
Zhang Y, Lo D, Xia X et al. Multi-factor duplicate question detection in Stack Overflow. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 30(5): 981–997 Sept. 2015. DOI 10.1007/s11390-015-1576-4

Multi-Factor Duplicate Question Detection in Stack Overflow

Yun Zhang 1 (张 芸), David Lo 2, Member, ACM, IEEE, Xin Xia 1,∗ (夏 鑫), Member, CCF, ACM, IEEE
and Jian-Ling Sun 1 (孙建伶), Member, CCF, ACM

1College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
2School of Information Systems, Singapore Management University, Singapore, Singapore

E-mail: yunzhang28@zju.edu.cn; davidlo@smu.edu.sg; {xxia, sunjl}@zju.edu.cn

Received July 15, 2014; revised July 17, 2015.

Abstract Stack Overflow is a popular on-line question and answer site for software developers to share their experience

and expertise. Among the numerous questions posted in Stack Overflow, two or more of them may express the same

point and thus are duplicates of one another. Duplicate questions make Stack Overflow site maintenance harder, waste

resources that could have been used to answer other questions, and cause developers to unnecessarily wait for answers

that are already available. To reduce the problem of duplicate questions, Stack Overflow allows questions to be manually

marked as duplicates of others. Since there are thousands of questions submitted to Stack Overflow every day, manually

identifying duplicate questions is a difficult work. Thus, there is a need for an automated approach that can help in detecting

these duplicate questions. To address the above-mentioned need, in this paper, we propose an automated approach named

DupPredictor that takes a new question as input and detects potential duplicates of this question by considering multiple

factors. DupPredictor extracts the title and description of a question and also tags that are attached to the question.

These pieces of information (title, description, and a few tags) are mandatory information that a user needs to input when

posting a question. DupPredictor then computes the latent topics of each question by using a topic model. Next, for each

pair of questions, it computes four similarity scores by comparing their titles, descriptions, latent topics, and tags. These

four similarity scores are finally combined together to result in a new similarity score that comprehensively considers the

multiple factors. To examine the benefit of DupPredictor, we perform an experiment on a Stack Overflow dataset which

contains a total of more than two million questions. The result shows that DupPredictor can achieve a recall-rate@20

score of 63.8%. We compare our approach with the standard search engine of Stack Overflow, and DupPredictor improves

its recall-rate@10 score by 40.63%. We also compare our approach with approaches that only use title, description, topic,

and tag similarity and Runeson et al.’s approach that has been used to detect duplicate bug reports, and DupPredictor

improves their recall-rate@10 scores by 27.2%, 97.4%, 746.0%, 231.1%, and 16.4% respectively.

Keywords software information site, duplicate question, Stack Overflow, DupPredictor

1 Introduction

Nowadays, software engineers use various software

information sites to search, communicate, collaborate,

and share information with one another[1]. Software

information sites play an important role in the whole

life cycle of software engineering[2-3]. Stack Overflow

is one of the most popular software information sites

where people ask and answer technical questions about

software development and maintenance. In November

2014, Stack Overflow contained more than eight million

questions which cover a wide range of topics such as pro-

gramming languages, software tool usage, and project

management.

In Stack Overflow, some questions may describe the

same problem, and we refer to them as duplicate ques-

Regular Paper

Special Section on Software Systems

This work was partially supported by the China Knowledge Centre　for Engineering Sciences and Technology under Grant
No. CKCEST-2014-1-5, the National Key Technology Research and Development Program of the Ministry of Science and Technology
of China under Grant Nos. 2015BAH17F01 and 2013BAH01B01, and the Fundamental Research Funds for the Central Universities of
China.

∗Corresponding Author

©2015 Springer Science+Business Media, LLC & Science Press, China

982 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

tions. For example, Fig.1 presents two duplicate ques-

tions which describe the same problem about finding a

C++ OpenSource project for novice developers. Dupli-

cate questions are raised by different users at different

time points. In Stack Overflow, users could label a

question as a duplicate and provide the ID of the ques-

tion they believe to be duplicated 1○. In the group of

duplicate questions, one of them is marked as “master”

(i.e., the one marked as “[closed]” in Fig.1), while the

others are marked as “duplicate”. Unidentified dupli-

cate questions increase the difficulty in the maintenance

of Stack Overflow site, and waste valuable resources

that are spent on the redundant effort of answering each

of the questions separately. Furthermore, by not iden-

tifying duplicate questions as such, developers who ask

duplicate questions potentially need to wait for a long

time before their questions get answered, while ready

answers are already available.

(a)

(b)

Fig.1. Two duplicate questions in Stack Overflow. (a) Question
3106628. (b) Question 634951.

The current state-of-the-practice is to identify these

duplicate questions manually. Unfortunately, consider-

ing that there are thousands of questions submitted to

Stack Overflow every day, manually identifying all du-

plicate questions would be a hard and tedious work. As

a result, many duplicate questions are likely not identi-

fied as such and some questions might also be wrongly

marked as duplicates 2○. Thus, there is a need for an

automated tool which can be used to assist in the de-

tection of duplicate questions. This tool can help save

developers’ and Stack Overflow site maintainers’ time

and improve the organization of the Stack Overflow site.

To address the above mentioned need, in this paper,

we propose an automated approach named DupPre-

dictor to detect duplicate questions by considering

multiple factors. DupPredictor measures the simi-

larity between two questions by using some observable

factors, including titles, descriptions, and tags which

can be directly extracted from the questions, and some

latent factors corresponding to the topic distributions

which are learned from the natural language descrip-

tions of the questions. A topic modelling algorithm,

namely Latent Dirichlet Allocation (LDA)[4], is used to

infer the inherent topic distribution of a question. Dup-

Predictor automatically combines these four factors

by assigning different weights to the factors 3○. The

following usage scenarios illustrate the benefits of our

proposed tool.

Scenario 1 — Without Tool. Yun is a Java devel-

oper in a software company. One day, she encounters a

problem with the Java compiler, so she posts a question

in Stack Overflow. However, due to the large number of

questions which are posted to Stack Overflow every day,

other users do not pay attention to her question, and no

one replies her question. About a month later, another

enthusiastic developer David finds that the question is

almost the same as one of the answered (aka., closed)

questions he asked before. Thus David marks the ques-

tion as a duplicate of a previous question. Finally, Yun

gets the answer to her question, but it is one month

later.

Scenario 2 — With Tool. Yun is a Java developer in

a software company. One day, she encounters a prob-

lem with the Java compiler, so she posts a question

in Stack Overflow. By using our automated tool which

lists top 20 closed questions which may be duplicates of

her question, Yun finds that one of the closed questions

is similar to hers, so she checks the answer and finds

the solution. The whole process completes in several

minutes.

We evaluate our approach on the official dump of

Stack Overflow data which was updated in August

2012[5]. In total, we extract more than two million

questions, and among these questions, 1 528 questions

are labeled as duplicates. We measure the performance

of DupPredictor in terms of recall-rate@k. The

experimental results show that our DupPredictor

can achieve recall-rate@5, recall-rate@10 and recall-

rate@20 values of 42.3%, 53.3% and 63.8%, respectively.

1○http://meta.stackexchange.com/questions/10841/how-should-duplicate-questions-be-handled, July 2015.
2○For more details, please refer to Subsection 5.4.
3○For more details, please refer to Section 3.

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 983

We compare DupPredictor with the standard search

engine of Stack Overflow, four approaches which only

consider one of the four factors (i.e., title, description,

topic, and tags), and Runeson et al.’s approach[6] that

was used to detect duplicate bug reports. The experi-

mental results show that DupPredictor improves the

standard search engine of Stack Overflow in terms of

recall-rate@5 and recall-rate@10 by 13.71% and 40.63%

respectively. And DupPredictor improves the recall-

rate@5 of the four stand-alone approaches and Rune-

son et al.’s approach by 27.4%, 85.5%, 800.0%, 264.7%,

and 10.2% respectively, the recall-rate@10 of these ap-

proaches by 27.2%, 97.4%, 746.0%, 231.1%, and 16.4%

respectively, and the recall-rate@20 of these approaches

by 26.0%, 93.9%, 717.9%, 225.5%, and 20.8% respec-

tively.

The main contributions of this paper are as follows.

1) We propose the problem of duplicate question de-

tection in Stack Overflow. We propose a novel approach

named DupPredictor which considers and integrates

multiple factors to detect duplicate questions.

2) We evaluate DupPredictor on more than two

million questions in Stack Overflow. The experimental

results show that DupPredictor can achieve a recall-

rate@20 of 63.8% and substantially improves four base-

line approaches.

The remainder of this paper is organized as follows.

We elaborate the motivation of our work and introduce

Latent Dirichlet Allocation (LDA) in Section 2. We

describe the overall framework and the details of Dup-

Predictor in Section 3. We present our experiments

and their results in Section 4. Section 5 discuss some

issues about the performance, efficiency, and threats to

validity of DupPredictor. We review related work in

Section 6. We conclude this paper and mention future

work in Section 7.

2 Preliminaries

In this section, we first elaborate the motivation of

our work. We then briefly introduce Latent Dirichlet

Allocation (LDA), which is used to extract topic distri-

butions from natural language descriptions of questions.

2.1 Motivation

Fig.1 presents two duplicate questions in Stack

Overflow: question 3106628 4○ was labeled by a user

to be a duplicate of question 634951 5○. A typical ques-

tion in Stack Overflow contains a number of fields, such

as submitter, title, description, tags, and comments.

In this paper, we mainly consider three factors of the

fields: title, description, and tags. A developer needs

to provide all three pieces of information when he/she

submits a question to Stack Overflow. The title is a

summary of the question, the description is a detailed

explanation of the question, and tags are sets of words

or short phrases that capture important aspects of the

question.

From Fig.1, we notice that the titles of the two ques-

tions are similar. They contain many common words,

such as “C++”, “opensource”, and “project”. Besides,

both of the two questions are tagged with “C++” and

“open-source”. Moreover, although the words in the

descriptions of the two questions are different, both of

them describe a request for recommending a C++ open

source project for novice developers. Thus, the latent

meaning of these two questions is the same.

Observations and Implications. From the two du-

plicate questions, we have the following observations.

1) The title and tags are good factors to identify

whether two questions are duplicates of each other. The

two questions in Fig.1 share a number of common words

in their titles and they also share a set of common tags.

2) The words used in the descriptions of two ques-

tions that are duplicates of each other may be different.

However, the descriptions must share the same latent

meaning. For example, the two questions in Fig.1 both

describe the same request for recommending a C++

open source project for novice developers.

The second observation tells us that duplicate ques-

tions must share some latent commonalities, and these

commonalities are also good factors to identify dupli-

cate questions. A topic model such as Latent Dirich-

let Allocation (LDA) can be used to infer these latent

commonalities. LDA can be used to convert the natu-

ral language text contents in questions to their topic

distributions. These topic distributions can then be

compared to identify the latent commonalities among

questions. In Subsection 2.2, we introduce LDA.

2.2 Latent Dirichlet Allocation

A topic model views a document to be a probabi-

lity distribution of topics, while a topic is a probability

distribution of words. In our setting, a document is

4○http://stackoverflow.com/questions/3106628, July 2015.
5○http://stackoverflow.com/questions/634951, July 2015.

984 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

the description of a question, and a topic is a higher-

level concept corresponding to a distribution of words.

For example, we can have a topic “Java Programming”

which is a distribution of words such as “variable”, “in-

heritance”, “class”, and “method”.

Latent Dirichlet Allocation (LDA) is a well-known

topic modeling technique proposed by Blei et al.[4] LDA

is a generative probabilistic model of a textual corpus

(i.e., a set of textual documents), which takes a train-

ing textual corpus as input, and a number of parameters

including the number of topics (K) considered. In the

training phase, for each document s, LDA will compute

its topic distribution θs, which is a vector with K ele-

ments, and each element corresponds to a topic. The

value of each element in θs is a real number from 0 to 1,

which represents the proportion of the words in s that

belong to the corresponding topic in s. After training,

LDA can be used to predict the topic distribution θm
of a new document m.

3 Our Proposed Approach

In this section, we first present the overall frame-

work of our DupPredictor approach. Then we elabo-

rate the details of the four components of DupPredic-

tor: title similarity component, description similarity

component, topic similarity component, and tag simi-

larity component. Each of these components computes

similarities of questions by considering one of the four

factors. Finally, we describe how these four components

are combined in DupPredictor.

3.1 Overall Framework

Fig.2 presents the overall framework of DupPre-

dictor. The framework contains two phases: model

building phase and prediction phase. In the model

building phase, our goal is to train a model from his-

torical duplicate questions which have been detected.

In the prediction phase, this model would be used to

detect new duplicate questions.

Our framework first collects historical questions

from Stack Overflow. Then we preprocess the ques-

tions (step 1). In the preprocessing step, we first ex-

tract the title, the description, and tags from each

question. Next, we tokenize the text that appears

in the title and description of each question, remove

common English stop words, and perform stemming.

Stop words are commonly occurring words, e.g., “a”,

“the”, “and”, “he”. Since they appear very often, they

are of little help in differentiating different documents.

Stemming is the process to reduce a word to its root

form. For example, by using stemming, the words

“marks”, “marked”, and “marking” are all reduced to

“mark”. We make use of the popular Porter stemming

algorithm[7] which has been used in many other studies,

e.g., [8-9].

After we have preprocessed the questions, for each

question which is a duplicate of another question, we

compare the question with all other questions that are

submitted earlier. For each pair of questions, we com-

pute four scores that capture the similarity of the ques-

tions. These scores are computed by the title similar-

ity component, description similarity component, topic

similarity component, and tag similarity component

shown in Fig.2 (step 2) 6○. Next, we input these four

sets of similarity scores into the composer component,

which would then automatically learn a good weight for

each of the four components (step 3) 7○.

After the composer component has learned the

weights, in the prediction phase, it is used to return

Model Building Phase Prediction Phase

New Questions

Title
Similarity

Scores

Description
Similarity

Scores

Topic
Similarity

Scores

Tag
Similarity

Scores

Historical
Duplicate
Questions

Preprocessing

Title Similarity
Component

Description
Similarity

Component

Topic Similarity
Component

Tag Similarity
Component

Composer

Top-K Questions
6

5

2

1
3

4

Fig.2. Overall framework of DupPredictor.

6○For more details, please refer to Subsections 3.2, 3.3, 3.4, and 3.5, respectively.
7○For more details, please refer to Subsection 3.6.

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 985

a list of K historical questions that are potentially du-

plicates of a new question. To get this top-K list, we

compare every new question with all past questions.

For each pair of questions, we compute their title simi-

larity score, description similarity score, topic similarity

score, and tag similarity score using the title, descrip-

tion, topic, and tag similarity component respectively

(step 4). Next, we input these scores into the composer

component which would then compute a final aggregate

similarity score which is used to rank the existing ques-

tions (step 5). The top-K most similar questions are

then outputted (step 6).

3.2 Title Similarity Component

This component computes the similarity between

the titles of a pair of questions based on common words

that they share. After preprocessing, the titles of two

questions are transformed into two bags (i.e., multi-

sets) of words. For two questions m and n, we rep-

resent the two bags of words that are extracted from

their titles as TitleBagm and TitleBagn respectively.

Next, we merge TitleBagm and TitleBagn and elimi-

nate duplicate words to obtain the union set TitleBagu,

which contains v words. Following vector space mod-

eling (VSM)[10], we represent the two titles as two

vectors: TitleVecm = (wtm,1, wtm,2, . . . , wtm,v) and

TitleVecn = (wtn,1, wtn,2, . . . , wtn,v). The weight

wtq,i in these two vectors denotes the relative term fre-

quency of the i-th word in question q’s title, which is

computed as follows:

wtq,i =
nq,i∑
v nq,v

. (1)

In (1), nq,i denotes the number of times the i-th

word of TitleBagu appears in the title of question q,∑
v nq,v denotes the total number of occurrences of all

words in the title of question q, where v is the index

of a word in TitleBagu. We measure the similarity

between two questions’ titles by computing the cosine

similarity[10] of their vector representations TitleVecm

and TitleVecn as follows:

TitleSim(TitleVecm ,TitleVecn)

=
TitleVecm ·TitleVecn

| TitleVecm || TitleVecn |
. (2)

The numerator of (2) which is the dot product of the

two vectors TitleVecm = (wtm,1, wtm,2, . . . , wtm,v)

and TitleVecn = (wtn,1, wtn,2, . . . , wtn,v) is com-

puted as follows:

TitleVecm ·TitleVecn

= wtm,1 × wtn,1 + wtm,2 × wtn,2 + . . .+

wtm,v × wtn,v.

The terms |TitleVecm | and | TitleVecn | in the de-

nominator of (2) denote the sizes of the two vectors re-

spectively. The size of a vector TitleVecm is computed

as follows:

|TitleVecm | =
√
wt2m,1 + wt2m,2 + . . .+ wt2m,v.

For a new question nq and an old question oq, we

denote their title similarity score computed using (2) as

TitleSimnq(oq).

3.3 Description Similarity Component

This component calculates the similarity between

the descriptions of a pair of questions based on com-

mon words that they share. After preprocessing, we

transform the descriptions to bags of words. We

denote two bags of words extracted from the de-

scriptions of questions m and n as DesBagm and

DesBagn respectively. Next, we merge DesBagm
and DesBagn and eliminate duplicate words to ob-

tain the union set DesBagu, which contains a to-

tal of v words. Following vector space modeling[10],

the two descriptions can be represented as two vec-

tors: DesVecm = (wdm,1, wdm,2, . . . , wdm,v) and

DesVecn = (wdn,1, wdn,2, . . . , wdn,v). The weight

wdq,i in these two vectors denotes the term frequency

of the i-th word in question q’s description, which is

computed as follows:

wdq,i =
nq,i∑
v nq,v

. (3)

In (3), nq,i denotes the number of times the i-th

word of DesBagu appears in the description of question

q,
∑

v nq,v denotes the total number of occurrences of

all words in the description of question q, where v is the

index of a word in DesBagu. We measure the similar-

ity between two questions’ descriptions by computing

the cosine similarity[10] of their representative vectors

DesVecm and DesVecn , similar to what is done to

compute title similarity which is described in Subsec-

tion 3.2.

For a new question nq and an old question oq, we de-

note their description similarity score asDesSimnq(oq).

986 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

3.4 Topic Similarity Component

This component computes the similarity between

the topic distributions of the textual contents (i.e., ti-

tle + description) of a pair of questions. The topic

distribution of a question captures the latent meaning

of the question. We use a topic model, namely La-

tent Dirichlet Allocation (LDA) which is described in

Subsection 2.2, to compute the topic distribution of a

question. LDA represents a document as a probabi-

lity distribution of topics, where a topic is a probability

distribution of words. We input the stemmed non-stop

word contents of the titles and descriptions of questions

into LDA to extract the topic distribution of each ques-

tion. Each topic distribution of a question is a vector

with K elements, and each element corresponds to a

topic. The value of each element is the proportion of

words in the question that belong to the corresponding

topic.

Consider a set of topic distributions T corre-

sponding to the set of all questions. Let T d =

(pd,1, pd,2, . . . , pd,t) refer to the topic distribution corre-

sponding to question d, where pd,j denotes the proba-

bility of question d to belong to topic j. Here t is the

topic number of the LDAmodel, which is determined by

measuring the perplexity of the generated LDA model

with t topics. Perplexity is a measure of the ability of a

model to generalize to unseen data[11-12]. We test a set

of topic numbers and choose the one with the best per-

plexity. We find that t = 100 gives the best perplexity.

We measure the topic similarity of two questions by

computing the cosine similarity[10] of their topic distri-

butions. The cosine similarity of two topic distributions

is computed in the same way as the cosine similarity of

two vectors described in Subsection 3.2.

For a new question nq and an old question oq, we

denote their topic similarity score as TopicSimnq(oq).

3.5 Tag Similarity Component

This component measures the similarity between

the tags of a pair of questions. As tags summarize

the pertinent aspects of a question from different per-

spectives and they can either appear or not appear in

the question’s title and description, we can gain ad-

ditional useful information from the tags. For two

questions m and n, we put their tags in TagSetm
and TagSetn respectively. Next, we merge TagSetm
and TagSetn and eliminate duplicate words, to ob-

tain the union set TagSetu, which contains a total of

v tags. The two sets of tags can be represented as

two vectors: TagVecm = (wgm,1, wgm,2, . . . , wgm,v)

and TagVecn = (wgn,1, wgn,2, . . . , wgn,v). The weight

wgq,i in these two vectors denotes whether the i-th word

appears in question q’s tags, which is computed as fol-

lows:

wgq,i =
yq,i∑
v nq,v

. (4)

In (4), yq,i, which is either 0 or 1, represents whether

the i-th word of TagSetu appears in the tags of ques-

tion q or not,
∑

v nq,v denotes the total number of tags

in question q, where v is the index of a tag in TagSetu.

We measure the similarity between two questions’ tags

by computing the cosine similarity[10] of their repre-

sentative vectors TagVecm and TagVecn . The cosine

similarity of two tag vectors is computed in the same

way as the cosine similarity of two vectors described in

Subsection 3.2.

For a new question nq and an old question oq, we

denote their topic similarity score as TagSimnq(oq).

3.6 Composer Component

Consider a new question nq and an old ques-

tion oq. Their title similarity score, description simila-

rity score, topic similarity score, and tag similarity

score are denoted as TitleSimnq(oq), DesSimnq(oq),

TopicSimnq(oq), and TagSimnq(oq), respectively.

From these four scores, we can compute the composer

score, denoted as Composernq(oq), as follows:

Composernq (oq) = α× TitleSimnq (oq) +

β ×DesSimnq (oq) +

γ × TopicSimnq (oq) +

δ × TagSimnq (oq) . (5)

In (5), α, β, γ, δ ∈ [0, 1] represent the different con-

tribution weights of title similarity, description simi-

larity, topic similarity, and tag similarity to the over-

all DupPredictor score, respectively. Given a new

question nq, nq is compared to the historical questions

posted in Stack Overflow earlier, and a set of composer

scores are computed. By ranking these historical ques-

tions according to their composer scores, we are able

to recommend the top-K questions to the new question

nq.

To automatically produce good α, β, γ and δ

weights for the composer component, we use a sample-

based greedy method. Algorithm 1 presents the pseu-

docode of our sample-based greedy method. Its input

includes the set of all questions Q, a training set of

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 987

Algorithm 1 1. EstimateWeights: Estimation of α, β, γ, δ in Composer

1: EstimateWeights(Q,D,EC, ITER)
2: Input:
3: Q: all question collection
4: D: duplicate question collection
5: EC: evaluation criterion
6: ITER: maximum number of iterations (default value = 10)
7: Output: α, β, γ, δ
8: Method:
9: for all duplicate question d ∈ D, and question q ∈ Q posted before d do
10: Compute their title, description, topic, and tag similarity scores, i.e., TitleSimd(q), DesSimd(q), TopicSimd(q), and

TagSimd(q)
11: end for
12: while iteration count iter < ITER do
13: Let para1 = 0, para2 = 0, para3 = 0, para4 = 0;
14: for all i from 1 to 4 do
15: Choose parai = Math.random()
16: end for
17: for all i from 1 to 4 do
18: parabesti = parai
19: parai = 0
20: repeat
21: Compute the composer scores according to (5)
22: Evaluate the effectiveness of the combined model on D based on EC
23: if EC score of parai is better than that of parabesti then

24: parabesti = parai
25: end if
26: Increase parai by 0.01
27: until parai > 1
28: parai = parabesti
29: end for
30: end while
31: Return para1, para2, para3, para4 which give the best result across the ITER iterations based on EC

duplicate questions that were identified before D, an

evaluation criterion EC, and the maximum number of

iterations ITER.

The algorithm first computes the title similarity, de-

scription similarity, topic similarity, and tag similarity

for each question d in D with questions in Q that are

posted before d (lines 9∼11). Next, the algorithm ite-

rates the whole process of choosing good weights ITER

times (line 12). In each iteration, the algorithm uses

an array para to represent the four weights α, β, γ,

and δ (line 13). Next, the algorithm randomly assigns

a value between 0 to 1 to each parai, for 1 6 i 6 4

(lines 14∼16). The algorithm then increases parai in-

crementally by 0.01 at a time, and computes the EC

scores (lines 17∼30). The algorithm would finally re-

turn para1, para2, para3, and para4, which represent

α, β, γ, and δ respectively, that give the best result

based on EC across all ITER iterations (line 31). By

default, we set EC as the recall-rate@20, and ITER

to 10. Suppose there are m duplicate questions and

a total of n historical questions. For each of the du-

plicate question dup, we need to compute the simila-

rity scores for dup with each of the n questions. The

algorithm complexity in this step is O(n). After we

get the similarity scores, we need to rank them, and

recommend the top-K questions. The algorithm com-

plexity in this step is O(n × log n). Thus, the algo-

rithm complexity to get the top-K questions for dup is

O(n + n × log n) = O(n × log n). Since we have m

duplicate questions, the total algorithm complexity is

O(m× n log n).

4 Experiments and Results

In this section, we evaluate the effectiveness of

DupPredictor. The experimental environment is a

Windows Server 2008, 64-bit, Intelr Xeonr 2.00 GHz

server with 80 GB of RAM.

4.1 Experimental Setup

We evaluate DupPredictor on historical ques-

tions in Stack Overflow. We parse the challenge data

published in MSR 2013 mining challenge site 8○[5]. The

MSR challenge data contains Stack Overflow data from

8○http://2013.msrconf.org/challenge.php, July 2015.

988 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

2008 to 2012. We extract the first 2 000 000 questions

and their corresponding tags. These questions are origi-

nally posted between July 2008 and September 2011.

We intentionally choose questions that have been pub-

lished for a long time to ensure that the contents of the

questions have stabilized (i.e., no edits are likely to be

done any more), the questions are answered and closed,

and sufficient time has elapsed to allow more chance for

duplicates to be identified by Stack Overflow users and

moderators.

We use WVTool 9○[13] to extract fields from ques-

tions. WVTool is a flexible Java library for statistical

language modeling, which is used to create word vector

representations of text documents in the vector space

model. We use WVTool to remove stop words, do stem-

ming, and produce bags of words from the titles and

descriptions of questions. In Stack Overflow, if a ques-

tion is marked as a duplicate, its title will be appended

with the word “Duplicate”. The presence of this word

will artificially boost the accuracy of DupPredictor.

Thus, we delete the word “Duplicate” in the titles of

the 1 528 duplicate questions.

In Stack Overflow, users manually detect duplicate

questions. Considering the large number of questions

posted in Stack Overflow (e.g., more than 2 000 000

questions, and 3 700 new posted questions posted per

day[14]), the search space for duplicate questions is ex-

tremely large, which makes duplicate question detec-

tion a tedious and difficult job. We have searched for

questions that are explicitly marked as duplicates in the

2 000 000 questions, and only obtain a set of 1 641 du-

plicate questions. We manually inspect the 1 641 ques-

tions and discover that some questions are incorrectly

labeled as duplicates. After removing these wrongly la-

beled duplicates by checking the questions one by one,

we have a total of 1 528 duplicate questions remaining.

Given that many developers face similar problems, it is

unlikely that only 0.076% of questions in Stack Over-

flow are duplicates. Rather, it is likely that many du-

plicates are missed in the manual identification process

and remain unidentified in Stack Overflow — we pro-

vide an example of such undiscovered duplicate ques-

tion in Subsection 5.1. The small number of explicitly

marked duplicate questions highlights the difficulty of

identifying duplicates among the large number of ques-

tions in Stack Overflow. To manually identify all dupli-

cate question pairs, four billion comparisons are needed,

and if each comparison can be done in five minutes, the

process will require 20 billion minutes (many millen-

nia). Thus, there is a need for an automated solution

that can help Stack Overflow users and moderators in

identifying duplicate questions more effectively and ef-

ficiently.

Among the 1 528 duplicate questions, we use the

first 300 questions as the training set to train the

weights of the composer component of DupPredic-

tor. We use the other 1 228 duplicate questions as the

test set to evaluate the effectiveness of DupPredic-

tor. The experimental results indicate that the per-

formance of DupPredictor is relatively stable when

the training size is beyond 150 questions. A large num-

ber of questions in the training set will cause model

overfitting[15], and a long training time in the model

training phase. On the other hand, a small number

of questions in the training set will cause the model

underfitting[15], i.e., the trained model cannot capture

the data distribution well. Thus, to balance both the

quality of the trained model and the time needed to

train a model, we choose 300 duplicates — close to 20%

of duplicates in the training set. We pick the first 300

duplicates as the training set to simulate the real usage

of our tool — in reality, it is not possible to use future

data to predict the past. Table 1 presents the statistics

of the training and the test set.

Table 1. Statistics of the Training and the Test Set

Dataset Period From Period To #Duplicate #All

Training set 2008/7/28 2009/6/12 1 300 1 158 164

Test set 2009/6/12 2011/9/07 1 228 1 907 834

Note: #Duplicate refers to the number of duplicate questions.
#All refers to the total number of questions.

4.2 Evaluation Metrics

To evaluate the performance of DupPredictor

and its four basic components, we use the recall-rate@k

metric which was also used in [6, 16-17]. Recall-rate@k

is defined as follows:

recall-rate@k =
Ndetected

Ntotal
. (6)

In (6), Ndetected is the number of duplicate questions

whose masters (i.e., original questions that are posted

earlier in Stack Overflow) appear in the list of top-K

questions, while Ntotal is the total number of dupli-

cate questions used for testing. Recall-rate@k measures

the percentage of duplicate questions whose masters are

successfully retrieved in the list.

9○http://sourceforge.net/projects/wvtool/, July 2015.

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 989

4.3 Research Questions and Findings

We are interested in answering the following re-

search questions.

RQ1 : How effective is DupPredictor? How much

improvement could it achieve over existing approaches

and its four components?

Motivation. We need to investigate whether Dup-

Predictor can be used to identify real duplicate ques-

tions in Stack Overflow. Also, it is necessary to com-

pare the performance ofDupPredictor with the stan-

dard search engine of Stack Overflow. Moreover, we

need to compare DupPredictor with its four compo-

nents to show whether the composite methodDupPre-

dictor performs better than its constituent compo-

nents. We also compareDupPredictor with Runeson

et al.’s approach that has been used to detect duplicate

bug reports using natural language processing (NLP)

techniques[6]. There are a number of recent studies on

duplicate bug report detection, e.g., [16-20]; however,

many of them make use of fields in bug reports that are

not available in Stack Overflow questions (e.g., Prod-

uct, Component, Version, and Priority fields), so we

choose a classical method to compare with. Answer to

this research question shows the benefit of DupPre-

dictor over baseline approaches.

Approach. To answer this research question, we

compute recall-rate@5, recall-rate@10, and recall-

rate@20 of DupPredictor when it is applied to the

Stack Overflow question dataset. We then compare

these recall-rates with the recall-rates that can be

achieved by using Stack Overflow’s search engine, when

the title similarity component, description similarity

component, topic similarity component, and tag sim-

ilarity component are used alone, and by Runeson et

al.’s approach that has been used to detect duplicate

bug reports.

To a new question, Stack Overflow recommends 10

questions that appear to be related to the new ques-

tion, so we can only calculate recall-rate@5 and recall-

rate@10 of Stack Overflow’s search engine. Fig.3 is an

example that presents the 10 related questions of ques-

tion 2662140, which are recommended by Stack Over-

flow. We crawl the related question IDs of the 1 228

duplicate questions in the test set to compute the recall-

rates of Stack Overflow’s search engine. Recall-rate@5

of Stack Overflow’s search engine refers to the percent-

age of questions in the test set whose duplicates are

successfully retrieved in the first five related questions

recommended by Stack Overflow and recall-rate@10 of

Stack Overflow’s search engine refers to the percent-

age of questions in the test set whose duplicates can

be found in the 10 related questions recommended by

Stack Overflow.

Fig.3. Question 2662140 with its related questions.

Runeson et al. detected duplicate defect reports us-

ing natural language processing, and they represented

defect reports using vector space model[21] and investi-

gated the usage of multiple similarity measures to cal-

culate similarities between defect reports which are rep-

resented by their vectors[16]. To use their approach to

detect duplicate questions, we combine the title and

the description of each question in the test set, and

compute its cosine similarity[10] with other questions

to find duplicates. According to the experimental re-

sult of Runeson et al.’s work, cosine similarity performs

better than Dice and Jaccard similarity measures[16].

Results. Table 2 presents the recall-rate@5 and

recall-rate@10 scores of DupPredictor and the stan-

dard search engine of Stack Overflow, and shows the im-

provements that DupPredictor achieves over Stack

Overflow’s search engine. From the table, we can see

that the recall-rate@5 and the recall-rate@10 of the

standard search engine of Stack Overflow are 0.372

and 0.379 respectively. But for our DupPredictor,

Table 2. Recall-Rate@5 and Recall-Rate@10 of DupPredictor
Compared with the Standard Search Engine of Stack Overflow
(SO), and the Improvements DupPredictor Achieves over the
Search Engine

Algorithm Recall-Rate@5 Recall-Rate@10

DupPredictor %0.423 %0.533

SO’s search engine %0.372 %0.379

Improvement 13.71% 40.63%

990 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

the recall-rate@5 and the recall-rate@10 are 0.423

and 0.533 respectively, which outperform Stack Over-

flow’s search engine by 13.71% and 40.63% respectively.

Thus, we can draw the conclusion thatDupPredictor

performs better than Stack Overflow’s search engine in

terms of recall-rates.

Tables 3∼5 present the recall-rate@5, recall-

rate@10, and recall-rate@20 scores of DupPredictor,

each of its four components, and Runeson et al.’s

method, and show the improvements that DupPre-

dictor achieves over the four components and Rune-

son et al.’s method. From Table 3, we find DupPre-

dictor outperforms the four components and Rune-

son et al.’s method in terms of recall-rate@5 by 27.4%,

85.5%, 800%, 264.7%, and 10.2%, respectively. From

Table 4, we find that DupPredictor outperforms

the four components and Runeson et al.’s method in

terms of recall-rate@10 by 27.2%, 97.4%, 746%, 231.1%,

and 16.4% respectively. From Table 5, we find that

DupPredictor outperforms the four components and

Runeson et al.’s method in terms of recall-rate@20 by

26.1%, 93.9%, 717.9%, 255.5%, and 20.8% respectively.

Table 3. Recall-Rate@5 of DupPredictor

Compared with Baselines

Algorithm Recall-Rate@5 Improvement (%)

DupPredictor 0.423 000.0

Title similarity 0.332 027.4

Description similarity 0.228 085.5

Topic similarity 0.047 800.0

Tag similarity 0.116 264.7

Runeson et al.’s method 0.384 010.2

Table 4. Recall-Rate@10 of DupPredictor

Compared with Baselines

Algorithm Recall-Rate@10 Improvement (%)

DupPredictor 0.533 000.0

Title similarity 0.419 027.2

Description similarity 0.270 097.4

Topic similarity 0.063 746.0

Tag similarity 0.161 231.1

Runeson et al.’s method 0.458 016.4

Table 5. Recall-Rate@20 of DupPredictor

Compared with Baselines

Algorithm Recall-Rate@20 Improvement (%)

DupPredictor 0.638 000.0

Title similarity 0.506 026.1

Description similarity 0.329 093.9

Topic similarity 0.078 717.9

Tag similarity 0.196 255.5

Runeson et al.’s method 0.528 020.8

We can note that DupPredictor can achieve a

recall-rate@20 of 63.8% which we believe to be reasona-

bly good. Furthermore, the improvements that Dup-

Predictor achieves over the four components are sub-

stantial (26.1%∼800%). These show the effectiveness

and benefit of our DupPredictor approach which

combines multiple sources of information (i.e., factors)

to identify duplicate questions.

RQ2 : What is the effect of varying the number of

duplicate questions in the training set on the effective-

ness of DupPredictor?

Motivation. DupPredictor takes a training set of

questions as input to tune the four parameters of its

composer component. By default, this training set in-

cludes the first 300 duplicate questions and the other

questions that are posted before the 300th duplicate

question. In this research question, we perform a sen-

sitivity analysis by investigating the impact of varying

the size of the training set on the effectiveness of Dup-

Predictor.

Approach. To answer this research question, we vary

the the size of the training set by including the first

100∼500 duplicate questions and the other questions

posted before the last of the duplicate questions, and

record the recall-rate@5, recall-rate@10, recall-rate@20

scores. Considering that there are 1 528 duplicate ques-

tions in our dataset, when we set the number of dupli-

cate questions in the training set to n, we would use

the remaining 1 528− n duplicate questions as the test

set.

Results. Fig.4 presents the recall-rate@5, recall-

rate@10, and recall-rate@20 scores of DupPredictor

for training sets containing different numbers of du-

plicate questions. We notice that when the number

of questions in the training set is too small (i.e., 100

duplicate questions), the effectiveness of DupPredic-

tor is reduced. However, beyond a certain training

size threshold (i.e., 150 duplicate questions or more),

the performance of DupPredictor is relatively stable.

For example, the recall-rate@5 only varies from 0.413 to

0.425 when the training set is varied to include 150∼500

duplicate questions (and other questions posted before

the last of the duplicate question). Thus, in practice,

we suggest to set the number of duplicate questions in

the training set to 150 or more.

Fig.5 presents the α, β, γ and δ weights learned

by DupPredictor with varying number of duplicate

questions in the training set. We notice for different

numbers of duplicate questions in the training set, the

learned weights are different. However, there is a trend:

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 991

200 400100

0.7

0.6

0.5

0.4

0.3
300

Recall-Rate@
Recall-Rate@
Recall-Rate@

Number of DUPLICATE Questions

R
e
c
a
ll
-
R

a
te

@
k

500

Fig.4. Recall-rate@k of DupPredictor when the size of the
training set is varied.

200 400100

1.0

0.8

0.6

0.4

0.2

0
300

Number of DUPLICATE Questions

W
e
ig

h
ts

500

α
β
γ
δ

Fig.5. α, β, γ and δ weights of DupPredictor for different
numbers of duplicate questions in the training set.

α > β > δ > γ. The stable performance of Dup-

Predictor for many different numbers of duplicate

questions (i.e., beyond 150) indicates that it can adapt

well to different numbers of duplicate questions in the

training set.

RQ3 : Does DupPredictor estimate the four

weights (i.e., α, β, γ, δ) that govern the relative contri-

bution of its four constituent components well? What

is the effect of varying the four weights on the effective-

ness of DupPredictor?

Motivation. By default, DupPredictor automati-

cally estimates α, β, γ and δ weights. In this research

question, we would like to investigate whether Dup-

Predictor estimates the four weights well. We also

would like to analyze the effect of using different sets of

weights on the effectiveness of DupPredictor.

Approach. In order to analyze the effect of the set-

tings of the four weights to the effectiveness of Dup-

Predictor, we randomly generate 50 sets of weights

and use them to determine the contributions of the four

components of DupPredictor. We compare the effec-

tiveness of using these 50 sets of weights with the set of

weights that is automatically estimated by DupPre-

dictor in terms of recall-rate@5, recall-rate@10, and

recall-rate@20.

Results. Table 6 presents the recall-rate@5, recall-

rate@10, and recall-rate@20 of the set of weights

learned by DupPredictor in its default setting (i.e.,

the first row), and the 50 sets of weights generated ran-

domly. DupPredictor estimates the four weights to

be: α = 0.8, β = 0.51, γ = 0.01, and δ = 0.37. The

recall-rate@5, recall-rate@10, and recall-rate@20 of this

set of weights are 0.423, 0.533, and 0.638, respectively,

which are the best results in the table. This shows that

DupPredictor can estimate a good set of weights.

Among the 50 sets of weights, some sets yield poor re-

sults (recall-rate@20 < 0.4), e.g., α = 0.45, β = 0.07,

γ = 0.74 and δ = 0.28, while some yield reasonably

good results (recall-rate@20 > 0.5), e.g., α = 0.65,

β = 0.41, γ = 0.24, and δ = 0.39. Suitable tuning

of the weights is important to the effectiveness of Dup-

Predictor.

From Table 6, we can also find that in general when

α > β > δ > γ, recall-rate@5, recall-rate@10 and

recall-rate@20 are better. This indicates that for identi-

fying duplicate questions, title similarity is more impor-

tant than description similarity, which in turn is more

important than tag similarity. Furthermore, topic simi-

larity alone cannot be used to identify duplicate ques-

tions well.

5 Discussion

5.1 Undiscovered Duplicate Question

In our dataset, among the more than two million

questions, we only find 1 528 duplicate questions. To

understand why this is the case, we manually inves-

tigate many Stack Overflow questions. We find that

many duplicate questions have not been discovered and

marked as such by users. Fig.6 is an example of two

duplicate questions that have not been identified yet.

Both questions are asking about the difference between

“is null()” and “== null” in PHP. This shows the need

for DupPredictor. By using DupPredictor, many

duplicate questions, like question 4662588 10○ and ques-

tion 9671659 11○, could be identified early.

10○http://stackoverflow.com/questions/4662588, July 2015.
11○http://stackoverflow.com/questions/9671659, July 2015.

992 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

Table 6. Recall-Rate@5, Recall-Rate@10 and Recall-Rate@20
of DupPredictor with Different Weights Assigned to the Four
Basic Components

α β γ δ R@5 R@10 R@20

0.80 0.51 0.01 0.37 0.423 0.533 0.638

0.41 0.24 0.61 0.92 0.258 0.302 0.327

0.31 0.34 0.11 0.35 0.361 0.430 0.473

0.45 0.07 0.74 0.28 0.130 0.143 0.152

0.10 0.51 0.81 0.17 0.113 0.121 0.126

0.94 0.88 0.95 0.77 0.270 0.340 0.432

0.66 0.31 0.28 0.45 0.406 0.517 0.612

0.64 0.70 0.35 0.10 0.318 0.419 0.512

0.50 0.27 0.22 0.34 0.406 0.519 0.606

0.75 0.42 0.57 0.24 0.305 0.406 0.501

0.99 0.91 0.19 0.29 0.407 0.533 0.623

0.98 0.70 0.84 0.26 0.258 0.345 0.445

0.74 0.04 0.26 0.45 0.384 0.475 0.562

0.30 0.94 0.12 0.67 0.327 0.405 0.456

0.18 0.46 0.41 0.96 0.222 0.261 0.286

0.51 0.71 0.19 0.97 0.274 0.322 0.350

0.40 0.43 0.07 0.62 0.282 0.335 0.361

0.46 0.63 0.77 0.19 0.147 0.182 0.231

0.32 0.12 0.49 0.91 0.219 0.264 0.288

0.50 0.50 0.15 0.44 0.393 0.476 0.535

0.82 0.73 0.36 0.81 0.372 0.449 0.505

0.51 0.97 0.01 0.84 0.352 0.415 0.455

0.43 0.17 0.74 0.97 0.256 0.300 0.327

0.65 0.41 0.24 0.39 0.409 0.529 0.622

0.10 0.94 0.91 0.97 0.184 0.215 0.265

0.62 0.45 0.06 0.61 0.361 0.434 0.482

0.81 0.95 0.76 0.54 0.263 0.355 0.456

0.08 0.48 0.70 0.90 0.216 0.260 0.298

0.94 0.69 0.99 0.04 0.178 0.222 0.288

0.49 0.22 0.43 0.14 0.257 0.328 0.419

0.63 0.81 0.18 0.47 0.395 0.490 0.552

0.64 0.80 0.77 0.95 0.277 0.331 0.386

0.58 0.97 0.44 0.88 0.324 0.395 0.442

0.48 0.31 0.08 0.41 0.390 0.480 0.550

0.15 0.74 0.24 0.05 0.192 0.272 0.360

0.08 0.57 0.90 0.40 0.116 0.130 0.140

0.50 0.69 0.76 0.54 0.206 0.262 0.354

0.87 0.67 0.74 0.89 0.324 0.387 0.447

0.20 0.06 0.57 0.73 0.225 0.272 0.301

0.45 0.42 0.25 0.58 0.313 0.371 0.410

0.70 0.64 0.75 0.43 0.233 0.305 0.393

0.61 0.83 0.81 0.89 0.257 0.318 0.382

0.31 0.72 0.69 0.94 0.241 0.282 0.325

0.38 0.39 0.15 0.28 0.392 0.489 0.565

0.86 0.25 0.08 0.96 0.274 0.311 0.346

0.21 0.45 0.44 0.25 0.170 0.217 0.281

0.02 0.65 0.88 0.56 0.123 0.150 0.177

0.68 0.24 0.94 0.50 0.191 0.221 0.244

0.96 0.72 0.41 0.05 0.357 0.467 0.555

0.19 0.33 0.24 0.24 0.247 0.322 0.420

0.94 0.80 0.66 0.64 0.340 0.451 0.534

Note: R means recall-rate.

(a)

(b)

Fig.6. Example of duplicate questions that have not been iden-
tified in Stack Overflow. (a) Question 4662588. (b) Question
9671659.

5.2 Time Efficiency

The efficiency of the algorithm will affect its prac-

tical usage. Thus, in this research question, we inves-

tigate the time efficiency of DupPredictor. We run

DupPredictor and report the average model train-

ing and test time. Model training time refers to the

time taken to build the composer component. Test time

refers to the time taken for DupPredictor to predict

the duplicates of the questions in the test set. We notice

that the training time and the test time of DupPre-

dictor are reasonable, e.g., on average, we need about

725.542 seconds to train a model, and 10.858 seconds to

predict the duplicates of all questions in the test set us-

ing the model (for each question in the test set, we just

need 0.008 8 seconds). Notice that the training phase

can be done offline (e.g., overnight) and the model does

not need to be updated all the time. A trained model

can be used to predict many questions.

5.3 Impact of Topic Similarity Component

From the training results, we notice that the weight

of topic similarity component is only 0.01, much

smaller than those of the other components. There-

fore, we need to investigate whether the topic similar-

ity component makes sense in DupPredictor. We

build a model without topic similarity component,

calledDupPredictor−TOPIC, which only combines ti-

tle similarity component, description similarity com-

ponent, and tag similarity component. Then, we run

DupPredictor−TOPIC on the same dataset and com-

pute recall-rate@5, recall-rate@10 and recall-rate@20.

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 993

The results are shown in Table 7. From the table, we

can see that without topic similarity component, the

recall-rate@5, recall-rate@10 and recall-rate@20 scores

are slightly reduced. Since topic similarity component

could still help to improve the performance ofDupPre-

dictor, in practice, we recommend users to include

this component.

Table 7. Recall-Rate@5, Recall-Rate@10 and Recall-Rate@20

of DupPredictor−TOPIC Compared with DupPredictor

Algorithm α β γ δ R@5 R@10 R@20

DupPredictor 0.80 0.51 0.01 0.37 0.423 0.533 0.638

DupPredictor−TOPIC 0.87 0.59 0.00 0.29 0.414 0.528 0.631

Note: R means recall-rate.

5.4 Threats to Validity

There are several threats that may potentially af-

fect the validity of our study. Threats to internal valid-

ity relate to errors in our experiments and implemen-

tation. We have double checked our experiments and

implementation. We have also manually checked the

questions marked as duplicates in our dataset to en-

sure that they are really duplicates. Still, there could

be errors that we have not noticed. Threats to exter-

nal validity relate to the generalizability of our results.

We have analyzed 1 528 duplicate questions from more

than 2 000 000 questions in Stack Overflow. In the fu-

ture, we plan to reduce this threat further by analyzing

even more duplicate questions from additional question

and answer sites. Threats to construct validity refer to

the suitability of our evaluation metrics. We use recall-

rate@5, recall-rate@10, and recall-rate@20 as the eva-

luation metrics. These metrics are also used by many

previous studies[6,16-17]. Thus, we believe there is little

threat to construct validity.

6 Related Work

In this section, we briefly review related studies. We

first review some previous studies on duplicate bug re-

port detection. Next, we describe studies on software

information sites and online forum discussion.

Studies on Duplicate Bug Report Detection. There

have been a number of studies on duplicate bug report

detection, e.g., [6, 16-20]. The motivation of these stu-

dies is to reduce the workload of bug triagers who need

to identify duplicate bug reports among the hundreds

of bug reports that they receive daily[23]. Most of the

duplicate bug report detection approaches take a new

bug report as input, and recommend a list of top-k exi-

sting bug reports that are the most similar to it. A bug

triager can inspect this top-k list and make an informed

decision whether the bug report is a duplicate one or

not. We highlight some of the more recent studies on

duplicate bug report detection below.

Wang et al. identified duplicate defect reports us-

ing execution trace information (i.e., list of executed

methods) of bug-revealing runs and natural language

information contained in bug reports[18]. Sun et al.

proposed a discriminative model based approach for

duplicate bug report detection[17]. They extracted a

number of features from duplicate and non-duplicate

bug reports and processed these features using Support

Vector Machine (SVM) to create a discriminative model

that can compute the likelihood of a bug report to be

a duplicate of another report. These likelihood scores

are then used to rank existing bug reports given a new

bug report. In their other work, Sun et al. proposed a

retrieval function, named REP, to measure the simila-

rity between two bug reports[16]. REP extends BM25F,

which is an effective retrieval function proposed in the

information retrieval (IR) community, by considering a

special characteristic of duplicate bug reports.

Aside from the above-mentioned studies, there are

also a number of other studies that focus on the task of

predicting if a pair of bug reports are duplicate of each

other or not. These include studies by Lo et al.[24],

Alipour et al.[19], Lazar et al.[22], and Klein et al.[20]

Different from the above mentioned studies, in this

work, we address a different problem, namely the de-

tection of duplicate questions in Stack Overflow. There

are a number of differences between duplicate bug re-

port detection and duplicate question detection.

1) To identify duplicate bug reports, there is no need

to look too far behind; the duplicate of a new bug report

is likely to be reported a short period of time before the

new bug report. This is the case since after some time, a

bug report will be fixed, and thus the bug will no longer

be experienced by users. Hence, after some time period

has elapsed, it is likely that no future duplicate bug

report will be made. Many duplicate bug report detec-

tion approaches make use of this special characteristic

of bug reports, e.g., [16, 18]. Different from duplicate

bug reports, duplicate questions in Stack Overflow can

be separated by a long time interval. Fig.7 is an exam-

ple of two duplicate questions that are separated by a

long time interval. Question 7328545 12○ was asked on

September 7, 2011 and was labeled as a duplicate ques-

994 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

tion of question 1150321 13○, which was asked on July

19, 2009. The time interval between the two reports is

more than two years.

(a)

(b)

Fig.7. Example of duplicate questions that are separated by a
long time interval in Stack Overflow. (a) Question 7328545. (b)
Question 1150321.

2) Bug reports and questions in Stack Overflow con-

tain different fields. A bug report contains fields such

as severity, priority, component, product, and so on.

Past duplicate bug report detection approaches make

use of this special characteristic of bug reports, e.g.,

[16]. Different from bug reports, Stack Overflow ques-

tions do not have many of the fields that appear in bug

reports. Furthermore, these questions have tags that

do not appear in bug reports. DupPredictor makes

use of these tags to help identify duplicate questions.

Due to the above mentioned differences, there is a

need for a new approach to detecting duplicate ques-

tions in Stack Overflow.

Studies on Bug Report Management. Zanetti et al.

proposed an efficient and practical method to identify

valid bug reports, which is based on nine measures to

quantify the social embeddedness of bug reporters in

the collaboration network[25]. Xuan et al. combined in-

stance selection with feature selection to simultaneously

reduce data scale on the bug dimension and the word

dimension, and the experimental results show that their

data reduction can effectively reduce the data scale and

improve the accuracy of bug triage[26].

Studies on Software Information Sites. There have

been a number of studies on software information sites.

We use the term software information sites loosely to

refer to web-based channels that developers have used

to share information and help one another. These in-

clude question and answer sites, forums, microblogging

sites, etc. We highlight some of these studies below.

Storey et al.[3] and Begel et al.[2] wrote two position

papers about the outlook of research in social media

for software engineering. They proposed a set of re-

search questions related to the impact of social media

for software engineering at team, project, and commu-

nity levels. Bougie et al.[27] and Tian et al.[28] ana-

lyzed microblogs related to software engineering activi-

ties to understand what software engineers do in Twit-

ter. Prasetyo et al. proposed an approach that can

automatically classify a microblog as either software-

related or not[29].

Surian et al. found collaboration patterns in Source-

Forge.Net by employing a novel combination of graph

mining and graph matching techniques[30]. Surian et

al. used random walk with restart (RWR) method to

build a large-scale developer collaboration network to

recommend suitable developers by using information

collected from SourceForge.Net[31]. Hong et al. com-

pared developer social networks and popular general

social networks and examined how developer social net-

works evolve over time[32].

Xia et al. proposed an automatic tag recommenda-

tion method which analyzes objects in Stack Overflow

and Freecode and recommends tags to them[1]. Wang

et al. extended the work of Xia et al.[1] by proposing

an approach that combines frequentists and Bayesian

inference to better recommend tags to objects in Stack-

Exchange websites[33]. Barua et al. used LDA to au-

tomatically discover the main topics of questions in

Stack Overflow[34]. Gottipati et al. provided a seman-

tic search engine to infer semantic tags of posts and

recover relevant answer posts in software forums[35].

Henβ et al. presented an approach that automatically

extracts frequently asked questions from software de-

velopment discussions by combining techniques of text

mining and natural language processing[36]. Correa and

Sureka used a machine learning framework to build a

predictive model to judge whether a Stack Overflow

question would be closed or not[37]. They also built a

predictive model to detect whether a question will be

deleted or not[14]. We also found that many forums

12○http://stackoverflow.com/questions/7328545, July 2015.
13○http://stackoverflow.com/questions/1150321, July 2015.

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 995

provide a list of related questions to a question, such as

IBM’s jazz forum 14○ and Stack Overflow, and we com-

pare our DupPredictor with the method used to de-

tect related questions in Stack Overflow in our experi-

ment.

Our work is orthogonal to the above mentioned

studies: we focus on identifying duplicate questions

in Stack Overflow, which is different from the focus of

the above mentioned studies. Among the previous stu-

dies, the one closest to our work is Correa and Sureka’s

studies[13,37], which predict if a question will be closed

or deleted. However, duplicate questions are different

from deleted questions, and duplicate questions are only

a small part of closed questions, about 29.3% according

to Correa and Sureka’s work[37]. What is more, dif-

ferent from Correa and Sureka’s studies, our work not

only can be used to determine if a current question is

a duplicate question, but also can find the questions of

which the current question is a duplicate. It would be

hard for a developer to trust the output of a black box

machine learning prediction tool (especially since the

accuracy of such tool is not 100%). To deal with this

issue, our approach gives evidences that developers can

consider to decide if a question is a duplicate one, i.e.,

by providing a list of existing questions that are likely

to be duplicates of the target question.

Online Forum Discussion. In Stack Overflow, a

large quantity of questions are related to APIs. There

have been several studies on API discussions in on-

line forums. Zhou et al. proposed a cache-based

composite algorithm to automatically categorize API

discussions[38]. Hou and Mo applied machine learning

algorithms to categorize API discussions based on their

contents in software forums, and they concluded that

multinomial naive Bayes achieves a remarkably high

accuracy[39]. Hou and Li studied 172 API discussions

in Swing forums to analyze the root causes of API us-

age obstacles and discussed what could be done to help

overcome these obstacles[40]. Rupakheti and Hou built

a critic to advise the usage of an API, and performed

an empirical study on a Java Swing forum to assess to

what extent the critic can help solve practical API us-

age problems[41]. Zhang and Hou investigated ways to

extract problematic API features from online forums,

using natural language processing and sentiment ana-

lysis techniques[42]. Our work also focuses on problems

in online forums, and aims at optimizing the user ex-

perience.

7 Conclusions

In this paper, we proposedDupPredictor to iden-

tify duplicate questions in Stack Overflow. DupPre-

dictor measures the similarity of two questions by

comparing their observable factors, which are the ti-

tles, descriptions, and tags of the questions, and their

latent factors corresponding to the topic distributions

that are learned from the natural language descrip-

tions of the questions. DupPredictor has four com-

ponents: title similarity component, description simi-

larity component, topic similarity component, and tag

similarity component. It automatically combines these

four components by assigning different weights to them;

these weights are automatically learned from a training

data. We evaluated DupPredictor on more than two

million questions in Stack Overflow site and measured

the performance of DupPredictor in terms of recall-

rate@k. The experimental results show that DupPre-

dictor can achieve recall-rate@5, recall-rate@10, and

recall-rate@20 scores of 42.3%, 53.3%, and 63.8%, re-

spectively. We compare DupPredictor with its four

constituent components, the standard search engine of

Stack Overflow, and Runeson et al.’s approach that has

been used to detect duplicate bug reports, and the re-

sults showed thatDupPredictor improves these base-

line approaches by 10.2%∼717.9%.

In the future, we plan to evaluate DupPredictor

with datasets from other software question and answer

sites or forums, and develop a better technique to im-

prove the effectiveness of DupPredictor.

References

[1] Xia X, Lo D, Wang X, Zhou B. Tag recommendation in

software information sites. In Proc. the 10th Working Con-

ference on Mining Software Repositories (MSR), May 2013,

pp.287-296.

[2] Begel A, DeLine R, Zimmermann T. Social media for soft-

ware engineering. In Proc. the FSE/SDP Workshop on Fu-

ture of Software Engineering Research, November 2010,

pp.33-38.

[3] Storey M A, Treude C, Deursen A, Cheng L T. The impact

of social media on software engineering practices and tools.

In Proc. the FSE/SDP Workshop on Future of Software

Engineering Research, November 2010, pp.359-364.

[4] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation.

Journal Machine Learning Research, 2003, 3: 993-1022.

[5] Bacchelli A. Mining challenge 2013: Stack Overflow. In

Proc. the 10th MSR, May 2013.

[6] Runeson P, Alexandersson M, Nyholm O. Detection of du-

plicate defect reports using natural language processing. In

14○https://jazz.net/forum, July 2015.

996 J. Comput. Sci. & Technol., Sept. 2015, Vol.30, No.5

Proc. the 29th International Conference on Software Engi-

neering (ICSE), May 2007, pp.499-510.

[7] Porter M. An algorithm for suffix stripping. Program, 1980,

14(3): 130-137.

[8] Kochhar P S, Thung F, Lo D. Automatic fine-grained is-

sue report reclassification. In Proc. the 19th International

Conference on Engineering of Complex Computer Systems

(ICECCS), August 2014, pp.126-135.

[9] Thung F, Lo D, Jiang L. Automatic defect categorization.

In Proc. the 19th Working Conference on Reverse Engi-

neering (WCRE), October 2012, pp.205-214.

[10] Baeza-Yates R, Ribeiro-Neto B. Modern Information Re-

trieval: The Concepts and Technology Behind Search (2nd

edition). Addision Wesley, 2011.

[11] Heinrich G. Parameter estimation for text analy-

sis. Technical Report, University of Leipzig, 2005.

http://www.arbulon.net/publications/text-est.pdf, Aug.

2015.

[12] Steyvers M, Griffiths T. Probabilistic topic models. In

Handbook of Latent Semantic Analysis, Landauer T, Mc-

namara D, Dennis S et al. (eds.), Routledge, 2007.

[13] Wurst M. The word vector tool user guide operator

reference developer tutorial. http://www-ai.cs.uni-dortmu-

nd.de/SOFTWARE/WVTOOL/doc/wvtool-1.0.pdf, July

2015.

[14] Correa D, Sureka A. Chaff from the wheat: Characteriza-

tion and modeling of deleted questions on Stack Overflow.

In Proc. the 23rd International Conference on World Wide

Web, April 2014, pp.631-642.

[15] Han J, Kamber M. Data Mining: Concepts and Techniques

(2nd edition). San Francisco, CA, USA: Morgan Kaufmann,

2006.

[16] Sun C, Lo D, Khoo S C, Jiang J. Towards more accu-

rate retrieval of duplicate bug reports. In Proc. the 26th

IEEE/ACM International Conference on Automated Soft-

ware Engineering, November 2011, pp.253-262.

[17] Sun C, Lo D, Wang X, Jiang J, Khoo S C. A discriminative

model approach for accurate duplicate bug report retrieval.

In Proc. the 32nd ICST, Volume 1, May 2010, pp.45-54.

[18] Wang X, Zhang L, Xie T, Anvik J, Sun J. An approach to

detecting duplicate bug reports using natural language and

execution information. In Proc. the 30th International Con-

ference on Software Engineering, May 2008, pp.461-470.

[19] Alipour A, Hindle A, Stroulia E. A contextual approach

towards more accurate duplicate bug report detection. In

Proc. the 10th MSR, May 2013, pp.183-192.

[20] Klein N, Corley C S, Kraft N A. New features for dupli-

cate bug detection. In Proc. the 11th MSR, May 31-June 1,

2014, pp.324-327.

[21] Manning C D, Raghavan P, Schütze H. Introduction to In-

formation Retrieval, Volume 1. Cambridge University Press

Cambridge, 2008.

[22] Lazar A, Ritchey S, Sharif B. Improving the accuracy of

duplicate bug report detection using textual similarity mea-

sures. In Proc. the 11th MSR, May 31-June 1, 2014, pp.308-

311.

[23] Anvik J, Hiew L, Murphy G C. Coping with an open

bug repository. In Proc. the 2005 OOPSLA Workshop on

Eclipse Technology eXchange, October 2005, pp.35-39.

[24] Lo D, Cheng H, Lucia. Mining closed discriminative dyadic

sequential patterns. In Proc. the 14th International Con-

ference on Extending Database Technology (EDBT), March

2011, pp.21-32.

[25] Zanetti M S, Scholtes I, Tessone C J, Schweitzer F. Cate-

gorizing bugs with social networks: A case study on four

open source software communities. In Proc. the 35th ICSE,

May 2013, pp.1032-1041.

[26] Xuan J, Jiang H, Hu Y, Ren Z, Zou W, Luo Z, Wu X. To-

wards effective bug triage with software data reduction tech-

niques. IEEE Transactions on Knowledge and Data Engi-

neering, 2015, 27(1): 264-280.

[27] Bougie G, Starke J, Storey M A, German D M. Towards

understanding Twitter use in software engineering: Prelim-

inary findings, ongoing challenges and future questions. In

Proc. the 2nd International Workshop on Web 2.0 for Soft-

ware Engineering, May 2011, pp.31-36.

[28] Tian Y, Achananuparp P, Lubis I N, Lo D, Lim E P. What

does software engineering community microblog about? In

Proc. the 9th MSR, June 2012, pp.247-250.

[29] Prasetyo P K, Lo D, Achananuparp P, Tian Y, Lim E P.

Automatic classification of software related microblogs. In

Proc. the 28th ICSM, September 2012, pp.596-599.

[30] Surian D, Lo D, Lim E P. Mining collaboration patterns

from a large developer network. In Proc. the 17th Work-

ing Conference on Reverse Engineering (WCRE), October

2010, pp.269-273.

[31] Surian D, Liu N, Lo D, Tong H, Lim E P, Faloutsos C. Rec-

ommending people in developers’ collaboration network. In

Proc. the 18th WCRE, October 2011, pp.379-388.

[32] Hong Q, Kim S, Cheung S, Bird C. Understanding a de-

veloper social network and its evolution. In Proc. the 27th

IEEE International Conference on Software Maintenance

(ICSM), September 2011, pp.323-332.

[33] Wang S, Lo D, Vasilescu B, Serebrenik A. EnTagRec: An

enhanced tag recommendation system for software informa-

tion sites. In Proc. the 30th ICSME, September 29-October

31 2014, pp.291-300.

[34] Barua A, Thomas S W, Hassan A E. What are develop-

ers talking about? An analysis of topics and trends in stack

overflow. Empirical Software Engineering, 2014, 19(3): 619-

654.

[35] Gottipati S, Lo D, Jiang J. Finding relevant answers in soft-

ware forums. In Proc. the 26th IEEE/ACM International

Conference on Automated Software Engineering, November

2011, pp.323-332.

[36] Henβ S, Monperrus M, Mezini M. Semi-automatically ex-

tracting FAQs to improve accessibility of software devel-

opment knowledge. In Proc. the 34th ICSE, June 2012,

pp.793-803.

[37] Correa D, Sureka A. Fit or unfit: Analysis and predic-

tion of ‘closed questions’ on stack overflow. In Proc. the

1st ACM Conference on Online Social Networks, October

2013, pp.201-212.

[38] Zhou B, Xia X, Lo D, Tian C, Wang X. Towards more ac-

curate content categorization of API discussions. In Proc.

the 22nd International Conference on Program Compre-

hension, June 2014, pp.95-105.

[39] Hou D, Mo L. Content categorization of API discussions.

In Proc. the 29th ICSM, September 2013, pp.60-69.

Yun Zhang et al.: Multi-Factor Duplicate Question Detection in Stack Overflow 997

[40] Hou D, Li L. Obstacles in using frameworks and APIs: An

exploratory study of programmers’ newsgroup discussions.

In Proc. the 19th IEEE International Conference on Pro-

gram Comprehension (ICPC), June 2011, pp.91-100.

[41] Rupakheti C R, Hou D. Evaluating forum discussions to

inform the design of an API critic. In Proc. the 20th ICPC,

July 2012, pp.53-62.

[42] Zhang Y, Hou D. Extracting problematic API features

from forum discussions. In Proc. the 21st ICPC, May 2013,

pp.142-151.

Yun Zhang is a Ph.D. candidate

in the College of Computer Science

and Technology, Zhejiang University,

Hangzhou. Her research interests in-

clude mining software repository and

empirical study.text text text text text

text text text text text text text text

text text text text text text text text

text text text text text text text text text text text

David Lo received his Ph.D. degree

in computer science from the School

of Computing, National University of

Singapore, Singapore, in 2008. He is

currently an assistant professor in the

School of Information Systems, Singa-

pore Management University. He has

close to 10 years of experience in software engineering and

data mining research and has more than 130 publications

in these areas. He received the Lee Foundation Fellow

for Research Excellence from the Singapore Management

University in 2009. He has won a number of research

awards including an ACM Distinguished Paper Award for

his work on bug report management. He has published in

many top international conferences in software engineer-

ing, programming languages, data mining and databases,

including ICSE, FSE, ASE, PLDI, KDD, WSDM, TKDE,

ICDE, and VLDB. He has also served on the program

committees of ICSE, ASE, KDD, VLDB, and many

others. He is a steering committee member of the IEEE

International Conference on Software Analysis, Evolution,

and Reengineering (SANER) which is a merger of the two

major conferences in software engineering, namely CSMR

and WCRE. He will also serve as the general chair of ASE

2016. He is a leading researcher in the emerging field of

software analytics and has been invited to give keynote

speeches and lectures on the topic in many venues, such

as the 2010 Workshop on Mining Unstructured Data,

the 2013 Génie Logiciel Empirique Workshop, the 2014

International Summer School on Leading Edge Software

Engineering, and the 2014 Estonian Summer School in

Computer and Systems Science.

Xin Xia received his Ph.D. degree

in computer science from the College

of Computer Science and Technology,

Zhejiang University, Hangzhou, in 2014.

He is currently a research assistant

professor in the College of Computer

Science and Technology at Zhejiang

University. His research interests

include software analytic, empirical study, and mining

software repository.

Jian-Ling Sun received his Ph.D.

degree in computer science from Zhe-

jiang University, Hangzhou, in 1993. He

is currently a professor in the College of

Computer Science, Zhejiang University.

His research interests include database

systems, distributed systems, and

software engineering.

