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Introduction

Meta-heuristic algorithms play an important role in solving

combinatorial optimization problems (COP) in many

practical applications. Even though a meta-heuristic algori-

thm does not guarantee global optimality, it generally pro-

vides good solutions in reasonable time. Previous studies

reveal that the performance of a meta-heuristic algorithm is

dependent on the instance specific characteristics/features

that determine its intrinsic difficulty. Consequently, there

has been increasing interest in finding the instances features

that have impact on difficulty in terms of performance

(Smith-Miles and Lopes, 2012).

Various problem-specific features have been proposed

for a wide range of COP in the literature. The most straight-

forward features are those that are extracted from the

problem or instance definition itself, such as the number of

variables and constraints, which can be derived to numerous

candidate features using computational feature extraction

processes (Smith-Miles and Lopes, 2012). Other non-

straightforward features may require large-scale experimen-

tal studies and highly dependent on the knowledge of a

domain expert in a particular problem. Not only does it

take tremendous human effort, the features, most of the

time, cannot be reused on another problem.

On a separate front, there have been approaches that

attempted to find problem-independent features using cor-

relation of the objective function and the search space

(fitness landscape analysis) (Reeves, 1999; Hoos and

Stützle, 2004), such as: fitness distance correlation (FCD)

and ruggedness coefficient. Unfortunately, these features

can only be measured after an extensive analysis of the

landscape which proves to be time consuming and to some

extends are impossible for certain instances.

Our work is aimed at finding problem-independent

feature within reasonable computation time. In this paper,

we propose the CluPaTra framework (CLUstering in-

stances with similar PAtterns according to search TRA-

jectories) where we introduce the notion of an instance’s

search trajectory as the problem-independent feature and

exploit data-mining techniques to cluster problem instances

according to their search trajectories. The advantage of our

approach lies in the fact that the search trajectory may be

computed from a local search-based algorithm. Hence our

approach is problem-independent and may conceptually be

applied to any local search-based algorithm.

We implement our proposed framework on instance-

specific parameter tuning scheme where we use the frame-

work to cluster training instances and apply an existing

one-size-fits-all algorithm (such as CALIBRA or Para-

mILS) to derive the best parameter configurations for the

respective clusters. This cluster-based treatment has been

proven effective in solving the parameter tuning problem
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(Malitsky and Sellmann, 2009; Kadioglu et al, 2010). Our

approach is similar to ISAC (Kadioglu et al, 2010), but

instead of using problem-specific features, we propose a

problem-independent feature. It builds on two earlier

works: (1) the tight correlation between fitness landscape

and search trajectories (Halim et al, 2007), and (2) the tight

correlation between the fitness landscape and algorithm

performance (Reeves, 1999).

This paper extends the vanilla CluPaTra framework

recently proposed by the same authors in Lindawati et al

(2011) by considering different variants for its three major

components: search trajectory representation, similarity

calculation, and clustering method. We explore these

different techniques in seeking to improve the accuracy of

clustering. We examine the effects of these different tech-

niques experimentally. Hence, the major contributions (and

thus the flow) of this paper are summarized as follows:

K We propose a new problem-independent feature ex-

tracted from the instance’s search trajectory.

K We present CluPaTra, a novel framework for clustering

problem instances using the problem-independent fea-

ture, and extend the earlier version by introducing and

comparing new different variants for CluPaTra frame-

work components.

K We implement CluPaTra on instance-specific parameter

tuning scheme to find good set of parameter for a parti-

cular algorithm.

Problem statement and definition

For instance-specific parameter tuning, we refer the algori-

thm whose performance is being tuned/configured as the

target algorithm while the one used to tune/configure as the

configurator. We measure the target algorithm performance

based on the quality of their solutions. We define target

algorithm performance H as follows:

Definition 1 (Performance Metric [H] ) Let i be a problem
instance, and AxðiÞ be the objective value of the

corresponding solution for instance i obtained by a target

algorithm A when executed under configuration x. Let

OPT(i) denote the best known values for instance i. HxðiÞ
is formulated as: HxðiÞ ¼ OPTðiÞ�AxðiÞj j

OPTðiÞ

For benchmark instances with known global optimum

value, we use the known global optimum value as its

OPT(i), while for new instances, we use the target

algorithm’s best previously known solution. The function

H is highly non-linear and very expensive to compute as

the parameter and instance space may be extremely large.

Using performance metric H, we define the instance-

specific parameter tuning problem as follows.

Definition 2 (Instance-Specific Parameter Tuning [ISPT])

Given a set of instances I, a parameter configuration space

Y for a target algorithm A and a performance metric H ,

the ISPT problem is to find a parameter configuration

xAY for each iAI such that HxðiÞ is minimized over Y.

CluPaTra

The CluPaTra framework is divided into two parts: training

and testing phase. In training phase first we execute each

training instance and record the solutions visited. Then

transform them to a directed-sequence. We calculate the

similarity of each sequence using pairwise sequence align-

ment and perform clustering. In testing phase, we record a

testing instance’s search trajectory and match it against the

clusters to find the most similar cluster. The steps involved in

the training and testing phases are shown in Figures 1 and 2.

Search trajectory representation

Search trajectory is defined as a path of solutions dis-

covered by the target algorithm A as it searches through

the neighbourhood search space (Hoos and Stützle, 2004).

Search trajectory may vary for each instance, dependent

on the number of movements that the target algorithm

A makes. It can be represented as a directed sequence of

symbols. In the following, we propose the exact sequence

and transition sequence to transform the search trajectory

into directed sequence of symbols.

Exact sequence. In an exact sequence, a symbol on the

sequence represents a solution along the trajectory. It

encodes two solution attributes: deviation and position

type combined into a symbol with the first two digits

being the deviation of the solution quality and the last

digit being the position type. The deviation is computed

as the deviation of solution quality from OPT (as defined

in Definition 1). It represents in a sense a global property

of the solution (since it is compared with the global or

best known value OPT). The position type represents in a

sense a local property of a solution with respect to its

Procedure TrainingPhase

Inputs: A : Target algorithm;
I : Training instances;
xinit : Initial configuration;

Outputs: Cluster: Set of clusters of instances in I;
Method:
1: Let T = set of search trajectories obtained from running A

on I using xinit;
2: Let S = set of sequences derived from T;
3: For each pair of instances (i, j) in I x I
4: Let s1 = S(i);
5: Let s2 = S(j);
6: Scr [s1,s2] = similarity_score (s1,s2);
7:
8: Output Cluster;

Let Cluster = set of clusters obtained by clustering based on Scr;

Figure 1 Training phase.
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search neighbourhood, and is defined based on the

topology of the local search neighbourhood (Hoos and

Stützle, 2004). There are seven position types, determined

by evaluating the solution objective value with all its local

direct neighbours’ objective values—whether it is better,

worse or equal, as shown in Table 1.

Since not all local search algorithm explore all solution’s

direct neighbours (as in ‘best improvement’ strategy), we

explore n additional random direct neighbours (if needed)

to determine its position types. This may not be the ‘actual’

position types, but it is sufficient to represent the local

topology for each solution. The steps to transform the

search trajectory into an exact sequence are as follows:

K When running the target algorithm, for each solution,

we record its quality and its direct neighbour position.

The direct neighbour position is explored based on the

target algorithm’s neighbourhood structure (ie: 2-opt,

3-opt, LK, etc). Direct neighbour position is represented

as three binary digits with 1 (yes) and 0 (no) for direct

neighbour that has same, better and worse objective

value respectively.

K For each solution, we calculate its deviation and

determine its neighbour position based on Table 1. We

then combine those two attributes into a symbol.

K To cater to the fact that some target algorithms may

allow cycles and (random) restarts, we add two

additional symbols: ‘C’ and ‘J’. ‘C’ is used when the

target algorithm returns to a position that has been

discovered previously, while ‘J’ is used when the local

search restarted.

Transition sequence. In contrast to the exact sequence

representation, a transition sequence is made up of sym-

bols that represent a transition (or movement) between

two neighbouring solutions in the search trajectory. Here

we no longer focus on the solution position, but rather we

track the movement along the search trajectory in order

to detect trajectories that move in parallel but may not be

identical (their corresponding positions differ by a con-

stant value). We use transition sequence to capture simil-

arity across different size instances.

In transition sequence, each symbol contains three parts:

(I) the absolute difference in deviation between the first and

second solutions; (II) the position type of the first solution;

and (III) the position type of the second solution. Note that

the transition sequence can be derived from the exact

sequence. Similar to an exact sequence, a transition sequence

may also have two additional symbols: ‘C’ and ‘J’.

Similarity calculation

Having represented trajectories as linear sequences, it is

natural to apply pairwise sequence alignment to obtain the

similarity score between a pair of trajectories. In the follow-

ing, we introduce two techniques for pairwise sequence

alignment to calculate search trajectory similarities.

Basic sequence alignment. This is the basic sequence

alignment in Lindawati et al (2011), which applies a

standard sequence alignment method to maximize the

number of matched symbols between two sequences

sequentially. A pair of matched symbols gives a positive

score (þ 1), while a gap gives a negative score (�1).
Since the length of a search trajectory may vary, we

implement a local alignment strategy that aligns only

portions of the sequences but not the entire length. In our

paper, we adapt the Smith-Waterman algorithm (Han and

Kamber, 2006) that works by comparing all possible

alignments regardless of their lengths, start and end posi-

tions. It then chooses the best alignment as the alignment

that maximizes the similarity score, which is the sum of the

scores for matched symbols and gaps in the alignment. The

final similarity score will be normalized by dividing this

score by 1
2
�ðjSequence1j þ jSequence2jÞ:

Robust sequence alignment. The difference between robust

sequence alignment and basic sequence alignment is the

matching rule. In the latter, two symbols are a match if and

only if the two symbols are exactly identical, while in

robust sequence alignment, we consider partial matching.

Table 1 Position types of solution

Objective valuePosition type label Symbol

Larger Equal Smaller

SLMAX (strict local max) A No No Yes
LMAX (local max) X No Yes Yes
LEDGE L Yes Yes Yes
SLOPE P Yes No Yes
IPLat (interior plateau) I No Yes No
LMIN (local min) M Yes Yes No
SLMIN (strict local min) S Yes No No

‘Yes’=present, ‘No’=absent; referring to the presence of neighbours

with larger, equal and smaller objective values.

Procedure TestingPhase
Inputs: A : Target algorithm;

i : Arbitrary testing instance;
Cluster : Set of clusters (output from training phase);
xinit : Initial configuration;

Outputs: Bc : best match cluster;
Method:
1: Let t = a search trajectories obtained from running A

on i using xinit;
2: Let s = a sequences derived from t;
3: For each cluster c ∈Cluster
4: Let Scr [c] = average similarity from s to all instances in c;
5: Let Bc = c, where Scr [c] ≥ Scr [c' ] for all c' ≠ c in Cluster;
6: Output Bc;

Figure 2 Testing phase.
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This relaxed similarity calculation allows us to capture

search trajectory’s similarity more robustly. Under robust

sequence alignment, a match occurs if one of the following

conditions is satisfied: (I) The two symbols are identical,

and (II) The position type of the symbols is the same and

the absolute difference in the deviation attribute of the two

symbols is less than a certain threshold (for simplicity, we

set this threshold value to 1 in our experiment).

Both sequence alignment techniques are implemented

using standard dynamic programming (Han and Kamber,

2006), with a complexity of O(n2). To cluster instances (see

subsection below), we need to compute similarity scores for

all possible pairs of training instances. Hence, the total time

complexity for sequence alignment is O(m2�n2), wherem is

the number of instances in the training set and n is the

maximum sequence length of the sequences.

Clustering

After having computed the similarity scores, we derive the

distance scores by taking the reciprocal of the correspond-

ing similarity scores, upon which instances are then

clustered. We apply two well-known clustering approaches

(Han and Kamber, 2006): AGNES and k-medoids

clustering.

AGNES. AGNES or AGglomerative NESting is a well-

studied hierarchical clustering approach in data mining

and machine learning (Han and Kamber, 2006). It works

by creating clusters for each individual instance and then

merging two closest clusters (ie, a pair of clusters with the

smallest distance) resulting in fewer number of clusters of

larger sizes until all instances belong to the same cluster or

a termination condition is reached (eg a prescribed

number of clusters is reached).

To determine the minimal number of clusters to be used,

we apply the L method (Salvador and Chan, 2004). The L

method works by using the evaluation graph where the

x-axis is the number of clusters and the y-axis is the value

of the evaluation function at x clusters, which in this paper

is the average distance among all instances in two different

clusters. L method fits the curve in the evaluation graph

into two lines and chooses the intersection point between

these two lines as the optimal number of clusters. This

method only requires AGNES algorithm to be run once,

since all the clusters generated by AGNES can be recorded

in one run. And since we want to produce a compact set of

clusters, we limit the number of clusters to less than 10.

Thus, the x-axis only shows the number of clusters from

1 to 10. The overall complexity of AGNES with L method

is O(n2) with n being the number of instances.

k-medoids. k-medoids is a partition-based clustering

method that repeatedly breaks the data set up into k

groups as an attempt to improve clusters’ evaluation

function (Han and Kamber, 2006), which in this paper is

the average distance among all instances in two different

clusters. It is a variant of k-means method but it selects

real data points as centres (medoids or exemplars) instead

of imaginary points. The complexity of k-medoids is

O(k(n�k)2) with k being the number of clusters and n

being the number of instances. We need to manually

specify the number of clusters (ie, the parameter k).

Instance-specific parameter tuning

Using the cluster from CluPaTra, we apply existing one-

size-fits-all algorithms (such as CALIBRA, ParamILS or

GGA) to derive the best parameter configurations for the

respective clusters. Subsequently, given an arbitrary

instance, we first map its search trajectory to the closest

cluster. The tuned parameter configuration for that cluster

is then returned as the parameter configuration for this

instance.

Experiment design

Here we briefly explain our experimental design for two

classical problems, Travelling Salesmen Problem (TSP) and

Quadratic Assignment Problem (QAP).

Travelling salesmen problem (TSP)

The target algorithm to solve TSP is a well-known Iterated

Local Search (ILS) algorithm as implemented in Halim

et al (2007) with four discrete parameters to be tuned as

described in Table 2(I). For all instances, we set the

maximum number of iteration to 1000. We applied our

target algorithm to 70 benchmark instances extracted from

TSPLib. For best known values, we used the optimum/best

values from TSPLib. Fifty-six random instances were used

as training instances and the remaining 14 instances as

testing instances. The problem size (the number of cities)

varies from 51 to 3038.

Quadratic assignment problem (QAP)

The target algorithm to solve QAP is the hybrid Simulated

Annealing and Tabu Search (SA-TS) algorithm (presented

in Ng et al (2008). It uses the Greedy Randomized

Adaptive Search Procedure (GRASP) to obtain an initial

solution, and then using a combined Simulated Annealing

(SA) and Tabu Search (TS) algorithm to improve the

solution. There are four parameters, discrete and contin-

uous, to be tuned as described in Table 2(II). For

continuous parameter, we discretize it to 20 possible values

by simple enumeration from minimum to maximum value.

For all instances, we set the maximum number of iterations

Lindawati et al—Clustering of search trajectory 1745



to 500. We used 50 benchmark instances from QAPLib,

and randomly selected 40 instances for training and 10 for

testing. The problem size (number of facilities) varied from

20 to 150. For best known values, we used the optimum/

best values from QAPLib.

Experiment setting and setup

We construct four instantiations of CluPaTra resulting

from two search trajectory representations (exact and

transition) and two similarity calculation techniques (basic

and robust) using AGNES as its clustering method. The

terminology used subsequently is given in Table 3. Note

that the ‘Standard’ instantiation is the one proposed in

Lindawati et al (2011).

To record the search trajectory, we run the target

algorithm against all instances using a random configura-

tion and record all the moves of the target algorithm,

unless stated otherwise. The length may vary. We did not

set any parameter for CluPaTra since it does not have

parameter.

We compared our experiment results with the ISAC

method, a similar clustering-approach that uses problem-

specific features, that we implemented based on Kadioglu

et al (2010). Since ISAC requires problem-specific features,

we selected the standard deviation of the city distances,

the variance of the normalized nearest neighbour distances

and the coefficient of variation of the normalized nearest

neighbour distances for TSP (Smith-Miles and Lopes,

2012) and flow dominance and sparsity of flow matrix for

QAP (Stützle and Fernandes, 2004).

Tuning setup

We chose to use Hutter et al (2009) as the one-size-fits-all

configurator. For each cluster (or training set), we randomly

sorted the instances, ran ParamILS 5 times and took the

average performance. To ensure unbiased evaluation, we

then run 5-fold cross-validation (Han and Kamber, 2006)

over those instances and measured the average performance

over all folds. To do 5-fold cross validation, we randomly

divided the instances into five random groups and used

four groups as training instances and one group as testing

instances. We repeat the process five times and take the

average. We did a non-parametric Wilcoxon signed-rank

test to compare CluPaTra’s overall performance with that

of ParamILS. We considered p-value below 0.05 to be

statistically significant (confidence level 5%).

All experiments were performed on a 1.7GHz Pentium-4

machine running Windows XP. We measured runtime

as the CPU time needed by this machine. As an input to

the configurator, we set a cut-off time of 10 s per run for

the TSP target algorithm and 100 s for the QAP target

algorithm. For each CluPaTra cluster, we allowed each

configuration process to execute the target algorithm for a

maximum of 2 CPU hours and to call the target algorithm

for a maximum of 25 � n times, where n is the number of

instances in the cluster. To ensure fair comparison, we set

the time budget for ISAC and ParamILS to be equal to the

average total time needed to run a full process of CluPaTra

instantiations. This time budget is the stopping condition

for ISAC and ParamILS.

Verification of similarity preservation

Prior to presenting experimental results, we provide a

scientific argument for our approach. In the following, we

Table 3 CluPaTra instantiations for performance comparison

Instantiation Search trajectory
representation

Similarity
calculation

Standard Exact sequence Basic Seq. Align.
Trans Transition sequence Basic Seq. Align.
Robust Exact sequence Robust Seq. Align.
Trans-
Robust

Transition sequence Robust Seq. Align.

Table 2 Parameters for target algorithm

Parameter Description Range

I. ILS on TSP
Pert number of perturbations being done [1,10]
n_improve max non-improving moves [1,10]
choice perturbation strategy where: 3=3-opt

change and 4=double-bridge move
[3,4]

acp acceptance criteria strategy where:
0=accept only improving moves and
1=accept all moves

[0,1]

II. SA-TS on QAP
Temp Initial temperature of SA [100,5000]
Alpha Cooling factor [0.1,0.9]
Length Length of tabu list [1,10]
Pct Percentage of non-improving iterations [0.01,0.1]

III. Industrial case study
MaxS max successes number [100,

1000]
maxTries max tries [100,

1000]
maxComp max solutions generated [1000,

50 000]
maxReject max consecutive rejections [100,

1000]
maxChG max change in a variable value [100,

1000]
maxTriesG max tries to generate a feasible

solution
[100,
1000]

coolFactor factor to reduce the temp [0.5, 1]
oStrictness the strictness of the oracle function [0, 100]
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will justify our claim that the similarity of search

trajectories between instances is preserved across config-

urations, by providing a series of experimental observa-

tions.

First, we provide a visual intuition for similarity preserva-

tion across different parameter configurations. Figure 3

shows the trajectories obtained by 10 consecutive moves of

an Iterated Local Search (ILS) algorithm for three TSP

instances, namely a280, d198 and berlin52 when the algori-

thm is run on two random parameter configurations,

namely configuration I and configuration II. The xy plane

represents the search space while z axis represents the

objective value. To layout the moves into a 2-dimensional

xy plane, we calculate the distance between two solutions

(eg, number of different cities in TSP) and apply ‘the spring

model’ (Halim et al, 2007). ‘The spring model’ provides a

heuristic for good layout where the Euclidean distance

between two solutions in the xy plane is roughly pro-

portional to their Hamming distance. In this example,

we observe that for both configurations, a280 and d198

exhibit very similar topology ((a) and (b), (d) and (e)), while

berlin52 has a different topology compared with the

similarity of a280 and d198.

Next, we provide a statistical verification of the notion

similarity preservation on the trajectories produced by the

TSP and QAP target algorithms used in our experiments.

For this purpose, we verify on random pairs of instances

across different parameter configurations. We do the

following: first, we randomly select two source instances

(namely, benchmark instances a280, berlin52 for TSP and

chr20a, sko100b for QAP); we next select randomly 10

other destination TSP (resp. QAP) instances. We randomly

generate five parameter configurations for each of the

target algorithms, and generate the trajectory for each

instance. To simplify the experiment, we take the first 300

solutions obtained from the target algorithm as the search

trajectory samples and calculate its similarity score.

For each source-destination pair and each configuration,

we compute their similarity score (based on the Standard

instantiation). The results are presented in Figure 4. Observe

that most pairs of instances maintain their similarity across

different parameter configurations as shown by the small

scatter of similarity values in each column (with the excep-

tion of several instances in the a280 case). The deviation,

mean and coefficient of variance (CV) of similarity values

for the different parameter configurations are given in Table

4. For most pairs, the CV value is low (especially for

QAP pairs), which means that the similarity scores across

different parameter configurations do not differ substan-

tially from one another.

Based on the above observations, we argue that even

though a given instance may have different search trajec-

tories under different configurations, the similarity between

two instances is preserved across configurations. This

similarity preservation property allows us to perform

clustering of instances using an arbitrary parameter

configuration.

Empirical result

In this section, we report our cluster results and tuning

result.

Clustering analyses

We compare the clusters generated by CluPaTra and ISAC

and take the ground-truth classification (if exists) as the

benchmark. Average number of clusters from 5-folds for

CluPaTra (standard, trans, robust, trans-robust) and ISAC

for TSP are 3, 6, 6, 6, and 5.8 respectively; while for QAP

are 4.2, 6, 6, 6, and 5.8 respectively. The example of cluster

generated by the Trans CluPaTra instantiation and ISAC

is reported in Figure 5 for TSP and Figure 6 for QAP.

For TSP, we observe that Trans CluPaTra method is

able to capture the similarity of instances with differing

sizes which may have different search trajectory symbols

but have similar transitions along the search trajectories.

Because of the non-existence of the ground-truth classifica-

tion for TSP benchmark instances, we cannot compute the

cluster qualities directly, instead it is inferred from the

performance of the target algorithm, which is described in

later section.

For QAP, we use the existing well-studied classification

based on the distance and flow metrics (Taillard, 1995) as

the ground-truth classification. Notice that the clustering by

Trans CluPaTra is almost the same as the ground-truth

classification. Furthermore, Trans CluPaTra constructs

Parameter Configuration I

a280 d198 berlin52

Parameter Configuration II

d198 berlin52a280

Figure 3 Search trajectories of 3 TSP instances a280, d198 and
berlin52 using two random parameter configuration.
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better clusters compared with the Standard CluPaTra

and ISAC with respect to cluster quality metric that

compare the clusters with ground-truth cluster as shown in

Table 5(I). We observe that the cluster quality score for

Trans CluPaTra is the highest compared with other

CluPaTra instantiation and ISAC.

Time performance

The most time-consuming procedure in the training phase

is similarity calculation. Different similarity calculation

techniques require different computational budget. The

Robust sequence alignment technique takes almost four

times longer than the basic sequence alignment. This

happens because it requires more computation time to find

partial-match symbols. The average total time (in hour)

needed to run the overall process in training phase for each

fold is shown in Table 5(II).

Tuning performance comparison

We evaluate the effectiveness of four CluPaTra instantia-

tions against the vanilla one-size-fits-all configurator

(ParamILS) and ISAC. We measure the performance by

using the performance metric described in Definition 1.
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Figure 4 Search trajectory similarity score between TSP (a280, berlin51) and QAP (chr20a, sko100b) instance and 10 other random
instances using 5 different random parameter configurations.

Table 4 Similarity score of instance pairs

Instances s m cv s m cv

I. TSP a280 berlin52

ch150 32.70 82.20 0.40 12.42 52.20 0.24
d1655 57.47 181.20 0.32 6.02 25.60 0.00
d657 35.31 144.60 0.24 15.54 36.20 0.43
fl3795 14.81 262.00 0.06 2.24 16.40 0.14
kroa150 4.12 25.80 0.16 6.73 78.80 0.09
krob100 3.58 11.00 0.33 24.33 84.20 0.29
lin105 18.18 77.20 0.24 9.35 62.40 0.15
pr152 7.78 18.80 0.41 22.38 77.40 0.29
rd100 25.32 50.80 0.50 17.85 60.40 0.30
ts225 39.55 201.60 0.20 3.88 22.40 0.17

II. QAP chr20a sko100b

chr22a 6.49 104.80 0.06 0.00 16.00 0.00
chr22b 4.13 113.40 0.04 1.20 10.60 0.11
lipa50b 6.83 118.40 0.06 0.00 24.00 0.00
nug28 0.75 12.20 0.06 0.00 18.00 0.00
nug30 0.75 10.80 0.07 0.00 16.00 0.00
sko100e 1.60 6.80 0.24 2.87 129.40 0.02
sko90 1.60 8.80 0.18 5.04 121.20 0.04
ste36a 4.71 103.20 0.05 0.00 26.00 0.00
tai30a 4.71 12.20 0.39 0.00 13.00 0.00
wil100 0.40 5.20 0.08 0.00 41.00 0.00

s=standard deviation; m=mean; cv=coefficient of variation.

Boldface indicates best similarity score mean.
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Table 5(III) shows the results of the average com-

parison. Comparing the four CluPaTra instantiations,

we observe that the performance of Trans, Robust and

Trans-Robust is significantly superior to the Standard

instantiation.

To verify the CluPaTra effectiveness in providing best

configuration for each testing instance, we run the target

algorithm for all QAP testing instance in Figure 6 using

parameter configurations from each cluster and show the

result in Table 6. From the table we observe that each

testing instance, except for tai35a, has the best performance

using parameter configuration from the most similar

cluster.

Comparison on clustering method

Next, we analyse the effects of different clustering methods

by applying AGNES and k-medoids clustering methods on

the Trans instantiation. We set k to be equal to the

AGNES cluster number. Table 5(IV) shows that AGNES

performs slightly better than k-medoids even though it is

not statistically significant.
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Figure 5 TSP cluster result comparison. (a) Trans CluPaTra; and (b) ISAC.
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Figure 6 QAP cluster result comparison. (a) Trans CluPaTra; and (b) ISAC.
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Industrial case study

In this section, we report results on an industrial case

study. We apply CluPaTra to tune an algorithm for an

aircraft spares inventory optimization problem of a large

commercial aircraft maker based in Europe. The objective

of this algorithm is to determine the optimal inventory

allocation strategy that can fulfil specific target services

levels. The target algorithm is a Simulated Annealing (SA)

algorithm (Gunawan et al, 2011), which has eight

parameters that used to control SA behaviour as described

in Table 2(III).

We apply CluPaTra to 50 sample instances, with 25

randomly picked instances as training instances and the

remaining 25 as testing instances. We set cut-off times of

500 s per run and allowed each configuration process to

execute the target algorithm for a maximum of 48 CPU

hours and to call the target algorithm for a maximum of

25 � n times, where n is the number of instances in the

cluster. In Table 7, we present the average of percentage

deviation value (Definition 1). We compare the result of

the three approaches with the best known values used by

our industry partner. The result shows that the CluPaTra

results are superior to the default and ParamILS results.

Discussion and future direction

To represent the search trajectory, we need the best known/

optimum solution value (OPT) for each instance. We use

either (a) the known global optimal value, or (b) when the

global optimal value is unknown, the best known value.

From the experiment result, we observe that CluPaTra

method using either known global optimal value or best

known value is able to generate good clusters and hence

improve the overall performance. We will further explore

this issue in future work.

In dealing with complex optimization problem for an

industrial case study, we show that CluPaTra can provide

better parameter configurations than the default manually

tuned parameters. It illustrates the practical impact of our

proposed approach on tuning local search algorithms.

Table 5 Empirical result

TSP QAPTechnique

Training Testing Training Testing

I. Clustering analyses
Standard – – 0.68 0.70
Trans – – 0.85 0.90

Robust – – 0.78 0.70
Trans-Robust – – 0.7 0.80
ISAC – – 0.80 0.80
II. Total computation time
Standard 5.58 0.04 8.20 0.01
Trans 5.46 0.05 8.23 0.01

Robust 6.02 0.07 9.01 0.03
Trans-Robust 6.05 0.07 9.05 0.03
III. Performance comparisonþ

ParamILS 2.671 2.022 2.212 2.273
(0.29) (0.22) (0.15) (0.25)

ground-truth – – 1.928* 2.094*
(0.15) (0.21)

Standard 2.222* 1.929* 1.991* 2.195*
(0.24) (0.26) (0.19) (0.20)

Trans 2.011* 1.715* 1.878* 2.081*
(0.23) (0.27) (0.17) (0.24)

Robust 2.102* 1.812* 1.889* 2.101*
(0.21) (0.27) (0.18) (0.28)

Trans-Robust 2.056* 1.927* 1.901* 2.185*
(0.27) (0.23) (0.16) (0.21)

ISAC 2.020 1.884 1.982 2.153
(0.25) (0.21) (0.19) (0.21)

IV. Different clustering
AGNES 2.012 2.053 1.718 1.771
k-medoids 1.879 1.898 2.083 2.161

þ=mean (coefficient of variation).

*=statistically significant against ParamILS.

Boldface indicates best cluster quality, computation time and perfor-

mance using performance metric in Definition 1.

Table 6 Testing instances performance using different cluster’s
parameter configuration

Parameter configuration for each clusterInstance Cluster

C#1 C#2 C#3 C#4 C#5 C#6

nug25 1 0.48 0.64 0.69 0.58 0.58 0.58
tai12a 1 0 0 0 0 0 2.80
tai15a 1 0.19 0.76 0.52 1.22 1.72 2.66
tai30a 1 1.86 2.81 2.20 2.57 3.03 2.65
tai35a 1 1.49 1.38 3.37 3.75 3.047 3.95
kra30b 2 0.07 0.07 0.97 0.07 1.88 1.18
ste36c 2 1.91 1.71 5.08 8.95 7.84 7.82
sko100b 3 0.69 1.22 0.53 1.16 1.31 1.29
sko100e 3 1.18 1.18 1.10 1.30 1.34 1.21
wil100 3 0.65 0.69 0.63 0.81 0.96 0.93

Boldface indicates best performance using performance metric in

Definition 1.

Parameter configuration for:

C#1: Temp=4000, Alpha=0.9, Length=7, Pct=0.08.

C#2: Temp=2000, Alpha=0.5, Length=7, Pct=0.09.

C#3: Temp=3000, Alpha=0.3, Length=10, Pct=0.1.

C#4: Temp=4000, Alpha=0.3, Length=10, Pct=0.07.

C#5: Temp=100, Alpha=0.3, Length=10, Pct=0.03.

C#6: Temp=5000, Alpha=0.1, Length=1, Pct=0.08.

Table 7 Industrial case study result

Default ParamILS CluPaTra

Training 2.574 2.676 0.226
þ*

Testing 2.391 1.521þ 0.154
þ*

Boldface indicates best performance using performance metric in

Definition 1.

þ=statistically significant against Default Configuration.

*=statistically significant against ParamILS Configuration.
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As future direction, we would like to extend CluPaTra for

other purposes such as algorithm selection or hyperheur-

istic.

Related work

A wide variety of generic strategies for automated parameter

configuration have been explored in the literature. These

approaches focus on finding the best parameter configura-

tion for the entire set (or distribution) of problem instances

by using the average quality or other statistical measures. We

term these approaches as one-size-fits-all automated tuning.

There are broadly two schemes: model-based and model-free

approaches. Recent approaches in model-free approaches

are F-Race (Birattari et al, 2002), ParamILS (Hutter et al,

2009), and GGA (Ansótegui et al, 2009); while in model-

based ones are CALIBRA (Adenso-Dı́az and Laguna, 2006),

and SMAC (Hutter et al, 2011). A good review of three

recent automated parameter tuning methods can be found in

Hoos (2012).

On a separate front, there have been approaches that

attempted to select the best parameter configuration on a

per-instance basis. Approaches like McAllester et al (1997),

Patterson and Kautz (2001), Hutter et al (2006) use regres-

sion model to construct a model based on the instance’s

features that will determine the configurator’s strategy,

while others like Kadioglu et al (2010) use clustering to

divide the instances and find a good parameter configura-

tion on the cluster created.

Conclusion

Given the high complexity of the tuning problem that

demands instance-based accuracy, we have proposed a

solution framework that is a relatively intuitive, computa-

tionally efficient and generic vis-à-vis existing approaches

(which are mostly problem-specific). As ongoing work, we

are exploring ways to address the two limitations of our

proposed approach. First, in terms of scope, our approach

can only be applied to target algorithms which are local

search-based, since our approach uses search trajectory as

the feature. Second, there is an inherent computational

bottleneck introduced by the method used for sequence

alignment whose worst-case time complexity is O(m2 � n2)

(where m is the number of instances in the training set and

n is the maximum length of the sequences).
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